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Symbols and Meanings in School Mathematics explores the various uses and
aspects of symbols in school mathematics and also examines the notion of
mathe matical meaning. It is concerned with the power of language which
enables us to do mathematics, giving us the ability to name and rename, to
transform names and to use names and descriptions to conjure,
communicate and control our images. It is in the interplay between
language, image and object that mathematics is created and can be
communicated to others.

One theme which runs throughout the book is the core metaphor of
manipulation. Practical apparatus in North America is known as
‘manipulatives’, some recent computer software is known as a ‘symbolic
manipulator’ and we are taught to manipulate numbers, algebraic
expressions, and geometric figures and images. What does the
omnipresence of this term describing the doing of mathematics tell us
about the two fundamental metaphors in English for understanding:
touch and sight?

The book also addresses a set of questions of particular relevance to the
last decade of the twentieth century, which arise due to the
rapidlyincreasing proliferation of machines offering mathematical
functionings. What new light do such machines throw on age-old
discussions of the teaching and learning of mathematics, in particular, the
common tension between fluency and understanding? What new
perspective is cast on the question not ‘what is there is be known?’ but
rather ‘what is worth knowing?’ in mathematics?
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AN IDIOSYNCRATIC

PREFACE

Some of the main themes of this book are what they are as a consequence
of my having taken up the tenor saxophone at the age of thirty-eight, with
little prior musical training. It had been a long time since I had attempted
to learn something that would take a great deal of my attention and a very
long time to master. But more relevantly here, I was confronted with:
 
• having to contend with a relatively new notation and my occasional

symbol blindness;
• coming to grips with different naming systems for referring to notes

(positional on a stave, letter names, tonic sol-fa, interval relations) and
to relate all of these to fingerings and sounds, yet with the explicit goal
of automation;

• musical theory, and being offered precepts like ‘to find the relative
minor of a major key go down a minor third’, or ‘Jazz is all II–V–I,
while pop music is all I–IV–V;

• being offered images such as the mouth acting as a gasket not a clamp,
or trying to swallow and yawn at the same time: until I discovered I
was doing something that I wasn’t aware I was doing (and that it could
therefore be done otherwise), I could make no sense of this latter
suggestion;

• striving for a physical fluency and finding on occasions that my fingers
were in advance of my conscious brain—also, that letting go of
wanting to ‘understand’ and having to be in conscious control
sometimes allowed interesting things to happen;

• systematic practice, and its sometimes complex relation to perceived
improvement.

 
Later discussions with a singing teacher added the following parallel. A
hundred years ago, she claimed, professional singers were trained
predominantly by being asked to listen intently and to copy closely,
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without asking why. Developments in twentieth-century understanding
of human vocal and other anatomy, among other things, led to a new
tradition of explaining why and linking the how and the why—and in the
process of change something got lost. The historical switch seems to have
been from how can I do what they are doing to how do they do it. (The
focus is different, and it is not clear how my detailed understanding of the
physical operation of certain parts of my body will allow me to achieve
what certain others can achieve.) Young children learning to speak,
despite being described as copying, do not look inside others’ mouths in
order to ascertain physically what they ought to be doing in order to
imitate it. They work on their own vocal sound production and use their
ears.

Sometimes, while learning to play, I found myself thinking about
mathematics teaching and learning, about similarities and differences,
and about genuine and false parallels. Some corresponding questions for
mathematics education are: what is named and what power resides in one
system of naming over another? Do we ever work on anything other than
the notation? Why do we offer and generate images for mathematical
practices? What relations are there between fluency and understanding as
twin, conflicting(?), complementary(?), independent(?) aims for
mathematics teaching?

Work in mathematics education frequently presumes a currency and
topicality of issues unmatched by actual practitioner discussion, whose
concerns may be quite different. Discussion of issues of symbol
manipulation, fluency and practice, memorising tables and other
manifestations of so-called ‘rote’ learning are not commonly to be found in
mathematics education books and articles published in the early 1990s.
But they have not gone away. And my struggles with the saxophone put
me back into direct contact with some of them.

The name of the rose by any other name

baptism is neither explanation, nor description, nor definition.
Baptism, the giving of a name, is merely the tying together in
association of a particular object or quality and a particular word.

(Ivins, 1969, p. 52)

Of the questions listed above, I was particularly struck by the
phenomenon of naming. I had encountered oddities about naming and
the thing named as a young adolescent engaged in the pursuit of plane
spotting. It is the registration serial (the aircraft’s name in some important
sense), and not the object labelled, that is the main focus of attention and
source of desire. As the same aeroplane (as an object) is bought and sold, it
can have many different names over time, and sometimes more than one
serial can be found on the same plane at the same time. As with fractions
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rather than rational numbers, for instance, it is often actual symbols rather
than the referents that provide the focus of interest.

A similar situation recurs with car licence plates. In Britain, they used to
be unique identifiers, and if the car were destroyed, so was the plate, never
to reappear. The tie between symbol and object was strong and complete—
one of those ties that bind. Later, the strength of the link between object and
name lessened and cars could (legitimately) have different plates over time
and conversely, plates could endure across different cars. With so-called
vanity plates in particular, there is an interesting shift of field and ground, in
that it is the plates that get traded as valuable or desirable objects, while the
car becomes merely the symbolic holder for them.

‘What’s in a name?’ is a question that has been frequently asked. Richard
Feynman, in a much-quoted anecdote, recalls his father telling him:
 

“You can know the name of that bird in all the languages of the
world, but when you’re finished, you’ll know absolutely nothing
about the bird. You’ll only know about humans in different places
and what they call the bird. So let’s look at the bird and see what
it’s doing—that’s what counts.” (I learned very early the difference
between knowing the name of something and knowing
something.)

(1988, p. 14)

I think the view expressed in this anecdote is fundamentally wrong, in the
following sense. Naming is done for a reason; naming is seldom ‘mere’;
naming is almost never arbitrary in the sense of unthought about. Baptism
usually takes place against a backdrop of existing names, knowledge and
perceptions, reflected in the relevant category of names. Names stress and
ignore. Naming structures frequently convey much information, provided
that access to the system can be gained. Nowhere is this truer than in
mathematics. (For example, what information is conveyed by various
conic sections being called parabolas, ellipses and hyperbolae?)

It is a common task in geometry to be asked to name things. Much of
what comes under the English National Curriculum heading of ‘Shape and
Space’ actually concerns naming knowledge. Naming allows you to talk
about things you can see—you can use language to point. Naming also
allows classification—and use of the same name invites pupils to look for
similarities between things. However, naming per se is not the point of the
exercise. In its worst form, the purposes behind geometrical naming get lost
and the process degenerates into a sort of feeble natural history for shapes.

One aspect of geometry that is frequently missing is any sense of
purpose in the classification. Why bother distinguishing rhombuses from
kites, squares from rectangles, among all possible quadrilaterals? One
important reason is that there are ‘nice’ results to be declared about
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particular collections of figures. Frequently, classes of shapes are brought
into existence because they are precisely those objects that answer a
particular question in geometry. (For more, see Mason, 1990b.)

There is a strong tendency to assume that if two things have the same
name, or if the same symbol is used, such as ‘+’ or ‘=’, then they refer to the
same object. Conversely, if they have different names, such as ‘square’ and
‘rectangle’, then they are surely necessarily different things, for otherwise
they would have the same name. This assumption can have positive
benefits in mathematics, where it is quite common for the same word or
symbol to be used in contexts where the things referred to seem quite
different, by hinting at underlying connections.

There is also always the possibility of confusion between symbol and
object, particularly when mathematicians exploit such links between
properties of the symbols and those of the objects in order to reduce the
memory load when doing calculations. (To multiply by ten, add a 0’ or ‘An
even number is one that ends in a 2, 4, 6, 8, or 0’.) One teacher recalled
being good at maths as a child and being very pleased with a question he
had thought up when he was ten: why do two minuses make a plus and
not an equals? He was understanding make to mean ‘constitute’ and two ‘-
’ could equally well be used to form the ‘=’ sign as a ‘+’ sign. He reported
finding it hard to comprehend why his teacher wasn’t very pleased with
his question.

Most importantly, naming is one of the fundamental activities of
mathematics. It is far from passive; on the contrary, it allows mathematics
to be done. Names form part of both a cultural and an individual psychic
context, attracting layers of meaning and serving as triggers calling forth
responses at many levels. When the focus is on symbolising for naming
alone, you may use different criteria from when invoking symbols for
manipulation.

A very familiar tension in teaching mathematics at whatever level is
between wanting symbols to be ‘iconic’, that is readily transparent with
respect to their meaning or reference while yet, for fluency and
automation, more compact, opaque symbols are frequently more efficient.
There is a frequent trade-off: the more transparent a symbolism, the less
compact, and hence the less easily manipulated. This is a theme that I shall
come back to time and again.

The mathematical uses of language are not fundamentally different
from other cultural uses, and the same questions of identity, form and
function, of object and symbol, of purpose and meaning, are key elements
in any account of teaching, learning and doing mathematics. This book is
my attempt at a systematic exploration in the context of those
mathematical ‘objects’, ideas, techniques, processes, and forms that are
commonly invoked in schools.
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INTRODUCTION

Before anyone can reach spoken speech, he must already have
access to meanings or he could retain nothing. No object has a
name per se, and the name of an object means only something
in the code (the language) that one has accpeted. But an
object, name aside, has a meaning of its own, and all of us
have had the good sense from our crib and later on, even
without speech, to recognize meaning, to gain access to
meaning. And once we have a general access to meaning, then
we can put different labels on it, and the labels will stick to the
meaning. Speech can come only after we have grasped the
existence of meanings.

(Gattegno, 1970, pp. 17–18)

I begin with an anecdote. I was visiting friends in America and it had been
some years since I had seen them. In the intervening space of time, their
daughter, Lynn, had been born: she was now nearly two. My plane was
delayed, so I arrived after Lynn was in bed, although she knew I was
coming. The next morning, I awoke and, from the next room, I heard Lynn
calling: “Mummy, Daddy, David, David, David. David, come here, come
here now, I want you”. I was summoned; I could only obey! I went into her
room and saw a little girl standing up in her cot, half-excited and half-
frightened by my image, an image she had conjured up by the use of
language, and by the use of names in particular. Naming gives you a
certain power over the external world.

This is a book about mathematics and language. It is the power of
language in enabling us to do mathematics which I have chosen to focus
on: a power we all share to a greater or lesser extent by having access to
the resources of our native tongues. Having recourse to a language
affords a power to name and rename, to transform names, to use names
and descriptions to conjure, communicate and control our images, our
mental worlds. Caleb Gattegno has written: “We live in our images and
in this sense there is no reality that is not human” (cited in Beeney et al.
1982, p. 4). Images are also a major part of the stuff of mathematics, and
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consequently images as well as names will be in focus during the course
of this book.

It is in the interplay among and substitution between language
(including those designating words that name), image (including
illustrative drawings that represent) and thing, between symbol and
referent, that mathematics is created and can be communicated to others.
The artist René Magritte wrote: “Sometimes the name of an object takes
the place of an image. A word can take the place of an object in reality. An
image can take the place of a word in a proposition” (cited in Foucault
1983, p. 38). Although not talking specifically about mathematics, he could
very well have been. Zoltan Dienes (1963, p. 163) has provocatively
claimed: “The process of connecting symbolism to imagery is at the heart
of mathematics learning. It can be done by means of ‘cover stories’ or
embodiments.” Dienes’ claim seems to imply there is no means by which
this fusion can be made directly. We shall see.

But ‘cover stories’, those accounts we tell ourselves and others about
what we are doing, as well as physical embodiments (often called
‘manipulatives’ in North America), will also be brought into play, offering
vivid mementos and sometimes meaning by embedding accounts of what
is to be done in everyday objects and practices. In algebra, talk of apples
and oranges among pupils is common. With negative number operations,
discussion might involve debits and credits, temperatures, or even time
running forwards and backwards. Bob Davis’s ingeniously contrived
story of people jumping into (positive) and out of a pool combined with
running the film forwards (positive) and backwards as the two operations,
does indeed predict that running the film backwards of someone jumping
out shows someone jumping in (‘a minus times a minus makes a plus’).

Despite the ingenuity of this account, however, it seems unclear to me
whether this adds to a pupil’s understanding or store of meanings for
multiplication of negative numbers. It is more as if the vivid story serves as
a mnemonic device for recalling (or possibly reconstructing) what
happens, rather than explaining or accounting for it.1 These examples
make me wonder about the images offered for mathematical processes
and the terms in which accounts are given for justifying why certain
things are as they are.

Certain images deliberately offered or unwittingly invoked when
talking about what we are doing in mathematics can be quite curious.
When subtracting, the operation of ‘carrying’ is sometimes talked about in
terms of milk bottles and ‘paying back on the doorstep’ or ‘borrowing’
from the ‘next door’ or ‘neighbouring’ column as one might a bowl of
sugar. Do these classroom ways of speaking sometimes get the better of
us? Why do we continue to use them?

Mathematics educators also make use of cover stories, those
conventional terms and language patterns for discussing the teaching
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andlearning of mathematics in schools. These, too, are worthy of more
than a passing glance, though I only do this systematically in the
penultimate chapter. But two key terms in this lexicon are unquestionably
‘understanding’ and ‘meaning’.

What we variously understand by ‘understanding’ and mean by
‘meaning’ is far from obvious or clear, despite these being two central
terms in any discussion of the learning and teaching of mathematics at
whatever level. Understanding can arise from the creative use of language
(particularly metaphor), and from images offering sudden illumination.
Meaning seems, in part at least, to be more concerned with reference,
hence more specific, more local; understanding seems less concerned with
such particularities. Yet meaning can also come about from associations
and connections (such as that between the last number said when
counting and the number of objects in a set, or, going to extremes, the play
on words which links ‘pie’ charts to ‘pi’), as well as from a more direct
sense of reference, of knowing ‘what the fraction 2/7 refers to’ in some
particular context. As the linguist Paul Zipf has claimed: “Meaning is
slippery stuff”.

One continuing source of difficulty in learning mathematics comes
from confusion of senses of words and other symbols which have
particular and (often) variant meanings. Within mathematical language
itself, there are questions about the choices of particular words that are
conventionally employed. Why do we use the same word,
‘multiplication’, for quite different operations: between whole numbers,
between negative numbers, between fractions and between matrices?
Why do we call the first three of these ‘numbers’, but not the last?

In many cases, however, confusion has to do with a word having two or
more senses in different contexts, and one sense being stronger. There are
also instances where the word is similar in sound or spelling to another
and gets absorbed into it, despite the meanings having no apparent
connection. (If the same word is used in two different settings, it is usually
possible to find some connection, over and above the fact that the same
word symbol has been used.) Valerie Walkerdine (1982, p. 152) cites the
example of a child in an infant class where, when asked what they were
doing, replied, “You have to colour all the evil numbers in. First you have
to write it up to a hundred and then you colour all the evil numbers in”.
Hassler Whitney (1973) has remarked on the closeness of the words
‘fraction’ and ‘fracture’ and suggests a possible sliding connection at the
verbal level and a consequent accretion of senses. Many young children
will have heard over and over the story of The Gingerbread Boy. This too
may contribute to their sense of fraction.
 

He [the fox] tossed the Gingerbread Boy into the air. The fox
opened his mouth and snap went his teeth. ‘Oh dear’, said the little
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Gingerbread Boy, ‘I am one-quarter gone’. Then he cried, ‘I am
half gone’. Then he cried, ‘I am three-quarters gone’. And after
that, the little Gingerbread Boy said nothing more, at all.

The connections pupils make in mathematics, when the teacher may only
be aware of the customary mathematical sense of a particular word or
phrase, can be fascinating. An instance of such connections surfacing came
from a class exercise where a researcher invited twelve-year-old pupils
with whom he had been working to write about their favourite fraction
and to say why (Kieren, 1991). One pupil wrote:

My favourite fraction is 4/5. This is my favourite fraction because
it gives me a lot of things to remember. Because there are five
people in my family and only four of them are living in my house.
My mom is the fifth person. She’s the one that is gone.2

 
As my title suggests, this book is concerned with various uses and aspects
of symbols in school mathematics, and also looks at the notion of
mathematical meaning. The opening quotation from Gattegno makes a
claim that meanings somehow exist prior to their being named. I have
certainly had the experience of being in a foreign country and because I
understood the situation could attend to the language to find out how to
say what I already knew how to do. Margaret Donaldson’s work (1979) on
the greater sophistication of thinking exhibited by young children when
offered versions of Piagetian tasks embedded in situations that made what
she terms ‘human sense’ is also consonant with this.

However, I additionally wish to explore how names and other symbols
can also bring meanings into being, reversing that sense of antecedent
priority. At times, the form of the words can give rise to meaning, to
understanding, making links across the symbolic gulf in the reverse
direction. This is particularly so in mathematics, when the symbols may at
the very least mediate our contact with the ‘objects’, and at times provide
the primary experience. Stravinsky once insisted that it was words not
meanings that he needed, when queried about his use of an obscure
Russian poem as a vocal text. Mathematics too can, at times, need symbols
not meanings.

The mathematician Rene Thorn (1973, p. 202) has claimed: “The real
problem that confronts mathematics teaching is…the development of
“meaning”, of the “existence” of mathematical objects”. In addition to
looking at the nature and role of symbols in mathematics (of which words
form an important part), one general question I shall explore is: what are
some of the central sources of mathematical meaning and what roles do
symbols play in its generation?

Augmenting this diversity of sources, while being closely allied to it, is
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therefore the uneasy, complex set of relations (‘the intolerable wrestle’)
between mathematical symbols and their meanings. Of all the
schoolsubjects, mathematics is the one where the interplay of symbols and
meanings is intentionally the loosest. Much creative work is done by
means of using the ‘same’ symbol for different things (for instance, the
variety of operations that are indicated by ‘×’ and consistently referred to
as ‘multiplication’), under the pseudo-implication ‘same word, so same
object’. This process, which in psychology goes by the name of
condensation, may be variously seen as a source of confusion and conflict or
a potential site of richness and powerful connection.

Conversely, but in a similar vein, how can ‘square’ and ‘diamond’ be
the same thing: they have different names? Names reveal—they often
indicate a stance with respect to the thing named. But names, including
number names, can also conceal. Multiplicity of names, often deemed
equivalent for our purposes (such as 2(x+1) and 2x+2), is a core
phenomenon in mathematics. The belief that ‘a rose by any other name
would smell as sweet’ misses a central part of the experience of ‘doing’
mathematics, that of using the variability of name and form as both a
thinking tool and a strategic aid: formulae are about forms. By slipping
from one form to another we move away from our starting point:
displacement, too, is a psychological process, one complementary to
condensation.3 Bill Higginson has mentioned to me that to rename is
frequently to re-mean, not least because of the connotations that all words
and other symbols accrete. And Yves Chevallard (1990, p. 8) has
perceptively proposed: “Mathematics is a perfect example on which a
celebration of ambiguity could be founded”.

Very early on, we learn to use words. Words are symbols too, whether
spoken sounds or written marks, but are frequently so familiar to us as
adults that we fail to notice them as symbols. We are so ‘at home’ with
them that, as we speak and write, ‘the words don’t get in the way’. Anyone
who has struggled to generate expressions or sentences in a foreign
language in which they are not very fluent will appreciate the reverse
situation. It is said that playwright Samuel Beckett preferred writing in his
second language, French, since this forced him into greater precision than
using English, his native tongue.

No symbol is truly empty, devoid of connections. To be recognised as a
symbol, it needs to have a stable, repeatable form: to function successfully
as one, my attention cannot be on how to form it. Italo Calvino (1988, p. 29)
writes of the literary value of lightness, claiming of something that “the
fuller it is, the less it will be able to fly”. The lightness of symbols allows
transformations that the things themselves would discourage or prevent.
For instance, I believe if we fail to offer pupils the transformative power of
algebra, we prevent them from flying.

Symbols are often contrasted with objects. The actual objects may be a
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long way away (e.g. the moon), too large or small (e.g. a bacterium) or not
physical at all (e.g. an idea, such as a number or a triangle). All of
the‘objects’ of mathematics (such as numbers, equations, functions,
circles) are not part of the physical world and therefore cannot be directly
manipulated physically. Yet mathematics seems to be portrayed as a very
active subject, something you do. For instance, we talk about certain
individuals being able to ‘handle numbers’, yet how do we ‘manipulate’
numbers in order to perform computations? We symbolise them, either
with materials, using Smarties or counters, perhaps Dienes apparatus or
Unifix cubes, or by marks on paper, in order that we may see to ‘get our
hands on them’.

One linking theme throughout this book, then, is provided by the core
metaphor for doing mathematics, that of ‘manipulation’ in its various
incarnations. Practical apparatus in North America is known as
‘manipulatives’, some recent computer software is called a ‘symbolic
manipulator’. We are taught to manipulate numbers (or is it figures that
we actually rearrange—do we actually move anything?), to manipulate
algebraic expressions and also, though less commonly, to manipulate
geometric figures and images. Lurking behind all this is the negative
connotation of ‘manipulation of others’ with its sense of imposition of
another’s will and control. There has also been recent unease expressed
about the role mathematics can play in ‘formatting’ our society, (see
Skovsmose 1992, p. 6) even to the point where discussions of thinking and
even rationality itself are conducted in terms of mathematical thought and
activity (see Chapter 8).

I shall also be exploring a related set of questions of particular
relevance to the last decade of the twentieth century, ones which arise
due to the rapidly increasing proliferation of machines offering
mathematical functionings. What are some of the new features that
symbolic manipulation technology offers us? What new constraints,
what new vistas and at what cost—and most interestingly, what new
light do such machines throw on age-old discussions of the teaching and
learning of mathematics? What new senses, for example, do the terms
‘efficiency’ and ‘automation’ acquire, as well as what new perspective is
cast on the question not of ‘what is there to be known?’, but of ‘what is
worth knowing?’ in mathematics?

It is becoming clearer daily that the incursion of technology
(particularly calculators and computers, and the considerable blurring of
boundaries between these two devices) is markedly changing our relation
to symbols and operating with/through them. Exploration of issues
arising from electronic symbolic technology are distributed and discussed
throughout the book, rather than singled out for specific consideration in
one chapter.

In some sense, we have been here before, as history has recorded: one
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earlier ‘technological’ instance is the long transitional watershed between
abacus computations and written numerical methods in Western Europe,
and another the introduction of the slide-rule (both discussed inChapter
4). Yet, as the novelist Fay Weldon (1989, p. 2) reminds us: “We take lessons
from history that we shouldn’t. ‘Can’t do that!’ we say. Took what
happened last time.’ But now is never quite the same as then.”

This is not a book solely or even primarily about the role of new
technology. But in all of its other discussions—whether about fluency or
understanding, manipulation or practice, algebra or geometry—the
context of available technology and the metaphors developed or extended
all command our attention. The ways of seeing they offer inform the here-
and-now, and through it, the near future. This uncomfortable domain is
that fleeting, mutating context which young people4 inhabit as they pass
through our educational systems.

Before providing a chapter-by-chapter description of the rest of the book,
I want to introduce one final theme: that of touch and sight, of tangibility
and visibility, in relation to mathematics. There is an increasing modern
tendency away from doing things ‘by hand’, resulting in a lack of direct
manipulative experience. Our experience of the world in all its senses is
becoming more and more mediated by means of machines, which of
necessity shape and filter that experience. Tools often extend the powers of
sight and touch—but never neutrally. It is possible to ‘look’ with the hand as
well as the eye—in both cases we are really ‘looking’ with our attentive
minds. Nowhere is this more true than with computers and Tom O’Shea
(1993) notes the irony implicit in referring to ‘hands-on’ experience with a
machine. Computers enormously privilege sight over touch, yet the
increasing involvement of the computer mouse in what John Mason has
called ‘mouse mathematics’ (see Mason 1990b, p. 44) suggests it is not total.

Touch is about direct contact, sight about indirect contact. I have
already mentioned the ubiquitous word ‘manipulate’, which has its origin
very firmly in the tactile, relying on the human ability to grasp.
Mathematical symbols, particularly pencil-and-paper ones, although
usually formed with the hand, are predominantly visual stimuli. Touch
and sight are the two root metaphors in English for ‘understand’.

ABOUT THE BOOK

Following this introductory chapter, Chapter 2 explores the use of physical
materials and apparatus in the service of the teaching and learning of
mathematics. Chapter 3 explores the diversity of images (and the
imagination) as a particular and powerful source of meaning in geometry.

Chapters 4 and 5 look at manipulations as a source of meaning (without
claiming it to be the only one) in the areas of number and algebra
respectively. This focus is offered, in part, because the outright rejection of
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‘rote’ methods in mathematics teaching has resulted, I feel, in the
devaluing and loss of some beneficial ways of working. The nature of
numerical calculators and the recent appearance of symbolic
manipulationdevices are also discussed. Algebra particularly seems to
demand the dual aims of fluent ‘handling’ of the symbol system and deep
understanding allowing meaningful connection and application.

Chapter 6 explores the range of graphic representations (both static and
dynamic, involving computers) that are increasingly offered in
mathematics as images to think with. Graphs are frequently thought of as
pictures to be merely ‘seen’ rather than as symbolic artifacts as much in
need of interpretation as other symbolisms. The notion of ‘measure’
provides the theme for Chapter 7, both of material-world objects and
mathematical entities such as squares and circles, while Chapter 8 looks at
material-world contexts as a source of meaning for many mathematical
problems, the texts of which frequently have peculiar and interesting
characteristics of their own.

Before a brief, concluding Chapter 10 on the core metaphor of
‘manipulation’, Chapter 9 offers a somewhat different focus from the
preceding ones. Instead of examining a mathematical device or area, it
looks instead at some of the conflicting and confusing ideas and terms
employed in discussions of mathematics education: terms such as
‘fluency’, ‘understanding’ and ‘tradition’. My intent is that the earlier
discussions of the interrelations between symbols and meanings in school
mathematics will inform my attempts in this chapter to subject these
notions to scrutiny. I offer a brief foretaste here.

There is a current tension in discussions of the teaching of mathematics,
which has been polarised into a conflict between ‘understanding’
(adopting a so-called ‘meaningful’ approach) on the one hand, and
obtaining automation and fluency at ‘doing’ on the other (using what are
often pejoratively and undiscriminatingly labelled ‘rote’ methods). One
view currently in circulation is that pupils should always understand
before being asked to do a task or carry out a calculation. Another is that
‘rote’ methods require uniformity and regimentation, which is frequently
seen as an anathema. However, it is possible to change the frame and see
some so-called ‘rote’ methods, including group speaking and chanting, as
expressly corporate and tribal rituals and hence as very powerful
techniques.

The opening sentence of Mary Douglas’s (1978, p. 19) first chapter
entitled ‘Away from ritual’, in her book Natural Symbols, reads: “One of the
gravest problems of our day is the lack of commitment to common
symbols”, adding: “Ritual is become a bad word, signifying empty
conformity. We are witnessing a revolt against formalism, even against
form”. I indicate in Chapter 5 that I believe this to be true of attempts to
teach algebra.
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Later she writes: “I shall take ritualism to signify heightened
appreciation for symbolic action. This will be manifested in two ways:
belief in the efficacy of instituted signs, sensitivity to condensed symbols”
(p. 26) and adds (p. 28): “Ritualism is taken to be a concern that efficacious
symbols be correctly manipulated and that the right words be pronounced
in the right order”.5

Although her interest is primarily with comparative religious rites, she
could be speaking directly to mathematicians! I find her comments
resonate particularly strongly in relation to algebra. When in French
someone speaks of two people sharing a common religion, the phrase
suivre le même rite is used. Similarly, we need to be taught to follow the
same rites of algebra. ‘Conversion’ and ‘belief’ are not over-strong words
to describe what is required to accept the effects of algebraic manipulation
as convincing.

Douglas concludes (p. 30): “Implicitly I find myself returning to
Robertson Smith’s idea that rites are prior and myths secondary in the
study of religion”. In mathematics education, meaning myths go by the
name ‘cover stories’. One prime concern of Douglas is that ritual is being
forced out by the rational; mine, that the pressure of the doctrine of
‘always understanding before doing’ results in pupils missing out on what
ritual can offer. At times, we need to encourage along Diderot’s lines:
“Allez en avant, la foi [comprehension] vous viendra.”

Such a rejection of so-called ‘rote’ methods is very understandable, in
response to a history of mathematics teaching in schools which has
resulted in distressed, sometimes frantic, pupils on the one hand and in
concerns about the level of mathematics learned on the other. However,
one question which the ‘meaningful’ view leaves unanswered is how to
work at gaining fluency in handling mathematical symbols, because until
very recently pupils were required to do calculations quickly and
effectively How can pupils automate, and consequently ‘forget’ what they
are doing, so that their conscious attention can be freed up for places or
occasions where it will be needed in the future?
 

We do not pay enough attention to the actual techniques involved
in helping people gain facility in the handling of mathematical
symbols. … In some contexts, what is required—eventually—is a
fluency with mathematical symbols that is independent of any
awareness of concurrent ‘external’ meaning.

(Tahta, 1985, p. 49)

Into this discussion now comes modern technology. Eric Love has posed
the question of what fluency might look like as a goal for mathematics
education in the age of electronic computation devices, including most
recently, the advent of ‘symbolic manipulators’. Does the appearance of
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these devices mean that the tension between fluency of ‘doing
mathematics’ and ‘understanding it’ is finally dissolved and that there is
now a single uniform goal towards which teachers may aspire? I believe,
instead, it has brought a sharper focus to questions of fluent functioning in
relation to mathematical understanding.

WHY TEACH MATHEMATICS?

Form is the external expression of inner meaning.
(Paul Klee)

Perceptions of mathematics and mathematical activity that are held by
individual pupils, teachers and mathematicians, as well as by other
members of the public and ‘society’ at large, are influential both in
helping determine what gets taught in our schools and how it is taught.
Justifications for the compulsory teaching of mathematics (up to age
sixteen in the United Kingdom) vary widely both within and between
cultures, and reflect both a range of purposes and also stated positions
about symbols, about meaning, and about use. One somewhat prosaic
claim can be found in the UK Cockcroft report on the teaching and
learning of school mathematics.
 

If we ask why this should be so [that mathematics has a privileged
position within the school curriculum], one of the reasons which
is frequently given is that mathematics is ‘useful’;… For many it is
seen in terms of the arithmetic skills which are needed for use at
home or in the office or workshop; some see mathematics as the
basis of scientific development and modern technology; some
emphasise the increasing use of mathematical techniques as a
management tool in commerce and industry.

(DES, 1982, p. 1)

In the UK document Mathematics for Ages 5 to 16, the following explanation
is offered.
 

In the broadest sense, mathematics provides a means for
organising, communicating and manipulating information. The
language of mathematics consists of diagrams and symbols, with
associated conventions and theorems. The special power of
mathematics lies in its capacity not just to describe and explain
but also to predict—to suggest possible answers to practical
problems. The power and pervasiveness of mathematics accounts
for its pre-eminent position, alongside English, in the school
curriculum.

(DES/WO, 1988, p. 3)



INTRODUCTION

11

In the US, the Curriculum and Evaluation Standards (NCTM, 1989) and the
National Research Council document Everybody Counts (NRC, 1989)
provide similar utilitarian sentiments. A quite different possibility was
offered during the second world conference on Islamic education held in
Mecca over a decade ago, justifying the study of mathematics in the
following terms.

The objective [of teaching mathematics] is to make students
implicitly able to formulate and understand abstractions and be
steeped into the area of symbols. It is good training for the mind
so that they [the students] may move from the concrete to the
abstract, from sense experience to ideation and from matter-of-
factness to symbolisation. It makes them prepare for a much better
understanding of how the Universe which appears to be concrete
and matter of fact, is actually ayatullah signs of God—a symbol of
reality6

(Second World Conference, 1980, pp. 9–10)

My sympathy lies much more with this final justification. A
mathematician, David Henderson, once said to me, “I do mathematics to
find out about myself”. Caleb Gattegno has written of algebra in terms of it
involving an awareness of inner life (see Gattegno 1983, p. 34). And in an
enticing passage, George Spencer Brown (1977, p. xix) writes of his sense
of congruence between mathematical and psychoanalytical activity.
 

In arriving at proofs, I have often been struck by the apparent
alignment of mathematics with psycho-analytic theory. In each
discipline we attempt to find out, by a mixture of contemplation,
symbolic representation, communion, and communication, what
it is we already know. In mathematics, as in other forms of self-
analysis, we do not have to go exploring the physical world to
find what we are looking for.

 
To the extent that, through schooling, pupils are enabled to think like
mathematicians, this possibility is made available for them. One further
reason for teaching mathematics may then be so that our pupils can
develop this means of finding out about themselves, in addition to our
offering them access to a shared inheritance of mathematical images and
ideas, language and symbolism, and the uses for mathematics which
humans have so far developed. I like to express this possibility in terms of
mathematics deriving from both inner and outer experiences, and
meaning as being generated in the overlapping, transitional space
between these two powerful and sometimes competing arenas.
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2

MANIPULATIVES
AS SYMBOLS

Concrete action is by its nature slow, whereas the swiftness of
vision is very close to that of thought.

(Gattegno, 1963a, p. 11)

The use of the word ‘manipulative’ may be unfamiliar to some readers,
though it denotes roughly the same thing as ‘physical’ or ‘practical’
apparatus. The noun ‘manipulative’ is used in North America to refer to
certain equipment used in the service of the teaching and learning of
mathematics. But any choice of word indicates a particular emphasis.
‘Manipulatives’ sound as if they are to be manipulated, that this is their
sole raison d’être. ‘Apparatus’ (whether in a gymnasium, a laboratory or a
classroom), on the other hand, perhaps forms part of the setting, and
hence may be seen as more neutral with regard to whether or how it is to
be used.

Whichever term is the more familiar, what examples come to mind in
the context of school mathematics? Toffees and counters? Mirrors and
compasses? Cuisenaire rods and Dienes multibase arithmetic blocks?
Cardboard coins doing duty for other objects (including ‘real’ coins) as
well as coins standing in for circles? Or perhaps railway timetables and
direct measuring tasks in the playground or laboratory? What about the
construction of physical models—perhaps the making of the Platonic
solids using pipe cleaners and drinking straws? What about using
students’ own bodies as elements to be acted upon, transformed or
manipulated—not least their fingers? Are pictures or diagrams drawn on
paper to be thought of as apparatus? Finally, are the abacus, calculator or
computer helpfully to be seen as ‘manipulatives’? It can be hard to make
clear distinctions among these possible instances.

Different chapters pick up on some of these varied foci for mathematical
activity and thought. Primarily for organisational reasons, I shall not discuss
either computers or calculators1 now, nor pictures or diagrams. Wherever
the boundaries are deemed to lie, however, the main issues I wish to explore
here are what roles (including symbolic ones) such materials can be



MANIPULATIVES AS SYMBOLS

13

expected to play and to what extent and in what ways teacher expectations
and intentions can be communicated to their students.

A common current belief seems to be that mathematical concepts can be
more easily grasped if they are ‘represented by’ or ‘embodied in’2 physical
objects. Need a teacher only provide the right apparatus for mathematics to
be present? Is mathematics somehow in the equipment? If so, handling it
alone may be sufficient to allow for learning to occur, by osmosis perhaps.

Notions of manipulatives and physical action are closely linked. It
seems important that these materials are themselves both tangible and
graspable—and that ‘grasp’ forms one central metaphor for
understanding. Underlying all of these claims is the key physical sense of
touch as an important source of knowledge. A common adult experience is
to project our understanding into the object, and thereby assume it is
readily available for all. This can result in being unable to comprehend
why someone else cannot do something with it or see something about it:
surely, they just have to look.

Physical apparatus does not offer unmediated mathematical
experience: in itself, it can neither contain nor generate mathematics. Only
people can do this, with their minds, and it is a central part of a teacher’s
role as teacher to help pupils to become able to do this for themselves. But
talking about where mathematics is to be found or located is generally
problematic, not least with the advent of computers.3

In addition, if the activity generated by the task4 itself engages all the
attention of the pupils working on it, the teacher’s purpose in setting up
the situation as a potentially mathematical experience may become diluted
or even lost. Pupils may end up just manipulating the equipment. What
for the teacher is one of a class of particular situations may for the pupil be
the entire focus of their attention. Using manipulatives for teaching
mathematics is always a means to an end and never an end in itself. T.S.
Eliot writes of the possibility of having the experience, but missing the
meaning—a situation that may well abound in mathematics classrooms.
Whether or not the objects are the central focus of the pupil activity, the
desired meaning is elsewhere.

Mathematics is fundamentally concerned with generality and any
apparatus is particular (with its own specific physical properties and
characteristics). Any object or device can only be in one state at a time, and
thus some form of recording needs to be invoked in order to recall or
regenerate earlier states. It is important to be aware that some possible
situations may be missed. Being systematic when faced with the
apparatus alone may be quite difficult. It is also possible to go from the
notation in order to produce previously unachieved states. Another
advantage to finding ways of recording possibilities is that it may later be
possible to work with the symbolic representations alone.

It is also possible to mark the device directly: for instance, to use Blutack
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to indicate which faces of a constructed Polydron shape have been counted.
Ironically, this can result in not having to attend to the counting
mathematically. Such marking prevents double-counting or losing count
(where the counting becomes divorced from the count), but also militates
against counting-with-an-eye-on-the-pattern, a prerequisite for any move
from the particular to the general. Attending to how you draw a figure or
construct a shape can show how to construct or count in general, rather than
separating these two processes into make first and then count afterwards.

In the first section below, I offer a brief analysis of particular
apparatus use, before turning in the next to examine some of the
terminology used for talking about this area. I try to tease out some of the
senses behind different words, looking in particular at the various
functions the apparatus is claimed to be performing. At the end of the
chapter, I turn to an examination of some symbolic issues connected
with touch and understanding. An undercurrent of this final discussion
will be the question of whether the objects are to be seen as they are in
some sense, or as pointing to or representing something else (a symbolic
function). The notion of objects serving as substitute physical symbols
will also come to the fore.

OBJECT LESSONS: EQUIPMENT IN THE CLASSROOM

It is possible that students may be so active that they fail to reflect
and thus do not learn.

(Wheatley, 1992, p. 536)

Apart from our own bodies, almost all of the apparatus I discuss here is
artifactual, in the sense that it has been specifically designed and
manufactured for classroom use, and does not have an independent
existence outside of the school setting. Below, I give some capsule
examples of different manipulatives in use. Instead of starting with
traditional arithmetic apparatus and ‘understanding’ as a goal, I turn
first to our physical selves as the prime manipulative and explore some
images involved. The English language has the metaphor of ‘getting a
sense of’5 something: in the course of this book, I want to pay attention to
the actual physical senses at work at different points. My main reason for
this, and its connection with understanding, is discussed at the end of
this chapter.

Our own physical apparatus

It is easy to forget how much, for young children, the world is primarily a
world of touch. There is a useful adage: ‘My fingers are an extension of my
brain’. But even with the involvement of fingers in counting, finger use
If I am counting fingers, then they are to be treated as objects like any
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others susceptible of being counted. I can also use them to ‘show’ numbers
such as eight or five. Conventional ways of displaying numbers with
fingers can produce both visual and tactile (felt) images.

If I am counting with my fingers, then they are serving quite a different
purpose: they are part of my counting mechanism, helping to guide my
attention in assisting the process of ‘attaching’ number names to objects,
temporarily baptising them. (So I might initially be counting some of my
fingers with others of my fingers. I have seen a video of a young child
working on number tasks and using his nose as an extra ‘finger’ to provide
tactile sensory information, when both hands were taken up with

can be complex and sophisticated. There are both similarities and
differences among:
 
• counting fingers;
• counting with fingers;
• counting on fingers (there are two senses here).
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‘holding’ numbers.) I mark the objects, in a way, by my fingerprint. In this
sense, counting is initially most importantly about touch (much as games
of ‘tag’ are), prior to it becoming ‘touch’ by sight, by attentive glance alone.

Finally and contrastingly, if I am counting on my fingers, as well as the
implied reliance on them (how odd the phrase “I am counting on you” is!),
I am using them as placeholders for whatever number names I choose.
(For instance, I might label each finger ‘-ty’ and count in tens.) They are
serving as dynamic physical symbols for the process of numeration itself,
as I move around the number-name sequence.

Caleb Gattegno’s (1974) intensive and inventive work with young
children forming number complements on their hands draws extensively
on precisely this dynamic control over folding fingers up and down. But
what are the fingers doing in this case? Are they acting as substitutes of
some sort. For what?

Whatever else, forming complements is something that children can do.
They can work with their fingers, and at the same time encounter
multiplicity and equivalence (the myriad ways of showing four or seven,
for instance), the reciprocal nature of stressing and ignoring (turning
fingers up into fingers down and conversely produces the complement),
the condensation of number naming as well as its uniformity (choose a
unit for the fingers). It also offers an image for number which can be
internalised through the digits.

A different technique, known in the US as Fingermath (see Lieberthal,
1979), offers an alternative system of number attribution. Unlike with
Gattegno complementation, the digits have absolute values (and particular
digits at that)—but also different values. Using Is and 5 (right-hand fingers
and thumb respectively), 10s and 50 (left hand similarly) allows 1 to 99 to be
displayed, exactly as on an abacus, provided certain conventions are
adhered to, such as the placing and leaving placed of fingers in an invariant
order. So, as with Roman numerals, the system is partly transparent with
regard to numerosity and partly representational. The fingers offer an
external means to produce and store totals dynamically.

Occasional associations with conventional notation are referred to: tens
are to the left of ones, and ‘so’ we use the left hand for tens and right hand
for the units; showing eleven ‘looks like’ 11. Because of the different
valuings, some visual configurations conflict with conventional images
derived from counting fingers. To call the various manual finger
movements ‘manipulations’ is exactly accurate. Although techniques are
offered for all four operations, they become more complex and counter-
intuitive, in part because they are intended to stay close to the
conventional pencil-and-paper algorithms and written format. For
instance, the absence of uniformity leads to the need for digit swaps
(called ‘carryover’) between two hands to model place value. In addition,
the need to handle procedural complexity seems to outweigh the
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advantages of the system: the claims for comprehension I also find
curious.

One fundamental source of geometric images can also be our own
bodies: from our eyes coordinating with muscles, giving rise to notions of
straight, vertical, solid, stable, balanced; from our elbows, and the rotating
of other joints, images of turning and angles. There is a great deal of
knowledge produced from and stored in the body (to which access can be
gained) that can be helpful for mathematical work and thought.

It is not uncommon for younger pupils to be invited to exploit their own
physical activity for mathematical ends. Janet Ainley (1988b) writes of a
range of tasks and games which utilise links between mathematics and
movement in the primary school—muscle memory, rhythm and counting,
moving into shapes. Although less widely used, similar resources do exist
for mathematical tasks at secondary school level (e.g. ATM, 1985;
Bloomfield, 1990). One instance involved two children representing fixed
points and the rest of the class being asked to place themselves twice as far
from one of the ‘points’ as from the other. In doing this, some pupils
commented they could feel the constraints inside themselves.

Irene Jones, a teacher of eleven to twelve-year-olds spent a class with
pupils working on describing images they had seen in a complex
geometric poster; towards the end of the lesson she had them choose and
fix their minds on one single image from among those they had seen. They
then worked in groups of three to five in order to depict it (for the rest of
the class) physically and collectively using their bodies. The teacher
reported being surprised at how comfortably and easily the groups
worked together on this task.

However, such activity can be threatening for some adolescents. An
experienced secondary teacher, Anne Watson, in a review of Bloomfield’s
book, commented on her experiences:
 

I was attracted to the title [People Maths] because I feel the need for
people to be involved in mathematics, not just intellectually but
with a range of senses and in situations which fit in with other
aspects of their lives.… So why don’t I use physical games as
much as I could? My excuse is that youngsters of 13+ are often too
embarrassed to move if they are not used to it. They are also
heavily conditioned about what is, or is not mathematics. I have to
work hard to get them to trust me and sometimes I do not get
there. It depends what has gone on before.

(Watson, 1991, p. 28)

This connects to Papert’s notion (1980) of ‘body syntonicity’ from the
context of working with the computer language Logo (specifically turtle
graphics), where ‘playing turtle’ encourages the bringing to consciousness
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of such awarenesses already in our physical selves.6 When ‘playing turtle’,
children walk through what the screen turtle needs to do in order to
achieve the required path. Provided they can attend to their actions while
in the midst of carrying them out, they may well be better able to decide
what to do next at the keyboard.

With all of these physical possibilities, the fact that the ‘object to think
with’ is part of the person doing the thinking can provide particularly
direct access to the experience. But if the student’s attention is not on the
mathematical possibilities, this can also be not noticed more easily, because
much physical action is smoothly and hence normally unawarely
integrated into general functioning. Nor will such physical experience
necessarily be available when faced with other mathematically related
situations, but ones which do not call for physical movement.

Some geometric apparatus

In many primary schools, three-dimensional wooden or plastic geometric
shapes are available. One means of getting attention to certain properties
of geometric forms involves focusing on the tangibility of these shaped
objects through use of a Feely box (DIME, 1985). Such a box can be made
from cardboard and has two holes for the arms of the person using it and
an open back. Anyone can see in the back, with the exception of the person
whose arms are through the holes.

But that person can feel the shapes that are placed there. Users try to
describe the solid shapes they can feel with their hands and perhaps identify
them by name: having a reference set of possibilities on display may aid
identification. (A similar task setting involves a bag with wooden shapes in
it, where no one can see which shape is being handled and described.) What
do pupils focus on in their descriptions? What are the aspects of shapes that
are most tangible? What descriptive language do they use? Can they identify
an object from its feel alone? (See further Mason, 1990a.)

This challenge has a number of elements that can be widely used in
designing classroom tasks. The first is focusing artificially on one of the
senses—here, touch—by excluding another, sight, thereby producing a
heightened sensitivity resulting from throwing out the normal sense
balance. This offers quite a useful principle for developing mathematical
tasks intended to focus attention on particular facilities. Variants might be:
sitting back-to-back or using a telephone to describe something to another
person, who then has to recreate it; describing something while sitting on
your hands; saying what you have seen in a picture under the rules of no
pointing and no touching.7 Provided these constraints are taken on by the
children as “the rules of the game”, and there is feedback and comparison,
there is the opportunity for them to practise using language to point.

This changed perspective may highlight differences: for instance, the
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What are some of the things such boards offer? They allow shapes to be
made and unmade both quickly and with an accuracy which cannot be
easily achieved in a drawing. Shapes made from different-coloured elastic
bands can be compared directly on the same board, and those made on
different boards are easy to juxtapose sufficiently for comparison to be
made. As well as offering the pupil physical control over the shapes
created, geoboards can allow a certain dynamic element to enter into the
generation and transformation of shapes. But the dynamic sense is
interrupted. When a triangle is made using three pins and the elastic band
is moved from one of these to a new pin, there is a sense of ‘in-between’
triangles, but these images are quickly lost. Only certain privileged stages
of the motion can be ‘frozen’ into relative permanence allowing further
examination.

 most salient feeling of a shape may not be the most salient sight. How does
a touch triangle differ from a sight one? Lastly, having to use words alone
may focus attention on the need and usefulness of having words for
certain characteristics of a shape, allowing a teacher to seed the discussion
with them, without the words themselves necessarily being the main
focus of the class.

A secondary-level lesson on angles involved each pupil using a pair of
straws joined with a pipe-cleaner to represent angles. This improvised
physical apparatus afforded tangibility, movement, and continuous
change. When asked to draw certain angles, some pupils laid the straws
on their books as if to help them visualise the required diagram. Just as
with work on their own bodies, there remains the same uncertainty of
whether memories of the direct manipulation of the straws would be
available later to pupils when working only on a static, written
representation on paper.

There is considerable material devised specifically for classroom use to
help foster the development of geometrical images: plastic cubes, mirrors,
geostrips, tiles. Among this range of material, geoboards are a particularly
fruitful source.
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Nonetheless, geoboards structure space systematically and render it
discrete. Much of the power for evoking imagery is created by the
structure of the pins and lines on the board, which suggest new
possibilities before they are actually realised. Thus, although at the end of
the day, the geoboard is like a counting board or a calculator that has been
cleared, in that there are no external records or traces left of what has been
done, bodily (kinaesthetic) and visual memories may well remain.
Geoboards can both increase personal stores of images and help develop
the ability to create images.

Some numerical apparatus

Not all mathematical images are associated with geometry. Other physical
materials, for example a number track, or certain stylised configurations
such as patterns on dice, dominoes or playing cards, may help to generate
images for number. A number line offers an image to think with, but also
provides a stable referent external to ourselves to help keep track.

But certain other equipment is intended to offer illumination: images
and processes to think with rather than about. Cuisenaire rods model
certain numerical and algebraic relations by ones of length; Dienes
multibase arithmetic blocks are claimed to embody and make tangible
aspects of the numeration system. Both present physical objects to handle
and manipulate. Cuisenaire rods allow arithmetic computations to be
worked out, but as Madeleine Goutard (1964, p. 3) is at pains to
emphasise, they are not intended primarily as a tool to help pupils find
numerical answers: “What is important is that the material be used in
order to find out what makes such operations easy to perform mentally”.

Geoboards provide temporary physical records which are portable and
can be shared with others. They ‘hold’ images the user has made
(providing a trace of the past) rather than proffer them from the outset,
somewhat akin to the way an abacus can be made to ‘hold’ numbers.
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Grouping or exchanging Dienes blocks is to be done in ways which echo
the ‘handling’ of numerals in pencil-and-paper arithmetic. Iconic
representations of blocks can also be found recorded in exercise books,
alongside more symbolic records.

This is the first appearance of my interest in the nature and purpose of
symbolic records. An iconic link between the written records and the
apparatus can help to connect the experiences, provided that the link is
not achieved at the expense of distortion. A group of primary pupils were
working on addition of three-digit numbers. They were asked to work out
389+144 by means of laying out Dienes base-ten material (flats, longs and
singles), to combine the material, exchanging where necessary, and then to
write down their answer from the resulting configuration. The teacher’s
intent was for them to work on the notion of place value.

These wooden materials embody similar mutual relations with regard
to length and area8 as the numerical relations of the familiar base-ten
notation for whole numbers. The apparatus can ‘hold’ some of the features
of the situation, so the user can concentrate on other aspects (e.g. forget the
numerosity and concentrate on the operation of combination). This is a
similar strength to a functioning written notation. But the blocks also offer
‘touch’ imagery. (An example in Chapter 4 distinguishes the mathematical
worth of the tactile images arising from the Japanese soroban (a form of
abacus) and those deriving from the buttons of an electronic calculator.)

But the blocks are being made to serve as physical symbols for the
symbolic property of place value embodied in our numeration (number
naming) system. The rationale for ‘exchanging’ only makes sense within
the numeration system which has no digit past 9. The way this latter
system works forces an interpretation of activity with the blocks, and often
a specific type of grouping and recording, whose rationale comes from
outside the material itself. We use Dienes blocks in particular ways
because we want them to mimic the operation of the decimal counting
system. They are symbolising the way the notational system works, and
not the other way round.

Amassing each type of block in columns (increasing strictly from left to
right) and recording the number in each as a digit 0–9 (and ‘exchanging’ if
there are more) is a teacher-mediated action to force Dienes blocks to
signify in a comparable manner to the conventional decimal numeration
system. In fact, Dienes apparatus better fits the spoken English system of
numeration, where each power of ten has a different name (‘thousand’,
‘hundred’, ‘-ty’) and any spoken number is composed by saying how
many of each.

Children frequently go from written numerals to the blocks by working
from left to right, matching the time order of appearance as the numeral is
spoken (for instance, first producing six longs for ‘sixty’ and then four
singles for ‘four’, in response to 64), and also carry out block algorithms
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So, for an Egyptian, writing down an addition sum and moving the
symbols together constituted the answer, which could be ‘tidied’ by using
an ‘exchanging’ principle. The same symbols provided at one and the
same time both the objects to manipulate and the ‘name’ of the result. This
is one important reason why place value as a mathematical idea cannot be
in Dienes’ apparatus, because the material fits a non-place-value
numeration system at least as closely as ours.

Numbers are not blocks of wood. Place value is not a property of
numbers, but a property of some numeration systems. Consequently,
Dienes blocks do not offer direct access to properties of the numeration
system.9 But they can be made to model the desired manipulation of
numerals, which are themselves substitutes for numbers. Certainly, with
suitable teacher guidance, the blocks can be turned into a graspable focus
for the ‘actions’ of arithmetic.

As with Cuisenaire rods, Dienes apparatus is not there to solve the
arithmetic problem, though it can be so used. It is not primarily a
calculating aid. For the teacher, such material represents something else:
for the student, the material’s status with regard to anything outside of
itself is unclear.

Algebraic apparatus

Algebra is particularly intangible. Unlike geometric objects, and to some
extent unlike numbers in arithmetic, it is unclear what an algebraic object

that way too. Dienes’ material ‘holds’ value independently of how or in
what order it is manipulated.

Certain ancient, non-place-value numeration systems (such as the
Egyptian one) involved an encoding process identical to Dienes blocks,
albeit at a written level. Their symbols for hundreds, tens and units were
independent of one another, resulting in a preservation of value
irrespective of position.
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might be, as algebra is so much to do with transformation. It is
consequently hard to offer algebraic manipulatives, as an algebraic focus
is usually on relationships between objects, rather than on the objects
themselves. Algebra arises from the structure of possible manipulations,
rather than any given one.

The Rubik cube is not an algebraic object, despite providing an
interesting mathematical phenomenon some years ago. As with finger
complements, it provides a physical challenge involving manual dexterity
and something complex to do with the mind. It also offers something to be
practised to mastery, involving high levels of speed and efficiency
Shortcuts and other practices were commonly traded.

From a mathematical perspective, the ‘objects’ of attention are
transformations of the state of the physical object—the cube. If a cube is in
one state, it cannot be in any other in order to effect a direct comparison.
What are children aware of (if not the algebra of the transformations) that
allows them to ‘do’ the cube? The operations are tangible even if the effect
is only discernible visibly. How are we to turn operations into things so
that we can study their structure and possible combinations?

If I hold a Rubik cube in my hand, it is different from seeing one being
manipulated by someone else or on a computer screen. One difference is
with developing what might be called the ‘knowing hand’; that is, part of
the ‘knowledge’ is kinaesthetic, somehow distributed or located in the
hand itself rather than in the head. Further manipulation and deliberate
attention to what is being done may be required in order to gain
confidence and the ability to recreate certain situations at will—in short, to
gain a certain fluency with the apparatus. The dynamic nature of the
transformations usually means the eradication of previous positions, so
some separate form of recording may be required to preserve experience
for reflection or to recreate a past sequence. The reverse is also possible: the
notation can precede action, generating something that has not been done
before rather than describing something that has.

One part of algebra deals with working with the unknown as if it were
known, and techniques for doing this regularly involve use of the letter ‘x’.
The question of the meaning of x often arises, and attempts have been
made to provide a physical referent for x in order to permit direct physical
manipulations, again mirroring the ‘manipulations’ of the symbols, which
is what is actually to be learned.

Morelli (1992) has written about using a cube and counters as material
for enacting ‘think-of-a-number’ problems. In her description, every
verbal instruction has a physical action counterpart—and the
manipulatives provide something to act on. Objects always offer a basis
for an iconic written representation which may evoke previous
experience. Where her proposal gets into particular difficulty for me is
with the attempt to offer a sense of variable by allowing different numbers
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of counters to be placed in the cube. I explore this move from algebra to
arithmetic further in Chapter 5.

As with Dienes apparatus, there are a number of places where the logic
of the mathematics determines what is to be done with the apparatus; for
someone who does not have prior access to it, such requirements could
well seem arbitrary. The task may well move over to become: what do I
have to do with these objects?

Dienes has proposed use of his material in an algebraic context, offering
images and actions for manipulating whole-number-coefficient algebraic
expressions into equivalent ones: a flat becomes x2, and a long x, and a
single 1. Certainly as a manipulable image for ‘completing the square’, as
well as maintaining the difference among unlike terms, this proposal has
something to offer. But some of the particularity of the material comes into
play quite quickly: for instance, x seems to be a fixed length (number) in
terms of relations among the physical symbols themselves, and x is an
unsigned quantity. For this material to be used symbolically for algebra,
we need count nouns, not measure nouns.

I do not wish here to present an extensive discussion of Cuisenaire rods
and their underlying algebra: see, for instance, Gattegno (1974). But I think
this work offers the most plausible account for physical material used in
particular ways helping give access to algebraic awarenesses. Gattegno
comments (1974, p. 45n) about Cuisenaire rods (which he sometimes
called algebricks): ‘length and area are spatial or geometrical properties; the
rods act as an algebraic model only when we put the stress on operating,
changing, transforming, etc.” So he is making clear that it is only as a result
of employing particular attention that algebra can be perceived in
operations with the rods.

Finally, there is a different sense in which algebraic manipulatives may
be created, arising from making the algebraic symbols themselves into
physical entities. It is possible to create symbols which allow pupils direct
physical manipulation. By this, I do not mean physical ‘manipulatives’
such as Cuisenaire rods, where the rods are offered as counterparts of
mathematical entities. Rather, I intend physical versions of conventional
symbols to manipulate and internalise operations, to activate and
operationalise the metaphor of ‘manipulation’ of symbols.

In a secondary classroom, pupils were asked to look at a felt board
together with card symbols (e.g. numerals, operation signs, brackets, equal
signs), each backed with Velcro tabs. Pupils were encouraged to make
equations on the felt (such as 4(2(x) + 3)/7=6) and then time was spent on
inverting each operation in order to find a numerical expression for x.

The teacher, Matthew Fitzpatrick, commented to me, “It helps that they
can actually see the symbols being moved by hand, and that each symbol
appears only once, so there isn’t the confusion that happens with working
on the board when the ‘3’, for instance, is on both sides for a time”. He also
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distinguished two sorts of transformation of the symbols: ‘movements’,
where an operation was being inverted, and ‘tidyings-up’, which had to
do with the ‘look’ of the equation, spacing between symbols, relative
position of the ‘x’ to the ‘=’, and so on. In other words, it was also
important that the equation should look right.

When working in their books, the pupils produced their own set of
manipulable symbols and started making and rearranging equations.
Subsequently, they wrote equations and some pupils then matched the
symbols on top of the page to work them out, and later, conversely, wrote
down the result of symbolic manipulations in their books to have a record.
On occasion, it seemed to me as if the symbols were soaking into the paper.

One general question (one that has arisen with most of the foregoing
classroom accounts) is to what extent the tangible, and hence graspable
and movable, properties of the card symbols remained once they had been
transformed into their pencil-and-paper equivalents, where it is only in a
pupil’s mind’s eye that they can be directly moved.

The challenge offers pupils physical actions to carry out, with the
teacher intent of enabling them to be able to do something. The lesson
allows physical movement to be put in—what might be called an attempt
to make manifest the virtual movement of symbols—as a temporary
substitute for what pupils have to be able to do eventually in their minds
and on paper. It offers yet another device or story, embodying a way of
talking about what is to be done.

Actions guide understanding and understanding in turn guides action.
Eventually, many things can be carried out virtually, in the mind, with no
action in actuality at all. We can certainly gain muscular knowledge from
actions and manipulations, and then let it seep into our imaginations, and
even down into our unconscious.

DESCRIPTIONS AND PURPOSES

Below is a short list10 of some of the mathematical purposes I see for using
apparatus of whatever form. No single actual classroom situation is likely
to be purely one or other of these types—but the objectives accessible from
these uses are different. While the list is not exhaustive, I believe the main
reasons (signalled by the verbs illustrate, generate and represent11) are
included here:

• a means of illustrating something mathematical;
• a concrete representation of an abstract concept;
• a tangible means of generating and exploring mathematical ideas.

All of these propose physical activity which allows pupils to generate
mathematics. In each, the question needs to be asked: what is the
apparatus for?
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The Oxford English Dictionary pairs the words ‘symbolise’ and
‘represent’, and also connects the word ‘exemplify’ with that of ‘illustrate’.
It can be difficult at times to distinguish the notions of representation and
illustration, but one partial criterion for illustration may be that the
material setting has some independent existence of its own. Bell-ringing
can illustrate ideas about permutations, exemplifying them by means of
the sequence of the bells. The ringing of the bells is not an embodiment or
representation of permutations as such.

Illustrations can help, but if the context of the illustration is unfamiliar,
pupils are faced with two new challenges: understanding the illustrative
situation on its own terms, and endeavouring to make links between this
and whatever mathematics it was they were actually engaged in coming
to grips with. (It is not only with respect to manipulatives that this
peculiarly pedagogic paradox arises: it occurs with mnemonics, with
substitute images, with many other devices which are purportedly to help
ease the overall burden on memory—by apparently increasing the load!)

Some, for instance, write of square dancing as a representation of certain
transformation groups, whereas for me it is actually an illustration.
Mathematics frequently involves substitute action on representations. One
further distinction is that it is much harder to work directly from
illustrations than representations in order to gain an appreciation of the
mathematical idea—far more stressing and ignoring is required. When
representing something by something else, the representative is acting as a
symbol.

As with solely being caught up by the action, there is the possibility of
becoming absorbed in the detail of the illustration at the expense of
attention to what it is supposedly illustrating. Bell ringing and square
dancing can be found fascinating in their own right and may leave
permutations and transformation groups out in the cold!

A different form of representation occurs when a pupil chooses some
physical material to represent aspects of a problem they are working on.
The use here is directly representational, though the constraints of the
physical may emphasise or prevent certain possibilities from being
considered.

The third role for practical apparatus may be in raising or generating
mathematical ideas or questions (such as hinges, mazes for routes, the
Rubik cube for combinations of rotations to produce a particular effect, or
other models, such as of the Platonic solids). Here, more than with the
other two uses, the pupil’s focus is much more directly on the physical
material or setting itself. Mathematical thinking is to be used to find out
more about it initially, even though the same questions and ideas may well
be used subsequently in a broader exploration away from the original
setting. I shall say little about this possibility here.

One of each of the following contrastive pairs of terms are often used
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for indicating purported properties of mathematical work with physical
apparatus:

practical/theoretical
concrete/abstract

tangible/intangible
 

‘Practical’ when contrasted with ‘theoretical’ usually means of immediate
use and relevance. The term ‘practical apparatus’ offers connotations of
utility and convenience, whether to students personally or to society at
large. One often misguided assumption behind valuing something as
‘practical’ is the presumption that it will therefore appear relevant to
students. This is in contrast to offering them the possibility of productive
engagement or involvement which seems to me to be a far more important
requirement. ‘Practical’ may actually be referring to pupils finding
meaning and purpose and being willing to submit to the task at hand—
often as a result of perceiving a worthwhile challenge.

The adjectives ‘tangible’ and ‘concrete’ are commonly used in this
context, conjuring up an image of practical objects which exist in the
physical world, which can be touched, moved about, and generally
manipulated with the hands. ‘Tangible’ (from the Latin verb tango,
meaning “I touch”) means that it has some material form that I can engage
with using my physical self. (More generally, the word ‘perceptible’ means
that I can experience it with one of my five senses.) Calling something
tangible tends to imply it is real, that it is there. Concrete materials (echoed
in the mistranslation of Piaget’s third stage as ‘concrete operations’), it is
claimed, may help the user to contend with the abstract with which they
are usually contrasted with the expectation of the ‘concrete’ being easier to
comprehend.

However, the mathematician Jacques Hadamard has offered the
maxim: “The concrete is the abstract made familiar by time”. He is
suggesting that concreteness is relative to our past experiences, rather than
being an attribute of certain things in themselves. On the other hand, one
consequence of this divisive split has been a contempt for practical
knowledge. Formal/abstract knowledge is often considered the highest
form of thought, and mathematics its representative. In mathematics, as in
many other subjects, I think it is important to ‘have a good pair of hands’.
But what that means in terms of developing ‘knowing hands’ for doing
mathematics is a subtle thing.

Physical manipulation alone is seldom enough: teachers also encourage
pupils to talk about what they are doing, as well as taking steps to encourage
them to internalise the substitute images that the apparatus provides.
Through talking, the teacher can better ascertain what they are attending to
among the myriad possibilities. After a period of unrestricted access and
use, one sequence of steps might be to do work with the apparatus both
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present and visible, but impose a rule of no touching. Then, move to the
material being initially present but then covered over, before finally merely
invoking images and memories of the material verbally.

Georges Cuisenaire proposed such a three-stage consecutive approach,
starting with using his coloured rods, followed by use of comparably
colourcoded cards and finally conventional written notation. Caleb
Gattegno, who developed, publicised and worked extensively with
Cuisenaire’s invention, commented:
 

Cuisenaire’s own pupils, and those who are using his method, are
equally skilled with the rods, the cards (which bear the same
colours as the rods, but are no longer capable of being
manipulated), and the ordinary written signs.

(1963a, p. 13)

Thus, it would seem that Gattegno is using the term ‘manipulated’
literally in order to contrast use of the actual rods with the cards as
substitutes. These associated counterparts nonetheless retain certain links
with the originals (most importantly, colour), while no longer allowing
other actions to be performed upon them (in particular, direct comparison
of lengths, as all cards are the same size). He claims:
 

the pupil acquires a wealth of mathematically correct experience
in fractions offered by no other method. It is both abstract and
concrete; it shows what is invariant in situations and shows
clearly and simply what the variables are.

(1963a, p. 4)

The artist Paul Klee talked about art in terms of rendering the invisible
visible.12 By making visible that which cannot be seen, greater attention can be
drawn to what was previously imperceptible. In the sense discussed in this
chapter, accessing mathematics through manipulatives involves rendering
the tangible intangible, though it is usually thought of as the reverse process
(namely ‘embodying’ mathematics in the objects). Such objects never shed
their physicality, but this materiality can be suppressed by the pupil attending
to something else. Manipulatives can be both matter-of-fact actual and
evocative of something else at the same time. They can be both symbol and
object at the same time, but not usually the one for the other.

I see no inherent value in using apparatus for its own sake. In addition,
there is always the difficulty of indicating to the pupil what you are
attending to, so the risk is always there that the students will believe that
the object itself is what should be focused on. When ideas are too abstract
or confused to hold entirely in your mind, it can help to have some
physical object to hold or in view, on which to focus. So one key function of
apparatus is as a stabilising focus for the mind, a place to attend. It need
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not necessarily be a physical object—a picture or a diagram may on
occasion serve the same purpose. But feeling the apparatus may provide a
reassuring (if illusory) sense of the tangible materiality of the apparent
object of our mathematical attention.

TOUCH AND UNDERSTANDING

 
Man’s reach should exceed his grasp, or what’s a Heaven for?

(Robert Browning)

I mentioned in the Introduction that one of the common metaphors for
understanding something is to ‘grasp’ it. If I don’t understand something,
then it is ‘beyond my grasp’. I may also experience a need to feel ‘in touch’
with what I am doing. To be ‘out of touch’ is considered an undesirable state.

‘Grasping’ something is often related to possession of it, though the
term can also be used derogatively of someone whose need to have things
within reach overrides other social sensibilities. Are there intellectually
‘grasping’ individuals who have a burning desire to grasp, to understand?
It was the mathematician David Hilbert who said of mathematics: “We
will know, we must know”.

One of the primary and fundamental means of young children
encountering and exploring the physical world is with the hands (and
then usually the mouth, but that is another story13). Although it was cited
in the specific context of counting on fingers (which are often the first
manipulatives), the claim ‘my fingers are an extension of my brain’ can
serve as a more general indicator of the importance of touch. A theme I
shall take up in Chapter 10 is that the domination of ‘manipulation’ in all
its richness as the metaphor for doing mathematics suggests, rightly or
wrongly, that the human sense of touch, and not that of sight, is still
perhaps the most important mathematical sense.

I find little distinction is made in much mathematics education writing
between visual and tangible aspects of manipulatives (for instance,
Morelli’s article is called A visual approach to algebra concepts’). Yet, they
offer different supports. The one may be necessary at the outset, the other
sufficient after a while. Is it the image that is to be internalised (if so, that
suggests certain things to be done in the process of distancing or softening
the support), or is it the feel, the gestural movements, the knowing in the
hands that is deemed important (which suggests others)?

This chapter has discussed the physical interaction between
individuals and physical materials in the service of mathematics. The term
‘manipulation’ often seems appropriate for describing the nature of this
interaction. Humans acting on this material also offers a fitting description.
But Newton’s third law of motion, that every action has an equal and
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opposite reaction, encourages us also to see the objects acting upon us at
the same time. The Russian psychologist El’konin puts it this way:
 

An educational task differs fundamentally from other types of
problems in that its goal and its result consist of a change in the
acting subject himself, not in a change in the objects on which the
subject acts.

(cited in Davydov and Markova, 1983, pp. 60–1)

But what makes these actions mathematical in some way? Is there
something that distinguishes them from other actions on material objects,
such as getting dressed or eating food?

Gattegno (1963a) has made much of the distinction between actual (or
real) and virtual actions. In particular, he claims that perception (and with
it the dynamics of the mind) is implicit in performing virtual actions, and
virtual actions extend the range of corresponding real actions, while still
reflecting certain constraints inherent in the original. He offers the
following example:

For instance, stringing beads is an action, while to imagine oneself
doing this is, at first, to evoke the movement without actually
carrying it out; to become aware of it as a possible action that can
recur indefinitely is the virtual action which will serve as basis for
the indefinite extension of addition of units.

(1963a, p. 52)

But more particularly here, he proposes an interesting characterisation of
what it is to act as a mathematician, one which I find illuminating of the
difficulty of using ‘manipulatives’ to work on mathematical ideas:
 

All those, then, who are capable of replacing actual actions with
actions that are virtual and of contemplating the structures
contained therein, act, when they do these things, as
mathematicians.

(ibid., p. 53)

This is one sense in which mathematics is necessarily of the mind, in that
Gattegno identifies awareness of the structure of virtual actions as
characterising the mathematician. Students can be observed manipulating
physical objects: how can we possibly observe them performing virtual
actions, let alone ascertain whether or not they are awarely contemplating
the inherent structures of those potential actions? But much of the
equipment discussed in this chapter has been employed to substitute
actual actions on material objects for virtual actions on ‘mental objects’ or
symbolic representations thereof.
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This chapter has offered an exploration of the main roles for physical
objects in teaching mathematics, in terms of offering substitute objects for
direct manipulation and, along the way, referents for some symbolic
processes. I also discussed some of the variety of teaching functions such
equipment is expected to perform. In later chapters, I argue that it is for
precisely this reason that the metaphor of manipulation has been applied
to symbols of various sorts. Symbols can come to act as the ‘manipulatives’
of mathematics, referring at times to the virtual actions of human beings
acting as mathematicians at whatever level.
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GEOMETRIC IMAGES
AND SYMBOLS

What will be the future of the individual imagination in what is
usually called the “civilization of the image”? Will the power of
evoking images of things that are not there continue to develop in a
human race increasingly inundated by a flood of pre-fabricated
images?…we run [a danger of] losing a basic human faculty: the
power of bringing visions into focus with our eyes shut, of
bringing forth forms and colours from the lines of black letters on
a white page, and in fact of thinking in terms of images.

(Calvino, 1988, pp. 91–2)

Geometrical drawings have been made as least as long as written records,
and physical objects created in geometric forms for just as long (see, for
example, Tahta, 1981 a). Authentic ancient Babylonian tablets and
Egyptian papyri include geometric drawings; megalithic ‘circles’ litter
Britain and France. Straight lines and circles, traces of the two
fundamental, elemental sources of motion (straight ahead or with steady
constant turning), have always played a central role in the attention of
those interested in mathematics and form. Different methods have been
found at different times to resolve questions about them, but these
‘objects’ have remained in focus for some 4000 years at least.

We might speculate about the provenance of such figures and why
these shapes and not others came to be used: straight and circular forms
rarely occur naturally, and then only imperfectly. We do, however, ‘read’
geometrical forms into the natural environment around us, offering a
converse interpretation to Stevens’ (1967, p. 492) observation that: “The
world images for the beholder”. Thus, straightness can be perceived in tree
trunks, in the fall of a drop of water, in paths of shortest distance.
Circularity, although even rarer in the natural environment, can be seen in
cross-sections of trees or in a full moon.

These shapes, forms, images are constituted mentally, enabling us to
create physical objects ‘in their image’, converted or pressed into objects



GEOMETRIC IMAGES AND SYMBOLS

33

(through specific design). Many objects and processes humans make
suggest straightness: sticks, pins, edges, folds, cuts and stretched strings.
Flatness is mirrored in walls, floors, ceilings, boxes, tables, and so on. Once
the wheel was invented, many circular objects appeared: tables, manhole
covers and coins provide present-day instances. Geometrical shapes have
also been used to decorate other human artifacts since the earliest times,
and continue to do so in pottery motifs or clothing patterns.

Certain geometrical figures such as the circle have been used culturally as
symbols of beauty and perfection—though the perfection of the circle is
only ‘graspable with the mind’s eye’, to mix sensory metaphors. We can
imagine a circle with no thickness that is perfectly round, but we can never
create one by drawing freehand or even with a pair of compasses. Using the
computer language Logo to get the turtle to draw a circle (e.g. forward a bit,
right a bit, lots of times) brings us up against the difference between an
image on a screen and a ‘real’ circle. But the development of our geometric
perception also allows us to see these traces as circles. Seeing as is a very
important part of geometry—it allows us to ‘read’ objects and images in a
geometrical way

One view of mathematics has the world being mathematical and so the
mathematics is ‘out there’ waiting to be perceived: ‘mathematics is all
around us.’ You apparently just have to look. Galileo proclaimed: “The
book of the world is written in the language of geometry”. An alternative
view holds that mathematics is human and hence only inside our minds.
We therefore need to place it onto the world, rather than finding it there.
Curiously, Euclid, besides being a Greek geometer, also developed a
theory of vision, according to which light rays emanated from the eye,
striking the object, and that was how we were able to see them. Seeing
involves projection.

Paralleling this highly mathematical view of vision, it is in this same
active sense that we see mathematics in the world, namely that we project
mathematical forms onto it. But either way, the result is we see geometric
shapes in the environment and naming them can help direct attention to
particular aspects or features.

Geometry is strongly linked to the human sense of sight (in contrast to
touch, highlighted in the previous chapter) and the visual perception of
form. It is closely connected with the action of drawing, with the creation
of shapes, the conjuring of images. But geometry also invokes their
dynamic manipulation. There are various sorts and sources of images:
hand-drawn images, which differ from screen images, which are different
again from mental images.

Among the questions that geometers ask are: what are the properties of
certain figures? What relationships hold among parts of a particular
figure? What do certain situations have in common? (See Mason, 1991.)
Geometric language is often seen as a language of description.
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Nowhere is this more apparent than with modern geometrical software
packages such as Cabri-géomètre or Geometer’s Sketchpad, where a ‘mouse’ is
used to point, but also, most innovatively, to ‘grab’ and ‘drag’ screen
objects. A new emphasis can be on transforming, manipulating, what you
have constructed with the aid of the machine. These programs do not offer
drawing tools in the same way that Logo’s turtle graphics can be used. The
computer’s general role in offering dynamic, seemingly graspable images
is explored in the third section of this chapter. I say ‘seemingly graspable’
because they appear to be presented directly to us—we just have to
summon them by name from a menu—certainly in comparison with
algebraic means of naming and hence control. Yet screen images are not
directly tangible.

There is something very spare and stark about geometric images, when
compared with other scenes conjurable in the imagination. In his poem
The common life, Wallace Stevens writes of Euclid’s ‘absent shadows’ and
‘one-sided forms’. Yet that very paucity of detail, the absence of cluttering
particularity, enables us to focus so directly on the relationships between
geometrical forms and among their parts. It is one source of the power of
geometric images. But there are others.

Mathematical points are imagined with no thickness or area, with no other
intent than acting as a focus of attention. There is a close link between the
action of pointing and the mathematical notion of point. Points get called
into existence through the action of pointing.1
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Tahta, in his discussion of Cabri-géomètre from a curricular perspective,
draws attention to the fact that it is always incidence properties of
configurations that are in view: points, lines, circles and the facts of contact
and crossing, where and how.
 

That points lie on lines or circles, that circles touch lines or other
circles, and so on, are important and worthwhile notions, not only
because they lead to the life-enhancing achievements of builders
and engineers, or of artists and designers, but also—and, in my
opinion, more crucially—because they are reflections of psychic
incidences. Geometry matters—for various reasons, but also
because points, lines and circles are symbols of what I lie on, pass
through or touch.

(1992, p. 39)

Thus, Tahta suggests powerful and emotive perceptions can arise from
inside too, as well as alluding to some of the psychic condensations that
may exist around such fundamental elements.2 So even these apparently
direct images may have further symbolic residues. One of our earliest
experiences was that of being ‘inside’ our mothers, in the (topologically)
spherical container that marked the limit of our early worlds. This closed
boundary offers an important primitive sense of inside and outside. One
universal source for geometry that may be being echoed here (‘mixing
memory and desire’, based on ‘lucid souvenirs of the past’) is that of our
ante-natal, three-dimensional existence. Perhaps we attend to and see
what we see on the outside because we are projecting from the inside—
from inscape, as it has been termed, onto landscape.3

SOURCES OF STATIC AND DYNAMIC IMAGES

Images develop an autonomous status, they become great
summarizers of action.

(Bruner, 1966, p. 13)

Human beings are natural image-makers and geometry springs from
particular kinds of images. There are a number of sources that are
particularly fruitful in giving rise to geometric images. The ones that will be
explored in this section are: the material world, animations on video and
computer screens, and words which can serve to evoke images in the mind.

School mathematical tasks may involve movement of one’s own body,
manipulating cubes or rods, cutting paper with scissors, folding card. But,
however absorbing the activity may be, activity is not the end in itself.
Mathematics in general—and in this, geometry is no exception—involves
focusing on relationships between parts and wholes, exploring change
and constancy, stressing this and ignoring that. Mathematical activity is
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the means to an end, to encountering some idea or some property, to
seeing or realising that something must happen or cannot happen. Very
young children are capable of mental imagery, just as sixth-formers can
work with paper and scissors to mathematical ends.

Frequently, such activity can stimulate an image, an ideal, a goal
towards which the action is focused, as well as enabling feedback between
what is achieved and intended. One way of achieving control over
geometric images comes about through language, through describing
what you see or want to see, and from others talking about what they see.
Language can also be used to generate new images, ones which have
never been thought about by humans before. Computers can also play a
part in this imaginative generation of novelty, as the recent work on the
beautiful pictures of fractals attests.

In Speaking Mathematically, I wrote:

When a baby wishes to operate on the world to achieve its various
ends, its first contact is direct and physical. The development of
spoken language permits certain goals to be achieved indirectly, e.g.
by asking for or demanding them. Further control of written
language again broadens the range of possibilities which are now
‘within reach’…. Knowledge of a computer language affords control
over various ‘screen objects’ for instance, but this control is also very
much one of action at a distance. The desire to be able to interact with
these screen objects provides a strong and genuine motivation for
struggling with the syntactic complexities of a computer language.

(1987, p. 6)

Young children also produce mental images, shaped by their visual contact
with the external world, but also conjured from within, by the imagination.

An individual’s images are as private (but also no more private) than
thoughts. We share basic images as we share many words, though of
course what they signify for each of us can and does differ widely,
depending in part on the interaction between inner and outer meanings.
Images get objectified, partly through being impressed into objects, partly
through being named, and as result are rendered far more static. With
stasis comes particularity, as they can no longer partake of the dynamic
which links them. Geometric objects both come from these sources and are
returned to them: material objects, actions and images—not following that
slavish order, but deriving from any one of these human possibilities.

Almost any physical object, whether naturally occurring or
manufactured, can be a source of images, and visual representations,
proliferating owing to modern reprographic techniques, have become an
immense source of images, including photographs and posters. There are
also many quasi-geometric signs in our culture: two familiar ones may be
the radiation hazard symbol and the Mitsubishi logo.
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These are very close to geometrical figures, but are not usually seen as
such. Their meaning is in what they signify as a gestalt, an icon, not in the
relations observable among the elements of the figure. Nevertheless, they
are chosen partly for their spareness which makes them visually
memorable. We can look at and analyse them with a geometrical eye.

By contrast with such static sources, moving pictures on film, video and
television screens offer dynamic images. But one aspect all these media
have in common is that the images or sequences of images themselves are
planned and determined in advance, which places the viewer in a
subordinate relation to them. Indeed, this is one point of any film (as
indeed, of any book) and is essential in presenting a narrative. This applies
equally to geometrical animations on film where the intent is to focus
attention on particular configurations in motion.

Other possibilities are also available. One of the recent changes in the
way images can be created, offered and manipulated in a mathematical
context has been through the microcomputer. It is now possible for the
pupil herself to conjure and control dynamic screen images in
fundamentally new ways. The level of interaction varies with computer
software, which offers a range of modes of control from a computer
language such as Logo, through choice from menus, to use of the mouse.
Some of the best software gives the user a level of control similar to that
with the geoboard (discussed in Chapter 2), but with a degree of
animation similar to that achieved on a film or video. As with the
geoboard, such software makes a version of private mental images
available for public scrutiny, comparison and discussion.

But as with any change, there are gains and losses. The freedom given by
having control over the generation of images allows children to create ones
that are appropriate for themselves, but lack of constraints can mean that
children may not be brought into contact with some important kinds of
geometrical experiences. There is a continuing debate about the use of Logo’s
turtle graphics concerning the balance to be achieved between having
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children set their own tasks and projects and providing them with more
teacher-focused tasks: for instance, offering challenge images, primitives or
programs for exploration. (See, for example, Ainley and Goldstein, 1988.)

Finally, one of the most effective ways of creating images can be
through the use of words alone—for instance, an imagining task such as
Think-of-a-picture’. One might begin thus.

Close your eyes. Imagine a square. Stretch it, shrink it, rotate it,
move it around in your mind to get a sense of all the squares it
might be. Bring it back now to the centre of your ‘mental screen’
and arrange it to be ‘square’ to the picture, with a top, bottom and
two vertical sides.

A group of teachers have provided classroom accounts of mental
geometry activity resulting from working with words into images (Beeney
et al., 1982). The extract below is from writings by nine- and ten-year-olds
about their ‘inner pictures’.
 

My point was the tip of a triangle. The light from it seemed to start
in the middle when it was blue. Then it went outward a little and
became red…. My triangle started off in complete darkness; then
suddenly it seemed to be a kind of lawn with a path on it… It was
funny but I seemed to be the triangle and yet I saw it with my own
eyes.

I saw a big square that went all the way round the picture. It
was not a real square, some of the lines were not straight. The
square was red and it moved a little bit at a time. In the square was
lots of more lines going across and going down. There were all
different kinds of colours. All of these lines made lots of little lines.
Then the little square began to get filled in.

(ibid., p. 11)

As the images are described with words, the pictures evolve with a
narrative thread and are generated by a linear syntax. Although words can
serve to conjure images, as mental images are inherently private and
personal, there is no direct way of offering them to others.

WORKING ON STATIC IMAGES

Each of the sources mentioned in the previous section offers certain
possibilities for pupils to work mathematically on images. Because of the
remarkable shift in public, dynamic imaging possibilities introduced by
the potentialities of film and video and, most importantly, of computers, I
devote the third section to these sources alone. Particular accounts of ways
of working with paper, on a poster, and on a diagram, are given here.
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Working with paper

A piece of paper can simulate and substitute for working with pure
surface. Although different weight paper has different properties, it
can prove quite a flexible medium, providing numerous opportunities
for constructing images while working with geometric possibilities.
Folding paper circles can generate lines across circles. One task might
then be to see what shapes are possible whose sides are fold lines;
overlapping circles and exploring the possible resultant shapes is
another possibility.

For instance, children can be asked to fold a piece of paper twice and
then cut off a corner, then sit on the folded paper. They can then be
challenged to predict what the shape will be when it is unfolded, and
prompted to visualise the unfolding and the resultant shape. This task
can be extended to thinking about what different possible shapes might
be obtained with two cuts, and how many sides the final shape could
have.4 Here, images are needed to act as templates of target shapes.

There are a number of general mathematical purposes for such work.
One is to predict the effects of actions before they are realised: this is in
order to have a stake in the outcome, to have to develop an expectation
to be confirmed or confounded. A second is to be able to ‘say what you
see’ in order to develop the ability to ‘point’ with words, so as to
communicate with others and to describe and analyse complexity.

In mathematics, there is always movement back and forth between
the potential (the possible) and the actual. The question of alternative
possibilities can be partially explored by looking at particular cases, but
one important mathematical challenge lies in identifying all possibilities,
eliminating impossibilities and convincing others that all cases have
been considered.

There is a tension between reflection and immediacy. The instruction
to ‘sit on the folded paper’ is one device for interrupting the physical
immediacy of the situation, in order to encourage prediction and
thought. Cutting and unfolding as quickly as possible is the simplest way
of finding out what the shape will be in this particular case, but if the
teacher’s intention were to encourage geometric thought, then there
would need to be a force towards trying to slow things down and
intervene in the pupil’s process in order to ensure time for reflection.

In this situation, as in many others, teacher and pupils are partial
antagonists. The pupils (consciously or not) want to close down the task,
bringing it to an end as quickly as possible. Teachers want to prolong the
imaginative exploration of the possible at the expense of the actual as
long as is feasible, and often without indicating that that is what they are
doing. For this will provide them with the most opportunities for
teaching.
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Working on a poster

When shown a picture or a poster, and asked to say what has been seen, it
is common to use a combination of words and gestures (perhaps pointing
or touching or using direction of gaze) to direct the questioner’s attention.
Within the context of a mathematics lesson, different criteria may be
involved in order to accentuate the mathematical potential of the task. Part
of learning to speak like a mathematician is to be able to use language both
to conjure and control personal mathematical images, as well as to convey
them to others.

One means for achieving these ends has been developed where the
class sits in front of a photograph or picture. Pupils then take it in turn to
come out to a ‘hot-seat’ at the front and ‘say what they see’ to the rest of the
class. The task requires ‘no pointing and no touching’ rules to be strictly
adhered to, in order to force attention onto the adequacy or otherwise of
the description given. The focus on the poster and/or the speaker allows
the teacher to escape from the limelight, and encourages the
communication to go from pupil to class, rather than from pupil to teacher.
Questions can be asked and pupils have to work on refining command of
mathematical language, in order to convey their desired meaning.

There are a number of interesting aspects of this task. The first is that it
is quite artificial. In everyday life, if you want or need to explain to
someone something you have seen, it is normal and efficient to gesture as
well as describe. The constraints imposed are part of what gives the lesson
potential as a site for learning. The focus is on the use of spoken language
itself to point, to stand on its own, aside from accompanying gestures.
Provided the pupils take on the ‘game’ aspect (in the sense of a rule-
governed task with a particular goal), then they are able to practise certain
linguistic skills. These include, for the speakers, precision in describing
what they see and, for the listeners, ability in evoking images from words.
(An account of such a lesson, with a middle-school class and a complex,
multi-coloured poster as geometrical focus, is given in Jaworski, 1985.)

The task also encourages the perception of projective seeing. When I
was working with a group of teachers on a particular poster, one remarked
on her language patterns shifting from, “You can see…” to “I can see….
Can you?” The pronoun shift indicated a considerable move in her self-
awareness that something she had unthinkingly assumed was ‘taken-as-
shared’ was, in fact, quite possibly not. The statement ‘I can see a cube’ is
subtly but importantly different from ‘You can see a cube’, or even ‘It’s a
cube’ or ‘There is a cube in the picture’.

Finally, this task also connects to the power of naming. If someone
asserts that they cannot see any cube at all, then what the speaker knows
about that object can be brought into play in her descriptions, until the
others can see what was invisible to them before. This can cause pupils to
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realise that what is going on in their heads is hidden from others, and that
language is a powerful means of communicating such thoughts and
images. Because the teacher also has to visualise from the words being
used by the pupils, there is more scope for ‘genuine’ questions (see Ainley,
1988a). The teacher desires to find out the answer because she does not
know and, in some fundamental sense, cannot find out in any other way.

Working on a diagram

Diagrams are commonplace in mathematics textbooks and a widespread
element of heuristic problem-solving advice is the invocation to ‘draw a
diagram’. One intent of providing a diagram is to stabilise thought, a role
shared by other symbols, as well as to provide a focus for attention. Yet,
because diagrams seem so iconic, so transparent, it is easy to forget that they
too need to be ‘read’ rather than merely beheld. Here are three diagrams:
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The first of these is intended as a two-dimensional representation of a
three-dimensional object. Interpreting such drawings can present
difficulties, especially for younger children. The conventions of the
drawing do not allow us to decide, for example, whether it represents a
complete cube or one hollowed out at the back.

The second diagram is a static representation, yet it can be seen to
‘point’ to a range of generality. It is a particular configuration, but it can be
seen to ‘speak’ about more than one situation at a time. In this sense, the
diagram can also be seen as a symbol as well as a particular picture (with
its particular shape, size, location and orientation).

The third appears to be a scale drawing, but the ‘actual’ angle in the
picture, although marked 39°, is nearer to 29°. The task associated with
this diagram was to make a scale drawing of the situation in order to
produce an estimate of the tower’s height, and then to use trigonometry in
order to compare the result. The actual angle needed to be ‘wrong’, as
otherwise there would be no need for the pupil to make a scale drawing—
merely directly measuring the ‘tower’ in the picture and scaling the result
would suffice. (Here the diagram is ‘standing for’ a real-world situation.)

Yet it seems peculiar nonetheless that an angle of one size is labelled as
being another. Part of the rubric in some examinations includes a
disclaimer statement that the angles shown in the diagrams do not
represent the actual angles—thereby drawing attention to the symbolic
rather than iconic nature of the geometric diagrams. For instance, the
Graduate Record Examination booklet proclaims:
 

Figures that accompany questions are intended to provide
information useful in answering the questions. However, unless a
note states that a figure is drawn to scale, you should solve these
problems not by estimating sizes by sight or by measurement, but
by your knowledge of mathematics.

(GRE, 1993, p. 25)

It later reiterates: ‘Comparisons should be made based on a knowledge of
mathematics rather than appearance’ (ibid., p. 27).

One of their questions is as follows:
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I was unable to ascertain by direct measuring that this was not an
isosceles triangle, despite the ‘actual’ picture being considerably different
from this. A common expectation of sketch diagrams is their being generic
or in general position (so that a small perturbation of any measurement
does not alter the ‘type’). The word ‘sketch’ is often used to indicate its
approximate depiction, whereas diagrams are usually there to be relied
upon.

In addition, there seems a possible confusion between the task that
produces scale drawings, such as geometrical (often called technical or
engineering) drawing, and the one giving rise to diagrams for doing
geometry with. In the former, accuracy is crucial, often so that
measurements can be made directly from such drawings—a task resulting
in diagrams acting as counterparts for the actual thing (somewhat like
navigation charts). The representations need to be as accurate as they can
be made—because the substituted drawing is the object you are
measuring. Even in certain artistic representations, for instance, the
pressure for accuracy comes from aesthetic considerations, of wanting a
drawing that ‘looks right’.

A geometric diagram can be more like a sketch map. With geometric
diagrams, accuracy of measurement is far less important, as no
measurements are made directly on the figure, though it can help to be
suggestive if it is approximately accurate. The second diagram on p. 41 is
typical of those found in many older geometry books. Although it might
be showing a particular configuration, it can also be interpreted as a still
frame from a sequence of moving images, where one or more of the points
are moving round the circle. It can thus be read as a particular standing for
the general—a generic image.

What could it mean to work on a diagram? One possibility for the first
diagram is to discuss possible solids that it could be representing. This is
similar to the kind of discussion about ways of seeing that could arise in
the task with the poster discussed in the previous sub-section.

One further way of working on such diagrams, in order to indicate
some possible meanings it could have, is to introduce a dynamic element
into how pupils are to see it. In the poster, there is no dynamic—only flips
in perception from one static image to a different interpretation. A task
based on the second diagram might be as follows:
 

Imagine that O moves round the circle. What happens inside your
head? What do you see? What do you notice? What changes and
what stays the same? What are some extreme positions?

 
Another starting point for such mental activity might be:
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Mental manipulations of this sort can draw pupils’ attention to the
continuity possible through the dynamics of the mind. They may even
become aware of how, in some sense, the diagram does speak about all of
these situations at once. The difficulty of one triangle in a geometric
diagram ‘standing for’ all triangles in some sense is widespread. The static
representation (even two or three examples) suggests that there are a lot of
isolated, static triangles. An alternative possibility is to use moving images
in order to try to capture the generality.

Geometric figures are often presented in standard orientations:
triangles with the longest side horizontal to the bottom of the page,
squares ‘square’ to the page, and so on. Remember too the radiation
hazard logo, which is also recognised in one standard orientation. All of
these configurations are ‘stable’, as if gravity were operating on a page.
One difficulty can arise with pupils not knowing which aspects they are to
stress and which to ignore about the particular examples they have been
presented with. Richard Skemp recounts an anecdote of a pupil being
taught Pythagoras’ theorem and being asked to construct ‘the square on
the hypotenuse’ and producing the following diagram:
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A plausible conjecture is that the boy had only ever come across squares
‘square’ to the page. Stories such as these can act as reminders that we can
never know what pupils are seeing in what we or they draw.

I often read that geometric figures should be presented in various
orientations in order to emphasise what remains constant. But lying
behind this injunction is a belief that these are the same figure, rather than
different but related figures. There are also some verbal ambiguities
involved in referring to transformations. Sometimes it is useful to call
upon other squares, rather than stretching ‘it’. So all squares are present
and we move from one to another, highlighting (‘calling into being’) with
our attention (either continuously or disjointedly). Motion in film or the
imagination may be considered as such—as in transformation geometry
or Euclidean congruence proofs—or the figure may be conceived (more
symbolically perhaps) as an icon pointing to generality, i.e. representing
an equivalence class of shapes, and usually an infinite class at that.5

WORKING ON DYNAMIC IMAGES

One important distinction among geometric images is whether they are
static (and therefore single and isolated in some sense)—such as a poster—
or dynamic (and therefore multiple and connected)—such as in a video. A
poster can support a range of images, depending on how it is seen, and can
encourage a certain dynamic when switching between them. Further-
more, an individual diagram can be seen as a snapshot taken from a
dynamic sequence. Constructing ‘flickabooks’ from a series of separate
snapshots can produce an effect similar to a film and help to bridge the
gap between the two. Thus, it is not a hard-and-fast distinction, because
film or television images themselves form a discrete sequence, running
usually at the rate of twenty-four every second, and therefore only
simulate continuity of motion. Nevertheless, this animated simulation
produces effects far closer to the seamless dynamics of mental images in
the mind.

Working on an animation

I finished the previous discussion by suggesting that a diagram could be
used as a means of invoking a dynamic sequence. With an animation,
there is the possibility of working directly and mathematically on moving
images. One possibility is to offer a complex geometrical film for
reconstruction.

In contrast to the static poster, the dynamic element introduced by the
sequential time aspect allows a ‘story’ to be created, as well as
interpretations to be made about what was happening or why.6 Below is a
brief and partial description of a short Nicolet film.
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A red circle appears and moves around the screen, growing and
shrinking in a smooth and continuous way. A point appears and
eventually the circle passes through the point and is ‘captured’ by
it, and from then on, it passes through that point. A second point
appears and ‘captures’ the circle from the first point, then both
points capture the circle, and finally the circle gets larger and
larger.

 
In a book such as this, I cannot provide you with direct experience of this
film. I can only offer you words—which you might use to generate your
own images—or a sequence of drawn ‘stills’ (perhaps of key transitions)
that suggest the motion, the chronological sequence. Words are quite
different from images. The above story is my story: a familiar mixture of
description and interpretation. I could instead have given a structuring
overview: for instance, this film is about circles and constraints, first none,
then one, then two.

Of course, other accounts are possible in response to the same short
sequence. For instance, is it the ‘camera’ that is moving and ‘actually’ the
circle is remaining the same? Is it the circle that captures the point, or vice
versa? More subtly, was it one circle changing size and position, or was it a
whole sequence of different circles being illuminated in turn, one per frame,
which brings us back to another key feature of geometry, namely continuity.

With a circle that is moving continuously around the screen and
shrinking and growing, for example, there are at least two different ways
of seeing what is going on: one circle moving and changing size and
position, or the picking out of a (large) selection from an infinite set of all
possible circles. Random (rather than continuous) illumination of
possibilities can help to suggest the latter perception. The above account is
very brief, yet it can be used to generate a complex sequence of images—a
word here being worth a thousand images.

In a group discussion of this film at a conference, someone later
remarked, “I never actually saw a family of circles superimposed at once
on the screen. It was only over time—things stayed in my head.” Someone
else asked, “Why did we read this film as mathematical?” A third
commented, “Moving images have multiplicity With words, it is hard to
attend to what is not being said, whereas the unsaid, the undemonstrated,
can be present and functioning with images.”

The time sequence allows it to be read as a story, and the continuity of
image (the close proximity of circle size and position in adjacent frames)
invites a reading of a single circle (one object) changing, rather than a
succession of distinct circles being attended to in turn. For that to be
initially the more salient, a sense of discontinuity (jerky, flashing
movement) may be required. The plane can be viewed as being empty
until a circle is placed there, or it can be viewed as made up of all possible
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circles permanently present, from which one can be singled out and
brought to our attention. Curiously, words can invoke continuity directly,
whereas the discrete nature of film images can only invite it.

A lesson based on the use of another three-minute silent, animated film,
this time of conic sections, is shown in the video Working Mathematically on
Film with Sixth Formers (Love, 1987). In the lesson mentioned, after being
allowed time to fix certain key images in their minds, pupils were invited
to start to reconstruct the film as a group account, each contributing their
recollections and their uncertainties.

Comments and questions by the teacher, Eric Love, included, “Nobody
expects you to remember all that”, “What was the first thing that
happened?”, “Is this right?”, “You have no recollection of this”, “And then
what happened?” In this way, focused attention can be brought to bear on
memories of the stream of images, as well as identifying quite precisely
points of unease or lack of clarity that can provide places for close
attention when the film is eventually shown for a second time. Love later
commented, “If I keep showing them the film, they’ll think it is about
remembering. I ask them to reconstruct the film communally. There are
always things you don’t remember, but others do, that can start your
images moving again.”

Using silent films allows the viewer’s attention to be captured by the
screen images, rather than waiting for the commentary to direct them
where to look. What can follow after showing the film is a conversation
about personal images, using spoken words and gestures. The words and
gestures are impermanent and the only trace left may well be the mental
images generated. A considerable amount of work is needed to create,
develop and refine the use of language to describe and re-conjure images,
both for oneself and others.

A further comment by Love concerned the generality of what was
shown:
 

The film creates the sense of generality, of large numbers of
possibilities that you can work with. It is not a single ellipse on the
paper as it would be in an ordinary lesson based around textbook
ideas. So it is the dynamic range of possibilities that is the central
thing that comes from the film.

 
It is also possible to show extreme cases (circles expanding to become
straight lines, for example), which in static diagrams would not be
regarded as representative or perhaps even related.

One factor which makes working on such an animation into a
mathematical event is that it is not a film of particular circles and ellipses
in the same sense that a film of birds in flight is, indeed must be, of a given
flock. (I explore this further in Chapter 6.) Every frame of the film is
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symbolic, and needs to be carefully read and its potential meaning and
significance discussed and possibly agreed upon. Geometry arises when
these images are internalised and worked on by pupils.

Working on computer screen images

Computers are rapidly developing the capability of producing
sophisticated screen images of astonishing variety and detail. In exploring
how the capabilities of these devices are being used in school mathematics
education in geometry, I focus first on work using Logo’s turtle graphics,
before turning to contrast the use of pseudo-synthetic geometry packages:
Cabrigéomètre or Geometer’s Sketchpad.

In general, the computer allows you to focus on particular things, by
doing some others for you, thereby easing the demands of the situation.
This is true of all media that offer images. The range and type of
interaction allowed by any program is one important part of this control.

Turtle graphic images

I said earlier that computers offer quite new forms of encounters with
dynamic geometric images; pupils take a very active role in their creation
and manipulation. Much the most widespread geometrical work using
computers has been with the subset of Logo known as turtle graphics (see,
for example, Ainley and Goldstein, 1988; Hoyles and Sutherland, 1989).
One of the most striking things about Logo in this context is that it
becomes a language which generates and controls action, rather than merely
describing it. Instead of looking at an image on the screen and then
describing it in terms of the language, language is used generatively to
create something on the screen. The computer code necessarily comes
before action, and, as a consequence, the user is forced to focus on the
language. Logo language statements are implemented on the screen, yet
for the computer the screen phenomena are secondary effects.

Despite this, the screen is usually the focus of the pupil’s interest and
the language is, at best, relegated to the position of being a means to an
end. For instance, spectacular effects can be produced by the REPEAT
command, but concentration on these alone, perhaps by printing out the
resulting screen images, may be reinforcing inattentive use of language.
Teachers counteract this by not merely admiring a remarkable output, but
by asking: how did you achieve that?

There have been numerous descriptions of how pupils wanted to do
something on the screen with Logo, and then went about acquiring
particular intellectual tools and mathematical knowledge towards
achieving that end. It seems to be one of the strengths of Logo, related to its
implementability of action, that pupils can generate for themselves, see on
other pupils’ screens or be tempted by a teacher offering an idea, image or
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procedure, something they want. They therefore create or take on some
goal toward which they are willing to work, making use of whatever
resources they can.

Another way of working on the language itself is for teachers to offer
sophisticated programs to pupils as objects for exploration, as might be
done with regard to certain, unfamiliar algorithms (such as one for finding
square roots). Tom Kieren comments:
 

One of the first primitives I had kids playing around with was
something we found in Byte magazine. It was a procedure called
‘Squiral’. It made interesting spiral shapes…. The turtle simply
went forward a bit and turned an angle, went forward a bit
further and turned the same angle, went forward a bit further, and
etc. Although this seemed like a fairly harmless activity, the
primitive carried with it three parameters which kids could play
with. Because it had a lot of power, the kids came to see that there
was much, much more to shape than they might’ve thought of
previously—shape in a controlled sense, not shape in some
random, non-replicable, drawing sense.

(Kieren and Pimm, 1989, p. 26)

All of these different shapes came from the same procedure, thereby
suggesting that these shapes which otherwise might have been seen as
totally different, actually have something in common. The fact the shapes
are all generated by the same procedure can also suggest that it is worth
looking for commonalities across a wide range of different phenomena.

Such generating and processing of the visual by language plays an
important part in work with turtle graphics, where pupils are encouraged to
see shapes recurring in other shapes or as made up of other shapes, in order
to allow the procedural power of this particular computer language to come
into play. In the British government document Mathematics from 5 to 16, the
following figure occurs, alongside the claim given on the next page:
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for example, using LOGO many children of infant age and many
children of low ability in secondary schools can program a
microcomputer to produce their own designs [such as this one.]

(HMI, 1985, p. 14)

Logo code can generate powerful and impressive effects on the screen that
pupils can happen upon. If taken up and explored, these can provide an
impetus towards understanding the effects of the code which resulted in
the figure. If the picture is seen as consisting of rhombuses, then it is a very
complex task to program this ‘seeing’. If, however, it is seen as consisting
of overlapping regular pentagons, then it is much simpler (using the
REPEAT command) to program.

Multiple seeings form a very important part of mathematics, and the
two seeings described above will be embodied in quite different computer
programs, even though the screen effect will be identical. (Is the
mathematical focus, indeed the goal, the drawing or the drawn?) Logo is
not a neutral language with regard to the perceptions it encourages.
Because of its structure, good programming style entails seeing figures in
certain ways, valuing some seeings over others. Logo programming offers
its own aesthetic, which at times has more to do with the machine than
with the desires and aspirations of geometers.

In the everyday physical world of the child, she carries out her intentions
by acting directly on things. It is one important constraint of educational
value in the Logo environment that children cannot directly act on the screen
turtle. It is not a manipulative in the sense discussed in Chapter 2. Even with
a floor turtle, pupils are not encouraged just to pick the turtle up and move
it around. In order to come to grips with some of the mathematical potential
that the Logo turtle offers, pupils need deliberately to use language.
Provided the pupil is willing to take on the constraints of the machine and
software, then mathematical learning can take place.

In relation to mathematics, this emphasis on action is interesting. On
the one hand, it is initially a very powerful device for showing some of the
interpreted effects, in practice, of symbolic statements that can be written
down. In mathematics classes, it is very easy to get tied up in the form of
the language without paying much attention to the meaning of what is
going on—in fact, pupils are often encouraged to do precisely that. This
linking between one element of the form and the meaning (in the sense of
the geometric effect it can produce) is a very powerful attribute that
computers offer to us.

But in his work on pupils’ developing notions of proof, Nicolas Balacheff
(1988) argues that ultimately we should aim to take pupils away from action
and have them look at the form of the argument as a whole. This suggests
that perhaps the close tie-up in turtle graphics between Logo language and
action might eventually be an anti-mathematical force. The enticing
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implementability lures pupils into remaining in touch with the ‘meaning’
(in this case, the turtle-drawn pictures on the screen) at all times. In other
symbolic work in mathematics, one of the important features is that
meaning can be ignored, in order to work on similarities and links between
the form of the symbols alone. I say more about this in Chapter 5.

Geometry packages

While Logo is a programming language, other software, including
sophisticated Euclidean geometry programs such as Cabri-géomètre or
Geometer’s Sketchpad,7 involve quite different forms of control, seemingly
offering direct ‘manipulation’ of screen images of geometric elements.
They constitute powerful pieces of software for aiding exploring and
conjecturing in the realm of Euclidean geometry, enabling geometry to be
worked at dynamically (see, for example, for Cabri-géomètre ATM, 1992).

Cabri-géomètre can be used to render trivial certain currently-
challenging geometric problems (such as many loci problems) which can
enhance powers of imagining. But just as Cuisenaire rods are not
primarily calculating devices, it is important to realise that such software
is more like Dienes blocks than a calculator (in that it is unlikely to be
found outside schools). Work in an educational setting must build in the
importance of prior prediction and reflection, in order to have a stake in
the outcome, precisely because it is so easy to use the software to ‘do the
geometry for you’.

In some ways, the contrast with the static, single images of geometry
textbooks (from which the reader had to generalise) could not be more
marked. Earlier in this chapter, I described imagining some parts of a static
diagram moving. With Cabri-géomètre or Geometer’s Sketchpad, the user can
directly cause figures to move continuously and see what happens.

My colleague, Eric Love, reported one early experience with
Cabrigéomètre as follows.
 

I had chosen three points and named them A, B and C. I intended
to explore how ‘reflecting’ a point (i.e. creating a new point, the
same distance but on the opposite side) first in A, then that point
in B and then the resulting one in C would continue if I continued
reflecting in A then B then C. I found that this sequence of points
eventually returned to my original starting-point.

Would this happen with a different starting-point? I was about
to choose a second particular starting-point, when I realised that I
could ‘move’ my starting-point with the mouse—continuously—
and that the whole sequence of reflected points would move with
it and I could directly see the effect of changing the starting-point.

The implicit metaphoric invitation is to see the screen hand as my hand.
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At other times, the cursor is an icon of a pencil, as if a figure is being
drawn. Thus, Cabri-géomètre distinguishes between what Brian Rotman
(1987), in a numerical context, has contrastingly named as ‘gestural’ and
‘graphical’ possibilities.9 Having invoked a construction, Cabri-géomètre
also offers an arrow or hand as a pointer, accompanied by ‘this point’. (See
note 7.)

One of the most mathematical aspects of Cabri-géomètre involves the use
of continuity of the movement of the mouse to instigate and control the
continuity of movement of the screen images directly. The emerging
language is that of physical contact with objects: points are ‘picked up’ and
figures ‘pulled’, ‘dragged’ or ‘moved around’ the screen. By clicking on a
point in a figure and then dragging with the mouse, the image changes,
apparently continuously. Unlike with the geoboard, any ‘in-between’
figure can be frozen to become the screen image: there is no visible grid

What you can do with Cabri-géomètre or Geometer’s Sketchpad is to create a
static picture and then cause it to move or deform: for instance, specify three
points and then ‘ask’ for them to be joined up to form a triangle. The mouse
allows you to ‘pick up the triangle’, and to change it—to manipulate it, in the
language of Chapter 2. For instance, you can ‘pick up’ one corner of the
triangle and move it by means of the hand-driven mouse—and the rest of
the triangle follows. The screen cursor sometimes takes the form of an icon
of a hand—not a hand that draws, but a hand that moves things about.8
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privileging some configurations over others.
The software preserves the relations among the points and lines of a

figure (such as lines being perpendicular or bisecting one another, or
points lying on a circle or being equidistant from two lines). Cabrigéomètre
holds or remembers relationships for you, allowing concentration on other
things. The machine preserves the specified relationships among the
elements, enabling the current screen image to be seen and treated as a
single, movable object, at once coherent yet unfixed. However, although
both Cabri-géomètre and Geometer’s Sketchpad allow loci to be produced on
the screen, to date the locus cannot subsequently be manipulated as an
object. Thus, loci do not yet have the same conceptual object status as other
primitive geometric objects in the system, in contradistinction to
newlygenerated Logo procedures.

As with any technological substitution, Cabri-géomètre does not merely
enhance perceptions, it also alters them. While there are various types of
objects which can be conjured up (points, lines and circles) and various
pre-programmed constructions that can be performed (such as joining
two points, finding mid-points, drawing circles), there is a striking shift in
how these ‘constructions’ can be employed, in terms of an object-tool
distinction.10

Suppose I want to find the image of a point reflected in a line.11 I could
use the physical tools of geometry classes, a set square perhaps to draw a
perpendicular line to the given line and a compass or pair of dividers to
measure off an equal distance on the other side of the line.

Within Cabri-géomètre, a pre-set, primitive construction is to draw a line
perpendicular to another through a given point, which could be used to
construct a perpendicular bisector to the desired mirror line through the
given point whose reflection is required. Following that, a circle can then
be used to ‘construct’ the required image point. This involves a shift of
thinking from seeing a circle as an object which itself can be constructed,
into seeing a circle as a tool for constructing other points (usually requiring
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The drawing and the drawn

We regularly talk about drawing a diagram, but also about drawings. The
word ‘drawing’ suggests the process rather than a result (that which is
drawn), and drawings necessarily evolve in time. Watching how students
actually draw diagrams can inform our understanding of how they are
viewing the problem. What we are usually offered are completed
drawings. What extra information is conveyed by knowing the temporal
evolution of how diagrams are drawn in the solution of problems has been
simply but elegantly explored by Nunokawa (1994).

Earlier, I mentioned that Logo engenders an aesthetic that gets
embodied in the code: Cabri-géomètre likewise. To take the example of the
animation described on p. 46, seeing the point as captured by the circle or
the circle as captured by the point have to be constructed differently and
thus set up different dependencies: order of construction matters. Thus, a
Cabri-géomètre diagram carries its constructive history with it: the drawing
still exists inside the drawn.

In a profound and stimulating paper, Colette Laborde (1993) identifies
some distinctions between pencil-and-paper geometry and ‘Cabri-
geometry’.13 She declares that the abstract Cabri-géomètre referents are not
identical with conventional Euclidean ones: that is, the geometry arising
from static drawn diagrams. Cabri-geometry, arising out of consideration
of dynamic screen images, is therefore in an interesting sense, a non-
Euclidean geometry. She also makes it clear that different constructions of
the ‘same’ geometric object may have different drag properties and, even
more strikingly, some theorems of Cabri-geometry depend (albeit not
arbitrarily) on the decisions of the software designers.

Laborde makes use (though far from consistently in her paper) of
Parzysz’s (1988) distinction between ‘figure’ (figure) and ‘drawing’
(dessin)—an identical one to that between ‘number’ and ‘numeral’
respectively. She claims that creating geometric computer-screen images
requires a refinement of this distinction, in that the stressing and ignoring

‘equal distance’; another tool use for a circle could be for checking
parallelism). Tools are means to an end rather than ends in themselves.

A comparable situation existed in early Greek geometry where many
curves (such as the conic sections) were first called into existence as
constructive tools, rather than objects of study in their own right. The so-
called symptom associated with a curve (the natural language description
of how the points on the curve relate to one another12) later became its
definition in a shift to definition by properties (see Pimm, 1993b). Software
such as Cabri-géomètre may allow a renewed contact with an earlier,
nowsuperseded geometrical tradition. However, as I shall now discuss,
there are also some important differences.
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that a mathematician can do (in order to see through drawings to figures)
actually involves some mathematical understanding and knowledge, and
this needs to be programmed into the computer tolerances. Laborde
writes: “The referent attached to a drawing cannot be inferred only from
the drawing but must be given by a text in a discursive way” (pp. 40–1).14

Laborde discusses what she calls ‘black-box’ situations:
 

A Cabri-drawing is given to the pupils, they do not know how it
was constructed and the facilities of the software giving access to
the construction process are removed. The task for the pupils is to
reconstruct the same Cabri-géomètre drawing, i.e. a drawing on
the screen behaving in the same way as the given Cabri-géomètre
drawing when it is dragged…. A discursive description of the
figure must be given in addition to the figure.

(1993, p. 47)

With black-box situations, the challenge is thus not just to make a static,
visually indistinguishable screen image copy, but also to create a drawing
that is dynamically identical as well. This is a mathematically new task, one
that was not offerable prior to the development of such software
environments.

William Ivins (1969, pp. 61–2), whose work I shall make much of in
subsequent chapters, writes of the role of symbolism and syntax in the
creation of hand-made images historically, contrasting what he calls
Visual statements’ with collections of word symbols.

Thus while there is very definitely a syntax in the putting together,
the making, of visual images, once they are put together there is
no syntax for the reading of their meaning. With rare exceptions,
we see a picture first as a whole and only after having seen it as a
whole do we analyse it into its component parts…. This leads me
to wonder whether the constantly recurring philosophical
discussion as to which comes first, the parts or the whole, is not
merely a derivative of the different syntactical situations
exemplified on the one hand by visual statements and on the
other by the necessary arrangement of word symbols in a time
order. Thus it may be that the points and lines of geometry are not
things at all but merely syntactical dodges.

Any process of holding images must have a syntax: for instance, the grid
of the geoboard.15 Laborde makes clear that Cabri-drawings have the
sequential temporal syntax of verbal statements, the product of the
process of ‘explicit description’ which necessarily precedes their
generation. Cabri-drawings have memories—their generational history
forms part of the figure and the machine insists that they be ‘read’ this
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way. Thus, Cabri-drawings provide a new and mathematically important
instance of Ivins’ ‘rare exception’.

In his discussion of Cabri-géomètre, Dick Tahta writes:
 

it presents the user with direct images of the basic elements—
points, lines, circles—of plane geometry…. I believe, however,
that it is the direct manipulation of geometric images—whether
on mental, video or computer screens—that should form the
central core of any geometric curriculum.

(1992, pp. 37, 39)

The screen images offered are undoubtedly ‘direct’, in the sense that there
is an external source impinging on my retina. They are certainly direct
when compared with the devices of traditional analytic geometry16 or
matrix transformation geometry. But they are not direct in the sense of
being unmediated; geometric objects are not screen objects. The former are
virtual, their genesis and location confused; the latter simulates certain
features of material objects and drawings.

There is a powerful irony here. Cabri-géomètre is a fundamentally
algebraic piece of software—at one level, merely because it is the solving
of equations and extensive use of coordinates that generate and drive the
screen effects, which to the user are primary, yet to the machine are quite
secondary. The screen images are still symbolic. In a more fundamental
sense, the associated Cabri-geometry is a ‘descriptive’ geometry only in a
particular text-based sense: the necessary syntax of its drawings renders it
algebraic. Tahta (1990a) has offered a mathematical formulation of a Taoist
motto: ‘the geometry that can be told is not geometry’. Cabri-geometry
undoubtedly offers a tale worth the telling. But I wonder about its subtext
concerning the nature of geometry itself.

WHAT IS THE ROLE OF SYMBOLS IN GEOMETRY?

Ceci n’est pas une pipe.
(René Magritte)

The symbol for a circle is a circle.
(Dick Tahta)

At first sight, it might seem that there is very little in the way of symbolic
activity in Euclidean geometry (other than perhaps the suggestive
labelling of vertices for reference), in contrast with number or algebra.
Geometric forms, properties and relations are surely directly perceived,
without need of intermediate representations.

One background question for this chapter has been whether the meanings
of geometry lie in images in the mind: if so, are the images images of
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something (but what?), or things in themselves? Ironically, perhaps, because
the objects of geometry seem unproblematic, there is usually less
questioning of reference, with what a circle or a triangle ‘really’ is. Are
mental images what the ‘facts’ of geometry17 (such as that the angles of a
triangle always add up to 180 degrees, or the diagonals of a rectangle always
cut each other in half, or all quadrilaterals tessellate) are referring to?

Thinking further about the nature of any geometric drawing or diagram
(whether in a book, on the board, or on a screen) suggests that things are not
straightforward. The status of the drawing and its use as an aid to geometric
reasoning is ambiguous. Reynès (1990) poses the question of why an ‘error’
of drawing does not automatically result in an error of reasoning and cause
problems in the same way that an error in an arithmetic or algebraic
calculation can. One key difference, offering a partial resolution of this
interesting question, will emerge in the next chapter with the discussion of
the different symbolic functions of signification and being a counterpart.
The arithmetic/algebraic computations use the symbols as counterparts,
whereas geometric diagrams are seldom so used (unless the task is one of
technical drawing—see Sträßer, 1991).

The aim of using such diagrams is to see through the particularity of the
diagram to grasp the generality of what the drawer is attempting to focus
attention on. The diagram is symbolic to the extent that it is not the object
the theorem is speaking about. Any physical or drawn square is not a
square. When a teacher says, ‘Draw a square—don’t bother with your
ruler’, she is attempting to draw attention to the fact that what is wanted is
a symbolic (albeit suggestive) representation on which to work: a sketch.
Yet some pupils may be unwilling to draw a straight line without a ruler—
unable or unwilling to stress and ignore with their minds what is in front
of them to ‘make’ it into a straight line.

This section’s opening quotation from the Belgian surrealist painter,
Magritte, accompanies a direct and accurate pictorial representation of a
pipe. The title18 of the complete picture (including those painted words) is,
however, The Use of Words Number 1. How are we supposed to make sense
of the apparent claim that this is not a pipe? In the preface to a small book
by Foucault on Magritte’s paintings, James Harkness comments:
 

After all, would anyone seriously argue that a word is what it
represents—that the painting of a pipe is the pipe itself? Must we
say rhetorically, with Foucault: “My God, how simpleminded!”
Yet it is exactly from the commonsense vantage that, when asked
to identify the painting, we reply “it’s a pipe”—words we shall
choke on the moment we try to light up.

(Foucault, 1983, pp. 5–6)

And what about the diagram on the following page?
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Does it make any sense to accompany it with the claim This is not a
triangle’? A drawing of a triangle is not a triangle. OK, well and good. But
another part of the confusion arises from a drawing seeming to assert the
existence of the thing of which it is a drawing in the way a photograph
does. (Foucault speaks of how a painting “independently establishes an
invisible world that resembles itself”—p. 34.) In offering itself as a
substitute for the thing, a diagram seems to imply that it is as good as the
thing itself for our purposes. We speak metonymically of the drawing of a
triangle as a triangle.

There is a further complication. Mathematicians use one diagram of a
triangle on occasions to represent all triangles. This is reminiscent in
algebra of the use of letters for any number, though one important
difference is that a letter is not any particular number, whereas the drawn
triangle used to represent all triangles can itself also be seen as a particular
triangle.

Because all circles (and squares for that matter) are similar to one
another, there is a strong sense in which a diagram reflecting what
happens in particular is generic of what will happen no matter which circle
is drawn, provided no particular length relations have been made use of.
Not all triangles are similar to one another (it is not even true that all right-
angled triangles are similar), and so there is much more required in order
to ‘see’ that the construction or property of the drawing is indeed common
to them all. Why don’t geometric proofs thereby necessarily fall into
‘cases’, sets of similar configurations that partition all possible examples,
for each case of which there is a generic proof?

Returning to the earlier discussion of dessin and figure, rather than
‘figure’, I prefer the term ‘configuration’ to refer to the equivalence class of
diagrams, where the ‘sameness’ is that one could be mouse-dragged into
another. Laborde (1993, p. 43) suggests: “In a sense, Cabri-géomètre offers
a reification of the notion of geometrical figure”. I believe, conversely, that
we seem in a similar position to the situation with number where the
action of drawing (rather than counting, as with number) is what brings
geometric figures into existence—once again the symbol precedes the
referent.

What is the status of a Cabri-géomètre screen image and an underlying
configuration from the point of view of generality? A particular image is
constructed by means of instantiating general constructions in sequence
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on chosen base objects. Deformation by means of the mouse results in a
different image, but one belonging to the same configuration (an
equivalence class determined by the mutual inter-relationships specified
among the elements). A static diagram is both viewable as a particular and
a representation of the general. With Cabri-géomètre, you can move from
one particular to another so easily, that I wonder whether this has the
effect of emphasising the particular status of a diagram at the expense of
the general. Devices can change the relation between general and
particular. With a dynamic, interactive medium which supports direct
variation, where the dependencies survive direct manipulation, seeing the
one as the many, rather than the one as one among many, may not be so
valued a perception.
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4

WHAT COUNTS AS
A NUMBER?

They said, Them as counts counts moren them as dont count’.
(Hoban, 1982, p. 18)

 
We talk about someone being good at ‘handling’ numbers, figures or
calculations. How are we to get our hands on them that they may prove
susceptible of being handled? One way is by means of numbered objects.
 
offers—images perhaps, or a focus that allows something else to occur. I

A trip to a delicatessen or a Chinese restaurant may produce a
numbered object. You become the number on the ticket or disc. In some
cases, order matters; in others, it is just a means of identification by
association—“Number 15 please”. But in either case, no distinction is
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can also write words or numerals (the ciphers) and operate on them as if
they were numbers: for some, numbers are inherently written. I might
evoke metaphoric images such as ‘a number is a point on the number line’.
Finally, all of these somehow rest on the process of counting: without
counting, there are no numbers. More strongly put, counting brings
numbers into being.

Teachers can and do choose to offer pupils Cuisenaire rods, for instance,
in order to supply a more tangible referent for number. Teachers can also
offer abacus-based actions in order to suggest a more transparent
calculational means. They also can and do choose to offer number-word
games and rhymes, where there is no such appeal to physical materials,
where the task is almost entirely linguistic. They regularly offer opaque
Indian-Arabic numerals and the algorithms that this numeration system
supports. Working at such algorithms can result in meaning in exchange
for attention.

Teachers can and do provide electronic calculators, despite the fact that
these are not pedagogic objects and are widely available in the outside
world. Calculators can deflect attention from actual calculation—
suggesting “you need not attend to this: it is being taken care of for you”.
The history of working with number is a history of means and physical/
notational devices.

Despite regular claims to something being the way to teach number,
classroom decisions are seldom an either/or. All of these resources
(physical, gestural-graphical and linguistic) contribute to the meaning of
numbers, and all can be made to ‘hold’ number and to carry out
calculations in different ways. But all involve conventions: of form, of

made between the number and the token with that number on it. Playing
cards and dominoes, too, are numbered objects, though using a
predominantly iconic presentation rather than by means of Indian-Arabic
numerals.

But these numbered objects are not too useful for reckoning with.
Counting boards are about reckoning with counters, while pencil-and-
paper algorithms are about reckoning with ciphers.1 Any partial answer to
the question of what numbers are (and there are several proposals)
involves a substitution, a deflection, a looking-elsewhere. We can have no
direct experience of numbers.

At home and in school, I might be equipped to think about and work
with numbers by means of physical materials: counters, perhaps, or an
abacus, Cuisenaire rods or Dienes arithmetic blocks, and the patterns they
allow. The rods quietly assert that numbers are in some important way like
lengths. Calling my voice into play, learning to produce certain sounds in
fixed order, according to the particular language patterns of number
words, also allows me some sense of conjuring and control. I could invoke
my fingers and their movements: it is far less clear what this substitute
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structure, of use. It is also far from obvious whether one should come
before another.

I have used the words ‘counting’ and ‘calculating’. What is a counter? A
counter can be the person doing the counting—the one-who-counts. (The
US TV programme Sesame Street has a counting character called The
Count.) It can be a device that counts for me—like a revolution counter. A
counter can be the substitute object that is counted with. (One stone for
every sheep in the pen: counting the token, the tally, having made sure
that they tally. The Latin word calculus, whence ‘calculate’, means
“pebble”.) Finally, a (shop) counter is sometimes the place where counting
is to take place (along with the counting board, counting table and
counting house).2

What of doing calculations? We are so used to computing with figures,3

with the symbols that comprise our numbers, that it can be hard to
conceive that for some cultures, the holding of numbers and calculating
with numbers were distinct processes: for example, Roman numerals and
counting boards or abacuses. The abacus outcome was recorded using the
numerals, but there was no way of checking the outcome other than by
repeating the actions. (It is possible to derive symbolic algorithms working
on Roman numerals, but they are not simple, even without coping with
the complexity added by the combined additive and subtractive
principles.)

And what is a calculator? According to the Random House College
Dictionary, a calculator is:

1. a person who calculates or computes;
2. also called calculating machine: a machine that performs

mathematical operations;
3. a person who operates such a machine;
4. a set of tables that facilitates calculation.

(1979, p. 191)

The sense of myself as the calculator, as the one-who-calculates, is turning
into the one-who-operates-the-calculator. With every calculating device, it
is possible to ask the question: to what extent when I use this device can I
still see myself as the one-who-calculates?4 The shifting reference for the
word ‘calculator’ mirrors the contemporary devolution of much of the
responsibility for that-which-is-calculated onto the device. As a user, my
focus then becomes: have I given the machine the correct things in the
correct order to have it do what I want?

There is a sense of agency and agent in the electronic calculator itself
that is almost absent in an abacus. The abacus merely holds numbers,
while within the range of manipulations its design allows, it is completely
indifferent to how things are carried out. As well as holding number
symbols, the electronic calculator also holds procedures, over which I have
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no control or even access. The continuity between the electronic calculator
and earlier computational aids, as well as the sense of singularity and
rupture, is explored in the third section of this chapter.

What sense can I make of my actions with these devices? How scrutable
is the device to an enquiry as to how and why it works? How transparent
are the necessary actions? It is important to remember that unlike most
manipulatives, no calculating aid is primarily a pedagogic device—though
they all provide untaught lessons nevertheless. Cuisenaire rods and
Dienes blocks are not calculating devices, in the sense that their primary
intent is not to facilitate computations per se, but to aid their comprehension.
To use these latter two (or similar) devices for enabling children to get their
‘sums’ right is to misunderstand fundamentally their purpose. There may
also be a trade-off between transparency on the one hand, and fluency or
efficiency on the other: and the former may be important if the device is
used for an educational purpose. But before concerning myself with
calculating means (including algorithms) and calculating devices, I return
to the core notion of counting.

ON COUNTING

Katie is three. She has learnt how to generate spoken number words, in
order, up to a hundred. (She still looks to her mother for confirmation at
certain decades, particularly forty and fifty.) In front of her is a board game
from a book her mother has been reading to her, comprising a snaking
path of squares numbered 1 to 46. Katie is able to say the English number
words one at a time, coordinated with (or is it by?) touching the
correspondingly numbered square. Does she have a sense of counting
anything, or is her touching more like conducting, a way of keeping the
rhythm going? Touch with fingers is manifestly involved in the striking
complexity of these actions.

She can count small numbers of objects accurately and has just that day
for the first time succeeded in systematically counting thirteen ‘pies’
depicted on a card, the image structured in alternating lines of two and
three. Katie has some difficulty with the board game, which involves
using a dice (yet another presentation of numbers), preferring finding the
square bearing the numeral that goes with the configuration of dots
shown on the dice face to counting on that many from where her counter
was before. She announces that she does not need to use the dice, and
hereafter decides herself where to move her counter to next.

I wonder whether the fact that she has previously gained spoken
control over this key part of the number-naming sequence5 means that she
is free to attend to the numerals that she is making correspond by her
fingering. Can she go directly from the written symbols to the number
word when above ten? Not quite. (She is pretty fluent back and forth
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below ten, and nine is her favourite number—the largest with a non-
composite representation.)6 All of this has to do with the complexity that is
counting and number.

All aspects of counting contribute to the richness of meaning and use of
numbers in our culture, and sense needs to be made of them by children.
Each child will have particular connotations for certain numbers which
play an important part in their lives. An extreme instance comes from the
film A World Apart, in which teenager Molly Roth’s mother is imprisoned
in South Africa for ninety days. We see her with the numbers from 1 to 90
written in an exercise book, drawing a line through them one by one as the
days pass. (Recall too the 4/5 anecdote from Chapter 1.)

While such particularities are important, they can get in the way of
seeing general arithmetic relations. It can be hard to see pattern among
small numbers, in part because of this particular luggage we all acquire—
and some of it is unwanted baggage. These specific meanings do not help
pupils acquire confidence and security in handling large numbers, the
sense that ‘all other hundreds are the same’.

When children are first learning to count, they are often asked ‘Can you
count?’ What this usually means is not whether they can determine how
many objects of a certain sort in a designated collection there might be, but
whether they can generate correctly a certain set of spoken noises in order.
Number words are words, but they are special in that they form an ordered
and closely structured collection.

In English grammar, there is a distinction between transitive and
intransitive verbs, which broadly separates verbs into two classes, those
that have a direct object and those that do not. For example, the verb ‘to
describe’ is transitive (I describe something), whereas ‘to sleep’ is not (I
don’t sleep something, I just sleep). But ‘to count’ can be used both
transitively and intransitively: I can count things (e.g. counters, children in
the room, minutes I have been alive) and I can also just count (say the
counting words aloud in order).

‘Just’ counting—that is, counting intransitively—is often used by
children to accompany games, as well as in number songs and as a thing to
do in itself, to practise to mastery. Counting transitively for children
involves saying the whole number words in order as they touch objects in
turn—usually with the intent of answering the question ‘How many?’ In
order successfully to count transitively, you have to know what counts;
that is, which items are to be counted and which not. If unable to decide
whether or not thumbs count as fingers, or how to tell a finger from a toe,
you will not be able to count consistently or agree with the results of
others.

It is striking to me that these two different activities do not go by
separate names in English. Yet there are also important messages in this
elision of difference. The same holds true for the fact that the English
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language names for the number symbols 0–9 are the same as for the
concept named. Thus: what’s that? A nine. What does it mean? It means
nine (of something).

Intransitive counting is a linguistic ability, and is only possible because
the number-word system in any language must be highly regular and
structured. The English one is not completely regular, otherwise ‘thirteen’
would be ‘onety-three’ and ‘twenty-five’ would be ‘twoty-five’, and so on.
But, in the main, it is systematic, otherwise there would be an impossible
amount to remember—the number ‘poem’ would go on and on.7

In order to be able to count transitively, intransitive counting must be
mastered, otherwise the reference set of sounds (words) against which the
objects to be counted are being set would be a non-standard reference.
And young children initially offer countings of collections of things: one,
two, three, four, five. If asked how many there are, following a counting,
they may well respond with the entire counting again (just as with an
abacus computation). The question apparently triggers a procedure to be
gone through. They have to learn the convention which says the counting
process can be compressed into saying the last number alone: that ‘five’ is
enough.8

How are whole numbers to be compared? I can claim that six is bigger
than five because it is said after five in the ordinal sequence. I can claim six
marbles are more than five marbles because after pairing there is one left
over. We want to associate these observations, so that subsequently we can
put our trust in the order of the names to ‘carry’ the physical—‘six thousand
and forty marbles are more than six thousand and thirty-nine marbles,
because six thousand and forty comes after six thousand and thirty-nine’—
and there is no need (and it is pretty infeasible anyway) to carry out a one-to-
one matching. Combining these two perceptions of comparison and
relating them is part of what creation of number meaning entails.

A fruitful task with young children can be to challenge them to order
numbered cards or discs (0–99) on a number board. The accessible
ordering principle is that of the spoken names, rather than order of ‘size’.
They are all numbered objects of the same size, the frozen result of one
particular counting. All the ‘thirty-somethings’ belong together;
confusions of, say, 17 and 71 can be resolved.

In some important sense, counting things is a mere application of
intransitive counting—albeit quite a hard one to master. Here are some
categories of things that can ‘go wrong’ with young children (aged four to
seven, say) counting transitively. The following examples draw in large
part on an article by Jan van den Brink (1984).
 
• Infants frequently appear unsurprised that a second count of a

collection of objects produces a different result from the first. Where
does that sense of invariance arise from?
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• Martha (aged four) stops on ‘three’ when counting on her fingers and,
pointing to her middle finger, asks: “What’s ‘three’ about that?” The
counting of collections of objects can get confused with baptising
individual objects in the course of a counting: van den Brink advocates
pauses when counting objects, or ‘stops’ as he calls them, in order to
direct the child’s attention to the (cardinal) number of what has already
been counted. When counting with fingers, others suggest indicating
nested collections of fingers are being numbered by squeezing them
together each time the next number word is said, so ‘two’ or ‘three’
labels a set, not an individual finger.

• Sometimes objects are inadvertently left out and therefore not counted
(in some sense, they are deemed ‘not to count’). This omission destroys
the (transitive) counting. Yet in some counting games (e.g. Fizz-buzz),
leaving out the saying of particular numbers is common.9

• Sometimes there are mismatches between the telling of the number
words and the indication of the objects. This can occur either physically
(e.g. the two processes of saying and touching not being synchronised
with each other) or verbally (e.g. instead of counting with whole words,
children sometimes count with syllables, ‘se-ven’ counting two objects
and ‘e-le-ven’ three).

In summary, when counting things, the following must happen:

• the number-word sequence is inviolate: nothing must be omitted and
the order must be exact;

• every object must be counted once and only once, all are equal with
respect to the count. You also have to know what to count.

 
Whereas intransitive counting can:

• start anywhere in the sequence;
• take large or small steps (or even differently sized ones) as desired;
• include whatever sorts of number names suit the age and experience

levels of pupils. For example:
– start at ten and count on in tens;
– start at seven and count back in fours;
– start at six and count on alternately in threes, then twos;
– start at minus five and count on in minus threes;
– start at nought point one three and count back in nought point

nought twos.

Such tasks can help pupils gain familiarity, fluency and mastery of the
system of number words themselves, quite independently of the question
of how these number words can be made to apply, through transitive
counting, to the material world.

The difference between transitive and intransitive counting is an
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important one, and provides a further illustration of the distinction
mentioned in the first chapter, between ‘meaning’ on the one hand and
fluency on the other. Why do we insist that pupils have to ‘understand’
number first, by restricting them to numbers under ten, then twenty, then
up to a hundred—as schemes or curricula often suggest? A comparable
parallel might be to restrict pupils initially to only three-letter words in
school. It raises questions about the presumed order in which certain
ideas, techniques and ‘know-hows’ should be taught. Is the ‘meaning’ of
counting, and hence number, to be found completely within counting
things? Is that, then, where I must start? How can I become a fluent and
confident counter?

By delaying the naming of ‘large’ numbers, the cardinal (how many?)
sense has been given preference over the ordinal (what comes next in the
spoken sequence?). An alternative approach could make the presumption
that learning to name numbers in order is one way of constructing
numbers themselves (i.e. the symbol can both precede and generate the
object) and that this task is relatively independent of learning about the
supposed ‘hundred and twenty-twoness’ of 122.

A pedagogical device for working on naming numbers is the ‘tens table’
(due to Caleb Gattegno). One version of it is given below.

1 2 3 4 5 6 7 8 9
10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900

Gattegno (1967) has described how he gave ‘visual dictation’, using a
pointer to touch in turn up to three signs from the table (one per row,
moving from bottom to top) to teach written and spoken decimal
numeration to five- and six-year-olds. The table can also be extended in a
number of ways and used with widely different ages: for example, adding
more rows underneath to work on reading larger whole numbers, or
putting a vertical bar at some point and masking everything to the right of
it. This latter alteration (effectively restricting oneself to selecting entries
from the first so-many columns) allows work on different number bases.
Equivalently, for bases larger than ten, additional columns need to be
added and given symbols such as a b c and a0 a0 c0, etc.

1 2 3 4 5 6 7 8 9
10 20 30 40 50 60 70 80 90

100 200 300 400 500 600 700 800 900

The tens table modified for base seven work
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The table offers an image which reflects the structure of the spoken and
written numeration system and the task works on how to pass from one to
the other and back again. At no point is the cardinal (transitive) sense of
counting activated. Consequently, this approach to the naming of
numbers reveals its own constraints about how far to go, reflected in the
number of rows used at any given time. Certainly, ‘up to 20’ is not a
natural stopping place from this perspective, though ‘up to 99’ is. Saying
‘79’ requires as little (or as much) energy and thought as saying ‘22’.

Recent work with calculators (see PrIME, 1991) has further indicated
how easily young children can familiarise themselves with large numbers
and learn how they are written and said. They are also able to think quite
explicitly about them. Angela Walsh (1991, pp. 67–8), in an article about
calculators and young children, cited a conversation between a group of
eight- and nine-year-olds and their teacher about which is the largest
number in the world. One said, “Nine thousand million… It starts with a
nine, but it won’t fit on my calculator”. Another commented, “I do think it
goes on and on, but the biggest number that I can find out is on the
calculator”. A third, Anna, made the observation that, “It stops at any
number you can’t count to”, and when the teacher asked what she meant,
added, “Like if you can only count to one hundred, it stops there for you”.
The power of being able to name plays an important role in bringing
numbers into existence.

Questions about naming and counting are not only of concern in the
primary years. For instance, the increasingly common habit of reading
decimals as if they were two whole numbers separated by a ‘point’ (e.g.
reading 10.36 as “ten point thirty-six”) can lead to confusions with regard
to magnitude and the ordering of decimals. One secondary teacher
commented about a pupil:
 

I asked him why he talked about 0.23 as “point twenty-three” and
0.104 as “point one hundred and four”. He objected, “Decimals
don’t have names. 794 is seven hundred and ninety-four, but 0.794
is just supposed to be said point seven nine four”, but he accepts
that 0.23 is bigger than 0.104.

 
The place value indication is not commonly used in writing decimals. We
write 12,345.333333333 and not 12,345.333,333,333. The space or the
comma helps us to read large whole numbers. (This is not the case in
Mandarin, where the spoken naming structure relies on grouping every
four digits—see Powell, 1986.) But, as the pupil above observed, the
saying of decimals usually involves a ‘spelling’ reading, one which does
not convey any information about size. Other mathematical examples of
this distinction include ‘two over three’ versus ‘two-thirds’ and ‘dy over
dx’ versus ‘the derivative of y with respect to x’. One advantage of spelling
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readings is that they are frequently quicker to say (see Pimm, 1987, for
more detail).

The tens table can be extended in the upwards direction to work
directly on reading decimals.

.01 .02 .03 .04 .05 .06 .07 .08 .09

.1 .2 .3 .4 .5 .6 .7 .8 .9
1 2 3 4 5 6 7 8 9

10 20 30 40 50 60 70 80 90
100 200 300 400 500 600 700 800 900

(from Brown, 1991, p. 23)

Certain research on children’s learning of decimals (e.g. Swan, 1982) has
pointed to common beliefs, such as not accepting that there are any
numbers between, say, 3.12 and 3.13. Pedagogic devices like the tens table
(with its implicit indefinite continuation) may help towards resolving such
misconceptions by offering the power of naming to bring into existence.

WAYS OF PROCEEDING

Civilisation advances by extending the number of important
operations we can perform without thinking about them.

(Whitehead, 1925, p. 59; my emphasis)

Numbers are for calculating with, as well as for specification. Algorithms
are about practice, about what to do, about how to proceed, as are routines
and procedures. The term ‘mechanical routine’ is still commonly
employed, even in an era where most devices are electronic, to mean
something unresponsive to difference, something exactly repeatable,
always to be done in the same way. If I understand a routine, I can then
adapt it flexibly to a new situation, or if a detail is forgotten, it can be
reconstructed. I may also need to convey to someone else what it is I am
doing, how I think about it and why I do what I do. There are, thus, two
separate aspects of algorithms, namely the ‘what to do’ and the ‘why this
is what we do’ connected with awareness and inspectability of action.
Fluent pencil-and-paper users want to be able to (con)fuse symbol and
referent when calculating, because it is so much quicker and more
efficient. To hold tight to the ‘meaning’ when, say, trying to divide two
fractions, is pretty well guaranteed to bring disaster.

These terms suggest that there is a sameness across a range of situations
(‘You have a method when you notice yourself doing the same thing
twice.’). They tend to be used interchangeably, although in some quarters,
the word ‘algorithm’ gets restricted to mean “standard written
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algorithm”. I shall not use it with that limited sense here. Common
features of algorithms are that they are explicit in terms of what to do, and
are general with regard to being applicable to a range of related situations
(though the fact that the same algorithm can be applied can actually help
create that sense of commonality).

Algorithms are about mathematical practice—about what to do, about
definite procedures for solving problems (e.g. an algorithm is embodied in
a formula for solving a quadratic equation). Algorithms are also about not
discriminating—about treating everything as if it were the same. Finally,
algorithms are about not having to think.

Unfortunately, one upshot of this can be that they are not valued. Stephen
Brown (1974) complains that multiplication, for instance, is seldom allowed
to become problematic for pupils. Pupils do not commonly have the
experience of developing an algorithm, codifying their hard-won
understanding of a situation and experiencing an increase in efficiency and
speed, accompanied by a decrease in the level of attention required. They
may never develop a sense of ‘I’ve done this before’, nor even of ‘Not this
again’, if the method or algorithm is taught first.

One purpose of formulating an algorithm is to solidify a common
response into a single entity, with the intent of making the thinking
embedded in it more automatic, thereby increasing efficiency of
functioning. One problem of pencil-and-paper algorithms is the way that
the meaning and the algorithm get confused, so that the symbol for
multiplication becomes a trigger to use the algorithm. Algorithms offer a
way to carry out a procedure, not the way to carry it out. Yet can I
understand the notion of, for example, square root deeply if I have no
algorithm for its evaluation? In addition to the choice of different methods
or algorithms to achieve the same end, there is always a choice of means of
implementing any particular algorithm. Algorithms usually exploit
particular features of the means.

Besides using a calculating device, there are three main means for
performing numerical calculations: mental; with the aid of physical
apparatus; with the aid of pencil and paper—though most commonly they
will be used in some combination. Each means has different strengths and
weaknesses, and any particular algorithm will be more or less suited to
different means. (I postpone further discussion of mechanical or electronic
devices until the next section, where I discuss how calculators embody both a
method and a means of calculating, and whether both are accessible to the user.)

Mental arithmetic

The term ‘mental arithmetic’ may conjure up an image of an archaic, whole-
class setting in which pupils were pushed for speed and accuracy in table
recall: arithmetic computation in a highly charged and competitive
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atmosphere. Here, I mean merely ways of calculating that can be done solely
in the head without recourse to either physical devices or pencil and paper.
At some point it moves from a way of solving this problem, to a method for
solving a class of problems. In fact, they are frequently spoken methods,
related to the spoken structure of the number-naming system.

Such methods can draw on particular strengths, such as I may happen
to know my doubles, fives and tens better than some other combinations.
So I can simplify a multiplication problem by splitting the numbers into
parts I can do easily. Fluent and varied fragmentation of numbers seems
an important component skill. However, mental methods come up against
constraints of memory and functioning.

Mental methods can be shared, mental calculation sessions could
include discussion and exploration and comparison of methods, and not
solely practice. The form of mental methods often differs from that of
codified written ones. Mental methods are frequently uneven, in that they
work much better for certain numbers than others. When numbers are
written down on paper, they seem to lose their connection to other things
that are known. Too often, the production of mental methods disappears
once algorithms are taught, and even mental imagery seems dominated
by images of the pencil-and-paper format.

In a book suggestively entitled Dead Reckoning: Calculating without
Instruments, Ronald Doerfler documents a range of techniques and
methods (old, relatively recent and new) of computation and
approximation of arithmetic operations and elementary functions (such as
trigonometric ones and logarithms). He comments that the methods learnt
at school were normally considered the only or the best ones, and adds:
 

For mental calculations, they usually are not. An analogous
situation occurred in the development of our pencil-and-paper
methods of calculation that minimize erasures, supplanting the
ancient sand reckoning methods in which digits were
continuously and instantly erased and overwritten in the course
of the calculations.

(Doerfler, 1993, p. 2)

Although speed is certainly one concern, other criteria are employed and he
offers certain algorithms as worthy items of mathematical interest. He
proposes (for interested adults) a list of preferred characteristics for
algorithms to be performed mentally. The details of his actual proposals are
less relevant here than the mere notion of the importance of being aware of
such criteria and using them to evaluate current algorithmic practice.

Apparatus algorithms

In using the term ‘apparatus algorithm’, I have in mind methods for
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performing numerical calculations by means of physical apparatus such as
Cuisenaire rods or Dienes blocks (despite, as I mentioned, this not being
their primary function). While there is a sense in which an abacus can be
thought of as an object which involves apparatus algorithms, I prefer to
maintain the distinction between a calculation device (available and used in
the outside world for that express purpose) and pedagogic apparatus being
used for illustrative calculation purposes. I explore aspects of abacus use in
the next section.

The first computational ‘apparatus’ used is unquestionably the fingers,
both to hold the numbers and to count with. I discussed various
involvements of fingers in Chapter 2, and it always strikes me when
working with young children how orientated to the tangible they are:
everything is to be acknowledged, taken into account, by means of
touching. When working at 5+3, they may well count five fingers, then
count three fingers, then count them all. Later, they may well be content to
start with five and then count on.

Fingers are good for counting on, allowing as they do someone to be saying
one thing while the fingers are keeping track of another thing at the same time
(this dual processing obviously needs careful calibration). The next physical
apparatus may be bundles of sticks, toothpicks, or other substitute tallies, in
fives or tens, transparent with respect to their multiplicity. The substitution for
the actual objects of interest has already taken place.

This seems a good point to start to make explicit a distinction that I will
return to in later chapters—and one that has been hinted at in the foregoing
whenever I have talked about substitutes. Robert Schmidt (1986), a historian
of mathematics, makes a distinction between the functions of symbols
serving as signs and serving as counterparts. A sign names or points to
something else, but bears no necessary relation to the thing named. A
counterpart stands for something else, but does not name or point to it (an
indicative function): however, there is an actual relation, a resemblance or
connection, between the object and its counterpart. These two functions can
coalesce on the same symbol, but there may be confusion when this occurs.

Fingers can serve as counterparts (as can counters!), and the process of
complementing described in Chapter 2 can generate fingers as referents
for number names (so ‘four’ has a huge number of referents, all
equivalent). Geometric diagrams are remarkably iconic signs—perhaps in
some ways akin to photographs—for the abstract ‘figure’, that is the
supposed ‘object’ of geometric study.

Schmidt uses the example of lines drawn on a nautical chart to illustrate
the notion of a counterpart: a nautical chart in no way names what it stands
for, but it allows computations and actions to be made upon it which can be
directly transferred to actions on the actual object represented. Technical
drawings, as opposed to geometric diagrams, are counterparts, though
when teachers invite pupils to use rulers and protractors on geometric
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drawings they are shifting the drawing’s status to that of a counterpart.
Counterparts are to be acted on, and then the results interpreted via the
connection. Counterpart forms can also provide substitute images. One
instance might be ‘symmetry’ of algebraic form (such as xy+yx). It suggests
a visual phenomenon: the shape of an expression.

Schmidt claims:
 

It is also the nature of counterparts to draw attention to themselves,
while it is in the nature of signs to lead our attention away from
themselves and towards the thing signified.10… Furthermore, it is in
the nature of counterparts to turn their object into themselves,
while it is the nature of signs to disclose their objects.

(ibid., p. 1)

I see the signification and counterpart functions of symbols as
complementary; neither one suffices for mathematics, yet they seem to
conflict with one another, pulling in opposite directions. I shall say more
about this distinction in the next chapter.

Manipulatives such as Cuisenaire rods or Dienes apparatus are
undoubtedly offered as physical counterparts for numbers. Or is it that
Cuisenaire is a counterpart for number, while Dienes blocks are actually
confusingly used as a counterpart both for numbers and as a sign for the
place-value numeration system? An important observation, arising from
the discussion of Dienes apparatus in relation to place value in Chapter 2,
is that written numerical algorithms are seldom identical either in form or
structure to the ‘corresponding’ manipulations with the blocks, in part
because the former frequently draw on specific properties of the decimal,
place-value numeration system.

The apparatus allows or encourages certain ways of operation, and this
needs to be transformed before the ‘traditional’ algorithm can come to be
seen as a ‘mere’ record of operations with the apparatus. Thus, records can
be seen as relics of actions. (It can be an interesting mathematical question
as to whether the residue is sufficient to reconstruct the process.)

Ironically, in order to see connections, pupils must already understand
to some degree that which the blocks are supposedly helping them to
learn. The operations with the written symbols are what is to be learned
and that is what is guiding the way the equipment is being used. Robin
Foster has asked a key question: who is in control of the apparatus, and, in
particular, who the interpretation of the meaning? This is one reason why
there seems such a difference between asking about the ‘meaning’ of a
geoboard and the ‘meaning’ of Dienes blocks. Once again, the danger is
that the wrong thing is being seen as primary.11

The word ‘recording’ suggests it comes after the action, whereas the
action is frequently being carried out ‘on the record’, which can be
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acting as a counterpart. A group of seven-year-olds were working on
how many ways two same-coloured eggs could be placed in a six-egg
carton. After a while, one pupil began working on his record alone to
generate examples in pairs (one a reflection of another). The records
were starting to be used as counterparts, and not solely as designating
signs. Robin Foster has also remarked that recording is often the only
evidence the teacher has that a child is using a method, and children
may have little notion of what is important and what not. He cites a
child who, when asked to subtract eighteen from a hundred, worked it
out and then put in the relevant marks afterwards to ‘show her
working’.12

Pencil-and-paper computations

we usually assume the mathematics curriculum in the first 8 years
of school is about numbers, whereas the actual school work is
mainly about a particular representation system for numbers—
the base 10 placeholder system—and its properties and the
representational systems [fractions and decimals] for rational
numbers. The essence and power of numerical algorithms reside
in the freedom to deal only with the representations of numbers
without regard to the numbers they represent.

(Kaput, 1984, p. 20)

One practice that is the hallmark of mathematics occurs when symbols
start being used as if they were the objects themselves, namely as
counterparts. Most of primary school arithmetic involves acquiring
familiarity and fluency with aspects of the decimal place-value
numeration system, learning to operate with numerals alone, in order to
carry out mathematical operations.

When calculating, the movements are virtual (the 1 is never actually
‘carried down’), gestures summon the numbers, but they cannot be
grasped or manipulated. They are not tokens, counters. Figures are not
moved about on the page; they are repeated, or rubbed out or crossed
through (made not to count).

Indian-Arabic number signs name numbers, they call numbers into
being—but pencil-and-paper computations treat them as if they were
counterparts. Young children commonly look for some counterpart
relation between the symbol and the object: for example, counting the
‘pointy bits’ on the 3. The Roman symbol V is often linked with the hand
and X, for ten, in terms of mutually inverted Vs, encouraging links
between symbol and meaning suggestive of the counterpart function. One
confusion is that there is no necessary link between the Indian-Arabic
numeration system and numbers that allows the numerals to be perceived
as counterparts.
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In The Mastery of Reason, Valerie Walkerdine (1988) explores the
complex significations that occur in relatively commonplace arithmetical
terms and draws attention to the creation of meaning within practices. She
attempts to document some of the subtle linguistic ways in which the
teacher and pupil (by means of a combination of talk and gesture) create
mathematical meanings in classroom settings, as well as pointing to
experience with symbols as a necessary part of learning mathematics,
even with the youngest children.

A key (general) question appears right at the beginning of her book (p.
3): “How do children come to read the myriad of arbitrary signifiers—the
words, gestures, objects, etc.—with which they are surrounded, such that
their arbitrariness is banished and they appear to have the meaning that is
conventional?” In other words, how are these signifiers to function as
signs, in the terminology of Schmidt. Nowhere is this question more
pointed than with number signifiers.

In a chapter entitled The achievement of mastery’, she offers an episode
from a top infant class (of six- to seven-year-olds) where one pupil,
Michael, comes to grips with the possibility of working with the signifiers
alone (the numerals) when doing two-digit additions, despite the teacher
using bundles of matchsticks as erstwhile signifieds (the offered
counterpart) for the procedure.

What sort of discovery has Michael made? It is not about action with
objects. His discovery is a linguistic one about the mathematical writing
system, which allows him to operate with the symbols as if they were the
objects of mathematics. This acting ‘as if is one of the powerful functioning
practices of mathematicians. But there is always the invitation to confuse
symbol and object, and hence to confound which is prior and which will
predominate in our attention—an invitation which in some sense cannot
be refused, and which also has its advantages when working at
developing fluency.

The language of algorithms sounds like the language of action, of
movement, of manipulation, as if physical objects were being moved
around (and the language is focused on digits, not their place value
interpretations). Thus, “You put a 1 here, and carry the 4”. Algorithms are
frequently described, explained and taught in terms of operations to be
carried out on the symbols, sometimes with injunctions like ‘to multiply
by ten add a nought’, ‘take it over to the other side and change the sign’ or
‘to divide by a fraction, invert and multiply’. The sentences encapsulate
‘what to do’ into short precepts, appropriately couched in terms of
manipulations of symbols.

At the level of what to do, this description is entirely appropriate as this
is the level of action of a pencil-and-paper algorithm. The notation allows
such clipped ways of speaking. It is when attempting to explain ‘why’ this
is what is to be done, that arcane cover stories (some of which were
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mentioned in Chapter 1) get called into play, attempting to render the
operations comprehensible and transparent by means of models
generated in reverse. It may well be that some level of practice is required
before it even makes sense to ask ‘why?’

A key question remains: how are numerals like counters? Indian-Arabic
numerals can be used both for holding number but also for direct
computation, manipulating the marks as if they were counterparts. But
what is the link? I return to this question in the final section, but before
then I turn to look at calculating devices, which started out offering
directly manipulable counterparts and end up offering rapid traceless
computations ostensibly with Indian-Arabic numerals.

CALCULATING DEVICES

Throughout history, various invented devices (such as mathematical
tables, abacuses, slide-rules and mechanical or electronic calculators) have
been devised to assist with the performing of calculations. With each one,
there are practices and conventions to be learned concerned with how to
use the device to implement an algorithm (such as when and how to move
beads or change rows, or how to read off from the cursor, or which buttons
to press and in which order). With each there are historical questions about
rivalries and investments, both financial and of energy, about how one
came to supersede another in particular circumstances.

In addition, with each device there are questions about what service
they may be in learning mathematics directly (rather than merely helping it
to be done). What images are offered implicit in the way numbers are
represented; what understandings about operations or the numeration
system do they support, as we become more fluent users; what sort of
devices are they?

Slide of hand

I start with neither an account of the abacus nor the electronic calculator,
but with a brief look at the slide-rule. Costel Harnasz (1993) has produced
a clear and illuminating account of its educational history, entitled ‘Do you
need to know how it works?’, and relates his discussion to current
concerns about the use of electronic calculators in schools.

In particular, he quotes Richard Delamain13 (1630; cited in Cajori,
1916, p. 90):

for no one to know the use of a Mathematical Instrument, except
he knows the cause of its operation, is somewhat too strict, which
would keep many from affecting the Art, because they see nothing
but obscure propositions, and perplex and intricated
demonstrations before their eyes.
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and contrasts this with Delamain’s rival Oughtred’s concern that certain
teachers’ students were “only doers of tricks and as it were, jugglers”. As
Delamain made instruments, he had a certain vested economic interest in
not restricting the allowed audience. The issue, once again, is practice over
understanding. Being able to ‘affect the Art’ is precisely at the core of the
current debate over calculators: the fear of apparent sophistication of
performance unrooted in understanding, and the perennial desire of
teachers to be able to read comprehension from successful practice (the
latter having the advantage of being observable).

I wish to make some further observations based on Harnasz’s
description. First, it is clear that something is being measured by the
sliderule, and hence that there are inherent errors associated with
measuring to contend with.14 In some sense, it is a calculational device
which approximates, rather than strictly calculates. How different was a
slide-rule from a set of logarithm tables? Users may not have been aware
of inherent inaccuracies in the latter, where the connection with
measurement is not so in evidence. The specificity of entries in tables can
offer the illusion of exactness.

Second, the slide-rule still exists in living memory, as its complete
superseding by hand calculators is relatively recent, though the practices
surrounding its operation may no longer be current. Third, this device
draws on particular mathematics for its design; in this case, the idea of
logarithms. As the device followed swiftly on the heels of Napier’s
account of logarithms, there was also initial uncertainty about an
appropriate mathematical understanding. Such devices always involve a
practice. Underpinning ideas of mathematics are always related to such
devices, combined with the prescribed means of functioning, rather than
just to the device alone. (This is as true of pedagogic devices as with solely
calculational ones.)

Once the device exists, it can be used independently of the mathematical
understanding used to create it. It may be possible to use the device with its
prescribed means of functioning as a means of access to experience with and
an understanding of logarithms themselves. Reflecting on the practice may
thus provide some access to the ‘embedded’ mathematics; understanding
the mathematics may allow the practice to be seen as ‘obvious’ or
transparent, and hence not needing to be explicitly learnt. In either case, I
am unclear whether the ‘understanding’ makes you a better user.

On the abacus

With computing on an abacus or counting board, the movements are
actual; physical substitute objects can be grasped, they have both tangible
qualities and visible components. Addition is accumulation and
subtraction returns beads to the realm of unselected possibilities, rather
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The abacus uses single beads as holders of value, but also as
representative units. The particular wire they are on takes care of the
different powers of ten, without a need for this to be marked on the beads
themselves or to have differentiated beads. I mentioned earlier the fact
that the counting board was used to calculate with, but Roman numerals
were used to record the results. This combined practice nicely separates
the counterpart from the signification functions, though they were closely
linked (it is easy to see Roman numerals directly as an abacus entry). We
are so used to the coalescing of these two somewhat conflicting aspects of
symbol use in our familiar use of Indian-Arabic numerals, that it can be
hard to separate them at times.

In the tenth century AD, Indian-Arabic numerals were introduced to
the Latin West by Gerbert (later Pope Sylvester II), grafted onto the abacus
or counting board. Instead of numerals as direct counterparts, he offered
apices,15 counter objects numbered with symbols for 1–9, to be used within
the counting board’s structure in place of the traditional, uniform ones, as
a variation of existing practice.

With apices, there are counters standing for a number of other counters
(the ones now marked with 1), so not all counters are the same any more,
the commonality has gone. This destroys one of the beauties of the

akin to fingers folded down with complements. An abacus offers physical
counterparts for numbers.
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counting board, where the individual counters were all equivalent to one
another, and so only needed to be attended to in terms of their presence
and whereabouts.

There was a substantial computational cost. This hybrid device
required combinations and equivalences to be recognised and known, and
then the equivalent disc found at every stage of a calculation. This was
particularly problematic with multiplication and division, which involved
many exchanges of counters. It also entailed translation back into Roman
numerals rather than merely reading off the abacus. This variation of
existing counting board practice was soon ignored,16 and Indian-Arabic
numerals reappeared independently as manipulable symbols on their
own two centuries later. Just as with apparatus algorithms and Dienes
blocks, the practice of apices on counting boards does not match the
written practice: the key difference involves zero.

As with Dienes blocks, the abacus mirrors the Roman or Egyptian
numeration systems in not requiring a zero. There is no corresponding
action on the abacus to writing a zero—the empty row is not manipulated—
and the structure of the device serves the realigning function of the role of
zero in place value. Employing a written zero corresponds to the user’s eye
and hands shifting rows. It is thus a different sort of action, one which
acknowledges the presence of the (human) calculator.

In his subtle and profound book, Signifying Nothing, Brian Rotman
(1987) writes of the hostile reception of zero in mediaeval Europe in the
thirteenth century: it was deemed both incomprehensible and
unnecessary. It took some four hundred years for Roman numerals
effectively to be replaced by Indian-Arabic ones. (One minor trace of this
unease lies today in the requirement to write cheques using both words
and figures.)

Rotman describes the dual nature of zero, at once a number among
other numbers and a different sort of sign, one whose presence indicates
an absence: “Zero is not the sign of a thing”. There was no zero apex. Part
of the power of the written system lies in 0 being accepted and used just
like any other symbol, as if it were a number itself.17 He identifies (p. 13) the
crucial rule of the misunderstood zero in allowing the combining of the
counterpart and signification functions:

Finally, one can see that zero, by signifying the absence of signs,
facilitates the lifting of calculations from the abacus onto paper;
the shifting, that is, from ‘counter-casting’ with physical
numerical tokens, to ‘pen-reckoning’ with the written Hindu
numerals themselves.

Historically, abacuses (without apices) were widely used (and in some
countries, for example Russia and Japan, still are), as were counting
boards. Both these devices afforded direct physical manipulation of the
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‘counters’, the substitute counterpart objects that encode numbers. We
cannot get our hands on the figures in the graphical liquid display of a
calculator: instead, we have to use the key-pad. These historical counting
devices and associated practices provided a mental image of a
computation.

In an article on the Japanese abacus, the soroban, Catherine Hoare
remarks how, after gaining remarkable facility with the soroban in
performing computations, the schoolchildren she saw (aged eight to eleven)
were given mental arithmetic (six-digit) additions and subtractions.

The pupils sat with their eyes shut or half-closed running their
fingers an inch above the desk top as if the soroban were still there!
At the end of each question just under half of the pupils had the
correct answer, but all had attempted questions which would have
been unthinkable within our conception of mental arithmetic. Their
method consists of mentally visualising a soroban and working
through the problem using standard techniques.

(Hoare, 1990, pp. 13–14)

This account raises many questions. What range of images do pupils have
when carrying out mental computations, and what support do these
images offer? Are images of Dienes apparatus, for example, available to
pupils who have worked intensively with it—are there physical motions
in muscle memory (where the hands are doing the thinking) available to
be drawn on? Hoare adds: “Through mechanisation of operation,
therefore, the soroban becomes as automatic to the Japanese as the
calculator has to the younger generation of English”. Yet, as with the
differences between numeration systems, the structural differences of
these two devices are relevant to mathematics education.

On the calculator

Modern electronic calculators are nowhere near as ‘transparent’ with
regard to their functioning, and therefore do not offer much imagistic
support: the input and output is Indian-Arabic numerals, the actual
processing with electrical counterparts is completely invisible. A
corresponding body sense to that of the soroban obtained from fluency on a
calculator could only reflect the structural layout of the numerals on the
key-pad, something which has little if any mathematical import. Certainly,
the fact that on most key-pads the 3 is directly above the 6 and the 0 is in
the middle at the bottom has no connection with useful or interesting
properties of the decimal numeration system.

Numbers are entered from right to left, as when written down, which
acts to ‘move’ the digit across each ‘place’. It is an interesting and open
question whether this relative absence of associated imagery with a
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calculator is a potential weakness—the mechanisms are opaque and
therefore offer very little support—or a potential strength—leaving pupils
free to form their own imagery—with regard to using such devices to help
gain either numerical fluency or understanding.

But what about the numerical operations? With most calculators, there
is no difference between any of the four arithmetic operations and taking
powers or square roots (except possibly a slight time difference in
operation). All are carried out by pressing a single operation key. With the
soroban, the algorithm is accessible to view, implemented by the user, and
can be internalised through repetition of hand movements. With the
calculator, everything is inaccessible, invisible.

The calculator has single buttons that perform an increasing variety of
mathematical functions. But with a calculator, you lose the sense of an
algorithm for these operations, as there is no evidence of intermediate
steps. Such single buttons become primitives, in the sense that no further
interrogation of how they are being carried out is possible—they become
inaccessible. What is different between a set of square-root tables and the
square-root button on a calculator? Written tables may not provide much
clue as to their genesis, but it is a single object open to inspection and
analysis, complete with interpolation rules.

One contrast between abacuses and calculators, then, is the degree of
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transparency of their operation. In the case of the abacus, the physical
symbols which are used to ‘hold’ the numbers are uniform and open to
manipulation. In addition, the abacus is operated directly by the user’s
hands. In the case of the calculator, the user has no access whatsoever to the
functioning of the device and so is in a far more passive position with
respect to the device. (With hand-cranked adding machines, there was an
illusion of surveyability, of openness to inspection, even though all the
hand-cranking did was to provide the motive force for activating the
mechanism.)

Devices and desires18

Thus, it is becoming increasingly hard to justify trying to teach
students to become good symbol manipulators unless it can be
shown—but no one yet has so shown—that such skills are
required in order to develop an understanding of the underlying
mathematics at whatever level such understanding is desired.

(Churchhouse et al., 1986, p. 35)

The history of number calculation has been a mixture of devices and
desires, of notational possibilities and physical inventions, and of
gestural and graphical movements. A belief in the need for the
development of the individual to mirror that of the history of the species
in some form, must also acknowledge that new developments, ideas or
devices can short-circuit access to certain ends and offer previously
undreamed-of facility.

There has been and continues to be concern, confusion and reticence
over the use of hand-held numerical calculators, even some fifteen years
after their introduction to primary schools. It is claimed that spending a lot
of time teaching pupils procedures that can easily be automated on a
machine comprises at best an irrelevant task and is at worst a damaging
waste of pupil time and attention. As pupils no longer need to be able to
compute unaided by an electronic calculating device, there is no point
teaching them pencil-and-paper methods, or so the argument goes.

The ready availability of cheap numerical calculators has once again
unleashed a rhetoric of concern about change and loss of established
practice that any technology triggers, one which harks back to the Calvino
quotation at the beginning of Chapter 3. Mathematician Michael Atiyah
(1986, p. 50) echoes this much-voiced concern at the increasing incursion
of computers in mathematics education: “any over-reliance on machines
can lead to the atrophy of the human faculties involved”. Atiyah also
likens the computer ‘revolution’ of the latter part of this century to the
industrial revolution of the last, though it is one where the labour of the
brain rather than that of the hand is being automated by machine and thus
rendered redundant.
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I mentioned earlier the situation with the introduction of the slide-rule.
Is this just another incarnation of the same struggle? Such a concerned
response could arise solely from a lament by the old about new ways of
doing things, and indicate a rearguard action to justify and preserve the
investments they have made in the past? Or are there deeper concerns
lurking? One fear is that as we turn our backs on tradition, we lose the
experience of generations. I cited the work of Doerfler (1993) on mental
methods of calculation earlier in this chapter. Most relevantly here, he
argues that far from being an outdated task, made redundant by hand-
held calculators, attention to mental methods of computation is actually
timely for cultural reasons of history and diversity:

the proliferation of electronic calculators and computers throughout
our lives and educational systems are [sic] eliminating calculational
techniques from our memory and from our children’s education,
threatening to dim our already narrow view of this rich field.

(ibid., p. 3)

With a functioning technology alone, there is less incentive to work at
gaining an understanding. In the past, some, lacking the means to
transform it, chose instead to try to understand it. One difference over the
past is with the degree of inscrutability of the device. The theoretical
justification for ‘why’ the device works is complex and opaque. Machines
are offering more and more single-button primitives, which can mean that
reflection on our own functioning in these areas is effectively blocked off
as a means for increasing personal understanding.

With manipulatives, I denied that the mathematics was in the devices.
With an electronic calculator, it can seem harder to argue that the
mathematics is not in the device. What mathematics has been embedded
in its construction and how easily available is it to a user? Richard Noss
(1991) has written a challenging piece on the general relation of
mathematics to technology, looking in particular at how mathematics is
incorporated into computer technology. He develops the notions of density
(how much mathematics is incorporated into a device) and depth: “a
measure of how near the surface of that technology the mathematics is”
(ibid., p. 210). He goes on to write:

A washing machine incorporates within its chips a surprising
amount of mathematics. It is mathematically dense. But that
mathematics is also deeply buried: to view that mathematics would
be extremely difficult, even supposing that one had access to other
technologies which would permit any kind of access to it at all.

Consequently, offering a washing machine as a pedagogic device for
learning mathematics would be a poor choice. In addition, he points out
that the tendency of evolving technology is to bury increasingly dense
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mathematics ever more deeply, and this is an important way in which
people come to exercise less and less control over technology.

So, in the terminology of Noss, the mathematics is less deeply buried in a
mechanical calculator than in an electronic one. Just how deeply buried in the
latter case was discovered by Tom O’Shea’s (1994) attempts to find out how the
trigonometric functions were actually computed by familiar scientific
calculators. His account is of industrial algorithmic secrets and obfuscations, as
well as surprising mathematics that is programmed into particular machines.
(For instance, O’Shea observes that most mathematically conversant people
wrongly assume the values are calculated by means of truncated power series.)

This degree of opacity with regard to the method of functioning
actually constitutes a shift away from even a calculational aid towards a
complete substitution for calculation that is resistant to understanding at
any but a very deep level. Slide-rules may require an understanding of
logarithms in order to comprehend ‘why’ they allow multiplication to be
modelled by addition of lengths, but as Doerfler comments:
 

Newer algorithms, such as the Fast Fourier Transform (FFT)
method of multiplication, often rely on internal architectures of
micro-processors and their siblings, arrays of available memory
locations, and/or inherent bit-shifting operations, none of which
find analogy in our thought processes. Once again, a difference of
degree becomes a difference of kind.

(1993, p. 3)

It is important to recall that calculating devices are not specifically
pedagogical devices. They exist in quantity in the world beyond schools.
They have their own design criteria related to their perceived uses and
forms of application. How they are useful in an educational setting is still
a matter for exploration.

Computational devices are primarily concerned with automation and
fluency of operation. Pedagogical devices are about illumination and
understanding. Confusion of the two functions leads to crossed intentions
and erroneous expectations, as well as missed opportunities. In addition,
if the calculator is there, it determines the syllabus to an extent that may be
far from desirable. We desire a lot of our school devices. We want
machines that do the work, yet let us in on the processes involved.
Arguably, you want shallow and transparent devices in schools for
pedagogic purposes; what is the point of providing mathematically deep
objects in schools for mathematics education?

ABACISTS AND ALGORISTS

I mentioned in the last chapter Rotman’s use of the terms ‘gestural’ and
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The woodcut above (dating from 1503) is quite frequently interpreted
as showing a competition between computational practices, sometimes
interpreted in terms of The Spirit of Arithmetic’s favour being bestowed on
the new-to-Western-eyes computation by means of the numerals alone.

However, there is another way of interpreting the picture. Arithmetic
may be granting favour to both of these practices, and is willing to

‘graphic’ in relation to the abacus and pencil-and-paper calculations
respectively. With the former device, the numbering objects are grasped by
hand; with the latter, it is the pencil which conjures the symbols that are to
be ‘grasped’. Both of these computational practices involve the hand quite
centrally, but what the knowing hand knows differs. In addition, both
practices are equally calibrated by eye. To be able to read off the answer
from either calculational means is an acquired skill.

Each practice offers imagery, each involves movements of hand and
eye; both can be a source of reflection for augmented understanding, both
can be practised to the unattended level of fluent implementation. (I recall
coming across a delightful cartoon in the Soviet satirical magazine
Krokodil. Two pictures side-by-side showed different production lines. By
the side of the first, which manufactured abacuses, a checker stood using a
calculator. And adjacent to the second, which produced calculators, a
checker stood using an abacus.)
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embrace them within the realm of her dominion, the old and the new. She
holds both texts, one in each hand, both arms outstretched, though I
acknowledge that her direction of gaze suggests she is looking at the
‘algorist’. That they are not competing, however, is suggested by the fact
that they are carrying out quite different computations (unlike the IBM
computer/abacus ‘races’ held in Japan in the 1970s). Also, both men seem
turned the one towards the other, which could be read in terms of
interchange of interest rather than competition. It suggests to me that both
practices may be of interest and of use in school settings, offering different
things.

Computational practices must overlap to the extent that they enable
certain common core tasks to be carried out. To that extent there must be a
competing. Until one has supplanted the other, however, questions of gain
and loss can be hard to address. When one is familiar, it is natural to
attempt to understand one in terms of the other. This is the message for me
of Gerbert’s apices. In moving from being an abacist to an algorist, zero
becomes the stumbling block: the different status of the signs is reflected in
the physical device. As Tahta19 (1991, p. 227) comments: “The rivalry
between the algorist and the abacist was not so much about notation as
about how you calculated”.

The unity that came from using Indian-Arabic numerals for both
storing numbers and calculating can be seen as an economy. But it also
confuses the signification and counterpart functions which pull in
different directions. When I look through Indian-Arabic notation, I see
numbers. When I start carrying out pencil-and-paper operations on them,
they become opaque counterpart objects, drawing attention to themselves
and I temporarily lose sight of the notion of numerical value.

To the extent that understanding arises from reflection on the practice,
particular hard-won understandings may differ. The novelist Vladimir
Nabokov writes of “transparent things through which the past shines”.
One loss with the new numerals may have been access to the past, and
with it a sense of perspective on contemporary practices.

As I write, an issue of the (UK) Association of Teachers of Mathematics’
journal, Micromath 9(3), has just appeared on my desk, bearing a
contemporary parody of Reisch’s picture (The Spirit of Arithmetic). Two
aspects in particular struck me in relation to my concerns in this chapter.
The first is that the name of the person at the counting board, Pythagoras,
has been changed to Mathematica, the name of a computer algebra system
(so the girl is framed as the one-who-uses-Mathematica). The second is that it
was the abacus user rather than the pencil-and-paper user that the
computer has replaced, creating a different juxtaposition and hence an
alternative tension. Is the calculating device offering a comparably
different practice, or should the significant comparison, sense against
absence, be between the abacus as a device and the computer as a device?
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On this latter point, Tahta comments wryly:
 

It is ironic that it is now the skilled algorist who claims that people
will not understand what they are now doing when they merely
push buttons on a calculator. Both then and now, the innovators
claim that the new technique offers greater accuracy and that
understanding will develop from confident and successful use.
The issues continue to be discussed in schools and in the market
place.

(1991, p. 236)

In summary, are these practices of the abacist and the algorist currently
competing from an educational point of view? Ironically perhaps, both have
been superseded at the level of non-educational practice by the electronic
calculator. Consequently, solely from the point of view of access to a means
of functioning computation alone, neither practice need form part of a school
education. Looked at from a less functional perspective, however, because
functionality and instrumentality are not my primary reasons for offering
an educational mathematics curriculum, both can be used in order to offer
some insight into mathematical possibilities behind such electronic devices,
arithmetic possibilities for humans to engage with.
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5

ALGEBRA
TRANSFORMING

 
Some secret center became vitalized in those hours of silent
practice in the arts of transformation.

(Richards, 1989, p. 20)

Algebra as an activity precedes algebra as an area of mathematical study,
both historically and in school. Algebra is about form and about
transformation. Algebra, right back to its origins, seems to be
fundamentally dynamic, operating on or transforming forms. It is also
about equivalence: something is preserved despite apparent change.

In mathematics, two important contrastive focuses occur, interact and
recur. One is the nature of the objects about which generalisations are
made and the other is the nature of the language used for their generation
and ‘manipulation’ (as with geometric images, algebraic forms need to be
both conjured and controlled). In the last chapter, I discussed the symbolic
functions of counterpart and signification. More than with arithmetic or
geometry, and despite its abstract air, ‘doing’ seems to be central to
algebra. In the process, attention is moved away from what, if anything, is
being ‘manipulated’. With algebra,1 ‘manipulation’ comes into its own,
with symbols as counterparts very much to the fore; the ‘true’ nature of the
algebraic object becomes ever more confused.

Fluent users report two awarenesses when working with algebraic
expressions: being able to see them as structured strings of symbols (and
hence symbolic objects in their own right) and seeing them as descriptions
connected with some ‘reality’ or situation they are concerned with.
Maintaining this dual perspective, of substituting counterpart and
indicating sign, is of central concern when working on mathematical
symbols at whatever level, and places a heavy burden on novices. As
Schmidt (1986) points out, algebra offers both a calculus and a language.

Transformation is a key power of algebra, the most important means for
gaining knowledge. Operation symbols in algebra are virtual and not actual
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as they seem to be in arithmetic. What is transformed is the expressions,
viewed as counterparts and not just as descriptions, and different forms
reveal different aspects. Algebra invokes forces that transform: algebraic
expressions are shape-shifters. But what else is being transformed as I
manipulate the symbols? Counterpart algebra involves an echo, a shadow.

Boero (1993) observes that every algebraic manipulation contains an
anticipatory element, a sense of where you might be heading, a sense of
what the desired form might be like. Intensive student practice of standard
transformations does not by itself develop anticipation, but equally it is
hard to improve anticipation without a certain facility at transformation.
Successful manipulation may also involve fitting templates (into which
certain often-repeated transformations become objectified) to forms, such
as ‘the difference of two squares’, though there may be some preliminary
shape-shifting required until familiar algebraic ‘seeings’ such as this one
can be applied. Developing this sense of anticipation can provide, in part,
an alternative to ‘blind’ manipulation, and provide more support for a
conversation with pupils about symbolic manipulation.

There are familiar cover stories offered to novices in order to try to
inculcate the desired practice.2 Take it over to the other side and change the
sign’ is a succinct counterpart formulation suggesting physical movement
of an object, whereas ‘subtract the same thing from both sides’ invokes a
mathematical operation which can be carried out actually on numbers or
virtually on expressions.

In going from 2x+7=p to 2x=p-7, a second equation has been written after
(usually underneath) the first. The textual implication of coherence suggests
that it is in some way associated with the first, but it is not current common
practice to indicate how or why they are related. Both verbal formulations in
the previous paragraph attempt to express the relationship between two
successive statements. In the new mathematics texts of the 1960s, there were
some attempts to write in brackets what the transformations were, and why
the two equations were ‘the same’ or ‘equivalent’. Nonetheless, it remains
the desired practice to be able to write sequences of equations, whose
connection with one another is unmarked on paper.

We all have difficulty symbolising transformations as such.3 What is
written in an algebraic demonstration are not the actions but the results of
actions: sequences of equations show the results of transformations, not
the transformations themselves. Hence, the algebra takes place between the
successive written statements and is not the statements themselves.

One resource of algebra is a rich plurality of symbolic forms; one core
notion that of equivalence. Equivalence and transformation are linked
notions, indicating sameness perceived in difference for some purposes,
or indifference with respect to others. The existence of multiple
expressions ‘for the same thing’ (highlighting ‘naming’) can suggest the
very possibility of transforming expressions directly to get from one to
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another, without necessarily going back to the particular ‘seeings’ of the
original situation that gave rise to them. Increased fluency in
manipulation of algebraic expressions can thereby go hand-in-hand with
decreasing regard for the ‘meanings’ of the symbols or the context from
which the expressions originally were derived. Algebra therefore firmly
presents itself for exploration in any discussion of understanding and
fluency as mutually desired goals for mathematics education.

At bottom lies the following question: what is x? As with zero, the
presence of x speaks of another absence. At different times, x is both a
name that points to something else, and a counterpart that is more
resistant to being ‘seen through’. A move to letters can provoke a sense of
real loss. Particularly in algebra, the relation of the sign to the thing
signified is weakened, perhaps deliberately destroyed.
 

Algebra is powerful—but it can also be frightening. It demands a
shift of attention from signified to signifiers. It can then become a
game in which signifiers are exchanged with other signifiers….
Algebra creates an alternative world which may be under our
control, but in which some people feel that nothing is real.

(Tahta, 1990b, p. 58)

With algebra, there seem to be two clearly identified alternative emphases
in terms of where our attention is to be placed. To sharpen the distinction,
on the one hand—and putting it succinctly—we can work with symbols as
counterpart objects, components in a language-game without much
explicit reference to what they may ‘mean’ or ‘represent’. (This, of course,
does not mean that each individual does not attach meaning or
reference—whether privately or publicly—to the elements of the game.)
The language is generative. The emphasis is more on what you do with
algebraic expressions once you have them.

On the other hand, we can offer reference objects (but what?), and
particular actions upon them, and then—through ordinary language
initially about a situation—code these with symbols. The language is
descriptive, coming after the actions on the objects themselves, and the
context of description is very near the surface. The sense of structure of
expressions that allow their manipulation may not be strongly present.
Here, the emphasis is on the process by which some generality is expressed.

There is a trade-off, similar to the one mentioned for numeration
systems in the last chapter, between the relative transparency of
expressions on the one hand, and compactness and efficiency when it
comes to their manipulation on the other. Natural language versions can
be more transparent with respect to what the expression is intended to say
When there is the possibility of manipulating expressions of generality,
however, transforming one into another, then the criterion of compactness



ALGEBRA TRANSFORMING

91

comes into its own. This provides another instance of the theme of greater
comprehension suggesting one preferred solution, while developing
fluency at manipulation invites another.

The relations between form and meaning in algebra are complex and
important. Among the contributors are:

• the fact that multiple equivalent expressions are possible, yet each may
be related to a particular ‘seeing’ of the situation;

• the fact that symbols can be manipulated without recourse to
meanings and this can be efficient: yet possible meanings can also be
explored for the manipulations carried out;

• the tension between holding on to (thereby enriching) particular
meaning and fluent use arising from not attending to the meaning;

• the fact that after a certain point, some people can come to rely on the
symbols, and are content to and convinced by working with them
alone. “To a high degree the language of formulae can be handled
autonomously, independent of the understanding of the content”
(Freudenthal, 1973, p. 310).

‘MANIPULATING’ SYMBOLS AND EXPRESSIONS

In this section, I shall try to illuminate the above by means of discussion
and description of two pairs of algebra lessons (taught by Dave Hewitt). I
can only give a brief outline here of what are very complex lessons;
unattributed comments come from an interview I carried out with him
afterwards.4

The first pair of lessons relates to think-of-a-number tasks with a class
of fourteen-year-olds, and invokes the sense of ‘doing the opposite’ as a
way of undoing or unwrapping linear equations. His focus is on the
process of inverting operations, rather than finding the ‘correct’ number.
In the second pair, called ‘rulers’, with a class of thirteen-year-olds, he
develops algebraic expressions initially as traces of moves around an
imagined grid. A notation is developed first to record sequences of moves
(the language is primarily descriptive at this stage) and later to produce
them (the language is generative now).

Think-of-a-number

At the outset, Hewitt focuses orally on the doing (the wrapping-up
process where a sequence of operations is carried out on ‘the number I am
thinking of’ to produce an equation) and has them verbally produce the
undoing. (Thus, “I think of a number, I add 3, I multiply by 2 and I get 14”
evokes “I take 14, I divide by 2, I subtract 3 and that is the number you
were thinking of”.) The facts of mutual pairs of inverse operations and
dealing with the numbers in the reverse order from that of the doing are
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quickly established. Far more complex written instances are soon offered
(involving all four arithmetic operations), though his focus is still on the
pupils’ language determining the actions on the written forms.

As the lessons progress, he stops part-way through an unwrapping and
makes observations about what has been done and what has yet to be done;
various mid-stage situations in equation-solving are exemplified. The
‘answer’ contains all the structure (inverted) of the original. (He could have
asked them to reverse the ‘answer’, using the same notions of undoing, to
reconstruct the original encoding of the actions.) The algebraic task was self-
contained: no ‘real-world’ context or ‘motivation’ from the external world
was offered or required. What was provided was a challenge to engage
with, that successfully captured his pupils’ interest and attention.

Towards the end of the second lesson, he has them generate an equation
for which he is acting as scribe at the board for them all to work with. (An
unspoken message is that because nothing is pre-arranged, any equation
can be dealt with likewise.) When they offer him particular numbers, at
times he writes alpha or gamma (“that’s what I heard, wasn’t it?”), while
at the same time supporting them: “I’ll let you know what that is later.”
The pupils quite happily solve this equation too.

On many occasions, Hewitt employs (different) audible noises for each
of the various arithmetic operations when working in front of the class at
the board. His intent is to draw attention to a particular thing, enclosing an
expression in brackets perhaps, or the need for alignment of symbols. As
he said afterwards, “At one point, it is the fact that after a division has
taken place, the +2 is lined up at the level of the division symbol. There is
no reason for this, so I do not try to give one; it is a convention.” I am struck
by the harsh simplicity of this comment. Everything doesn’t have to have
a meaning, a rationalisation, a cover story. Some things just are.

There were a pair of strands that were being tied together. The first was
the connection of the action to a story offering a certain meaning, namely
Think-of-a-number’, where the various equations produced were frozen
snapshots in the wrapping and unwrapping process. As I shall describe
shortly, he also took subtle steps to undermine this meaning. To some
extent, pupils were being subtly encouraged to ‘let go’ of the meaning and
work on the symbols themselves.

Although Think-of-a-number’ was providing the ostensible goal,
opportunities were being offered for recognising patterns in expressions
and equations. These patterns were structural, brought about by attending
to the nested, sequential aspect of operations:

They know what it is they want to do and now they are forced to
work on the challenge of finding my number. The notation is
learnt by subordinating it to the challenge; the notation becomes
the vehicle through which they can engage with it.
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Secondly, there was the force of consistency in the symbolism itself: when
something was said, there was always a written equivalent. Hewitt
believes in the importance of presenting a consistent set of notations for
arithmetic (and later algebraic) operations, so there is always something to
write for each spoken term. Brackets can be included as a written version
of ‘times’ or ‘multiplied by’, and hence remove questions about this
notational device having to be ‘taught’ explicitly and separately.
Conventional irregularities can be worried about later, for example,
replacing 6(x) by 6x. His approach involves refining a functioning and
consistent notation into the one that is conventionally employed, rather
than striving for the fully-fledged, conventional one from the outset.

Rulers

The first lesson introduces an imagined number line running round the
room, with the teacher hitting the wall successively with a large ruler and
the pupils naming the next number. The line is relativised by Hewitt
announcing a locating number with each first hit (“That’s seventeen”). He
then combines moves (perhaps three to the right and two to the left) and
focuses first on where he is now, and then shifts very deliberately to “What
did I do?” to get there. He remarks that, at the outset:

the numbers are explicit and the operations are implicit. As I chose
this activity to work on algebra, at some point I wanted to change
the focus of attention onto the operations. Arithmetic is concerned
with getting an answer, algebra is concerned with how you might
get there.

This shift from where I am now to what I did to get there reverses the
implicit and explicit focuses of attention. The lesson continues with
developing statements of what has been done, now starting from x.
When first introducing x, pupil attention is firmly on the actions, the
operations (in this case, adding four and taking away one, written on the
board as+4–1). He asks them, “What number did I start with?”, and a
pupil replies, “You didn’t say.” He draws a linear grid and marks in x.

So he writes an x in front to produce x+4–1, and remarks, “I’ll let you
know what it is later, OK. But whatever number I started with, I’m going
to add four and take away one. I’ll let you know what that number is
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Expressions name specific squares, but also tell you what to do to get
from one privileged location (x or y, or whatever) to the one named by the
expression. They create ‘story-telling’ expressions, so before any
simplification or tidying up, they bear the traces of their generation (as
Cabrigéomètre diagrams do—see Chapter 3). There is a deliberate blurring
in the situation about whether the algebraic expressions developed are
names of locations or instructions about how to move (though when going
from expressions to moves, they clearly have to be interpretable as moves),
and both are exploited.

It is possible to take different routes and end up at the same place,
thereby generating different expressions which must be equivalent,
because they ‘name’ the same place. This is similar to the fact mentioned
above that finding multiple expressions, arising from different ‘seeings’,
suggests the possibility of algebraic transformations. One aim of the task is

 later.” x is the written form associated with the spoken ‘whatever number
I started with’.

Hewitt now says to the pupils, “I’d like to start here [writes y] and I’d
like to end up there [indicating a box two to the left]. By the way, what is
that?” [Pupil offers “y take two”.] The structure of an expression can also
tell you how you got to where you are from the previous location. There is
also the notion of the simplest expression in terms of ‘what’s the quickest
way of ending up there?’, of going directly.

Moves can be made and the algebraic notation developed to record the
new state at each stage. There is a similar structure—state, then operation,
giving rise to a new state—to ordinary arithmetic expressions. 6+7=13 can
be interpreted as state (start with 6), then do something (add 7) to give a
new state (13). Consequently, it is possible in rulers, for instance, to write
y+4=y+4 as a result worth recording: namely, start at the box labelled y

,
 go

on four squares, resulting in you being at the box labelled y+4.
Later on he introduces a second row, the double of the one above it, so

the vertically downward movement is ‘multiply by two’ and upwards is
‘divide by two’. This introduces the operations of multiplication and
division as additional possibilities. Clearly, further rows are also available
for extension.
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to offer pupils experience of generating equivalent expressions, yet as it is
being carried out, the overt focus is not those expressions themselves. The
key algebraic elements of ‘x’ and ‘=’ are introduced almost without
comment, “as the written language through which we record what we
have just said to each other”.

In general, Hewitt deliberately focuses their attention on certain things
(what is to be done and why), and works on developing algebraic notation
by avowedly pointing elsewhere. He commented to me, “Because the
focus is on what we are doing, it is not the answer that matters but how we
are getting there. It doesn’t matter what number we start with, I can still
say what we have to do.”

Again there are attention-grabbing noises (the ruler hitting the walls or
blackboard) and big gestures: the ruler gets handed over to pupils as soon
as the way he wishes them to act is clear. The single bangs originally get
associated with add or subtract one, but once the second row is
introduced, they can also mean add or subtract two: more attention needs
to be paid to context. As I mentioned, addition of the second row also
brings in multiplication and division and it is only due to the fact that
multiplication is being discussed that brackets appear. These brackets are
linked with large hugging gestures: associations are established and
strengthened by simultaneous juxtaposition and repetition. Finally, the
teacher’s movements, gestures and sounds bind them all together,
combining speech, writing and actions to produce the symbols in a quite
specific way.

There are a number of shifts of focus as the lesson progresses: from
counting and naming the position reached to what was done to achieve
the effect; from associating name with location (“That is five”), first to
relativising the location (where he can announce where he is), and then to
an unspecified location (no matter where I am, this describes/generates
the actions). In this final state, the message is: ‘I am starting somewhere—
we are not lost—but I’ll let you know where later.’ He is ‘holding’ the
uncertainty for them. Because the link between number and position is
relative, it is possible to generalise and not work with particular numbers
(and hence actually performable arithmetic operations), but rather to use
some non-specific name for the number in order to act as a trace of the
sequence of virtual operations.

What is going on?

All of the above discussion may alert us to the ways we talk about what we
are doing when working algebraically with symbols, and whether we
miscue pupils by the language we use. In order to get away from concern
with the things, pupils need to have something else in view. Hewitt
comments:
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The appearance of x can be puzzling and disturbing for children. I
choose to introduce it at a time when the starting number is not
the focus of attention; it is the journeys that are being made
explicit…. In fact, x can only appear because of the fact that the
particular number is no longer of importance. If this shift of
attention had not already been made in the activity, I would not
have considered introducing the x.

The focus offered is actions and movements, and the mathematical
language is connected to them. The philosopher Alfred Whitehead has
written:

Algebra is one chapter in the larger technique, which is
language…. It is true that language strives to embody some
aspects of [its] meanings in its very structure…. In fact, the art of
literature, vocal or written, is to adjust the language so that it
embodies what it indicates.

(1947, p. 107)

All symbols have forms when seen as objects in their own right. I see at least
two instances in these lessons of attempting ‘to adjust the language so that it
embodies what it indicates’. The first is through the noises. They have little
conceptually to do with the mathematical operations, but become associated
with them by deliberate juxtaposition. The particular sounds chosen do,
however, partly reflect characteristics of the symbols themselves (a repeated
sound for the symbol ‘plus’, for instance, one as each line of the symbol is
drawn). Hewitt’s pupils on occasion make the same noises themselves
when writing, as if the auditory image helps them to recall how things are
written. By their striking nature, as well as calling for attention, they may
help to provide part of the developing ‘meaning’ for the operation.

A second instance comes from his arm gestures in relation to brackets
(hugging the expression): this seems more a form of gestural-graphic
onomatopoeia. Hewitt observes:

I often use images to help children recall something. In this case,
there is the arbitrary notation of how brackets are written. Here, I
try to evoke the image of the brackets hugging all that has been
written up to this point.5

More important are Hewitt’s attempts to have algebra emerge from
arithmetic by a crucial shift of focus. I made mention (in the previous
chapter) of Brian Rotman’s work on the destabilising role of zero with
regard to arithmetic and the question of whether all numbers are signs. In
the same book he writes of two subjects, not arithmetic and algebra per se,
but human ‘subjects’. Nevertheless, his work can help to distinguish the
school subjects of algebra and arithmetic.
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Perceived internally, variables [the letter signs] present their
familiar appearance as manipulable algebraic objects, as signs
among signs within formulas…and generally being treated as if
they were number signs according to a common syntax. [Perceived
externally] on the contrary, they are signs which meta-linguistically
indicate the possible, but not actual, presence of number signs….

Thus, the algebraic subject [the algebraic equivalent of the one-
who-counts] has the capacity to signify the absence of the
counting subject, the displacement of the one-who-counts from an
actual to a virtual presence. Now at certain points, when variables
are instantiated by numbers, this displacement ceases to
operate—the two subjects coalesce…. But this sort of arithmetic
localisation [for instance, checking the result of replacing x by 10
in an identity] is extraneous to the difference between the two
subjects: when variables are manipulated as algebraic objects
within formal calculations any such fusion between the counting
and algebraic subject is precluded.

(Rotman, 1987, pp. 31–2)

I shall try to illuminate some of his complex account by means of the Hewitt
lessons, while at the same time conversely indicating why I have singled out
these particular features of these lessons for comment. Rotman’s references to
an internal perception is alluding to the role of letters as counterparts and the
‘levelling’ with regard to arithmetic symbols (in the same way that 0 is taken
as a digit just as 1–9 are.) The external perception is with respect to their
signification, and echoes Hewitt’s characterisation of algebra with regard to
the possible rather than the actual: ‘how you might get [to an answer]’.

At times, teaching can be described in terms of acting as a Vicarious
consciousness’, that is as a separate entity working alongside the pupil
taking on certain cognitive functions that may be too much for the pupil at
the time, thereby extending a pupil’s potential attention by encouraging
its focus on other things. A good instance of this is when Hewitt tells his
pupils not to worry about what the x is, he’ll let them know later.

The ‘I’ who is doing the thinking of a number holds the ‘reference’ for x.
Whenever the spoken phrases ‘I’m thinking of a number’ or ‘Whatever
number I am thinking of are used, x is written. Hewitt wants his pupils’
attention to be on the operations, not on what x is. He achieves this in part
by having them instruct him on what he is going to write next. Their
language is generative. Because he is taking care of x, their attention is free
to focus elsewhere. In the lessons I observed, he only once evaluated the
actual value for x. In Rotman’s terms, this would be to confound the
algebraic and arithmetic subject, and it is the very possibility of producing
the former that Hewitt is working to develop.

In the one instance where Hewitt decides to push through the calculation
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to derive an actual number (using calculators), and not end with a complex
arithmetic expression which would give the answer, the number proved to be
a messy decimal. Almost as a throwaway comment, he says, “Oh, was that the
number I was thinking of? I guess it must have been.” This is one way of
weakening the storyline meaning of ‘I am thinking of a number’. There are
always important decisions to be made in algebra lessons about when to stay
with the form of the computations and when to press on to find the actual
numbers in each case, connected to the shift from algebraic to arithmetic
subject. His role as a teacher of algebra is to personify the algebraic subject as
well as always looking for ways to indicate algebraic possibilities.

Hewitt embodies this role himself first, and then encourages pupils to see
this possibility in themselves, thereby allowing them to work algebraically.
He specifically contrasts the descent to the level of numbers in search for a
referent for x with developing and maintaining awareness of the algebraic
subject in the collective class focus. When he writes alpha or gamma (“that’s
what I heard, wasn’t it?”), he is personifying the algebraic subject, while at
the same time supporting them, “I’ll let you know what that is later.” (At the
very end of the second rulers lesson a pupil is heard to remark, “What was
the number yesterday? You didn’t tell us.” Hewitt dissimulates by way of
reply, “Didn’t I? I’m like that. I’m just like that.” As ever in these classes,
pupils are deliberately left with lots to think about.)

By means of think-of-a-number tasks, work is conducted directly on
‘manipulating’ equations; enough of a storyline is provided to ease
concerns about what x is, and to permit algebraic working on symbolic
expressions. Similarly, with ‘rulers’, the ‘meaning’ of expressions is pretty
much left to individuals, the task provides enough to enable them to work
at and experience direct equivalence of expressions. The tasks, and more
crucially the teacher’s placing and shifting of the group’s collective
attention, serve to sew the experience together.

When algebra is taught exclusively as ‘generalised arithmetic’, the
algebraic subject may not emerge from the arithmetic one, resulting in an
often unhelpful preoccupation with what x is. As exemplified by Hewitt’s
lessons, there are ways of working directly at symbolic-notational issues,
which need not carry the pejorative label of ‘rote’ working, yet where
nonetheless attention on the forms and transformations is uppermost. He
also does this, in part, by encouraging them to work communally,
corporately, tribally. And finally, recalling the comments I made in
Chapter 1, I want to add, he works in some important sense ritually, that is
with respect for external ritual forms.

TECHNO-ALGEBRA

In the previous section, I have offered a detailed analysis of some non-
traditional school algebra lessons, in part in order to highlight some of the
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complexities involved in invoking algebra. But I also did so as such direct
teaching about working on algebraic symbolism (echoing Tahta’s desire for
‘specific techniques’ that I cited in Chapter 1) is becoming rarer. Algebra
teaching in UK schools (and elsewhere) is itself undergoing substantial
transformation. I see two particular forces: one present, the other looming.

The first is a retreat from specific algebra teaching as a core part of
secondary school syllabuses: in some sense, a giving up on the very
teachability of algebra to most adolescents. The second, less generally
present at the moment (though not for long), is the development of
computer algebra systems. Lying supine behind these forces is a concern
with the perennial questions: what is algebra and what is it good for? Will
algebra always be a school subject?

Earlier this century, working ‘rotely’ at ‘blind’ manipulation resulted in a
bad name for algebra; now, in the UK, investigative approaches to
mathematics encourage numerical pattern-spotting and some expression of
generalities, but little manipulation of them ensues. This trend emphasises
the signification function over the counterpart one of algebraic expressions.6

Such algebra that is invoked is near the surface and tied to the specific
situation: without reason to manipulate, there is little force to work at
perceiving equivalence or acquiring fluency at transformation. Hewitt’s
lessons are relatively unusual in their more direct algebraic focus.

There is an important balance to be struck among production,
transformation and interpretation of algebraic symbols. Though this
markedly changed emphasis in schools is an important curriculum
process, I shall say no more about this here. (See Noss, 1994, for a
discussion about the massive demise of proof from much of the English
school curriculum in terms of competing ideologies about the nature of
mathematics and mathematical meaning. In the US especially, there is a
growing provocative perspective of avoiding algebra in pursuit of
democratic goals of ‘mathematics for all’: see Kaput, 1994.)

The second shaping force is the rapid development of symbolic
manipulation packages (which I shall generically label ‘computer algebra
systems’) on reasonably priced computers and even a few up-market
calculators. This technological development provides the main focus of
this section. More than with the teaching of arithmetic in elementary
schools, when confronted with cheap numerical calculators, there is
growing confusion about what will be left of the upper-school algebra
syllabus, now these devices can carry out many of the manipulations that
seemed to constitute the very subject. What in algebra is to be preserved
for students, what will machines do? Perhaps we need to find a different
form of algebra, one that is still worthy of our pupils’ attention.

The previous section illustrated the importance of action in relation to
algebra, as well as various interpretations, static and dynamic, that are
possible of algebraic expressions. Spencer Brown (1977) writes of how much
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mathematics involves the giving of instructions and the issuing of injunctions.
He even distinguishes between the notions of demonstration and proof in terms
of the former being a sequence of instructions, that is, imperatives, and that
our role is one of seeing that they are followed correctly. He draws an analogy
with written music as a sequence of precise instructions, claiming:

When we attempt to realize a piece of music composed by another
person, we do so by illustrating, to ourselves, with a musical
instrument of some kind, the composer’s commands. Similarly, if
we are to realize a piece of mathematics, we must find a way of
illustrating, to ourselves, the commands of the mathematician.
The normal way to do this is with some kind of scorer and a flat
scorable surface, for example a finger and a tide-flattened stretch
of sand, or a pencil and a piece of paper.

(1977, p. 78)

Written in the early 1970s, the above passage when read now neatly draws
attention to one of the dramatic changes of the past twenty years, due to
the development of computers seen as symbol-manipulating devices. One
powerful affordance of the computer is the immediate implementability of
certain mathematical language, producing feedback, frequently visual,
generated by the arithmetic/algebraic code. Computers enable students to
work with what has been called ‘executable symbolism’: it can be
executed, but need not be.

In what follows, I look very briefly at Logo as a site for algebraic
implementation on a computer,7 before moving on to discuss the recent
development of computer algebra systems. Logo has been available on
microcomputers in schools for just over a decade. It is a fully implemented
computer language, but has particular characteristics that make it appropriate
for use in an educational setting. It is thus a hybrid ‘manipulative’, though its
pedagogic use has resulted in a general perception of it being ‘only’ an
educational language. The ability to name a sequence of commands as a
single entity (one which behaves akin to a mathematical function) results in
the ability to produce exactly repeatable sequences of actions. Even though
these named procedures can be used as any actual primitive in the language,
unlike the ‘real’ primitives, the code of a user-written procedure is open to
inspection through the editor. Noss (1991), in his piece on mathematical
density and depth, draws attention to the pedagogic value of Logo in offering
a mathematically dense but relatively shallow environment to pupils.

Almost all implementations of this language mark the difference
between the name of a variable and the current numerical value of that
location, between “variable and :variable. This marking provides a nice
reflection of Rotman’s distinction between the algebraic and arithmetic
subject; the notation: variable inviting the superimposition of both
algebraic and arithmetic subject.
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In the context of turtle graphics, Logo’s quasi-algebraic formalism serves
as a means to an end, rather than an end in itself. The pupil’s focus is
customarily on the turtle task, working through the language, in order to
control the turtle on the screen, rather than directly on the uninterpreted
form of the language itself, as is so often the case in more traditional algebra
lessons. Previously, emphasis has been almost entirely on, in John Mason’s
words, ‘doing someone else’s algebra rather than their own’.

Working in the editor involves a mix of algebra and arithmetic; the
effect on the screen is geometric. As I mentioned in Chapter 3, the only
way to produce effects on the screen is by means of the code. There are
different mathematical spheres of influence, but it is clear which is
privileged.8

Consequently, the link between expectations and effect can be explored
and revised. Machines can implement algebraic language—they are not
worried about manipulating non-compact expressions, and so they
provide a context where the trade-off between transparency and
compactness is not so strict. On the other hand, pupils do frequently
believe the machine to ‘understand’ the meaning of the variables, that is
both the actual referent and their intentions behind the naming chosen.
The formalism helps keep track of operations (what we did, rather than
what we got) precisely because they cannot be immediately evaluated:
they also stay written, available for inspection. But the machine can also
do computations—it can be both algebraic and arithmetic subject.

Noss (1986) showed how pupils’ Logo experiences could provide a
conceptual framework for building algebraic intuitions: pupils can and do
construct linkages between variables in a Logo context and in a more
traditional school setting. He writes: “Logo thus provides a model of the
ideas of function and variable which is reasonably consistent with
mathematical usage” (ibid., p. 337). The language offers a means for
introducing algebraic notation in the classroom (pupils programming at
their own level) as well as inviting the interpretation of an existing
symbolism (offering Logo programs for them to work out what the code
does and why). It also requires the perception and articulation of
relationships, both specific and general: that is, how to see through
particular programs in order to formulate relationships in general.9

Logo offers a forum where pupils, as well as using their own symbolism
expressively, can work at possible interpretations of others’ symbolism.
Both of these aspects are central to pupils acquiring a fluency and ease
with algebraic notation and ideas.

Symbolic manipulators

Symbolic manipulators are a form of software. They customarily contain a
number of facilities, such as graph plotting, algebraic manipulation (factoring,
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simplifying and equation solving), differentiation and integration of
functions, and data-handling facilities. Powerful contemporary examples
include Derive, Maple and Mathematica, though there are a number of far less
sophisticated packages on the market as well. The symbolic output of such
manipulators currently requires a very strong degree of interpretation on the
part of the user. They are sophisticated devices to assist the knowledgeable,
just as calculators are, rather than expressly pedagogic devices.10

Even more crucially, computer algebra systems allow the dynamic
linking of these facilities. For instance, connections can be simply
established between the algebraic expressions and graphical
representation, to produce ‘live’ symbolic representations in different
screen windows. Change in one evokes change in another.

One assumption that lies behind offering multiple, linked
representations is that they are representations of the same thing. What I
have started to argue in this book is that the mathematical concept is often
derived secondarily to the erstwhile ‘representation’ and is somewhat
dependent upon it. Cabri-geometry is a non-Euclidean geometry in a very
particular sense, because the drag-equivalence classes of screen diagrams
do not generate quite the same ‘theoretical’ referent as do static, pencil-
and-paper ones. Second-order equations in two unknowns are not quite
the same as sections of a cone. ‘The’ notion of function is actually subtly
different, depending on whether it is accessed through algebraic forms,
graphs or numerical tables.11 Because the generative direction from
representation to ‘object’ is seen as the reverse, the central role of
representations in conditioning mathematics is insufficiently appreciated.

This change of representation also highlights some differences across
these mathematical functionalities. For instance, the successive
transformations of algebraic expressions have a direction in time (linear
order on the page, marking before and after), whereas the superimposition
of graphs on the screen reveals no such temporal ordering; some changes in
algebraic form (e.g. multiplying an equation by a constant) have no visible
effect on the corresponding screen graph. It is still very early with regard to
classroom exploration of these devices. I shall restrict myself here to some
speculations about the background presumptions as well as their possible
effect on perceptions of the nature of algebra itself.

I can state my belief quite succinctly at the outset. I suspect that the
linking of representations is never neutral: one will predominate and will,
in consequence of this privileged position, lose much of its own
representational status. My candidate is the graph. The machine may be
providing too much to attend to at one time: human attention is usually
caught by movement. The graphical window is likely to be the winner
among different displays. I predict the algebraic forms will come to be
seen as merely descriptive, suggesting that, as can happen with turtle
graphics, the ‘meaning’ is the screen graphical representation, rather than
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maintaining two different, independent-but-linked representations. In
other words the graph will become a counterpart, drawing attention
primarily to itself, yet will be perceived as a referent.

The linking of representations can suggest causation and generation, in
that changes in one (wherever my attention and subsequent action is)
‘produce’ changes in the others. Jim Kaput writes: “it [computer algebra
systemsl also links actions on F-1 [functional expressions y=f(x)] to their
consequences in G-2 [coordinate plane graphs]” (1989, p. 179). I repeat: the
most absorbing representation will be seen as the ‘meaning’.

Kaput offers the hypothesis that work in such environments “can
provide novel and potent means for remediating many of the classic
manipulation errors that have been studied in recent years” (ibid., p. 179).
This reflects only a slightly variant belief from the ‘understanding (through
reference) before doing’ camp. It takes attention away from the forms
themselves and to graphical images as what algebra is ‘really’ about.

He writes:

the “meaning of A” (say, a polynomial expression) may be
provided by a graphical referent B, in which case we would say “A
refers to B”, that is, “16x2 refers to the parabola”. We can also say
that A represents B.

(ibid., p. 169)

Yet B here is also a representation and not an object. I can see y=16x2 as
naming (calling-into-being) a parabola far more easily than I can see a
parabola as referring to y=16x2. It was in this sense that Mandelbrot
exclaimed so loudly about the term ‘visualization’ (see note 16, Ch. 2) The
algebraic expressions often label the graphs, inviting them to be seen as
the names for the graphs, and hence that the graphs are the referent, not
merely another symbolic representation.

The perceived connections, which are metonymic, between visual
properties of the graphs and formal properties of the symbolic expressions,
become seen as semantic ones. “Transformations that preserve semantic
equivalence are those for which the target and starting expressions have the
same graph” (ibid.

,
 p. 179). So, for instance, does (x+1)2=x2+1? The graphs are

different, therefore it is an ‘illicit’ transformation.
If you are very attached to the graphical interpretation of algebraic

equivalence solely in terms of no difference in the ‘pictures’, you may not
even look at the forms to try to attend to differences or possible routes to
get from one to the other. So the induced shift once again is from ‘touch’
(manipulation) to sight (graphs). If the machine can generate a route from
X to Y, you can learn from the printout. If you ask only whether X-Y=0, the
machine only confirms yes or no. This criterion provides no reason for
their equivalence, though, as Kaput points out, analysis of the residual
difference X-Y can suggest what alteration is to be made. However, such
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an analysis requires considerable mathematical sophistication, unless the
machine can be asked for an algebraic formulation of this resultant graph.

The invitation is for the graphs to be attended to, and to look for
difference. With superimposition of graphs as my criterion of equivalence
of algebraic expressions, I have to rely on my visual perception (over the
range I am shown in the screen window, at least)—and the resolution of
the screen. I come back to this point in the next chapter. The graph may
show convincingly that these expressions are the same, but offers no
insight into why they are the same. I believe it is the direct transforms of the
forms produces the how and hence the why.

This perspective makes algebra about functions, and thus algebraic
objects are not the forms themselves seen as counterparts, but now ‘really’
signify functions. There is also a changed perspective from manipulation
to solution. With a solution, we may not need to see the route, if we aren’t
to learn how to solve ourselves. It even affords a recasting of an equation
in terms of the superimposition of two graphs (and thus a solution as a
point of intersection which is the invariant under ‘legal’ transformations).

Chazan argues:

In other words an equation is a particular kind of comparison of
two functions. 3x-4=x+17 is really a question. It asks, for what
values of the shared domain (the default in this case is the real
numbers) do the functions whose rules are f(x)=3x-4 and
g(x)=x+17 produce the same outputs?

(1993, p. 22)

Ironically, technology is being used to insist on screen (graphical)
interpretation of algebraic forms. There is a strong presumption that symbolic
forms are to be interpreted graphically, rather than dealt with directly.12

Thus, primarily in the US, there is currently a rapid process of
redefinition of algebra, triggered I feel more by the potentialities of these
new systems and the drawbacks of an over-fragmented mathematics
curriculum than by any novel epistemological insight. The view of
algebraic objects that is being strongly promoted in relation to symbolic
manipulators is of algebraic expressions as functions.

For instance, Chazan (ibid., p. 22) writes: “One oft-mentioned suggestion
for revamping algebra is to have functions replace equations as the
fundamental objects of algebra”. (Five references follow.) The proceedings
of an NCTM conference, Algebra for the Twenty-First Century (NCTM, 1993)
has two strong, separate, declarations. Judah Schwartz writes:
 

A proposal is made to restructure the post-arithmetic mathematics
curriculum around the notion of function (and the entailed concept
variable) as the central, and indeed the only necessary
mathematical and pedagogical object of the subjects now called
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algebra, trigonometry, pre-calculus and calculus…. These software
environments [that already exist] allow symbolic representations of
functions to be manipulated symbolically and graphical
representations of functions to be manipulated graphically.

(ibid., p. 26)

Jim Kaput offers four ‘fundamental assumptions’, including (ibid., p. 26):
‘The algebra curriculum should be organized around the concept of function’
and claims:

Historically, algebra has been identified with a formal
propositional language which served a small elite. The new media
allow visual, graphic representations of relationships that are
likely to be more easily learned and used by the greatly enlarged
segment of the population who must now learn and use them.

(ibid., p. 32)

On the next page, the report of one of the working groups claims: “Algebra
is a study of functions” (ibid., p. 33). Combined with this access aim is an
argument in terms of ‘real-world’ applications driving the algebra
curriculum, where input-output models abound.

Welcome to year zero.13 This proposal is at the opposite extreme from
those who claim that history should guide curriculum developments
(usually along the lines of some version of the Polya-promoted
observation of the nineteenth-century biologist Haeckel: ‘ontogeny
recapitulates phylogeny’). Many forms of algebraic thought and activity
predated the emergence of functions with Euler in the mid-eighteenth
century. It is thus a complete reversal of ‘the lessons of history’.

Such redefinitions are not without historical precedent or mathematical
import (such as conic sections being second-order equations in two
variables, or Klein’s reformulation of geometry as the study of a group of
transformations). However, what they do is to switch from description to
prescription: from the fact that it is possible to describe one thing in terms
of another, to the fact that it must be so seen. And in consequence of this
redefinition, the possibility is removed of discussing what gets excluded.
Definitions always include and exclude, stress and ignore. However, I am
not aware of substantial argument for the mathematical advantage of this
anti-historical perception—other than that it can make use of affordances
of computer algebra systems.

Such a reformulation of algebra may be mathematically tenable, but is
that sufficient reason to offer it to pupils? Function is becoming an
increasingly imperialistic mathematical notion, but as Wheeler (1989)
observes, it was one that was relatively late to emerge historically. Has
nothing been learnt from the dramatic effects of the combined
overenthusiasm and myopia of mathematicians in the 1960s with regard
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to the universal applicability of the notion of set? The influence of
machines is being felt in a new way in terms of their demands and
affordances. Will they be instrumental in producing a new ‘modern’
mathematics?

Is algebra necessary or is it merely nice?

The sub-section title mirrors a discussion in the area of metaphor (see
Ortony, 1975) where the corresponding question is whether metaphor is
essential (offering something that cannot be obtained otherwise) or
reducible to direct language statements. The corresponding reduction in
the case of algebra is to whether everything can be done graphically. The
original question about metaphors boils down to a question of
substitution rather than essentiality. If there is nothing attainable with
algebra that we could not get without it, now we have machines to aid our
geometric visualisation, while carrying out algebraic manipulations for us
offstage, can we actually do away with it? Would I do any algebra
personally if I did not need to?

On the one hand, the machine can manipulate algebraic forms alone: it
has no need for or desire of ‘meaning’. On the other, the multivalency of
the device can trace such connections (initially by means of juxtaposed
graphical imagery mirroring certain algebraic manipulations), assuming
that the designer has intended this as an ‘educational’ computer algebra
system rather than solely as an expert device. Is algebra ‘necessary’, or
merely ‘nice’—do all the manipulations have a corresponding ‘meaning’
(here, graphical interpretation)? I wonder whether use of such devices will
require this to be the case, thereby helping to make it so.
 

Stand firm in your refusal to remain conscious during algebra. In
real life, I assure you, there is no such thing as algebra.

(Lebowitz, 1982, p. 27)

In her advice to adolescents above, comedian Fran Lebowitz raises the
possibility of the existence of unconscious processes at work when doing
algebra. Doing algebra may make more explicit our human situation with
regard to language in general, where meanings and connections are
effective in the unconscious that we may only partly be aware of. A
hundred years ago Paul Souriau (1881) queried the feasibility (and I, now,
the desirability) of remaining fully in touch with the ‘meaning’ of
algebraic expressions and manipulations.
 

Does the algebraist know what becomes of his ideas when he
introduces them, in the form of signs, into his formulae? Does he
follow them throughout every stage of the operations he
performs? Undoubtedly not; he immediately loses sight of them.



ALGEBRA TRANSFORMING

107

Interestingly, the algebraic forms are now what are receding for us, rather
than the images. And in a way these forms may not be in our individual
unconscious, but lie instead in a collective unconscious, stored in the
programs of these machines. How are we to teach algebra, or will this aim
wither away too (along with that of teaching certain numerical, pencil-
and-paper methods), as merely another temporary aid from a pre-
machine age?

There is a strong historical irony here in the development of algebraic
manipulation, in that a machine that can liberate us from much of the
computational tedium of algebra is also returning us to a partly-rejected
strongly referential paradigm. In hand algebra, the paper may push back.
With computer algebra, the pencil is taken from my hand, and graphic
representations are offered as substitutes to take my attention.

The parallel sense of geometric reality being fundamental, and the
algebraic description being secondary, became reversed in the eighteenth
century (due particularly to Euler), resulting in properties of the algebraic
equations (as objects in their own right) being taken as primary, such as the
discriminant as determining the characteristics of curves. What we now
have with the machine is a return to this perception, not to the Greek
‘reality’ of curves, but to the eighteenth-century view of Cartesian curves
and more centrally functions. The fact is that a function doesn’t ‘look’ like
anything until a coordinate scheme is selected; the same as numbers not
having digits until a particular, place-value numeration system is selected.
Yet graphs are frequently perceived as pictures, offering direct seeings. I
return to this situation in the next chapter.

This most contemporary approach is to return to geometric (or at least
Cartesian) images. Thus, when solving a pair of simultaneous linear
equations, the corresponding geometric transformations are offered to
show what is ‘really’ going on. And nowhere is this clearer than with some
computer algebra systems, where the power of the machine can be used
for this end.

Is our mathematical understanding enhanced by this retention of the
geometry on the surface? Once again computer software seems to be
allowing us to reconnect with an earlier mathematical tradition, one
which differentially privileges the visual, the geometric. Will algebra
revert to being solely a descriptive language, rather than at times serving
as a generative one?

But is my perception of the geometry whatever is ‘really’ going on,
behind the algebra? Is this the unconscious meaning, operating below the
level of my awareness, beneath the chains of signifiers? If so, where is my
attention supposed to be? Experience with pupils working on turtle
graphics suggests that the dynamic, graphic screen is the main focus of
attention and it can be difficult to deflect attention onto the symbolic code
which is generating the screen effects.
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Currently, when working on algebraic forms, I am encouraged to
suppress ‘meaning’ in order to automate and become an efficient symbol
manipulator. In other words, I am encouraged to ignore the signification
function and to see the symbols as counterparts until the very end of a
computation. I learn to associate aspects of the forms with aspects of the
situation (for instance, the numerical value of the discriminant in order to
discriminate among various types of conic section), and work with them
instead. This displacement of attention is a mathematical commonplace,
and can also lead to very powerful theorems.

As someone schooled and fluent in pre-machine traditions and
conventions of ‘hand-algebra’, I sometimes worry about loss, usually of
control: a control that has arisen from expertise acquired at whatever cost
(see Hatch and Hewitt, 1991). Traditions speak of investments—most
strongly in those of us who, like Paul Simon, ‘lean on old, familiar ways’.
By the time I have been enculturated into a tradition, it will most likely
have considerably affected my outlook. One paradox may be that the only
way to understand a tradition is to partake of it fully—and that may then
render it impossible to stand outside of in order to evaluate.

Our attention is modified by the old and the new acting together. At no
time is that more true than currently with computational devices. There is
a heady mix of devices and desires, of human intentions and wishes, in
mathematics as elsewhere. We are in the midst of seeing the development
of machines ostensibly to carry them out. What is lost?

Moreover, with computer algebra systems, the perceived locus of
mathematics can shift outside of myself when confronted with such
sophisticated devices, ones that no longer ‘assist’, but take over completely an
area of functioning. Is the mathematics in the apparatus, is it in the machine? If
I no longer see myself as the calculator, then does arithmetic necessarily reside
in the machine? If the machine manipulates geometric screen images for me,
do I need to see myself as someone who can manipulate my own? If the
computer algebra system does my symbolic manipulations for me, then do I
have no opportunity or need to see myself as an algebraist?

ON SYMBOLS

In a Symbol there is concealment and yet revelation.
(Carlyle, 1836; 1987, p. 166)

 
In every chapter so far, I have found myself constantly using the word
‘symbol’, alluding to the power and efficacy of action on external symbolic
forms. Mathematical symbols have more than one function: signification
and counterpart are two central ones. To name frequently enables us to
invoke, summon, conjure, make present: names allow us to distinguish
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things (though care needs to be taken here). Counterparts offer visible or
tangible substitutes for ‘manipulation’. Counterparts seem secular, of this
sensible world; signs are often taken as spiritual, that is, other-worldly.

What is the origin of the word ‘symbol’ itself? Literary critic Northrop
Frye (1987) writes of the Greek verb symballein meaning “to put or throw
together”, but also draws attention to the noun symbolon, which he glosses
as: “a token or counter, something that could be broken in two and
recognized by the identity of the break” (p. 3).14

Frye informs us that there is another etymologically close noun,
symbolos, meaning “an omen” or “an augury”, and in the final chapter I
will make mention of mathematical origins and inaugurations. Symbols
and the gap, the separation, between symbol and object are fundamental
to the very possibility of mathematics.
 

A symbolon is something that is not complete in itself, but needs
something else, or another half of itself, to make it complete. A
symbolos, in contrast, links us to something too complex or
mysterious to grasp all at once.

(ibid., p. 4)

We symbolise when we want something that is absent or missing in some
way—and then we work on or with the symbol as a substitute, and on
occasion as a consolation. Through working with the symbol, we also gain
experience of the thing substituted for. In the process, we can often lose
sight of the fact that what we have is a symbol, and not the thing we
originally desired. But Huxley (1956, p. 29) is at pains to remind us:
“However expressive, symbols can never be the things they stand for”.

The throwing15 sense of ‘symbol’ from symballein follows into French,
with the term jeton being the word for token (e.g. for the telephone—the
verb jeter means “to throw”, but also “to calculate” in the sense of “to cast
up accounts”). There is also an anglicised version, ‘jetton’, a term used for
some mediaeval coinage. Thus, symbols preserve the idea of the thrown
(exceeding my reach in this manner, jettisoned out of my sight, possibly
subterraneously), but also retain the link with money16 In both cases, they
etymologically involve the hand and therefore invite manipulation. One
central reason, then, for symbolising is that symbols allow us to
manipulate, by proxy, things that are not easily handled, or which are even
impossible to handle, by our physical selves.

What does this look at the past senses of words offer us? Goldenberg
and Feurzeig (1987, p. 189) write directly of this discursive move,
commenting that they are personally “always somewhat moved by the
rhetorical device of evoking an etymology”. They later add:

But we should not use etymologies restrictively. An all too
popular notion treats an etymology as the official key to the
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word’s current English meaning, ossifying the meaning rather
than illuminating its source. Instead, knowing what a word used
to mean, either earlier in the history of our language or in the
language from which we borrowed it, can enrich our use of
language, building bridges to other words.

 
This is the sentiment with which I offer such etymological discussions as
appear in this book. Words accrete condensing layers of meaning. In the
case of the word ‘symbol’, I think the senses of both these early root words
can offer us an important perspective on symbol use in mathematics, as I
start to explore below.

Symbols as counterparts

How do actions on symbols connect to actions on the actual objects? How
do arguments involving symbols relate to arguments about their
counterparts? Seeing the symbol as part of the whole produces a reason
for the link. Do we ever argue about the whole from the part in
mathematics? Despite much turning up of intellectual noses at such an
apparent mathematical solecism, there are a number of occasions when
such generic arguments are used. Here are three:

• In Euclid’s proof of the unlimited nature of primes, where he shows
that if there were three primes, then he knows how to construct
another one—and doesn’t even make the remark that the proof goes
likewise for any other number of primes.

• When working on particular elements of equivalence classes, in order
to show what happens to the classes as a whole (usually with a general
theorem in the background that the operations are well behaved with
regard to class boundaries).

• When deciding where a derivative is positive or negative over an
interval by finding the zeros and then testing an individual point
(similarly for points in the plane satisfying inequalities).

The key feature here in all of these instances is that the argument presented
is a particular argument that apparently does for all. (See Balacheff, 1988, for
a discussion of similar modes of thinking in adolescent provers.)

With algebra, the symbol used is not an actual instance of what is being
talked about, a letter is not a number in the main (pace e and i, and perhaps
p). So there is more of a question about the relationship—and relating
principle—between the symbol and the referent, as well as how an
argument conducted on the symbols bears any relation (be it one of mimicry
or something else) to what is the case for the actual members of the set. The
Greek mathematician Diophantos’ symbol for an unknown was a Greek
letter s-like mark that is plausibly a relic of the last letter of the word arithmos
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(“number”), and a common choice of variable name is to use the first letter
of the corresponding word name (r for radius, t for time). So here it is a part
of the word symbol, rather than part of the actual object, that is used.

With arithmetic, early number symbols were either pictographic (using
three strokes or objects for three) or used a residue principle based on the
natural language word. (Attic Greek numerals, for instance, had n for five,
the first letter of the Greek word pente.) It is possible to see numbers both as
bearing the same relation to referent experiences as with algebra (e.g.
Martin Hughes’s (1986) interviews with young pupils who baulk at
intransitive, non-adjectival use of number words as things to be added),
but also as individual numbers in their own right. (Try to make sensible
use of ‘6’ as an algebraic symbol; for instance, ‘Let 6 be a group’.)

Generic examples of computations with simple surds such as v2 can
sometimes be more illustrative than with an algebraic variable, in that
they partake of particular number status without being easily reducible in
computations, so it is possible also to gain from the structural, placeholder
function that algebraic variables serve in highlighting ev5ery occurrence
of the particular number in focus.

What about geometry? The same duality of symbol relation occurs. A
geometric figure is symbolic of the general often, but is perceivable also as
a particular element. I earlier wondered whether the ease of
transformation of Cabri-géomètre or Geometer’s Sketchpad drawings
encouraged viewing a diagram only as an actual particular rather than as
a general symbolic? And what of the singular perspective that it is not a
single figure being transformed, but a continuous highlighting into
attended awareness of distinct figures all equally present in potentiality.
The continuity of deformation by the mouse again can act against this
perception.

With any general argument in mathematics, there is an additional need
for symbolisation. The relationship between the symbols and the things
symbolised needs to be established (whether by synecdoche or some other
means). Does one of the differences between geometry and algebra lie in
the difference in relation between symbol and referent, and hence, in the
different symbolic nature of arguments that are used to justify general
claims?

BONES AND STONES

Nations and graves. Graves and nations. Land is sacred because it
is where your ancestors lie.

(Ignatieff, 1993, p. 93)

Dick Tahta has spun a tale surrounding the ancient megalithic site at
Avebury in England.
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The discovery of many isolated human bones, but no complete
skeletons, in the ditch and the surrounding mound is striking. It suggested
to him that it might have been that most of anyone’s remains were buried
in the family group barrows (funeral mounds, of which there are many in
the surrounding area), but that one or two bones were thrown into the
large ditch surrounding this possibly sacred site. One reason might be in
order that Aunt Ann or Uncle Jack might partake of the communal
continuity linking past and present.

I was particularly struck in his speculative account by the fact that the
bone was actually part of Uncle Jack. So the action of choosing and placing
the bone therefore employs a physical synecdoche (substituting a part for
the whole, but suggesting and invoking the whole by the presence of the
part), as well as producing a specific physical symbol.17 The parallel with
comparable issues about symbols in mathematics and their relation to the
broken-off counterparts I found striking.
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The Vietnam Veterans Memorial in Washington, DC (also known as The

Wall) offers an extraordinary embodiment of some of these issues. Made
of smooth black marble, it starkly and sparely lists the names, in
chronological order of their death between 1959 and 1975, of all 58,000
American military personnel killed or missing in action during the
Vietnam war. The names are arranged so that the last is next to the first.

The Wall is complete: part of its force lies in the fact that in one sense
there is no representation of the general, everyone is there. On another
level, it demonstrates the strikingly powerful invisibility of the metonymic
substitution ‘name for the person named’. As with zero, a name’s presence
here marks another absence.

It is a memorial, not a tombstone: the bodies are not buried underneath.

This photo from the 1908 excavation of the site shows the depth
beneath the current ditch level at which the bones were found
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The above is a second monument erected almost on the same site in
response to some veterans’ unease that The Wall was too negative. For me,
however, it has none of the impact. The particular can be powerful and
moving. The nearby, newly opened Holocaust memorial offers individual
stories to visitors as a different means of creating relation. But I am left
with the forceful and overpowering impression that this complete list of
names, presented in this way, made on me.

There is a remarkable film, directed by Bertrand Tavernier, entitled La
vie et rien d’autre, which explores similarly evocative themes. It is set in
October 1920 and details the efforts of French society at all levels to come
to grips with the missing-and the dead (both accounted for and
unaccounted for) of the First World War. The main character, the head of

The scale is dwarfing. People interact with it quite specifically, touching it,
even taking rubbings of names (to create a counterpart that they might
take with them). It provides a focus (as with a particular marker in a
cemetery) for private, individual mourning: a colleague commented “I
know someone listed. I always find his name whenever I go.”

Unlike many war memorials, there is no image attempting to evoke a
response through a depiction of the particular: my experience is that these
root such sculptures in the particular (age, race, size, relation,…). The
Wall’s relation to and depiction of the general is quite different.
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the government research bureau, is obsessed by accurate numerical
documentation, and numbers resound through the film. (At the very end
he writes to the woman he loves: “These are my final dreadful statistics.
Forgive me this crushing accuracy”.)

He is accused, “Only your statistics count”. He comments, “Les chiffres, on
ne joue pas avec”, not for their inherent seriousness, but because of what they
are counting: the dead, the missing, the unaccounted for, the cost. I see his
haunting need for numerical precision, for exactness, as a necessary and not
inappropriate defence to keep the horror at bay without denying it: a defence
which enables him to continue with his work. He infuriates his superiors: “I
bother them. Because I keep accounts that never come out right”.

He sees his task thus: “I put names to faces, or vice versa”, reflecting his
belief in the fate and whereabouts of 350,000 soldiers still to be resolved,
“349,771 to be exact”. He has names and no referents, he has bodies
(objectified and named as les sans-noms) with no identities. He works with
all that remains: relics, the things (such as watches, rings, mugs) found
near or with human remains. Countless families are engaged in trying to
identify their relatives from them. He too is trying to match them, to
reduce the uncertainty, the ambiguity in which so many families are
living—he wants no unknowns.

But the other theme of the film, a powerful counterpoint to this search to
uncover, to identify, to know, is a top-level secret mission to choose ‘an
unknown soldier’, whose remains are to be buried under the Arc de Triomphe.
It has to be certain to be a French corpse (no Germans or Americans), but that
is all that is to be known. The research chief objects violently, they are
identifying people all the time (“51,000 in the last two months”); this one may
be identified next week. He issues a veiled threat, “It won’t be me, but if it [the
actual identity] leaks to the newspapers, then your unknown soldier’s
mystery evaporates and loses its symbolism”. (The actual French is more
resonant still for my purposes: et votre soldat inconnu ne representera plus
l’ensemble.) It is to be both a particular body and yet any body.

In the penultimate sequence, we see the final choice made from eight
candidate ‘unknowns’ issuing from nine geographic regions (even at the
end, the numbers won’t come out right). The chooser is one young soldier
who survived the Somme (making him so unrepresentative) to select
finally which one it will be. He chooses number 6 and is asked afterwards
why he chose that one. “I’m of the 132nd. I added up the digits. And my
regiment’s the 6th corps.” Even at this moment, he exhibits a faith in
numbers to help choose, to enable him to decide, and in metonymic links
to confer apparent connection and significance in the face of randomness
and death.

At the end of Tavernier’s film, the research chief sorrowfully decries the
symbolism of the ‘unknown’ soldier. “It distresses me. But it reassures
them. They had 1,500,000 killed. But now they’ll only think of this one.”
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MAKING REPRESENTATIONS
AND INTERPRETATIONS

 
There aren’t two things like abstraction and representation, each
must contain the other.

(David Hockney, 1993)

Mathematics abounds with representations. In earlier chapters, I have
described certain features of geometric, arithmetic and algebraic symbolism.
This chapter concerns itself with both the processes of representing and the
nature of representations themselves. In particular, it explores graphing and
graphs as mediated by computers seen as dynamic imaging devices.

The table below purports to set out a range of representational
processes claimed to be of relevance to mathematics. Each process comes
with a context for the acquisition of skills and ‘know-hows’, as well as
opportunities for application in particular contexts.
Janvier also offers the notion of ‘translation process’ from one form to

(from Janvier, 1984, p. 29)
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another.
The metaphor of translation is not neutral, however. The presumption

behind translation is one of preservation of meaning—yet there seem to be
many non-preservations in the varied list, with ‘modelling’ providing the
clearest instance. A naive view of modelling, and indeed of representation,
seems to suggest it is a one-to-one mapping (for example, from a situation
described in an arithmetic ‘word problem’ to a ‘corresponding’ algebraic
equation). Dienes’ multiple embodiments seem to suggest a many-to-one
mapping, whereas my comments on Cabri-géomètre may suggest a many-
to-many mapping. Dufour-Janvier et al. (1984, pp. 110–11) write: “certain
representations are so closely associated to a concept that it is hard to see
how the concept can be conceived without them”. I wish to go one step
further and argue that most (all?) mathematical concepts are only
accessible through particular representations.

Anyone who has attempted to translate a text will be aware of needing
to work simultaneously on what the linguist Michael Halliday has
identified as the three major components of language: the forms, the
functions and the meanings. The forms are the words and expressions that
make up a language and in mathematics include diagrams, pictures,
tables, graphs and charts, while functions include persuading, informing,
challenging, stimulating, obscuring and concealing. Similarly, changing
representation requires attention to all three of these aspects.

Of the three components, it is the notion of function that is most
problematic. In general, who are you representing for (yourself, a teacher,
some designated or generalised other), and why? What are you trying to
achieve? In talking about representation as an abstract process, it is
possible to lose sight of the one-who-represents and their purposes. One
function of representation can be to allow access to some event, although
any choice of representation carries with it certain stressings and
ignorings. Another function is to render visible, so that the discriminating
eye can come into play; a third, that of tangibility, so that manipulation by
the thinking hand can occur.

Representation involves re-presentation. The prefix ‘re-’ suggests it has
been done before, and ‘presentation’ tout court would perhaps be a better
term, in the sense of a way of making something be present. English
syntax requires a representation to be a representation of something,
placing it in a subordinate position to the original.1 It is hard to imagine a
photograph that is not a photograph of something, and in the second
section I discuss in what sense any mathematical images, including
computer screen ones, are akin to photographs.

Allied to the notion of representation is the word ‘representative’,
which echoes the discussion of symbols at the end of the last chapter. I
may be willing to deal with the representative for a number of reasons,
while bearing in mind the varied ways in which a representative can relate
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to a constituency.
But these etymological observations still reflect a view of representation

as derivative or secondary, as subordinate in some way, coming after the
thing represented. An important notion until now has been the difference
between counterpart and signification functions of symbols. With
counterparts, there is always the issue of the basis for the resemblance: for
example, geometric diagrams resembling something else, the dessin
resembling the figure. And what about graphs of functions? Are all graphs,
graphs of something? Is the relation there one of resemblance, and if so to
what? Or are mathematical ‘objects’ called into being in order to preserve
the more simplistic notion of representation?

A preferable term might be the less directional ‘correspondence’, which
allows a more comfortable exchange of subject and predicate in a way that
‘representation’ does not. A graph can be made to correspond to an
algebraic expression. An underlying theme throughout this book has been
the acknowledgement of a more complex interrelation between symbols
and objects, in particular with regard to the presumed secondary, ancillary
nature of symbols.

GRAPHING

Graphs have traditionally served as display representations
because the only readily available media were static. But the static
medium restriction is no longer in force! With the advent of relatively
inexpensive bit-mapped graphics displays, we are now free to
move and manipulate graphical objects just as we have always
been free to manipulate alphanumeric objects.

(Kaput, 1989, p. 185)

The words ‘graph’ and ‘graphic’ contain a portmanteau of senses. One core
meaning of ‘graph’ is “written or drawn” (thereby implicitly made with the
hand): ‘autograph’ (self-writing, in one’s own hand), ‘graphemes’ (minimal
elements of writing), but also ‘photograph’ (light drawing) or ‘lithograph’
(stone drawing). ‘Graphic’ also carries the connotation of “vividly descriptive
or very clear”. Yet graphs, although drawn or made with the hand, are
intended for the eye, and interpretations are certainly made by eye.

This is equally true whether the graphs are corresponding to algebraic
relations or are displaying statistical data. Graphs can provide
representations of functions, but can also be used as mathematical
models to fit numerical data. Many schoolchildren appear to gain the
idea that graphs are simply a pictorial representation of a situation, akin
to a literal drawing: for instance, positive gradients on distance-time
graphs are seen as showing uphill walks (see Kerslake, 1982). Clement
(1989, p. 82) too writes of students making a “figurative correspondence
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between the shape of the graph and some visual characteristics of the
problem scene”. In other words, graphs can be seen as providing directly
iconic images. Since all graphs have some symbolic features, their
meanings are not transparent but need to be ‘read’. Graphs are the
drawn result of an action, a process. But, once drawn, they come to have
the status of things; static and symbolic artifacts like algebraic
expressions or geometric diagrams.

One specific affordance of computer algebra systems and some graphic
calculators can be graphs appearing at the touch of the button—often
without any semblance of their being drawn, instead being conjured
whole, ready-made.2 Images appear, rather than being drawn; the drawer
is out of sight, inaccessible. The machine helps me to create images now,
and again conditions the images I may draw. Continuous graphs come to
be seen as a single object, rather than as enormous composites of points.
This is similar to how, in Cabri-géomètre, the software requires selection of a
point on an object before certain constructions are possible: prior to that
moment they are seamless, unitary items.

Janet Ainley and Dave Pratt have been carrying out an extended project
exploring some of the effects of allowing young children (eight to ten years
old) extended, ready access to laptop computers, including spreadsheet
facilities. Among other things, they have been exploring children’s ability
with using and interpreting line graph representations of numerical
information, data with which the children had a close connection.
Computers can also introduce many graphical images into the classroom
environment, at the pupils’ own behest, which are then available as
focuses for both discussion and use.

They were both surprised by the facility with which these pupils could
interpolate readings and interpret trends in the absence of any explicit
teaching about graphs, as well as subsequently produce and work with
their own hand-drawn graphs. Indeed, Ainley and Pratt attribute much of
this facility to the explicit lack of any teaching focusing pupil attention on
matters such as scales, point plotting and interpolation.

Their claim about the importance of the computer-generated presentation
of complete graphs as entities to be thought about in a context that was familiar
and understood seems akin to Hewitt’s introduction of algebraic symbolism,
discussed in the previous chapter, at the precise point when the pupils’ main
attention was elsewhere. Ainley (1994, p. 8) argues: “If attention is focused on
these [individual graphical construction skills], it is difficult for children to
keep in mind the context and purpose for which the graph is being drawn”.
The computer-generated graphs can be seen as accompaniments, by-
products of some other activity rather than direct pictures of it.

One power of this software is to suppress all sorts of detail, allowing
pupils only to work with the shapes of graphs, whereas previously
attention would have been more on individual values, even with a
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calculator to hand. The facility of producing graphic images (such as line
graphs and pie charts) with these machines allowed many ‘nonsense’
graphs to be drawn (e.g. ones with data measured in different units
recorded on the same scale), and Pratt (1994) explores the question of
various valuings possible for such images (including illustrative
pictorialaesthetic ones), as well as of how to introduce children to
interpretative criteria for specifically mathematical valuations.

These ‘psuedo-mathematical’ graphs have the correct ‘form’, and as
such have resonance with variant ‘countings’ (such as 1, 2, 5,…) of much
younger children; that is, distinguishing the category of number words
from other words, but having yet to become attuned to the specific
number order. Understanding before doing seems out of place in the
counting context, and the work of Ainley and Pratt, although at an early
stage, suggests it to be so in deciding on what pupils can and cannot do
with graphs at certain stages.

Graphs used to be hand-made, but, as Kaput indicated, were customarily
intended for display purposes only, rather than to be manipulated directly.
In algebra, we can use symbols to express a perceived relationship and then
manipulate the result to obtain new information and insights. Indeed, these
transformations embody the essential power of algebra because, due to
their concise and non-physical nature, symbols are much more easily
manipulable than the things they represent. Graphs can now play the role of
counterparts of functions far more easily.

Picture windows and scale

The only way we can get the colour of a spot is by matching it,
which in practice means isolating it, but when we do that we
change the apparent colour, for our perception of the apparent
colour is affected not only by the colours of the adjacent areas, but
by their sizes and illumination. It is this, for example, that makes it
impossible to get a true colour reproduction of even an abstract
diagram in colour, let alone of a picture, unless we make our
reproduction of the same size as the original and give it the same
texture. There is literally no way to make a true colour
reproduction on a changed scale.

(Ivins, 1969, p. 153)

 
Computers offer particular-sized and particular-shaped screen spaces
(‘windows’) at or through which to ‘look’. A normal window looks out
onto a landscape and generates a view, but there is less sense of it being
‘the view’. Similarly, we usually only see part of the graph, and from a
particular perspective. One of the things that standard images produce is a
sense that it is ‘the’ way to look. Quite an interesting task might be to show
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The same can be said of graphic presentations. It is common to talk
about a graph as a picture of a function, or even more directly inviting
students to picture the function y=2x+5. But I want to explore in what sense
is it a picture of the function. And what is the ‘best’ distance from which to
view it? The introduction mentioned the metaphor encapsulated in the
perception ‘a graph is a picture’. With computers, there is the problem of
how to ‘see’ what appears on the computer screen. How are we to look
through our own sight? Take the case of a graph of a function. Whatever
you see, you think you see all of ‘it’, a single thing complete. What does a
function ‘really’ look like?

With computer graphics, scale has to be included (either determined by
the user or the machine’s default settings). You always get a picture. It
resolutely draws to scale (and so retains certain dimensions). As long as
there exists the option of leaving automatic scaling off, the work of doing
the mathematics does not become invisible.

various graphs and ask whether any or all of them could possibly be
‘views’ of a particular function or equation.

An important aspect of recognition of anything has to do with scale and
familiar orientation. Much fun can be had offering pictures of familiar
objects from unfamiliar points of view, in particular using unfamiliar
scales, to produce appearances far from those that fit the customary
perceptual scale.
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If I change the scale, do I change the graph? Graphs become
counterparts of functions and they themselves are being manipulated by
scaling. If I change the scale I can turn a circle into an ellipse, but I can only
turn a parabola into another parabola and not into a hyperbola or an
ellipse. Thus, a circle is an ellipse (one for which a=b), in the same sense
that a square is a rectangle. If I scale a cubic, I get another cubic of the same
‘type’. In this sense, there are three different types of cubic. Work with
computer facility at changing scale has highlighted how much image
shape is not fixed, but highly dependent on scale.

Thinking of the computer screen as a window gives rise to all sorts of
terminology: in particular, zooming in and out. The fact that the computer
creates a new screen image from scratch (a ‘magnification’), rather than
bringing you ‘closer’ to what you were already looking at, is conveniently
forgotten; the illusion is created that the detail was already ‘there’ in the
previous image.

We are in an era of transition in screen ‘fidelity’: soon the semblance will
be transformed, confusion of pixel with point, computer plotting errors
(such as continuity across asymptotes) or visual misrepresentations such
as diagonal lines as ‘step’ functions will all become things of the past, as
screen resolution sinks below the visible threshold of distinction.

Paul Goldenberg (1987, 1988) has explored visual miscuing of pupils by
linear and quadratic graphs on computer screens and denies that graphs of
functions are inherently easier to comprehend than algebraic symbolism.
He focuses on the visually barren nature of the screen scene, and the sparse
interpretative support it offers to pupils endeavouring to make sense of
what they are seeing. “Perceptual strategies that are sufficient for
interpreting scale and relative position in real-world scenes are
inappropriate when dealing with the infinite and relatively featureless
objects in coordinate graphs of simple polynomial functions” (1987, p. 197).

In particular, he discusses pupils trying to derive the quadratic equation
of a graph presented on a screen, and talks about the difference between
their interpretation of their attempts and his in terms of illusions.
Goldenberg provides examples of two pupils’ work on finding an algebraic
expression which will generate a target graph seen on the screen. The
feedback they took from the screen was widely different from Goldenberg’s.

To my eyes, what they are doing is bringing knowledge to bear of how to
make two objects superimpose, without taking into account the privileging
that functions have of vertical adjustments over horizontal ones. Their
reasoning seems fundamentally sound in terms of curves (i.e. if the screen
objects are primary), but not as graphs of functions. It is feasible for them to
match the two graphs on the next page by a change of variable.

The point I made in Chapter 3 about mathematical seeing being
projective in nature is particularly relevant here. When looking at such
screens, my mathematical knowledge tells me in substantial part how to
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see what I am looking at. Without that knowledge, must I see these screens
mathematically? This sounds similar to the discussion of Dienes blocks in
Chapter 2.

Part of the difficulty has arisen through attempting to use the graph to
gain access to the function, rather than have the graph being generated
from an analysis of the function. Instead of graphs being associated with
functions, but arduous to construct, they now ‘come for free’ on graphing
calculators and computers, and are increasingly being offered as the route
into functions.

I prefer to use the word ‘image’ rather than ‘picture’ in order to
highlight the non-representational nature of what appears on the screen.
With any photograph it is possible to ask ‘What is this a picture of?’; the
photograph has secondary place. The image on the screen is not a picture
of anything: it is what is generated by a device.

A screen image is a particular kind of dynamic symbol and not the thing
itself. Yet it invites such strong projections onto itself as to externalise the
objects of the imagination in particular ways, as well as to feed back into
the imagination what seems like direct experience of mathematical
objects, apparently residing within the machine and under my and its joint
control. The computer screen is not a window with us looking in.
Functions are not to be found ‘inside’ computers. Computers generate
screen images which are dynamic, interactive symbols—a very powerful
new class of symbols.

Seeming is believing?

 
I am concerned not with the theory of objects, but with the
appearance of things.

(Bridget Riley, 1993)

David Lodge (1984, p. 295), in Small World, reports some delightfully
creative translations of Shakespearean titles into Japanese: the best, when
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retranslated, being The Flower in the Mirror and the Moon on the Water’
for The Comedy of Errors. In the novel, a Japanese interpreter explains: “It is
a set phrase… It means, that which can be seen but cannot be grasped.”

‘That which can be seen but cannot be grasped’ is a perfect description
of computer screen ‘image-objects’ fabricated from electricity and light. To
the extent that the images stimulate and inspire us, they can act as sources
of imagery for human mathematical activity of immense power. To the
extent that they take over the imaging and seem to provide the actual
objects, rather than merely transitional counterpart objects, they can
detract from our working mathematically with them.

We are often reminded of the difficulty of distinguishing between how
things seem to us and how things are. It was with this in mind that I
offered the Gattegno quotation in the first chapter which identified us as
liv[ing] in our images’. Currently, the gap between micro-computer screen
portrayals of geometric and other graphical forms and our own images is
sufficient for us to be reminded that we are not perceiving actuality, we are
not looking through ‘windows’.

When working with students on computer-generated graphs of
functions, the question arises as to whether that particular feature comes
from the mathematics (is it a property of the function) or is a computer-
generated ‘glitch’. The map at the moment is visibly not the country. But
not for much longer, I suspect. The art of computer visual mimicry is
developing apace, and soon, as with photography in the last century,
computer screens will draw attention to themselves far less.

Wallace Stevens writes evocatively of seeming being ‘description
without place’ (in a poem of the same name) and also notes that seeming
differs slightly from reality, a result of ‘the difference that we make in what
we see’. He goes on to add (1967, p. 344):

Description is revelation. It is not
The thing described, nor false facsimile.
It is an artificial thing that exists,
In its own seeming, plainly visible,

Description without place is like image without referent object. My
concern with computers is that some of the messages and metaphors that
come with them suggest we are not being offered description, we are being
provided with (false) facsimile. We are apparently viewing the object
itself—geometric reality. And it resides within the machine, not ourselves.

Seeming, so close to seeing, is of crucial relevance when looking at
images on computer screens. There is a temptation to see these screens as
windows, and us as looking in, observing. We read we are to think of
computers as microscopes, the metaphor of ‘zooming in and out’ is widely
used (the metaphors lurking behind the naming of various computer
functions would make a rewarding study), and of computers providing us
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with views of other worlds. In all of these images there is a suggestion of
our being offered direct perception of mathematical objects.

But it is we, as always, who have to do the seeming. What is being
generated are dynamic iconic symbols which are for us to interpret. When
David Tall defines a differentiable function as one that when zoomed in on
sufficiently eventually is straight (and not just looks or seems straight), he is
merely continuing a long tradition in mathematics whereby first features
of the form are used to signal features of the meaning—and then later
come to substitute for them.

(An even number is one that ends in a 0, 2, 4, 6, or 8, provided numbers
are rendered graspable in our familiar decimal numeration system. It
allows us a very quick recognition of even numbers. But does it provide a
rich description for developing a meaning of evenness? Once again we
have come upon a tension between efficiency and understanding.)

‘The computer screen is a window’ is a metaphor, not a description of fact.
I have written elsewhere (Pimm, 1987, Chapter 4) about certain aspects of
metaphor in mathematics. Where the metaphor is offered as an initial means
of gaining experience of a new phenomenon, it is important that it be taken
literally early on if it is to have its full effect. However, it is equally important
later on that its metaphoric status should also come to light—in this case, so
that a separation between mathematics and machine can take place.

The most pressing problem I see is that of novices being able to see
beyond the screen. Similar problems arose in working with Logo where
the teacher wanted attention to the code that was generating the screen
effects, whereas the pupil’s attention was frequently taken up with the
screen itself, and the status of the generative language was reduced to
mere epiphenomenon. Simone Weil (1952, p. 128) writes of the
transference of consciousness into an object other than the body itself as
being characteristic of increasing skill and apprenticeship. Here, the
invitation is apparently the reverse.

I am looking for ways to view the computer and two ways of looking at
the screen are as a mirror or as a window. A mirror allows our own mental
functioning to be perceived. When seen as a window, there are fantasy
notions of breaking the glass and letting the human in, something that
Lewis Carroll wrote about in Through the Looking Glass. The virtual world is
on ‘the other side’ of the mirror, even though walking to ‘the other side’ of
the mirror does not get you there.3 Yet with either of these images, the
source object is missing. I do not generate the images in the computer-
seen-as-mirror, even if I do interpret how they seem to me.

EXACTLY REPEATABLE PICTORIAL IMAGES

Exact repeatability and permanence are so closely alike that the
exactly repeatable things become thought of as permanent or real
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things, and all the rest are apt to be thought of as transient and
thus mere reflections of the seemingly permanent things.

(Ivins, 1969, p. 162)

Although I have been concentrating here on computer-generated graphic
images, I am generally concerned with the nature of images and the role
they play in mathematics. Children often view diagrams in mathematics
books as merely decorative rather than making integral statements as part
of the text. A separate belief is that a picture offers a ‘true likeness’ of what
it is a picture of—pictures too are apparently always pictures of, never
primary things in themselves. A similar debate about the nature of
representation in art led Magritte to offer his paintings of artists’ paintings
substituting vividly for the ‘reality’ they depicted.

William Ivins (1969) has written a remarkable book on the history of the
making of prints in Europe since 1500. Underlying this theme is an
exploration of important differences between words and images for
permitting symbolic communication about things. Words written or
spoken in different handwriting or accent are seen as equivalent: “hand-
made pictures, to the contrary, we are aware of as unique things; we see all
the differences between them and know the impossibility of repeating any
of them exactly by mere muscular action” (ibid., p. 159). His recurrent
theme is the emergence of the capability for the exact repetition of pictorial
statements about things, and the remarkable effect this had on many
spheres of knowledge.

Ivins records numerous developments in the production of graphic
(hand-made) pictures, as well as contrasting the situation of exact
reproduction of verbal statements. Since the invention of writing, the
latter has been possible with spoken statements, though hand copying of
books was the only method of replication. Automated printing allows the
production of an unlimited number of copies, although, as Ivins points
out, one way of viewing the effect of this development is merely reducing
the amount of proof reading required.

A degree of ‘verisimilitude’ is required of any image: is it the same for a
sketch, a diagram and a picture? There is a particular importance for
accuracy of the representation when it is taken as a mathematical
counterpart and work is done directly on the representative as if it were
the object itself (such as measuring geometric drawings).

One debate concerns the question of the original, and the relation of the
‘copy’ to it. I spoke earlier of the relation of resemblance between
counterpart and object. Michel Foucault draws a distinction between
‘resemblance’ and ‘similitude’, in terms of the former having a ‘model’ or
original element, one “that orders and hierarchizes the increasing less
faithful copies that can be struck from it. Resemblance presupposes a
primary reference that prescribes and classes”, while with similitude the
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common ancestor is missing: they are alike one with the other, with
neither having a prior claim.

The situation with similitude exists with prints. A plate is made, but this
is not the original. A limited edition may be run and the plate destroyed:
while they are run in order, there is no original, only a first, a second,….
The same is true with photography: the negative is not the original, many
positives can be made. There is no original. Originals leave room for the
imagination, they are only what they are. If what we have is a copy, then it
is constrained by having to be a copy of. In a society filled with
reproductions, we have a preoccupation with originality. Inherent in the
processes of print-making and photography is exact reproducibility.

Resemblance serves representation, which rules over it; similitude
serves repetition which ranges across it, similitude circulates the
simulacrum as the indefinite and reversible relation of the similar
to the similar.

(Foucault, 1983, p. 44)

Computers offer a new technology for exact reproducibility of images. The
above would suggest that it may be difficult to see such images as
resembling. What is the source of authenticity for any mathematical
image? Must it be one of resemblance to its erstwhile object? Do we not, in
fact, create these mathematical ‘objects’ in order to have an original from
which our ‘representations’ may then derive?

Ivins offers a historical commentary on the problems of science and art
history arising from a past inability to make such exact copies of visual
images. He writes:

As we have seen, the Greek botanists were fully aware of the
limitation upon the use of hand-made pictures as a means of
communicating exact ideas of shapes and colours…. They could
only make copies of pictures, and when hand-made copies are
made from hand-made copies it takes only a small number of
copies for the final copy to bear no practically useful resemblance.

(1969, p. 161)

Consequently, even for a geometric diagram to be repeated accurately, a
copyist would need to understand what role it played in order to stress
and ignore correctly, tracing not being feasible. And the copier is always
working from the substitute rather than the original.

I am interested in the ability of computer languages both to capture and
to execute an exactly repeatable sequence of operations (which provides in
some ways the definition of an algorithm). The implementability of
computer languages provides a strong link between the exact repeatability
of text statements (e.g. programs printed in a computer magazine) and
exactly repeatable pictorial statements. The now-commonplace quality of
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this event has resulted in its becoming invisible. Are computer-generated
mathematical images originals? Or are they copies, and if so of what? How
are we to know? The relation between things seen and imagined in
mathematics is particularly complex.

Ivins writes of photographs as a key stage in the making of exactly
repeatable pictorial statements, indicating how it was only with the
photograph that a distinction was perceivable between a maker and a
reporter of a work of art. But he also points to the influence of the
photograph in substantially determining how we came to see.
 

As the community became engulfed in printed pictures, it looked
to them for most of its visual information…. As people became
habituated to absorbing their visual information from
photographic pictures printed in printers’ ink, it was not long
before this kind of impersonal visual record had a most marked
effect on what the community thought it saw with its own eyes. It
began to see photographically, it stopped talking about
photographic distortion, and finally adopted the photographic
image as the norm of truthfulness in representation.

(ibid., p. 94)

Thus by conditioning its audience, the photograph became the
norm for the appearance of everything. It was not long before men
began to think photographically, and thus to see for themselves
things that previously it had taken the photograph to reveal to their
astonished and protesting eyes. Just as nature had once imitated art,
so now it began to imitate the picture made by the camera.

(ibid., p. 138)

The ‘impersonal’ photographic record meant that it was not hand-made,
even though it was eye-made. With a photograph, the objects delineate
themselves, rather than humans doing it with their hands. But the traces of
the way of seeing rather than the way of drawing may be far less evident.
At the moment with the current state of screen image technology, screen
distortion (‘straight’ lines not being straight, for instance), puts us at the
corresponding stage of still talking about ‘computergraphic distortion’.
How long will it be before we adopt the computer-generated image as the
norm of truthfulness in representation? Behind all this is a resilient belief
in the possibility of unmediated seeing which relates to the fantasy of
perfectly transparent understanding.

Roland Barthes (1984) has written a meditative essay on photographs
and photography. He points out that with a photograph the signified
‘adheres’ to the signifier and claims the essence of a photograph to be the
assertion: ‘that-has-been’. With a photograph the object needs to have
been present. “A specific photograph…is not immediately or generally
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distinguished from its referent (as is the case for every other image…) by
the way in which it is simulated” (ibid., p. 5), adding that because “a
photograph always carries its referent with it”, it is far harder to perceive
the photographic signifier: “a photograph is always invisible: it is not it
that we see” (ibid., p. 6).

Photography’s Referent is not the same as the referent of other
systems of representation. I call “photographic referent” not the
optionally real thing to which an image or a sign refers but the
necessarily real thing which has been placed before the lens,
without which there would be no photograph. Painting can feign
reality without having seen it. Discourse combines signs which
have referents, of course, but these referents can be and are most
often “chimeras”. Contrary to these imitations, in Photography I
can never deny the thing has been there.

(ibid., p. 76)

With computer screen images, what are they images of? They are undrawn
by human hand, yet are projected as photographs are coming to be. The
relation between the image and what it may once have been an image of is
becoming more complex with the possibility of storing, editing and
displaying of photographs in computers. The fact that digitised images
can be edited on a computer and then printed out again, means that any
sense of a photograph necessarily being a representation of something else
is fading. Photographs are taking on a new life as entities in themselves,
belying Barthes’ observations of a mere ten or so years earlier.

Computers generate images and not pictures, even if photographs are
subsequently made of them (such as beautiful ones available of fractals).
How are we to decide whether the image is dependable, to authenticate it
now a screen image is becoming the norm, rather than a paper one? For
Barthes (ibid., p. 85): “The photograph’s essence is to ratify what it
represents”.

The static, time-frozen rather than compressed nature of photographs
also points to their singular nature. Can photographs aim for a generality,
or are they for ever particular? Are what Cabri-géomètre offers us ‘stills’
because of the possibility of motion to generate generality through
continuous juxtaposition of particulars, turning a photograph into
cinema? This is one reason for valuing drawings rather than screen
‘photographs’ for their generality rather than particularity

One of the claims Ivins makes in the transfer from hand-made to
lightmade images is the freedom from the tyranny of the grid (the ‘net of
rationality’ as he terms it), the coordinate framework that determined the
seeing, in order to enable the representation to be rendered. In response to
an increased demand for information, more lines needed to be used in the
wood-cut, finer and closer together.
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The generalised abstract mesh of lines sounds so much like the Eulerian
coordinate plane (Descartes chose his axes relative to the particular
geometric figure he was studying and not conversely). The symbolic
saving in grid-related descriptions over Greek verbal symptoms provides a
good example of the staggeringly compact efficacy that certain
symbolisms can make—as well as the immense amount of structure that is
contained in the ‘infliction’ (to use Dieudonné’s term) of
innocuouslooking coordinates on the plane.

I believe there is an averaging effect of cameras which re-enacts the
averaging effects of making particular etchings or of using coordinate axes.
However, the effects of these representational choices get forgotten and things
become necessary and ‘the way they are’ rather than highly contingent. The
rise of functions (and the consequent privileging of x over y) has obliterated
the study of curves, many of which are not graphs of functions.

The pixel grid of a computer screen is still there, in the same way that
the dot resolution on a film is there, still consistently influencing our
seeing without being discriminable by eye. But ‘zooming in’ on a
computer-drawn graph does not reveal the ‘grain’ of the screen (which is
nonetheless there) as it would a blown-up picture; the graininess that
serves to remind us ultimately that what we have is a picture and not the
real thing. No, what we are shown is a different screen image, just as in
algebra we are presented with a transformed equation; instead of a
sequence of equations, we have a sequence of screen images, apparently
bringing us closer to the ‘true nature’ of the mathematical object.

Camera obscura

Concern and confusion about the nature and consequences of developing
technology is not limited to mathematical devices. I wish to continue
discussion of photography, while shifting focus from the nature of the
photographic image to recent developments in the devices for taking
them: cameras. I hope through this apparent digression to bring out some
features of the educational use of new technology in mathematics. Over
the next couple of pages, I discuss the situation in photography with new
automated, ‘point-and-shoot’ models replacing, among others, single-lens
reflex cameras. While the parallel between cameras and calculators and
computers is far from exact, I feel there is enough similarity to make the
comparison interesting.

In photography, there are now inexpensive automated cameras for
which aperture function (measured in f-stops, usually in seven increments
numbered 1.2 to 16) and shutter function (measured in fractions of a
second), as well as focus and even the speed of the film (measured in ASA
numbers)4 are calculated or read off by a microchip integrated into the
device itself. Consequently, the only thing the photographer does (the
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only function that is actually still available to her) is to compose a picture
and release the mechanism that initiates everything else. This does not
encourage precise composition nor a studied approach—the former
primary values of photography being control over the image and a great
degree of optical flexibility.

Such cameras, because of their design, determine to a great extent what
can and cannot be done. The user cannot manipulate depth of field, nor
choose how to readjust the lighting, nor decide to blur the image
purposefully to create an effect. The result is an averaging which produces
the ‘best available’ picture given the pre-determined balance (and the
aesthetic that lies behind this) among these functions that is hard-wired
into the camera.

Such functions are locked together—they cannot be selected, paired or
controlled independently in order to create an image. Indeed, some
cameras won’t allow you to take a picture (by locking the shutter function)
if it adjudges there to be insufficient light. Light meters in particular are
averaging devices and can badly mislead if there is high contrast,
reinforcing the fact that the average is not a data point.5 The automated
camera cannot stress and ignore, emphasise or isolate in the way the
human eye can: these human abilities result in a seeing that a
photographer can vainly strive to capture.

All of the discussion so far has been from the point of view of taking
decisions away from a photographer who is used to being able to control
these functions manually. What is the effect on a novice learning
photography when the only camera available is such an automated ‘point-
and-shoot’ one? Photography clearly becomes a different experience.

What happens is that novices might see something yet lack the ability to
incorporate the desired subtlety of their seeing into the picture—because it is
set against the averaging effect of the device. It may be that the mechanism
automates the function so successfully that it effectively disappears: the user
may be unaware that other possibilities exist. Such devices also carry the
subtle implication that there is a ‘right’ or ‘best’ picture to be taken.

On the other hand, one advantage of such an automated device is that
the novice does not have to worry about mechanical or technical aspects at
the outset. Almost all technical detail is suppressed and need not interfere
with the intent or desire. If photography is conceived as composing,
seeing and choosing a decisive moment, beginners are freed to work
directly at this ab initio. It also may be that they do not wish to become
photographers, but would nonetheless like to take pictures—and they can
get more than satisfactory results from these cameras.

However, such a view implies that technical and compositional aspects
of imaging through a camera are independent of one another, whereas one
way of learning about producing a desired effect is through ex-
perimentation with precisely these technical aspects. The possibility of
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gaining technical fluency at the same time as photographic awareness is
no longer there. The technology, while providing easier, less sophisticated
access, is also partially determining what pictures can be brought into
being. The camera is a recording device: but it can also serve as a seeing
and an editing device, despite the human eye being much more
sophisticated than the camera.

Whichever technology is in use serves as an extension, amplification or
diminution of some human functioning and its design capabilities are
always limited. Such inventions also may alter or even serve to determine
the genre—similar to the way in which photography took over from
portrait painting in the nineteenth century. Early photographs attempted
to mimic the look and conventions of oil painting, such as using soft focus
(achieved by putting a gauze as a filter over the lens). Barthes (1984, p. 30)
observes: “The first man who saw the first photograph must have thought
it was a painting: same framing, same perspective”.

Seeing photography initially in terms of oil painting is an example of a
metaphorically structured perception. Metaphors are inherently conservative
and backward-looking. They are about seeing the new in terms of the old.
This also offers a reason why for contemporary experts schooled and fluent in
the traditions and conventions of the technology of the recent past, such
technological change seems always to be solely a loss, usually of control:
control that has arisen from their expertise acquired at whatever cost. Yet
another technology can offer new, as-yet-unperceived possibilities.

The position with arithmetic calculators, geometry software, graphic
calculators and computer algebra systems in the light of the foregoing
discussion is quite interesting. If you cannot vary something, it is hard to
get a sense of the possibilities. Does machine-automated functioning
preclude exploring questions such as:
 
• What is it actually doing?
• How does it do that?
• Do all machines do the same thing?
• Could I aspire to doing that without the machine?
• How was it done before machines?
 
Calculators and computers have both means and methods hard-wired or
deep-programmed into them on grounds of speed and efficiency. But
these are not generally accessible to the user. As with taking pictures, such
devices are very efficient: they can save time and energy, they are portable
and provide simple access to computations of many kinds. They are very
useful devices for operating in the material world. But for some of us at
least who are involved in mathematics education, our greater concern is
with students encountering and engaging with mathematics than solely
with their successful functioning in the outside world.
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To measure the inaccessible consists in mimicking it within the
realm of the accessible.

(Serres, 1982, p. 85)

This chapter starts to explore how parts of mathematics (and its symbols)
are related and ‘applied’ to events in the material world, by means of the
process of measurement. The range of what and how humans have chosen
to measure has both widened and deepened over the ages, as have the
techniques and devices for doing so. The expression ‘to get the measure of
something’ (as well as ‘to have someone’s number’) implies it is then
satisfactorily known.

There is a deep connection between symbols and measures. Measures
have come to be taken for the thing measured, and this process echoes the
way in which symbols come to stand for the thing symbolised. The
measure becomes the name for the thing measured, and because numbers
can serve as counterparts too, these things are manipulated by means of
the measures. I also take a look at ‘measuring’ mathematical entities
themselves.

For instance, a secondary teacher said to his class of twelve-year-olds,
“I’ll put these angles on the board and I’d like you to say whether they are
acute, obtuse or reflex.” He then wrote: ‘30°, 75°, 145°, 200°, 350°, 5 right
angles, 6 right angles’ (thus using two different units of measure: the
degree and the right angle). He used the measure of the angle
metonymically as the name for the angle, in some sense substituting the
measure of the angle for the angle itself (with the tacit assumption that all
200° angles, for instance, are the same). This is a commonplace
mathematical practice.

In the 1960s, there was an attempt to pull apart useful, functioning
confluences (such as numeral-number) in the name of clarity, correctness
and precision. Yet the intent of the above task was to allow a property of
the measure (namely numerically less than 90°, bigger than 90° and less
than 180°, or bigger than 180° and less than 360°) to determine whether an
angle is adjudged to belong to the categories of acute, obtuse or reflex

Numbers are a human invention, and the world is not inherently
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numerical. The numbers are in some way acting as counterpart symbols
for the actuality. They are then worked with (compared, ordered,
averaged,…) and then the results transferred back and interpreted in the
original situation. It is quite possible to specify how to measure something
without being clear on what the thing itself is. The familiarity and
apparent solidity of the numbers help to assuage any lingering doubts.

Coding information into numerical form has a tendency to lend it
spurious objectivity Once the world has been quantified into the form of
numerical data, it is increasingly likely that they will be fed into a
computer. The capacity of computers to store data on a massive scale has
seduced us into attempting to measure ever more facets of our world, as
well as providing the prospect of manipulating them, something that

angles respectively. The measure of the angle is identified with the angle,
and then properties of the measures are used to ‘manipulate’ the angles
themselves. In some ways, the angles are being named through their
measures and brought into existence by using the number name.

For instance, is it the doing, the turn, that is the right angle, or is it the
static end result? Which is to be stressed? There are many situations where
seeing angle as dynamic, rather than static, is beneficial to understanding.
For numerical measures to be useful, they should be constant, which
suggests that the thing measured is static. Earlier I described the
metonymic move from ‘1, 2, 3, 4, 5’ to ‘5’, from counting to count, as well as
from drawing to drawn. Mathematics in general, and measurement in
particular, repeatedly turns processes into objects. Measurement involves
the placing of numbers onto the world, rather than the extraction of
numbers from it.
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would have previously been unimaginable.
Some of the implications of this are discussed in Joseph Weizenbaum’s

book Computer Power and Human Reason, whose telling subtitle identifies
the tendency to move ‘from judgement to calculation’. One of its central
themes is a lament for the systematic replacement by calculations of the
use of human judgement in situations: computations being increasingly
carried out by computers without the apparent involvement of humans at
all. As science and technology develop, the gap between what is
measured, and the actual object about which measurement claims are
being made, increases. This conceptual distance can allow human
distancing as well. A current charged example of this is that of pilots who
bomb targets by aligning two points of light on a computer screen, which
may allow them to believe that they are not therefore directly killing
human beings. This is one way in which our society is becoming
increasingly mathematised, and in ways which are increasingly invisible. I
return to this theme in the next chapter.

The first section below details examples of measurement as well as the
accompanying language and symbols invoked in the everyday world
which surrounds me. The subsequent section looks briefly at certain
features of human measurement of the social world and links directly to
the next chapter on the contexts of mathematical problems. The third
section explores briefly an instance of measurement of the physical world,
including a discussion of the nature of measurement itself as well as its
relation to the senses of both touch and sight. In the final section, I turn to
the question of exactness and the measurement of certain ‘supernatural’
objects of mathematics such as the circle or square.

MEASUREMENT IN CONTEXT

 
NEDDIE SEAGOON: How far is it to the valley?
MAJOR BLOODNOCK: Roughly sixty miles.
NS: I know it’s roughly sixty miles, but what is it exactly?
MB: Seventy miles.
NS: We’ll go roughly, it’s ten miles shorter.

(The GoonShow Scripts)

 
Any urban environment is symbol-dense: symbol-displaying devices
made by human beings abound. Many arithmetic symbols are employed
together with geometric elements in measurement displays, diagrams and
charts, graphs and other ways of providing, storing and representing
information. For example, a whole range of human uses of mathematical
(mainly arithmetic) symbols is revealed when driving along an English
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road: one road sign has a 50 in a red circle, another bears the legend 7%
with a sloping line, a third advises ‘Weight limit 7.5 tonnes’. A motorway
sign bears the symbols ‘A508’ and lower down on the left a ‘15’ and on the
right ‘½m’; on another ‘M.Keynes 25’ and on a third ‘Petrol **** 51.3’. There
are signs with \\\ or \\ or \ on them just before a motorway service
station or exit, and signs saying ‘Road works 400 yards’.

On the dial of a car radio, there are two number scales, one labelled
MHz and the other kHz. A device on the dashboard of a car reads 8:51, a
rotating pointer on a second indicates 75 (the dial is labelled mph), while a
third offers whole numbers between 0 and 6, with many divisions in
between, and is cryptically labelled 1/min×1000. Signs on the backs of
cars label them as 3.2s or 2000s, etc.

Any adult living in England is likely to be able to interpret most or all of
these symbols, and, in some sense, to ‘say what they mean’, though often
that will mean they can use the symbolic information in order to control the
device. On a radio dial, for instance, the numbers can be used to locate
stations without any sense of what an Hz might be or what it is being used
to measure. You might know that the tachometer measures engine speed, in
‘revolutions per minute’, and the information can be used in order to guide
when to change gear (while engine noise, although unquantified, is another
possible indicator), without a clear sense of ‘revolutions of what’, how they
are measured or what the indicator 1/min x 1000 refers to. Some of the
numbers (such as 2.8) on cars may refer to the engine capacity in litres or
cubic centimetres, while others may have no such measurement function.

Numbering is a general term for a range of processes by which numbers
are attached to different objects or situations in our world. Besides using
numbers as names (recall the delicatessen queue instance mentioned in
Chapter 4), transitive counting and measuring (the focus of this chapter)
comprise the two fundamental means of numbering.

There are two distinct uses of numbers in the above collection of
arithmetic symbols in contexts. These are:

• Numbers as labels Some uses of number are primarily for the naming
functions of identifying and distinguishing, such as house, telephone
or social security numbers; the central principle is that no two distinct
objects are to have the same number. The quantitative aspect is ignored
or irrelevant—such as a road number or a car labelled 9000 Turbo; an
even clearer example would be a Number 15 bus. (With the recent
British privatisation of bus routes, different companies used the same
familiar route numbers and so a court case arose in order to decide the
‘meaning’ of a bus route number.)

The number is being used primarily as a convenient name. (In
Boston, underground lines have colour names—Red line, Orange line;
in London, some have names relating to station names—like Victoria
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or Bakerloo;1 in Montreal, they have numbers.) Certain namings do
relate to some measured feature of the situation, however, as with a
C60 audio-cassette or an El80 videotape (where the number refers to
playing time in minutes). Some, like road exit numbers, allow certain
properties of numbers to be taken advantage of. (In England,
motorway exits are numbered, hence ordered; in Germany, where
there are many more, they are named only by the next town.)

• Numbers which actually measure something There is an implicit or explicit
unit (the speed limit is in miles per hour, the odometer reading is in
miles, the clock reading is in hours and minutes). As with many of the
above examples, the context is frequently required to supply the units.
The tendency is to use the numbers alone, with the units suppressed.

However, much of the application of number to the physical and
social worlds comes about through measurement of certain attributes
of objects or situations. Measurement introduces numbers directly into
the world.

The central use of measuring is that of comparison. Is this bigger than that,
longer than that, older than that? We don’t always need numbers if we wish
to compare things. In order to achieve a direct comparison, the two objects
(situations) need to be brought ‘next to’ each other in some sense, so they
touch: two children can stand back to back to decide who is the taller, two
small objects can be put in opposite pans of a balance and directly visually
compared with respect to weight, and so on.

But often objects being compared cannot be brought next to each other
in this way: they may be too small, or too far away from each other, or be
immovable for some reason.2 For example, you may want to check
whether a heavy piece of downstairs furniture will fit into an alcove in an
upstairs bedroom. A third object can be used as a measure—one that can
be moved from one to the other, laid against one and then laid against the
other: a portable common comparison.

Measuring can be used to short-circuit the problems of comparing
directly. By measuring numerically, we assign a number to each object and
then the numbers can always be ‘brought together’ (mentally) to be
compared with one another. Once you have worked out which is the
larger number, that becomes the basis for deciding which object is the
larger/ older/heavier/…. The numbers become the counterpart of the
material-world object, process or situation. And an important justification
for using numbers as measures is that any two numbers can be ordered;
that is, in principle we can always decide which one is the bigger, and
which the smaller.

With actual measurement, there is always the question of the units
involved. Often, they are somewhat vague and seldom specified in the
actual context. With measurement of continuous quantities (like lengths,
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weights or capacities), there is also the recurring question of
approximation—the numerical answers can never be exact—they are
actually signalling an interval of numbers. But they become the length, and
so become exact.3 The numbers come to stand for or symbolise the quantity
measured. (I have postponed until the last section of this chapter the
question of the exact ‘measurement’ of geometric objects, such as the length
of the diagonal of a square of side one unit or the area of a unit circle.)

The language of measurement

The English language offers structures for comparison and part of
learning to speak mathematically involves acquiring these spoken forms:
‘bigger than’, ‘lighter than’, ‘the tallest or heaviest’, ‘as long as’, ‘twice as
wide’, ‘a third as long’, ‘in every’, ‘for each’, ‘per unit of. All of these
constructions offer qualitative or quantitative ways of measuring or
ordering events, objects, experiences.

There is also a language of approximation: there are about five minutes
left, there are roughly forty pages to go, we have between two and three
hundred members, there is approximately half a pint still in the bottle.
These words are used with quantities, but also indicate that the numerical
values are not to be taken literally. Such approximations are quite
interesting statements: for instance, there are about 190,000 inhabitants in
Milton Keynes. When would this claim be false? (For much more on the
linguistics of approximation as one part of vague language use, see
Channell, 1994.)

Some statements also illustrate the category of ‘round’ numbers which
tend to be employed with approximations: a sign says ‘Office space for
rent: 50,000 sq. ft’. In part, what a ‘round’ number is will depend on the
context and the object being measured, but there is something clearly
anomalous about statements like, There are approximately four houses of
this type in the street’ (from a surveyor’s report). More acceptable is the
match box which reads ‘average [or approximate] contents 48 matches’, or
bottles of wine having 75 cl e on the label (where the e means ‘estimated’).

There is also the comparative, ratio language of ‘per’: miles per gallon,
revolutions per minute, people per square mile, feet per second per second.
All prices are explicitly or implicitly ‘per’, meaning ‘for every’. At petrol
pumps, the prices are in pence per litre; on fruit and vegetables, pence per
kilo; on clothes, pounds per item. Changing units is about numerical
equivalences, and need not refer to anything about the actual objects at all.
Dollars into pounds, inches into centimetres, pounds into kilograms, °C
into °F, degrees into radians, pence per litre into pounds per gallon. All
involve the notion of a rate, a substitution of this for that, so many of these
per so many (often 1) of that, though a direct comparison is often offered
by means of a conversion graph or chart.
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Units of measure

The metric (SI) system of weights and measures has a structure just as the
imperial one does. The parallel with different numeration systems is quite
close. Knowledge of this structure4 can help make sense of or even allow
you to work out what certain measures must be, purely on linguistic
evidence alone. Kilogram and kilometre5 bear the same relation to gram
and metre respectively: and so a kilojoule must also be 1000 joules, even if
you do not know what a joule is a measure of, or the particular size of one
joule. There is also, thus, a certain irony in that ‘a kilo’ has become a
common abbreviation of ‘a kilogram’ in the particular context of weight.

The same is true for radio dials marked in kiloHertz (kHz) and
megaHertz (MHz). Whatever a Hertz is, a kHz is thousand of them and a
MHz (a megaHertz) is a thousand kHz, or a million Hertz. There are then
three distinct types of knowledge required for successful handling of
measuring units in context. These are: structural knowledge of the SI
metric system coded into the naming system, experience of what is being
measured, and having a sense of the actual size of the unit.

The notation for units mirrors algebraic symbolism, even to the point
where, in secondary physics, discussions of the dimensions of units feel
very like algebraic cancellation. Square centimetres are often written as cm
×cm or even cm2; the sense of ‘per’ is rendered by the division line, metres
per second comes out m/s. The units given on the tachometer, 1/min×
1000, reflect a process where whoever reads the dial is invited to perceive
the numbers directly rather than to scale the number on the dial by
multiplying by 1000 and then to interpret that number as revolutions in
one minute.

It is perhaps not surprising that pupils in school tend to ignore the units
of measurement. Indeed, in the midst of a computation, it is common
mathematical practice to drop the units and work with the numbers alone.
The counterpart function has temporarily superseded the
namingsignification one. (For an insightful look in general about
elementary school practices involving measurement, see Janet Ainley’s
(1991) challenging piece Is there any mathematics in measurement?’)
However, when solving actual measurement problems elsewhere, other
forces come into play. Jean Lave reports a ‘Weight-watchers’ class, whose
participants were preparing their meals:
 

In this case they were to fix a serving of cottage cheese, supposing
the amount allotted for the meal was three-quarters of the two-
thirds cup the program allowed…. He filled a measuring cup two-
thirds full of cottage cheese, dumped it out on a cutting board,
patted it into a circle, marked a cross on it, scooped away one
quadrant, and served the rest…. At no time did the Weight
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Watcher check his procedure against a pencil and paper
algorithm, which would have produced ¾ cup×2/

3
 cup=½ cup.

(1988, p. 165)

From my perspective, there are at least three points worthy of note here.
The first is that the problem was solved by operating directly on the
cheese, rather than mathematically to obtain the right amount which was
then to be measured out. The solver (who had studied calculus) found a
way to take three-quarters of a particular quantity of cheese (namely two-
thirds of a cup).

The second is that Lave’s account of what would be the written solution
seems slightly awry. She writes: “which would have produced 3/

4
 cup× 2/

3
 cup=½ cup”. But the problem was to find ¾ of ‘2/

3
 cup’, while the

arithmetic solution finds ‘¾×2/
3
’ cup. The first number is acting as a

numerical operator on the quantity, while the second is a measure of the
quantity. Arithmetically, we can see that the same amount would be
obtained by finding 2/

3
 of ‘¾ cup’, but that is to interchange the (very

different) roles of the two numbers in the actual problem, analogous to the
percentage example which is to be offered shortly.

The third point is one about classroom contexts for such erstwhile
measurement problems. If it were posed as a verbal problem, would a
pupil ask: has he got a measuring cup and a cutting board handy? Such
problems often ask pupils to engage with quite implausible situations (in
order to make them mathematically tractable), such as baths filling with
plugs out. I look at this issue in more detail in the next chapter.

Cups and tablespoons as cooking quantity measures seem to speak of
familiar, household objects. You and I probably have them in our kitchens.
Yet when employed as a semi-formal measure of capacity, they have a
particular function. The context of use allows for some variation (my ‘cup’
as a sufficient substitute for the recipe’s ‘cup’, for instance), just as two
eggs in a recipe are not usually of specific size.

But what about a more formal unit of capacity? What is a cubic
centimetre? At one level, it is a physical entity, one which embodies the
property of which it is a measure, and cm3 (formerly, cc) is its symbol. So,
in this instance, its dimensions are 1 cm along every edge. Its weight,
however, is not relevant, nor is what it is made of (provided its edge
lengths and shape are pretty stable). So the question ‘How heavy is a cubic
centimetre?’ can have no consistent answer, although any given
embodiment will have a particular weight, as it must be a physical object.

We talk about a cubic centimetre in the singular, yet is there one or are
there many (more or less the same)? There is a sense in which a cubic
centimetre is also an abstract ‘thought object’, one which stacks perfectly,
of which every one is the same, allowing perfect repeatability. The desire
for ‘exactness’ in measurement moves units more closely in the direction
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of mathematical objects, and in terms of their being ‘handled’ through
thought alone, closer to the ‘manipulations’ of geometry and algebra
rather than that of hands directly. In some sense, a unit is an ideal and cc is
one symbol for that ideal. Physical units may seem concrete, and very
much of the physical world, but the closer we get to what they are and
how they are used, the less concrete and the more abstract they become.

The same is true of an inch or a millimetre. At one level, it is a marked
length on a ruler, yet its use also involves the presumption that every one
is the same as any other. The ability of humans with the aid of machines to
fashion objects very similar to one another, exactly repeatable physical
statements, results, among other things, in a widespread availability of
measuring instruments. The metre used to have a physical referent (a
singular, unique metal bar kept in Paris under certain physical conditions,
such as a particular constant temperature). But rather like paper money
which no longer has a physical referent in terms of a certain weight of
gold, the metre is now specified in terms of wavelengths of a certain type
of light and so has lost much of its tangibility. And certainly nothing
would have been allowed next to it for fear of contaminating its physical
properties. Its reference status became purely symbolic.

Contrast this discussion with the notion of percentage with its
accompanying symbol, %. What sort of symbol is it? It looks in some ways
like a unit, of which you can have a certain number, as, for example, when
hills are labelled 13% as a measure of their slope. The symbol itself is
indicative, stylistically representing a fraction. We can press the % key on a
calculator, which suggests it is an operator like+or×, although the way it
operates is different from them.

However, per cent (sometimes written ‘percent’, which reinforces the
sense of unit) is an abstract compound unit of numbers: five per cent
meaning five in every hundred. Interestingly, North American
newscasters have started talking about ‘percentage points’, thereby
making a percentage into a number of units rather than a rate, and hence
5% becomes just like 5 metres. (I have never heard asked the question:
what is a percentage point?) Percentages are used to compare rates which
are otherwise difficult to compare. In the case of a 5% pay award, 5 per
cent more is implied and it also carries with it connotations of fairness—
the same rate for all—despite the effect of a constant percentage increase
being to widen absolute differences.

Percentages are often used in the context ‘of’ something: 50 per cent of
some quantity and the use of ‘of’ signals multiplication. Which is more,
17% of £50 or 50% of £17? We are up against a similar split perception as
that between arithmetic and algebra. You can know that 2(3+4)=2×3+ 2×4
either by working them both out and seeing that they give the same
number (14), or you can directly know they must be equal (through an
algebraic perception about properties of the operations). The two
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percentages given above can be seen to be the same by calculating them
both and obtaining the same number of pounds. You can also see that they
must be the same through an algebraic perception of equivalence because
the word ‘of signals multiplication and multiplication is commutative.

Why does the context involving percentages and pounds serve to
confuse this? Because there is no direct way of perceiving the sameness in
the context itself. It is a counterpart property alone. As I mentioned earlier,
in many computations, it is common to ignore the units, along with the
fact that the numbers are measures, and work mathematically with the
numbers alone, only at the end reinterpreting the numerical answer back
into the context. One power of abstraction is that it is possible to recognise
samenesses that were not readily perceivable in the context itself.

MEASUREMENT OF THE SOCIAL WORLD

 
Everything that exists, exists to some extent, which can therefore
be measured.

(Thorndike, 1973, p. 17)

The above claim draws attention to an increasing tendency to quantify the
world. Certain quantities, such as length, weight or temperature, seem
relatively easy both to conceptualise and to quantify (and the
quantification comes after the conceptualisation). Quantification,
however, is a growing feature of areas of life where the phenomena
purportedly being measured are far more ambiguous or vague, and their
definitions, therefore, more contentious. Such an example is given by
Richard Noss, who writes:
 

A recent example of the extent to which this myth [of mathematics
as dehumanised and hard-edged, invoking meaningless
problems] is culturally accepted involved a TV interview with a
sociology professor who had just given birth to the notion of the
QALY—a Quality Adjusted Life Year—which allowed him to
judge the relative ‘values’ of two human lives so that scarce funds
could be ‘scientifically’ allocated to the most deserving cases. The
interviewer, seeking perhaps some rationale for the ideas, asked
the professor whether this was a helpful way to think about the
value of human life, or perhaps ‘only a mathematical formula’.

(1988, p. 265)

This century’s massive increase in (mainly numerical) data about people
can be difficult to grasp. A glance through any newspaper will provide a
welter of examples: health statistics, estimates of risks (a 1 in so many
chance) and economic reports, to name but three. The information
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collected and analysed for various ends from the national census provides
a further instance. Mary Douglas (1991, p. 6) writes: “Now we are so used
to thinking statistically that we hardly notice how much we are besieged
by politically serviceable numbers, averages and chances”.

A significant shift in what was measured occurred in the late nineteenth
century, with the development of modern statistical techniques. Such
measures included attempts to quantify people’s potential and their
educational achievement and brought with them particular problems. For
instance, in the use of IQ tests, the act of measuring at first gives an
indicator, then later becomes an entity in its own right, thereby creating
that which it is supposed to be measuring. It thus seems to provide an
‘objective’ way of comparing or judging individuals.

The measurement of ‘intelligence’ by IQ apparently made it a trivial
process to decide which of two individuals was ‘the cleverer’. Yet ever
since its introduction, there has been marked wrangling over precisely
what is being measured and the purposes to which such measurements
were being put (see, for instance, Stephen Gould’s (1981) book The
Mismeasure of Man). Additionally, questions have been raised and
concerns expressed about how stable the measure is (that is, measuring the
same thing should produce the same sort of answer), whether an
objective, general measure of intelligence could be captured solely by one
number, and how accurately it is possible to measure such a subtle human
quality. The entire intellectual diversity of human beings has been
collapsed into one number.

But, as the Noss quotation about QALYs implies, the fact that we have
produced numbers suggests that they must be the measure of some well-
specified thing. I want to suggest that the relation between a quantity and
its measure is akin to that between an object and a symbol for it. The
number does duty for the thing purportedly measured. And the existence
of the symbol (here, the numerical measure) is taken as proof of the
existence of the object.

A particularly good example of the complex relation between object
and measure is provided by money.6 The measure (money) has a physical
existence of its own and seems much easier to understand in terms of its
function than either its purported underlying quantity ‘value’ or its
referent, despite the familiar adage about the importance of ‘getting value
for money’. What money represents is a complex phenomenon (involving
the perilous history of the ‘absolute value’ of the gold standard) and shares
some attributes of the number/numeral distinction that I discussed in
Chapter 4. It is also an object itself that can be bought or sold and thus
must itself command a price. There is no scope here to go into this
fascinating topic, but an excellent account (linking the notions of zero,
vanishing points in art, and paper money) can be found in Brian Rotman’s
(1987) book Signifying Nothing.
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The context of money problems offered in schools provides the
possibility of looking more closely at certain relations between school
mathematics and the so-called real world. One example which has
relevance for mathematics teaching is the practice of ‘shopping’, not least
because it is a common presumed point of contact between the primary
(and increasingly, the secondary) school and the everyday world of the
pupils outside school. In school, it is frequently used by teachers as a
means of working on number.

In a chapter entitled ‘2p doesn’t buy much these days’, Valerie
Walkerdine contrasts the learning of children about money at home and at
school, and looks in detail at a lesson where the teacher’s aim is to practise
forming complements in ten, using a ‘shopping’ game, where small
denomination coins are exchanged for goods.

The problems here do not resemble practical problems either in
their content or their methods of solution. In this sense they are
‘fake’ practical problems and most of the children seem to
recognise this. The practical context is a foil for the teaching of
certain mathematical relations, so that everything about the task is
different from shopping.

(Walkerdine, 1988, pp. 146–7)

She later comments:
 

The purpose here is not to practise shopping but to calculate a
subtraction. In this sense, the practical format can be misleading
and sometimes downright unhelpful…. Everything about this task,
then, testifies to the disjunction for the children between this task in
mathematics and the knowledge of money which they have
obtained outside school. The two practices barely overlap. The
pedagogy assumes that children learn about money only from the
handling of small coins which leads to the real understanding of
arithmetic processes, whereas the understanding of money on the
part of the children is one in which large sums of money are
involved, these sums have important value attached to them and
are inserted into crucial domestic economic practices.

(ibid., pp. 147–8)

This section has discussed some contexts in which measurement is
embedded and hence what knowledge and patterns of thought are
required. I continue to explore the theme of contexts for mathematical
thinking in the next chapter by means of looking at the tradition of word
problems. But more significant problems for the development of
mathematics itself arise from attempts to use mathematics to measure the
physical world which surrounds us.
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MEASUREMENT OF THE PHYSICAL WORLD

 
The height of a pyramid is related to the length of its shadow just
as the height of any vertical, measurable object is related to the
length of its shadow at the same time of day.

(Plutarch)

One of the historical associations with the development of mathematics has
been varied and ingenious attempts to ascertain the scale and scope of the
physical world. The very word ‘geometry’ connects it with measurement of
the earth. Mathematics and measurement have also been involved in
astronomy, for example, as far back as we have written records. Babylonian
tablets record astronomical measurements to quite remarkable accuracy,
and it is a residue of their base 60 numeration system that we have 60
minutes7 in an hour, as well as 360 degrees in a full rotation.

One of the fundamental reasons for symbolising is when something is
missing or inaccessible. Under these circumstances, a substitute is
employed to stand in place of the missing object. In the seventeenth
century, the development of optical instruments such as telescopes and
microscopes brought many previously inaccessible phenomena within the
range of the perceptual and hence, the measurable. Even before the
development of greater optical precision, much physical measurement
was indirect. Something else, which was directly accessible, was measured
and then, by means of a mathematical argument about mathematical
objects, an inference was made about what a correct measurement might/
should/must be. These proxies or substitutes have a symbolic relation to
what they are standing in stead of. But unlike in earlier chapters, the
counterparts here are mathematical—numbers and geometric figures.

A famous example of indirect measurement is the attempt by
Eratosthenes to measure the circumference of the earth. Carl Boyer (1968,
pp. 178–9) writes:

Eratosthenes observed that at noon on the day of the summer
solstice the sun shone directly down a deep well at Syene. At the
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same time at Alexandria, taken to be on the same meridian and
5000 stades north of Syene, the sun was found to cast a shadow
indicating that the sun’s angular distance from the zenith was one
fiftieth of a circle. From the equality of the corresponding angles
S’AZ and S”OZ it is clear that the circumference of the Earth must
be fifty times the distance between Syene and Alexandria. This
results in a perimeter of 250,000 stades, or, since a stade was about
a tenth of a mile, of 25,000 miles.

This account indicates how such indirect measurements can become theory
laden, usually involving explanations from both mathematics and physics, in
order to connect the numerical data the instrument provides to the intended
observation or measurement. A more recent instance of this is provided by
measuring the distance from the earth to the moon by leaving a circular
reflective dish on the moon’s surface during one of the moon landings and
then bouncing a laser beam off it, timing how long it takes to return. Another
pair of even more arcane instances might be direct measuring of ultrasound
echo images of foetuses or bubble track pictures from particle accelerators.

What does it mean to measure?

One of the oldest stories of Greek geometry is of Thales’ determination of
the height of the pyramids. The philosopher Michel Serres (1982) talks of
Thales’ ‘ruse’ in using shadows to compute heights. The measurement
was an ‘as if one, made as if the shadow were the pyramid itself, and then
allowance is made for the fact that the pyramid is not its shadow.8

The ruler is applied directly, but to the substitute, the counterpart. But
the link between the desired and actual measurements is indirect. The
light of the sun transports the inaccessible height to us and delivers it in
the form of a shadow. Mathematics, in particular, geometry, provides the
detailed nature of the link: in the case of Thales’ theorem, the key notion is
similarity. This process illustrates the fundamental sense of applied
mathematics. Whenever that term is used, we should ask ourselves not
only: what is being applied to what?, but also both how is it to be applied?
and what is the means of application? Serres writes:

Accessible, inaccessible, what does this mean? Near, distant;
tangible, untouchable; possible or impossible
transporting…measurement is the essential element of
application; but primarily in the sense of touch. Such and such a
unit or such and such a ruler is applied to the object to be
measured; it is placed on top of the object, it touches it. And this is
done as often as is necessary. Immediate or direct measurement is
possible or impossible as long as this placing is possible or is not.
Hence, the inaccessible is that which I cannot touch, that toward



SYMBOLS AND MEASURES

149

which I cannot carry the ruler, that of which the unit cannot be
applied.
…in the final analysis the path in question [of mathematics, that
these ruses take] consists in forsaking the sense of touch for that of
sight, measurement by “placing” for measurement by sighting.
Here, to theorize is to see, a fact which the Greek language makes
clear. [9] Vision is tactile without contact…. The inaccessible is at
times accessible to vision….
As far as I know, even for accessible objects, vision alone is my
guarantee that the ruler has been placed accurately on the thing. To
measure is to align; the eye is the best witness of an accurate
coveringover. Thales…brings the visible to the tangible.

(1982, pp. 85–6)

To summarise Serres’ argument, he seems to be saying that even to
measure the world accurately, it must after all be measured by eye.

I have quoted extensively from his chapter not just because of his
profound observations about measurement, but also because it identifies
so clearly the involvement of sight in measurement as a way of extending
the power of adjacent touch for comparison, an extension that is
fundamentally mathematical. This provides yet another instance of my
developing theme about the links and contrasts between these two senses
in contributing to mathematics.10

In conclusion, Serres (ibid., p. 85) also offers the following quotation
from Auguste de Comte:
 

In light of previous experience we must acknowledge the
impossibility of determining, by direct measurement, most of the
heights and distances we should like to know. It is this general fact
which makes the science of mathematics necessary.

 
Thus, mathematics both embodies and employs indirection, sleight of
hand.

THE ‘MEASUREMENT’ OF MATHEMATICAL OBJECTS

The foregoing section invokes mathematics in order to enable conceptual
measurement of inaccessible quantities. But similar questions can be
asked of mathematical objects themselves, as such exact relations need to
be called upon in successful measurement of the material world.
Mathematical objects are inaccessible in a different sense: they are
supernatural. Sight alone is insufficient to measure them: Euclidean
figures cast no shadows.

Euclidean geometry also disavows movement: congruence theorems
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offer examples of criteria for equivalence and comparison, that apparently
do not require figures to be moved, let alone be ‘superimposed’. (This is
just as well, as Einsteinian relativity theory tells us that if Euclidean lines
were material, then movement would affect their length!) It is possible to
see some Book I theorems from Euclid’s Elements as effectively performing
this function: one tells how to copy an angle somewhere else, whilst
certain postulates and common notions assert general constructibility
rights: for instance, ‘to draw a circle with any centre and any radius’.

Mathematics has often been developed as ‘thought measurement’.
Archimedes’ famous treatise On the Measurement of the Circle (which
among other things derives 22/

7
 as an approximation to p, but also offers

223/
71

 as a better one) contains the word ‘measurement’ in the title, but its
use is metaphoric—in the sense that there is no measurement of physical
objects with instruments. But there is measurement in the sense that
numbers have been systematically applied to geometrical entities. There is
also comparison, of one geometric figure with another. From this
perspective, much of mathematics can be seen as involving measurement.

This confusion, in particular of the involvement of measuring
instruments in geometry, continues. Jeremy Gray (1988, p. 16) writes as
follows about Descartes’ use of the phrase that ‘curves should admit of
exact and precise measurement’.

Descartes’ instrument is really one that it is better to hold in the
mind than in one’s hands—but that, in a way, is Descartes’ point.
It is a thought-device for showing that curves more complicated
than the circle can nevertheless be considered just as accurate, for
the purposes of geometric construction, as ruler and compasses.
This was not a prospectus for precision scientific instrumentation
business, but a philosophical investigation into the foundations of
geometric truth.

And John Aubrey, in his famous anecdotal collection Brief Lives, penned a
thumbnail sketch of Descartes, an approximate contemporary of his.

He was so eminently learned that all learned men made visits to
him, and many of them would desire him to shew them his
Instruments (in those dayes mathematicall learning lay much in the
knowledge of Instruments, and as Sir Henry Savile sayd, in doeing
of tricks) he would drawe out a little Drawer under his Table, and
shew them a paire of Compasses with one of the Legges broken;
and then, for his Ruler he used a sheet of paper folded double.

(in Fauvel and Gray, 1987, p. 308)

We are back in the world of appearances and the symbolic nature of geometric
diagrams. Although much of the language of mathematics (particularly
geometry) suggests that it is a practical subject to do with measurement, there
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are some important differences. One of the difficulties in school mathematics
education is offering a sense of the exactness of certain (usually geometric)
relations among various figures or parts of a figure.

For instance, in the case of the angle sum of any triangle, there are two
problems. The first is recognising the invariance: the fact that the angle
sum of any two triangles is always the same. The second is arriving at the
numerical value of the invariant: 180°, two right angles, half a circle, p
radians. Is angle summation direct geometric ‘addition’ of geometric
objects, or measurement of the angles and then addition of the numbers?

It is not possible to come to the triangle sum theorem by direct
measurement, that is using counterpart drawings. (See Balacheff, 1991, for
an account of classroom research based on this mathematical result.) Much
school work is done in terms of tearing paper triangles and ‘rearranging’ the
angles. Yet the problems of ‘exactness’ and the fact that triangles are not
made of paper remain. If protractors are used, how often in practice do the
angles of a triangle add up to the required sum? At best, it may be possible to
come to the plausiblity of the desired conjecture, though a more plausible
one might be that the sums do differ, but not by much.

Comparing world-views

One of the more interesting watersheds in Western history of mathematics
has been moving from what might be called the geometric to the
arithmetic-algebraic world-view. The latter involves assigning numbers to
everything (thereby identifying the measure with the object),11 and seeing
letternames as inherently numerical, rather than ‘merely’ as a name for the
quantity itself. By contrast, much Euclidean geometry involves operating
with lengths or areas as geometric objects in their own right.

For instance, Pythagoras’ theorem tells us how to add two areas, non-
numerically, and it plays a key role in a sequence of results in the finite
content theory of plane polygonal regions. The difference between the
phrases ‘the square on the hypotenuse’ and ‘the square of the hypotenuse’
reflects the above distinction, the former viewing the hypotenuse as a line
segment and the latter as a number.

There is frequently a proposition lying concealed behind any definition,
verifying that the definition does indeed do what is wanted (see Pimm,
1993b). Euclid Book IX, definition 9, for instance, asserts: “Equal solid
figures are those contained by similar planes equal in magnitude and
multitude”. From its use, the required sense of equal is ‘same volume’. For
us, ‘same volume’ is a numerical equivalence not worthy of mention, in
part because the numerical measure is the definition of volume. I have
long been worried by the purpose of Euclid’s Elements common notion 4:
“All right angles are equal to one another”. It makes no sense as a
requirement when a right angle is one that is 90°. Once again, when



152

SYMBOLS AND MEANINGS IN SCHOOL MATHEMATICS

starting with the material world and an apparently straightforward
procedure of measurement, we have ended up in deep mathematical and
philosophical waters.
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8

LIVING IN THE MATERIAL
WORLD: SYMBOLS

IN CONTEXTS

It is of democratic importance, to the individual as well as to
society at large, that any citizen is provided with instruments for
understanding the role of mathematics [in society]. Anyone not in
possession of such instruments become [a] ‘victim’ of social
processes in which mathematics is a component. So, the purpose
of mathematical education should be to enable students to realise,
understand, judge, utilize and also to perform the application of
mathematics in society, in particular in situations which are of
significance to their private, social and professional life.

(Niss, 1983, p. 248)

This chapter predominantly looks critically at the nature of many
problems offered as a central part of school mathematics, some of the
simpler problems to which mathematics is apparently applicable outside of
the sometimes hermetic world of pure mathematics itself. Mathematical
problems invoking such human contexts have a number of interesting
features and reflect long traditions as well as offering a focus for some
recent changes in views about what a mathematics education is for.

A long tradition exists among textbook writers and the problems they
offer for the study of mathematics. It is possible to trace the lineage of
many problems back to the Middle Ages and even further. Elements
include both apparently realistic and completely unrealistic settings,
though the numbers seem chosen on many occasions with other ends in
mind, whether to illustrate some feature of note in an algorithm, or to
mask some complexity.

The notion of usefulness was cited in the opening chapter as one
common core justification1 both for teaching mathematics at all, as well as
for the pre-eminent position it often holds within the school curriculum.
Much, too, has been written in the past fifteen years on the increasing use
of mathematics qualifications as a ‘critical filter’ for many jobs in our
society, despite evidence that little of a content nature is actually required
by many such positions.2
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Common questions for mathematics education include: what
relationship does mathematics have with the material world? More
recently, one question has been given particular sharpness: how is
mathematics used in our society and should discussion and exploration of
this process itself be part of what is to be taught under the heading of
school mathematics?

Traditionally, there has been little in the training of mathematics teachers to
encourage them to be alive to the social uses of mathematics (especially
statistics) within the traditional applied mathematics of the upper secondary
school (physics or economics, for example, let alone in social arenas). Teachers
of mathematics have not been expected to explore and contend with broad
moral or philosophical questions as part of their job. A Danish mathematics
educator, Ole Skovsmose, expresses this view quite succinctly:

It is necessary to increase the interaction between ME [mathematical
education] and CE [critical education], if ME is not to degenerate into
one of the most important ways of socializing students (to be
understood as students or pupils) into the technological society and
at the same time destroying the possibilities of developing a critical
attitude towards precisely this technological society.

(Skovsmose, 1985, p. 338)

For instance, when grappling with a problem, there are many ways in
which problem solvers can represent the information at their disposal for
their own understanding. A vast amount of information is conveyed
visually in our society Graphical or other representations can be used to
distort and thereby to manipulate other people (the most common sense of
the word ‘manipulate’—see Chapter 10), so any such interpretation must
attempt to take account of possible intentions which underlie the making
and offering of the graphs, diagrams or tables. When confronting other
people’s representations, therefore, we have to interpret them, including
their purposes. Realising that the graph is not the reality (just as the map is
not the country), for instance, can allow pupils to get between the
representation and what it purports to represent.

Both these aspects of representation could be reflected in the school
mathematics curriculum. Pupils require opportunities both to interpret
complex representations and to work in rich contexts where they
themselves can engage in purposeful representation. Learning to read, and
read behind, other people’s presentations can be enhanced by presenting
their own data as well. Both elements are necessary in order for them to
develop a mature sense of what various forms of representation can do for
them and how various purposes relate to and help determine the form.

Some argue against a divisive distinction between two types of
mathematics, of higher and lower status, as historically embodied perhaps
in the association of Euclid with grammar schools and ‘commercial
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arithmetic’ with former secondary modern schools. Others, in different
contexts, have feared for the exclusion of certain groups (ethnic minorities,
girls) from the knowledge of the ‘high culture’ (be it Shakespeare or Euclid)
which gives access to power. It was certainly common earlier this century
for there to be two versions of ‘Arithmetics’, one for boys and one for girls,
each with problems reflecting their presumed experience and interests.

I have indicated the possibility of failing to recognise assumptions behind
decisions or claims based on numerical data. It is possible to go further and
deliberately ‘massage’ statistics to promote a particular vested interest. Niss
and Skovsmose both write of the importance of developing in their pupils a
critical awareness of these sorts of issues. This can meet with some initial
resistance, however. Lesley Lee writes of her attempts to interest her students
in questioning data and surveys that had been carried out, thereby
challenging some of the presuppositions about the ‘objectivity’ of statistics.

There were times though when students resisted my methods. A
particularly painful memory occurred at about mid-term in one of
my college statistics courses when, after some discussion of the
term’s project [which was] group or individual criticism of a
major statistical study of their choice, [and] answering questions
such as ‘Who paid for it?’, ‘In whose interests are the results?’,
‘What questions were left out?’, two students indicated their
rejection of the project. In a discussion with them after class, they
said they had taken the course ‘to learn statistics, not to criticise
them’. They viewed any kind of criticism as a degenerate activity,
malicious, and a sign of depression in the critic.

(Lee, 1990, p. 55)

There remains a sharpening debate about working for a balance between
examination of mathematical content and context and purpose of use. In
considering some of the materials available, Lee also writes about
Frankenstein’s book Radical Mathematics:

It became increasingly unclear as to whether her aim was to use
mathematics to develop the ability for critical political analysis or
to tap the political involvement of students in order to teach them
some mathematics. Put another way, is the principal objective the
teaching of mathematics or fostering political involvement?

(ibid., p. 55)

Ole Skovsmose has gone so far as to talk of society being ‘formatted’ (as
with a computer disk) by mathematics, and to conclude that the primary
role of mathematics education in a democracy should be to alert and
educate pupils to its effects. However, while I agree with Niss’s and
Skovsmose’s contentions that being in a position to examine the role that
mathematics plays in society is one important reason for teaching it, and
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while I support the development of more critical attitudes as one goal (of
any school subject), surely the sole or even most important purpose of
mathematics education for our society cannot be to criticise it. My prime
purpose is providing thoughtful access to the ways of seeing which
mathematics affords, while not being blind either to the costs involved or
to presumptions about it offering the right or best such ways.

It is nonetheless true that there is increasingly widespread criticism and
disagreement on the purposes and goals of mathematics education for school
pupils, some focused under headings such as ‘education for democracy’ and
‘anti-racist mathematics’, but also under ‘ethnomathematics’. Elsewhere, my
colleague Eric Love and I have written concerning:

a much more radical challenge to received thinking about
mathematics that has been gathering strength over the last decade
which comes from those who might be described as the
‘ethnomathematicians’—although they would reject any such
title. Their concern is that the mathematics implicit in everyday
practices at work or leisure has been systematically denied while
‘official’ mathematics as taught in schools and in higher education
is elevated as the only true form of mathematics. Moreover, a
major effect of school mathematics is to disable people from
operating in the informal and semi-formal world of
ethnomathematics—both by legitimizing school mathematics as
the only real mathematics and, as a result of the way in which it is
taught, by undermining the confidence of a large part of the
population in their ability to function mathematically. For this
reason, those adopting this standpoint challenge the right of
mathematicians to decide what counts as mathematics, and
would like their view to be no longer especially privileged.

One concern that underlies the arguments of the ethnomath-
ematical critique, but which is shared more widely, is that not
knowing mathematics leaves people at the mercy of those who do
understand. Hence, one movement is to help empower people for
the world they live in. Because our society describes itself as a
democracy, the issues of democratic competence and what part
mathematics and its teaching might play in that come to the fore.
What at first sight might seem a preoccupation of a fringe group
can very easily become matters for wide debate when there is an
explicit national curriculum and anxiety about the use of
technology. In other countries, for example Australia or Denmark,
the official curricula are attempting to address such notions
(Skovsmose, 1990); they are likely to become more prominent in
this country.

(Pimm and Love, 1991, p. vii)
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Much of the direction of the work in ethnomathematics has been
arguing to extend the bounds of recognition of classical mathematical
topics and sources to include the skilled work which goes into traditional
craft activities,3 as well as wider, cultural embodiments of patterned
thought. However, Chevallard (1990) offers a trenchant and penetrating
analysis of some of the difficulties inherent in the notion of ‘culture’ in
mathematics education, and in particular his distinction between
‘ethnomathematics’ and ‘protomathematics’, the latter offering fertile
sources for mathematisation without itself being mathematics.

Sociologist Harold Garfinkel (1968) has provided an illuminating
account of the reasons why he coined the term ‘ethnomethodology’. His
initial exploration in 1945 was of the function of being a juror, by means of
the question ‘what makes them jurors?’ He tells how he was going through
files in the Yale library looking for a term to describe the methodological
concerns and preoccupations of these people with ‘being jurors’. He found
many tags like ‘ethnobotany’, ‘ethnophysiology’, and ‘ethnophysics’.

‘Ethno’ seemed to refer, somehow or other, to the availability to a
member of common-sense knowledge of his society as
commonsense knowledge of the ‘whatever’. If it were
‘ethnobotany’, then it had to do somehow or other with his
knowledge of and his grasp of what were for members adequate
methods for dealing with botanical matters.

(ibid., p. 7)

Garfinkel goes on to detail the ways in which ethnomethodology has
become a shibboleth and comments: “I think the term
[ethnomethodology] may, in fact, be a mistake”.

My concern with some uses of the label ‘ethnomathematics’ is not the
studies themselves of particular cultural practices, but the absence of any
sense that the members of the particular culture believe they are doing
mathematics or are concerned with mathematics when working on, for
instance, sand drawings or making baskets. The knowledge they have
may just as well be said to be about the activity itself (and hence is better
seen as ‘protomathematical’). It returns us to some of the questions about
‘illustrative’ manipulatives from Chapter 2.

There are serious difficulties in ascertaining when someone, who
appears to be engaged in other activities, is ‘actually’ doing mathematics.
Gerdes (1988, pp. 140–1) provocatively claims:

The artisan, who imitates a known production technique, is,
generally, not doing mathematics. But the artisan(s) who
discovered the technique, did mathematics, was/were thinking
mathematically. When pupils are stimulated to reinvent such a
production technique, they are doing and learning mathematics.
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This seems to me to be an over-extension of what is to count as doing
mathematics, one which sees mathematics as consonant with traditional
everyday activities rather than somewhat separate and distinct. In part, I
think this arises due to the overvaluation of mathematics as a cultural
force and therefore reflects an increasing need to find broader and more
inclusive sources. But it does highlight the problematic boundary between
mathematical and other forms of thinking—something I return to at the
end of this chapter.

‘REAL-WORLD’ PROBLEMS

Below are a couple of mathematical problems. What in the world might
these problems be about?

It takes three men six hours to dig a ditch. How long does it take
two men to dig the same ditch?

(Traditional)

Suppose a scribe says to thee, Four overseers have drawn 100 great
quadruple hekat of grain, their gangs consisting, respectively, of 12,
8, 6 and 4 men. How much does each overseer receive?

(Problem 68, Rhind Mathematical Papyrus)

The syntax and style of writing make them stand out as arithmetic
problem texts and are unlikely to be mistaken for anything else. Ancient
texts are immediately recognisable today. Pupils’ school experience
teaches them that these problems are supposed to be self-contained, that
all the information necessary for dealing with them is present. There is no
need to go elsewhere to search for an answer. Where do they learn how to
abstract the ‘irrelevant aspects’ of the problem, and how to read a sum into
the text, rather than extract one from it?

One story which is told by mathematics educators is that embedding
mathematics in familiar contexts makes it easier. Much work has recently
been done on ‘thinking in context’ or ‘situated cognition’. Rather than
looking for a pupil’s ‘general ability to think’, researchers have examined
what children can do in certain situations and not in others, despite the
fact that from a mathematical perspective, the tasks in these different
situations may be structurally identical.

Jean Lave (1988) has studied learning about mathematics in school and
compared it with ways of problem solving which occur as part of cultural
activities and practices beyond the school gates. In particular, she has
compared arithmetical problem solving in and near supermarkets with
similar problem solving in school or other learning settings. Performance
in context is frequently greater than out of context.

The widespread experience of teachers is that when children tackle
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textbook word problems, most of the time is spent in getting to grips with
the intended mathematisation of the problem and discarding the ‘container’
of verbiage. This may be due, in part, to a difference in intention.

According to one view, children are offered a familiar, everyday context
in which they can operate intuitively and hence engage with a particular
manifestation of a mathematical idea. If the imagery provided by the
context will help, then it can offer problem solvers a powerful way of
thinking themselves into the relations required by the question—enabling
them to draw on their own knowledge and experience.

In the second view, the essential mathematics is implicit and needs to be
identified in order to solve the problem. Here, the task is one of developing
modelling skills, in order to solve the actual problem which itself is the
important focus. Self-styled ‘real’ problem solving provides one extreme
instance (see Open University, 1989). Unfortunately, there is frequently a
confusion between these two intentions, leaving obscure the rationale for
why a particular problem has been offered.

When pupils do not recognise the context, they may simply say: ‘I don’t
know about this’, even though it could be possible to work out what the
context is about and to follow cues. Christine Keitel provides a converse
classroom anecdote where the solver’s experience of the actual setting
interfered with the intended solution to the ‘mathematical’ problem.

The second case I met in an English comprehensive school, but it
could have happened anywhere in Germany or France as well. It
was a lesson under the heading of ‘ratio and proportion’ and the
teacher told me that she wanted to approach the mathematical
concepts in a practical way. So she offered the following question:
‘Somebody is going to have his room painted. From the painter’s
samples he chooses an orange colour which is composed of two tins
of red paint and one-and-a-half tins of yellow paint per square
meter. The walls of his room measure 48 square meters altogether.
How many tins of red and yellow are needed to give the room the
same orange as on the sample?’ The problem seemed quite clear
and pupils started to calculate using proportional relationships. But
there was one boy who said: ‘My father is a painter and so I know
that, if we just do it by calculating, the colour of the room will not
look like the sample. We cannot calculate as we did, it is a wrong
method!’ In my imagination I foresaw a fascinating discussion
starting about the use of simplified mathematical models in social
practice and their limited value in more complex problems (here
the intensifying effect of the reflection of light), but the teacher
answered: ‘Sorry, my dear, we are doing ratio and proportion’.

(Keitel, 1989, p. 7)

There seems to be more to this anecdote than a missed opportunity. It
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concerns the fact that the teacher’s perspective on the problem and that of her
pupil are quite different. The teacher is attending to the mathematics, ratio
and proportion, and this determines what she ‘sees’ in the setting. Indeed, the
setting has been chosen precisely because she feels it embodies what she
would like her pupils to work on. From this particular pupil’s perspective, he
sees the problem to be about tins of paint and making walls the same colour as
the sample. His experience is brought into play in order to solve the problem
as stated. He ‘sees’ something quite different in the problem.

The possibility of being diverted from the mathematical structure of the
problem and engaging with the narrative content of these arithmetical
situations has been beautifully captured by novelist Philip Roth in this
description of the problems a father used to pose his child.

His idea of amusing me was to teach me to solve the sort of
arithmetical puzzles at which he himself was a whiz. ‘“Marking
Down,”’ he would say, not unlike a recitation student announcing
the title of a poem. ‘A clothing dealer, trying to dispose of an
overcoat cut in last year’s style, marked it down from its original
price of thirty dollars to twenty-four. Failing to make a sale, he
reduced the price still further to nineteen dollars and twenty
cents. Again he found no takers, so he tried another price
reduction and this time sold it.’ Here he would pause; if I wished I
might ask him to repeat any or all of the details. If not, he
proceeded. ‘All right, Nathan; what was the selling price, if the
last markdown was consistent with the others?’ Or: ‘“Making a
chain.” A lumberjack has six sections of chain, each consisting of
four links. If the cost of cutting open a link-’ and so on. The next
day, while my mother whistled Gershwin and laundered my
father’s shirts, I would daydream in my bed about the clothing
dealer and the lumberjack. To whom had the haberdasher finally
sold the overcoat? Did the man who bought it realize it was cut in
last year’s style? If he wore it to a restaurant, would people laugh?
And what did ‘last year’s style’ look like anyway? ‘Again he
found no takers,’ I would say aloud, finding much to feel
melancholy about in that idea. I still remember how charged for
me was that word ‘takers’. Could it have been the lumberjack with
the six sections of chain who, in his rustic innocence, had bought
the overcoat cut in last year’s style? And why suddenly did he
need an overcoat? Invited to a fancy ball? By whom?…my
father…was disheartened to find me intrigued by fantastic and
irrelevant details of geography and personality and intention
instead of the simple beauty of the arithmetical solution. He did
not think that was intelligent of me, and he was right.

(Roth, 1985, pp. 36–7)
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This ability to throw away the ‘outer’ container of ‘irrelevant’ information
in what the teacher perceives as an essentially arithmetic task is a skill
which teachers attempt to teach in schools. Yet the contexts in which these
problems are embedded do also carry considerable social implications for
the perceived uses and usefulness of mathematics. Parables are important
and, at their best, certain mathematical problems can act as parables,
providing contextual wisdom and understanding of important
mathematical ideas and processes. But there is a danger with convincing
parables—the problem setter may perceive the essence of a problem as
proportional thinking, while the solver sees a problem about digging
ditches.

There is also at issue the social contract established in mathematics
classrooms. Being good at mathematics is frequently perceived in terms of
being fast at answering questions, the more done the better. One
consequence of this is the less time spent thinking about or engaging with
any particular question, the better, which can result in a devaluing of the
questions and the embedded situations themselves.

Old problems never die

I found a stone, (but) did not weigh it; (after) I subtracted one-
seventh, added one-eleventh, (and) subtracted one-thirteenth], I
weighed (it): 1 ma-na. What was the origin(al weight) of the stone?
[The original weight] of the stone was 1 ma-na, 9½ gin (and) 2½ se.

This text comes from a Babylonian stone tablet circa 1700 BC, along with
other such problems and answers, none indicating how the answers were
reached, and all involving a stone of 1 ma-na when weighed. (Ma-na, gin
and se make up a system of weights and measures, and we can deduce
their relative values from the arithmetic of such problems.)

It is clearly not a practical problem about the weight of an unidentified
stone—if it could be weighed half-way through the problem, it would
have been better to weigh it at the outset. And anyway, the tablet gives the
weight at the end. For at least four thousand years, many problems have
been posed as if they were about something practical and justified as
providing practice in working on the difficult question of how
mathematics relates to the everyday material and social worlds. However,
a more likely intention seems often to be to help students to recognise
certain standard problem types and apply standard algorithms.

One of the common characteristics of collections of mathematical
problems dating from as far back as 2000 BC has been the use of ‘familiar’,
‘everyday’, and ‘real-world’ settings, situations and contexts in their
exposition. This common feature allows the confusion to continue,
namely whether the reason for learning mathematics is presented in terms
of being able to solve these particular problems (or problems such as these)
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or whether such problems are ‘merely’ a way of dressing up, disguising
the mathematics itself in order to appeal more to the learner’s presumed
interest. The former allows for the pupil to reject mathematics on grounds
of lack of interest in such problems, while the latter invites the complaint
about teachers not coming clean about what the task actually is.

In his book somewhat misleadingly entitled Capitalism and Arithmetic,
Frank Swetz (1987) provides us with access to a translation and
commentary of the first printed arithmetic book (known as the Treviso
Arithmetic) which includes such unlikely questions as: “If 1000 pounds
and 1/5 of cinnamon are worth 130 ducats and 1/4, what are 14616
pounds, 9 ounces, 5 sazi and 1/3 worth?” The author of the Treviso holds
out the lure of ‘gratifying usefulness’ for attentive students (how attempts
at ‘motivation’ remain constant over time).

Do these ‘practical’ (i.e. commercial) problems offer potential source
material for a form of social archaeology? Can we find out about historical
conditions or get a feel for life at the time through the problems in
arithmetic texts, getting the goods on the cost of renting a mediaeval house
in Sienna, or the usurious level of interest rates then prevalent, or even
learning that one single merchant imported all these spices for the rich of
Europe? What image of the concerns and preoccupations of our society
would present-day textbook problems give?

One tension still with us is between ‘nice numbers’ and ‘realistic prices’:
in other words, between numbers chosen for mathematical reasons and
numbers that happen to be current, and therefore subject to both the
complexities and the simplicities of actual commerce. With the availability
of calculators today, there is a move towards the use of ‘real’ data, as if
there were any inherent mathematical value in topical actuality. This
would only be the case if the particular situation offered were where
attention was to be placed—which is not common. (On occasion, this
enthusiasm can be reminiscent of the worst Soviet demands for realist
‘fiction’ which led to wonderful, fantastic novels opening with ironic
claims that ‘nonetheless this really happened’.)

What are credible purposes in offering such questions? Some
possibilities include the following.

• Perceiving underlying models (there are standard questions about
common situations of this type—this is a ‘leaky bath’ type of question, or I
can think about it in terms of balls in urns). This requires pupils to see
through a particular context, and possibly therefore strip some of it away.

• Practising algorithmic skills in interesting settings.
• Being able to apply mathematical skills in a wide range of contexts.
• Developing growing awareness for the wide applicability of

mathematical ideas.
• Exploring mathematically aspects of humanly important contexts.
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How plausible and relatively important are these? A key point is that most
of these do not just come about by having pupils do lots of problems. The
most mathematically important of these intents may be in terms of
providing generic arguments and situations to think about that when seen
in a particular way embody a mathematical principle or process. (The
label ‘telegraph poles and spaces’ serves me as a reminder that I need to
count one on some occasions and the other on others—and that the
answers differ!) Whether more detailed and focused study of a few such
embodiments will serve this purpose better than doing many questions,
routinely and relatively unthinkingly, is a different matter.

Despite these observations, I argue in the next section that it
nevertheless does matter what contexts are offered, even in traditional-
style questions, not for technical mathematical reasons, but for the social
education of children as well as for the attitudes formed about the uses
and abuses of mathematics in our society. The central question to be
looked at further is that of the purpose(s)—for both teaching and
learning—for such contextualised questions.

Social concerns

So perception is stricken by algebra, for algebra sees only what is right
under its eyes; memory is confounded, since when the second sign is
found algebra pays no further attention to the first; imagination goes
blind because algebra has no need of images; understanding is
destroyed because algebra professes to divine. The result is that young
men who have devoted much time to algebra find themselves later, to
their great dismay and regret, less apt in the affairs of civil life.

(Vico, given in Fisch and Bergin, 1944, p. 125)

Do problem settings merely reflect the passing interests of the textbook
author? Below are some problems from nineteenth-century, North
American arithmetic texts which offer varying ‘realities’. Despite the
apparently realistic settings, no one could actually want or need to know
the answers. It appears more to be about arithmetic computation through
ostensibly ‘familiar’ settings, providing a veneer of realism: yet recall my
discussion of the film Life and Nothing But in Chapter 5.

An army loses 12,000 men in battle, 1/6 of the remainder in a
forced march and then has 60,000 men left. Of how many men did
it first consist?

(Treatise on Arithmetic, 1880)

There were 7 farmers, 3 of whom drank rum and whisky, and
became miserable; the rest drank water and were healthy and
happy. How many drank water?

(Emerson’s The North American Arithmetic, first part, 1838)
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A human body, if baked until all the moisture is evaporated, is
reduced in weight as 1 to 10; a body that weighs 100 pounds
living, will weigh how much when dry?

(Franklin Arithmetic, 1832, cited in Freeman, 1960, p. 52)

A gentleman left his sons 3600 dollars, his daughters 1375 dollars,
his grand-children 570 dollars, the American Bible Society 4600
dollars, the Orphan Asylum 500 dollars: what was the amount of
his estate?

(William Slocomb’s The American Calculator, 1831, cited in
Bidwell and Clason, 1970, p. 12)

If one Confederate soldier kills 90 Yankees, how many can 10
Confederate soldiers kill?

(Cited in Elson, 1964, p. 329)

Strong features of society come to mind from the fact that questions such as
these were offered to pupils to learn about the ‘application’ of mathematics
to the material world. What messages do they offer about connections
between mathematical ideas and human values, and judgements about
what is worth knowing? Jenny Maxwell, in an article called ‘Hidden
messages’, juxtaposes examples of such material-world ‘containers’ for
arithmetic problems from different countries and cultures, in an attempt to
draw attention to some of the political and social values implicit in them.

A Freedom Fighter fires a bullet to an enemy group consisting of
twelve soldiers and three civilians all equally exposed to the bullet.
Assuming one person is hit by the bullet, find the probability that
the person is (a) a soldier, and (b) a civilian. (Tanzania)

Once upon a time a ship was caught in a storm. In order to save it
and its crew the captain decided that half the passengers would
have to be thrown overboard. There were fifteen Christians and
fifteen Turks aboard the ship and the Captain was a Christian. He
announced that he would count the passengers and that every
ninth one would be thrown overboard. How could the passengers
be placed in a circle so that all the Turks would be thrown
overboard and all the Christians saved? (USA)

(Maxwell, 1985, p. 18)

It is hard to see what is going on in offering these settings to pupils, other
than a simple, ugly reinforcement of some locally convenient valuations
extraneous to the subject matter at hand. One reason for my having chosen
examples of problems distant in time or space is that such peculiarities,
emphases and choices can be far more visible. In this way, we can hope to
‘make strange’ the familiar collections of problems that inhabit our
textbooks at whatever level, and hence see their comparable characteristics.4
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However, it is worth remarking on the similarity between classical
word problems about digging ditches, paying wages, inheritances, filling
baths, and so on, and nursery rhymes and fairy tales. In both, there is the
problem of the apparent unreality of the situation; in both, there is an adult
sense that these are not tales to be taken at face value. For both, they are
analysed in terms of their ‘structure’, although more is enshrined in them
than just their structure. Nonetheless, in mathematical word problems, the
structure is customarily more important pedagogically than the context. It is
worth remembering that all word problems, whether from Egyptian
papyri or mediaeval Italian manuscripts, are devised to be teaching
instruments. And that such teaching is seldom directly about the material
world we inhabit. The questions reflect other intents.

This may be one reason for resisting attempts to make ‘word problems’
more realistic (both in terms of settings and answers)—provided that the
unreality is noticed and remarked upon from time to time—perhaps by
being joked about and the opportunity for spoof questions invented which
exaggerate these features even more as a way of drawing attention to them.

Psychic concerns: thinking about the unthinkable

There is one universal functioning without which nothing is
noticed. This is the stressing and ignoring process.

Without stressing and ignoring, we can not see anything. We
could not operate at all. And what is stressing and ignoring if not
abstraction? We come with this power and use it all the time. I
know that the pitch of my brother and the pitch of my father differ
but I ignore the difference so as to comprehend that the words of
one are comparable to the words of the other. I ignore that it is
only the eye of my mother that I can see when she comes close to
my cheek and kisses me. If I did not, the eye quite likely would
frighten me. But I ignore this, and I stress the smell of the person.
From this I know it is my mother. That is, I can shift my attention
to another attribute that also belongs to her. If I did not do that I
would not know that it was my mother that kissed me. To stress
and ignore is the power of abstraction that we as children use all
the time, spontaneously and not on demand… And teachers insist
that we teach abstraction to children through mathematics at the
age of twelve!

(Gattegno, 1970, pp. 11–12)

It is all very well to encourage the skill of ignoring the overt content of
many problems, but there will be times for all of us when we are asked to
think about situations which excite or disturb us. An instance of an
educational invitation where the context seemed too insistent to repress
comfortably concerned a videotape for the teaching of mechanics, one
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section of which dealt with the topic of impacts. The first sequence of
images showed billiard balls moving toward and colliding with one
another. The second was a high-speed car crash in slow motion that was
repeated over and over again. Where was the invitation for the viewers to
place their attention?

A second example is provided by Richard Noss, who described visiting
a school where the class referred to the problem below as The Falklands
Question’ (though world events have transpired to render this an out-of-
date naming). It comes from an English national examination in
mathematics for academic pupils.
 

A pilot flying an aeroplane in a straight line at a constant speed of
196m/s and at a constant height of 2000m, drops a bomb on a
stationary ship in the vertical plane through the line of flight of the
aeroplane. Assuming that the bomb falls freely under gravity,
calculate (a) the time which elapses after release before the bomb
hits the ship, (b) the horizontal distance between the aeroplane
and the ship at the time of release of the bomb, and (c) the speed of
the bomb just before it hits the ship. (15 marks)

(Noss, 1985, p. 38)

This is surely not a ‘practical’ problem either. Even in the event of any
pupil being about to bomb a ship, it is doubtful whether having worked on
this question would assist them. The filters necessary to render the
problem mathematically tractable remove the most salient features of the
actual situation (the excitement and fear from the fact of trying to destroy
human beings and conversely, a non-stationary boat with a non-constant
speed trying to avoid destruction, and so on).

What are my options as a pupil, if I have been educated to use my
personal imagery to engage with the contextual elements of a problem I
have been faced with? If I refuse, out of a sense of preservation of mental
self, to think about that situation mathematically, I lose fifteen marks in an
important examination. However, does that imply that teachers and
examiners should only offer anodyne, non-controversial applications and
contexts which will not disturb the sensibilities of any members of the
class?5 What, for instance, of gambling, playing cards and throwing dice
which can be an anathema to some members of particular cultural groups?

Part of the teacher’s authority resides in the power to direct attention, to
decide and rule on what is ‘relevant’ to the matter in hand. Yet, there can
be some unfortunate (and possibly unintended) results of this. Recall the
quotation from Keitel given above: “Sorry, my dear, we are doing ratio and
proportion”. This can be read quite clearly as a demonstration of power.

One important aspect of working mathematically involves repressing
meaning and stressing only the symbolic, and this ability may be one
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casualty of attempting to ‘sidestep’ algebra. From working successfully on
word problems, you can learn how to de-emphasise particular, personal
meaning, as well as take part in the public repression of particular
meanings. It can result in symbolic knowings (e.g. how to add fractions)
and ‘just’ (‘only’) working with the symbols, both of which are potentially
powerful and enabling. But they also have their price.

In mathematics, it can be efficient for the pupil to understand just enough
initially to know what to do. If I have faith in my teacher, I may be willing to
submit to him or her, trusting to pattern, trusting to order (to account for
why it is, for instance, that -1×-1=1). Yet precisely those skills of becoming a
successful mathematician may well disempower me from being an
insightful observer and critic of political aspects of situations. There is an
important sense in which political and mathematical awarenesses can prove
antithetical to one another, something which may prove damaging to the
aims of those who wish to offer mathematics for political enlightenment.

In work in mathematics, meanings always get attached, but some also
end up hidden or suppressed. There is always the question of cost.

THINKING RATIONALLY AND MATHEMATICS

My final focus here is mathematicians’ seemingly imperialist claims in the
area of thinking in general. Recent writing, for example on problem
solving, has reflected ill-defined boundaries between mathematical
thinking processes and thinking processes in general. It is common for
such writers to claim many general thinking processes for their own, a
territorial grab that at times beggars the imagination. It is also common to
see rationality referred to as objectified, with rules and procedures of its
own—despite current discussions with regard to whose rationality,
discourse, rules and procedures (e.g. Belenky et al.’s, Women’s Ways of
Knowing or Gilligan’s In a Different Voice).

Richard Noss (1994, p. 5) has also written:

It [the general superiority of mathematical proof over everyday
justification] stems from the wider view that mathematical thinking
is superior to practical thinking, a view deeply embedded in
Western culture; it forms part of the ideology of what it means to
think abstractly, perhaps even what it means to think.

Mathematical thinking is precisely that: ways of thinking developed to
work on mathematical forms and entities. To see it as ubiquitous, infallible
or necessarily better than other forms of reasoning for particular tasks is to
fail to make important distinctions. To take an example: probability is not
part of the material world. It is not observable. It is about the general,
rather than any particular; about the possible rather than the actual. It is
about group phenomena. Everything that happens in the material world
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happens with 100 per cent probability every time. And, as an individual, I
am often not interested in average expected gain. I am interested in the
actual outcome when I carry out a specific action—and probability has
almost nothing to say to me about that singular occurrence that has never
happened before nor can again.

Consider the following situation. I have to decide whether or not to
inoculate my child against whooping cough. I am told that the statistics
about the vaccine causing brain damage are 1 in so many. I am also told
that the statistics on child deaths from whooping cough are 1 in some
other many. What do I do? Defer judgement to calculation?

My decision cannot be just to compare the two rates, for that would be
to compare unalike things. My vaccination decision is now—and at the end
of it I will either have a brain-damaged child or I won’t. The statistics on
death from whooping cough only refer to a future possibility—once my
child catches whooping cough. So I am trying to compare an about-to-be-
actual present state with a possible future state.

But these apparent probabilistic ‘facts’ fail to make important
distinctions—the rates are not uniform geographically, nor across social
class, to name but two. I can continue to make distinctions, until I get down
to the actual circumstances of our life, even the genetic make-up of my child.
Because that is what I am interested in—not average rates and likelihoods.

I mentioned earlier that the human price for thinking mathematically
about certain situations may be too high. I also mentioned Weizenbaum’s
concern about the disallowing of human judgement and the acceptance of
the results of computer-implemented mathematical models. Mathematics
may also feed unhelpful desires and expectations in ourselves, unless the
distinctions among awarenesses are clearly maintained.

The vision of earth from space confirms the highly finite and
interrelated aspect of our home. Certain ways of thinking that
mathematics encourages, indeed at times requires, cut across this. One
such ‘fantasy’ that our mathematical imaginations support is that we can
go on for ever without getting tired, that an operation once carried out can
be repeated (in the imagination) as many times as we wish. Valerie
Walkerdine has written powerfully in this area, most notably in her book
The Mastery of Reason (1988).

I believe mathematics actually plays a far smaller and less significant
part in rational thinking about the material world around us than many
mathematics educators and others would have us believe. The complex,
troubled relation between the actual and the possible, between physical
reality and human imagination, mirrors the uneasy links between the
material world and mathematics.

In conclusion, in a piece on perception, Aldous Huxley quotes Blake—
and I think in what follows that ‘Angels’ could easily be replaced at times
by ‘mathematicians’:
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“I have always found”, Blake wrote rather bitterly, “that Angels
have the vanity to speak of themselves as the only wise. This they
do with a confident insolence sprouting from systematic
reasoning.”

 
Huxley then goes on to acknowledge that:
 

Systematic reasoning is something we could not, as a species or as
individuals, possibly do without. But neither, if we are to remain
sane, can we possibly do without direct perception, the more
unsystematic the better, of the inner and outer worlds into which
we have been born.

(Huxley, 1956, p. 77)

 
Mathematics can be at least partially characterised by its particular use of
and emphasis on symbols. I mentioned in Chapter 3 that the possibility of
direct, unmediated perception of mathematical forms and ideas comes to
the fore most strongly with geometry. The incursion of computers as
image-generating devices is also evident in providing both synthetic
geometric images and graphical representations. The extent to which they
allow us ‘direct mathematical perception’, however, is quite another
matter. This book has in large part discussed the problematic nature of
ever gaining direct experience in any part of school mathematics—that is,
experience unmediated by symbols.
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ON FLUENCY AND
UNDERSTANDING

the words a writer uses, even now, go back and back into a written
history. Words are not simple things: they take unto themselves, as
they have through time, power and meaning: they did so then,
they do so now.

(Weldon, 1991, p. 17)

 
In this chapter and the next, I start to uncover some of the ‘cover stories’ I
mentioned in Chapter 1 with regard to mathematics education. I do so as one
means of integrating several themes that run throughout the previous eight
chapters. The first has been an increasingly complex search for reference, for
mathematical objects, to underpin mathematical language and notation,
necessary to preserve a naive, descriptive view of the function of language. A
second, related theme has been a questioning of the automatic presumption of
the primacy and anteriority of the object in relation to the symbol.

The third has traced different manifestations of the counterpart (for
manipulation) and signification (for naming and pointing) functions of
mathematical symbols. And lastly, there remains the important question of
what the need is for fluency (in computation) in an era of electronic devices
that perform the same computations faster and more accurately than most of
us can ever hope to aspire to. Is fluency now no longer an aim in mathematics
teaching? If so, is greater understanding the only other aim worth pursuing?

The most central, recurrent tension in mathematics teaching is between
the presumed conflicting goals of ‘understanding’ and teaching for
understanding on the one hand, and fluency or automaticity of
performance (and teaching for that) on the other. There are also
entrenched views about which has to come first in a teaching context, or
indeed whether they may be developed relatively independently of one
another. Geoffrey Howson (1982, p. 21) summarises the views of
sixteenth-century mathematics teacher Robert Recorde: “Understanding
is vital therefore, but mastery of a technique may well precede
understanding.” What are ‘rote’ methods (somehow always connected
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with ‘memory’) and why are they always to be shunned?
Can you be too fluent, can you have too much understanding? Can an

excess of one actually detract from the other? Understanding in
mathematics is automatically assumed to be a universal good, and the
more the better. Yet it is recognised in other arenas that too much
understanding can inhibit action, as the complexity perceived can inhibit
decisions. And to be too understanding can prevent suitable boundaries
from being maintained.

I start here to examine the force and role behind the words ‘fluency’,
‘meaning’ and ‘understanding’ as the dominant terms in many
discussions of mathematics teaching and learning, reflecting a relative
poverty of language for talking about ‘doing’ mathematics. Fluency is
centrally about doing. Was fluency ever an end in itself? If not, what was it
seen as a means to? Once fluency becomes an end in itself, it masks the fact
that it may no longer serve any useful purpose.

There is an irony in the Nuffield-promoted motto of the 1960s, ‘I do and
I understand’, as it actually can be seen as embodying an earlier story
about ‘doing (computations) first and understanding coming later’ (‘I do
and [so/then] I understand’) that Nuffield was attempting to supplant. A
current, simplified version of this revised belief might be that
understanding will help you do, particularly if stuck—‘I understand, so
therefore I can do’. But, so this story goes, understanding may also help
you to mechanise and hence to forget.

While there are concerns about the ‘blind manipulation of number
symbols’, most of the expressed concern in mathematics education
publications over the past century, unsurprisingly perhaps, has been in the
area of algebra.

Drill in mere manipulation is necessary at every stage in school
algebra. That this should be thorough, so far as it goes, will be
admitted by all teachers, but it should in the main be given after its
necessity in applications has been perceived by the pupil and not
before.

(MA, 1934, p. 10)

The phrase ‘mere manipulation’ shows up a value system inside
mathematics, implying that no insight was required, and perhaps that the
result was ‘only’ a mechanical one.

Yet there was no doubt about the necessity of both ‘understanding’ or
meaning’ and technical skill, facility and fluency in manipulation. By 1979,
in the HMI report Aspects of Secondary Education, we can read: “Success in
repetitive exercises on (say) technical points involving the manipulation of
fractions or decimals was, in itself, not taken as sufficient evidence of
competence.” We come up against another of these key words, ‘technical’
and the related term ‘technique’, as well as the desire of teachers to be
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justified in reading competence from performance.
Machines now allow the complete automation of certain mathematical

functionings. It may nonetheless be important to offer the possibility of
fluency, in order that students have something to reflect upon. For instance,
this may require that in school contexts we need to redefine algebra in such
a way that humans can continue to do it: one possibility might be a shift
from the mechanisation of arithmetical operations to reflective awareness of
what it is we (and not the machines) are doing. As a second instance,
Gattegno’s approach to arithmetic through language (rather than through
the counting of objects) yields a facility that is then available for reflection,
and neatly reverses the presumed order of ‘understanding, then fluency’.

There are different dreams associated with the notions of fluency and
understanding. The fluency dream goes back at least to Leibniz and his
wish for a universal calculus (and a rational calculating device), so that
problems of whatever sort may be reduced to symbols which are then
manipulated to enable universally applicable answers to appear. One
presumption underlying this dream is of a universal (mathematical)
structure to the world and its processes that is independent of the
particular content or setting.1 The imperialist identifying and collapsing of
thinking into mathematical thinking that I mentioned at the end of the last
chapter is very evident.

The dream of understanding is harder to state. It includes seeing with a
clarity so transparent that all that is needed is to look—without resort to
codified or calculated methods. ‘Behold’ is the only word apparently
accompanying a diagrammatic proof attributed to Bhaskara of
Pythagoras’ theorem. This understanding is integrated into me, so I no
longer have to work at remembering, certainly no ‘rote’ learning is
required, nor is accepting something on anyone else’s authority. I am at
one and as one with whatever I am trying to understand.

To end this opening discussion, here is part of a short article entitled ‘A
matter of relationships.’, written by Caleb Gattegno and published in a
Canadian teachers’ journal. With perhaps uncharacteristic humour, he
teases out some inconsistencies in the way we talk about our goals in the
domain of early arithmetic, focusing particularly on a tension between
immediacy and understanding, as well as what ‘knowing’ means.
 

All teachers will agree with me that their teaching of arithmetic is
based essentially on the use of counting, which would appear to
be the simplest of all ideas. Is there not a logical foundation for
saying that 6+4=10 is true because 6+1=7, 7+1=8, 8+1=9 and 9+1
=10, hence the answer? Yes, but are we to be content with that? We
do not stop at proving that 6+4=10, we also want it to be
remembered, and that is where logic no longer operates.

6+4=10 is only found to be true if I resort to counting; if you ask
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me what it is, I shall use my fingers, or counters, or whatever I
have. But that is not what you want; you want me to say at once
that six and four makes ten. Counting is not to be used because it
wastes time. Why, then, did you ‘teach’ me to count if I am not
allowed to use it?

“I taught you to count”, you will say, “so that you would know
your numbers and understand addition. Now I want you to drop
counting and ‘know’ addition bonds.”

“If I said I know addition bonds, would you believe that it is
because you taught me to count?”

“Yes, how else could you know that 6 and 4 makes 10?”
“If I said I just know it because I can remember strings of

words, then would you be satisfied?”
“No, because I want you to understand what you do.”
“Then I must use counting to find 6 and 4 makes 10.”
“No, since you should, by now, know it.”
“But if I don’t, may I count?”
“You may, but you should know that 6+4=10 soon, otherwise

there must be something wrong with you.”
“Similarly, you ‘teach’ me the multiplication tables, and I can

recite them. But you want me to give the answer at once that
7×8=56; if I say 1×8=8, 2×8=16…6×8=48, 7×8=56, you get cross
with me and say I should ‘know’ it. Is it not knowing if I am able to
stop at 56 in the sequence of tables I so laboriously learnt? You
wanted 7 ×8 and now I am telling you that it is 56.”

“Yes, but you should know it by now, otherwise there is
something the matter with you.”

“Then why did you ‘teach’ me the tables if what you want is the
products?”

“So that you would understand that we obtain the answers by
always adding 8 to itself.”

“But that is precisely what I did to find 7×8=56.”
“Yes, but you must not use the tables any more, you should

know the answer at once.”
“But why, then, did you ‘teach’ me the tables in the first place?”

(Gattegno, 1963b, pp. 80–1)

ON FLUENCY

What might fluency mean as a central goal for mathematics education in an
age of machines which can perform arithmetic and (more recently)
algebraic routines with far greater efficiency and accuracy than humans?
Where does speed enter into this discussion as a desirable characteristic of
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mathematical performance (rather than merely as a gatekeeping technique
of exclusion)? Teachers often went for speed, taken as an indicator of
fluency and efficiency, and the former became a substitute for the latter.2

In general contexts, the word ‘fluency’ is primarily used of language
speakers and writers, and has etymological root imagery of flowing.
Common contexts of use include: reading aloud, speaking, writing in
one’s native tongue (usually of young children striving for mastery) or a
foreign one (usually adults). Another is music performance (‘I can read
music or play this piece fluently’), arguably an extension of the human
voice. A third, a fluent translator from one language to another, or from
one embodiment of language to another (including working from written
music). It is not common to talk of computer productions as fluent, though
possibly I can be a fluent user of certain software or other media. In
computation using calculators, you seldom see any intermediate effects—
every computation is like 7×8=56!

For me, fluency is about ease of production and mastery of generation—
it is used also in relation to a complex system. ‘Fluent’ may be related to
efficient, or just no wasted effort. It is often about working with the form.
Finally, it can be about not having to pay much conscious attention. Speed
can be a by-product of fluency, but is not an important goal in itself.
Nonetheless, speed is visible and can often be what attracts someone else.

Speed is an interesting element in its own right, as it can, sensitively used,
provide a means to block attempts to understand consciously and
deliberately and endeavour to engage more fundamental processes. It may
require a deliberate letting go of conscious control over the process of
generation of responses. One key element of working with NicoletGattegno
geometric films can come from control being elsewhere, and I can choose to
subordinate myself to the film, in particular to the pace and rhythm of the
images. In the Gattegno piece about arithmetic bonds, one key phrase is that
the results be given ‘at once’, with apparently no thought, intervening steps
or working out. The number ‘bonds’, whether additive or multiplicative, are
demanded to appear fluently, without hesitation.3

Algorithmic, arithmetic, and algebraic fluency are all common
expressions. Arithmetic fluency is not the same as algorithmic fluency.
Algorithms are about ways of doing.
 

Their confidence [seven- and eight-year-old pupils of
Cuisenaire], and the swiftness and accuracy of their work are so
impressive that many visitors to Thuin [where Georges
Cuisenaire taught] find it difficult to believe they are as young as
they are. Long vacations do not seem to affect the skills acquired,
and we no longer assess them in terms of memory: it is true
understanding that the children have found for themselves….
They can answer in a fraction of a minute at the age of eight
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questions such as the following…. This rapidity is not achieved
as a result of undue time or effort. On the contrary, the pupils
quickly come to need only 15 minutes of arithmetic a day to
remain proficient.

(Gattegno, 1963a, p. 13)

In this quotation we have some attributes of fluency, namely speed and
accuracy, mention of the level of maintenance practice involved as well as
the contrasting of ‘true’ understanding with memory. These are common
elements in discussions of mathematics teaching still some thirty years later.

There is a problem of specifying fluency in relation to existing
technology. When you get access to a new one, there is a need to separate
fluency with the medium from fluency with the ideas. For instance, only
very young children for the most part struggle for fluency with a pencil—
at least with regard to writing (artistic drawing is quite another matter).
The computer can help with early stages of writing because the letters are
already formed on the screen (like notes from that other keyboard, the
piano, as compared with the violin).

Symbolic manipulators are currently in hands of experts who already
have considerable symbolic fluency with manipulation: they report a
massive amount of interpretation is required. What awarenesses do they
develop or block in novices? Do they free students from spending an
inordinate time learning and practising particular techniques, affording
instead the prospect of focusing on significance of techniques in whatever
context they are working? What are costs of handing over the
manipulations?

There is a key role for symbols in developing fluency, involving, in
particular, the distinguished functions of signification and being a
counterpart. At one level, fluency with symbols involves being at one with
them, so they can be seen through: transparent signification is the dream
here. Yet there is also a simplifying substituting value in opacity (which
Schmidt aligns with the counterpart) in order not to be distracted by what
may be going on ‘underneath’.

On technique

I am a teacher, and therefore I am interested in search and growth,
schools and methods. Or does it work the other was round? In
education as in handicraft, I am interested in questions of
meaning and technique.

(Richards, 1989, p. 99)

Techniques are something to be valued, but can also be devalued. To say
‘He is all technique’ in music, or in painting, is to denigrate a person’s skill,
and to suggest that something is missing. In Gestalt psychotherapy, the
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comparable unease is with a set response, rather than being as flexible as
possible to actual situations.

Recall the Tahta quotation I gave in the Introduction which complained
about insufficient attention to actual techniques to help people gain
symbolic facility in mathematics. Technique is a means of operating on
and interacting with the task or problem. Arithmetic pattern spotting can
be quite advanced yet offers no insight into the problem—but it does offer
a technique. Techniques allow us to avoid a need for generating particular
insight. It is hard to offer insight, much more simple to offer techniques.
One consequence is that we tend to give instruction in the processes we
have developed techniques for. Arithmetic and algebraic algorithms
provide excellent examples of this didactic transposition—the re-
emphasising that takes place merely as a result of having to teach
mathematics in a classroom setting.

In Serres’ discussion of the traditional legends of the origins of
geometry among the Egyptian pyramids, he draws our attention to the
tacit knowledge of technique and action.

What is the status of the knowledge implied by a certain technique?
A technique is always an application that envelops a theory…. If
mathematics arose one day from certain techniques it was surely by
making explicit this implicit knowledge. That there is a theme of
secrecy in the artisans’ tradition probably signifies that this secret is
a secret for everybody, including the master. There is an instance of
clear knowledge that is hidden in the workers’ hands and in their
relation to the block of stone. This knowledge is hidden there, it is
locked in, and the key has been thrown away.

(Serres, 1982, p. 89)

This is a very difficult area. I mentioned in Chapter 4 Noss’s (1991)
insightful work on the notions of mathematical depth and density in
relation to computer software and hardware. I think it provides a way
forward in regard to identifying the force of offering mathematical
functionings and techniques installed in machines for the mathematical
education of pupils.

Among many other things, Logo’s turtle graphics capability can serve
as a means of making explicit the mathematics inherent in drawing
certain figures that the hand already knows. It also serves as a reminder
of the link between technique and technology. Certain technology
embodies and automates4 mathematical techniques and carries them out
for the user. So the technique no longer is available for our inspection or
reflection, it is no longer our skill that is the focus of or source for
reflection. It is locked up in the device even more tightly than the
stonemason’s knowledge is.
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On practice

 
Precepts are not given for the sake of being practised, but practice
is prescribed in order that precepts may be understood.

(Well, 1952, p. 112)

 
One of the challenging questions in mathematics teaching at the moment
is that of how to, when to, how much to and why encourage practice.
These are questions of central importance to all teachers and yet it is far
from clear what is to be done by way of moving towards resolving them.
One dictionary sense of the verb ‘to practise’ is to visit habitually or to
haunt. ‘A repeated performance or systematic exercise for the purpose of
acquiring skill or proficiency.’ Children are very good at practising certain
things until they have mastered them—they are willing, it seems, to pay
the necessary attention.

One thing is clear, however, and it relates to a point made earlier about
the independence of questions in textbooks one from another: it crucially
matters how pupils approach practice in terms of what they get from it.
Traditionally, one of the central roles of textbooks was providing precisely
such a resource of graded problems for pupils to work at.5

Do we practise ‘mere’ repetitions? If so, is this enough? One difficulty is in
deciding what it is that is being done again. It is rare to offer pupils the same
problem twice—usually they are invited to work at ‘the same but different’—
and stop when the different has become the same. There is a common tension
here. Do I (as their teacher) want them to think of this problem as itself (a new
situation, attend to particularities and exploit them as you wish in order to
reach a particular solution) or do I want them to think of it as material for ‘the
same but different’, as potential algorithm fodder.

One key point is that if I approach a series of exercises (be they
mathematical or musical—there are similar practice issues here) with my
eye out for the general, for what there is in common across these activities
(which is, after all, likely to be the main teaching point, concept or
algorithm), then I am better mathematically attuned to what is of
importance. If I go through the exercises one after another, as something to
get through (or just enough to get by or as many as I can in the time), then
my attention is crucially missing from the central focus, from the point of
view of teaching. Sets of exercises where there is no connection between
one and the next destroy the possibility of such focused practice.

Some mathematics teachers now voice the concern that ‘we never seem to
practise at all, now’, while others relish their sense of liberation from drudgery
in exactly the same words. Practice need not be a repetitive drill to fix a
particular action or process in automaticity But you can gain fluency through
practice. What are some arguments against rote practice? The most prevalent
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is that this erstwhile practice destroys meaning and inhibits understanding,
perhaps even denying the possibility that anything mathematical can be
understood. Yet, recall Hewitt in Chapter 5 commenting how he does not
offer ‘reasons’ for conventions. Not everything in mathematics is to be
understood, and certainly not in advance.

Is the fact that frequent repetition of a word seems inimical to retaining
its meaning linked to concern at the role of repetition in creating
automatisms?6 Recall the comments on ritual I made in the first chapter.
We have experience of repetitive devotional acts (for instance, Jewish
shuckling at the Western Wall, or focusing mantras to be said over and
over),7 as well as obsessive repetition of actions, the myth of Sisyphus, or
Freud’s account of the hand-washer. One overt intent of the former rituals
is to profit from the loss of conventional meaning (and of self) which such
repetition brings in order to break through into a different realm of
experience. Chanting (whether of multiplication tables or other things)
rhythmically can on occasion offer a similar opportunity.

ON MEANING AND UNDERSTANDING

 
The questions “What is length?”, “What is meaning?”, “What is
the number one?” etc., produce in us a mental cramp. We feel that
we can’t point to anything in reply to them and yet ought to point
to something. (We are up against one of the great sources of
philosophical bewilderment: we try to find a substance for a
substantive.)

(Wittgenstein, 1958, p. 1)

Method for understanding images, symbols, etc. Not to try to
interpret them, but to look at them until the light suddenly dawns.
Generally speaking, a method for the exercise of the intelligence,
which consists of looking.

(Weil, 1952, p. 109)

I return here to a discussion I started in Chapter 1. The words ‘meaning’
and ‘understanding’ are often conflated or used interchangeably. I think
meaning has a closer connection to reference. A referent offers something
to refer to, a focus for attention but also an underpinning for language. In
Chapter 2, material objects were offered as sometime referents. At other
times, in mathematics, the symbols serve as referents as well.

One central function of any language is to enable the speaker to ‘point’.
The root verb deuten of the German verb bedeuten (“to mean”) means “to
point with a finger at something”. As I progressed through this book, one
central question that recurred was: what are these ‘things’ that
mathematical language apparently points at? (Recall from Chapter 3 the



ON FLUENCY AND UNDERSTANDING

179

link between the action of pointing and the mathematical notion of point.)
And mathematicians do more than point: they ‘manipulate’, as the
ubiquitous metaphor has it.

Michael Halliday has written a book about a two-year-old’s acquisition
of language, a book he entitled Learning How to Mean (1975). By using the
normally transitive verb ‘to mean’ intransitively, he has drawn attention to
the fact that young children need to learn how to use language to achieve
their own ends, whatever these may be. Likewise, children need to learn
how to mean mathematically, how to use mathematical language to create,
control and express their own mathematical meanings, as well as to
interpret the mathematical language of others. In part, this is so that they
might experience and be able to attend to mathematical ideas and
meanings that others have generated and valued.

The French verb ‘to mean’ is vouloir dire, a composite of two verbs and
literally means “to want to say”; in other words, the feel of intention is
uppermost. In consequence, it is even harder to have things ‘wanting to say’
on their own, than meaning something by themselves. To understand’, in
French, is comprendre, but it has a second meaning, “to include”.8 The motto
‘Tout comprendre est tout pardonner’ is striking perhaps because once
understood something is inside and part of us, rather than outside and hence
separated from us. The French double sense reminds us that understanding is
a process of inclusion, of incorporation. One powerful way of educating the
imagination is by taking the outside and turning it into inside.

The literature on understanding in mathematics education is legion.9 I
cannot nor wish to attempt either to summarise or survey it here. It would be
very nice at the end to be able to say something simple. For instance, in
mathematics, meaning comes about through the signification function of
symbols, while fluency comes about through the counterpart function. There
is certainly some truth to this observation, enough perhaps to bring those
promoters of illuminatory manipulatives up short. Electronic devices hide the
counterparts and seem to offer direct access to mathematical meanings
through the dynamic signs, the geometric screen images of Cabrigéomètre, the
arithmetic or algebraic symbols of computer algebra systems. If computers
come to mediate much of school mathematics, where and how are we to learn
about the counterpart, calculational function of mathematical symbols, which
permits their manipulation to mathematical ends?

A touching sight

Earlier in this book, I drew attention to the fact that the two most common
metaphors for understanding derive from the language of touch and sight,
and this is one reason I have attended to these two senses particularly It is
to this that I wish to return now, in order to summarise some observations
about the role of computer technology.
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William Ivins, once curator of prints at the Metropolitan Museum of Art
in New York, has also written a book on art and geometry, and draws
attention to the differing balance and predominance of the tactilemuscular
and visual sources of space intuition present both in Greek art and
mathematics, and subsequently. He characterised Greek perceptions as
almost totally tactile-muscular, while the reverse he felt was true of
Renaissance and post-Renaissance mathematics and art.

In the opening chapter, he reports on some sense experiments he
carried out, endeavouring to isolate effects of sight and touch. Of
particular interest to me was when he wrote:

Now, as against all this fading in and out, this shifting, varying,
unbroken continuity of quite different visual effects, what do we
discover when we examine the tactile-muscular sense returns
given by the exploring hand?… To begin with, as we all know
from our experience in finding our way about in completely dark
rooms, tactile awareness for practical purposes is not
accomplished by a gradual fading in and out of consciousness, but
by catastrophic contacts and breaking of contacts. My hand either
touches something or it does not.

(Ivins, 1946, p. 3)

I was struck by the similarity between his description and the ‘all-or-
nothing’ sense of understanding, of grasping something, that seems to
leave no room for my overwhelming experience of understandings
coming in and out of focus, subtle shifts in my understanding, blurring
and gentle fading as well as occasional sharp, bright ‘seeings’, moments of
insight. Instead of asking ‘Do you or don’t you understand’, perhaps
asking a pupil to ‘show me your understanding’ would leave more scope
for an informative response.

What John Mason has termed ‘mouse mathematics’ seemingly returns
us to the pre-language interaction of very young children where they are
able to act directly on the physical world with their hands. This interface
diminishes the difference between screen and material-world objects
markedly Mouse mathematics also offers the illusion of direct interaction
and control over screen objects, as if they were the mathematical objects
themselves, rather than suggestive machine-generated symbolisms.

This apparent ability to move screen objects by hand offers a sense of
manipulability similar to the manipulation of physical apparatus
discussed in Chapter 2. In my earlier book, Speaking Mathematically (Pimm,
1987), I discussed some of the ways in which screen objects can serve as
intermediaries between public and private as well as between the physical
and the purely mental. The illusion of grasp and of manipulation
supported by means of the mouse offers a powerful extension of the sense
of touch into this hybrid realm.
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The illusion of continuity afforded by the mouse privileges the
perception of a static geometric diagram as particular, given the ease of
transformation (whether seen as moving from one configuration to
another, or deforming one into another). This is at the expense of seeing a
static geometric diagram as being a symbolic representation of the general,
analogous to an algebraic formula or expression.

I wish to comment on the rebalancing of the senses involved in doing
mathematics as a result of the affordances of the computer. My first
remark is somewhat at variance with Ivins’ central dichotomy. The
experience of using the mouse, although firmly tactile-muscular, is one of
continuity, not disjointedness. The sense of drag and continuous response
of the figure, however, although not accompanied by any sense of
resistance, provides the confirmation that touch can offer that there ‘really’
is something there: in Ivins words, that there is a ‘reachable and touchable
form’. But it is the eye that observes and confirms the effect.
 

In any continuous pattern the hand needs simple and static forms
and it likes repeated ones. It knows objects separately, one after
another, and unlike the eye it has no way of getting a practically
simultaneous view or acquaintance with a group of objects as a
single awareness. Unlike the eye, the unaided hand is unable to
discover whether three or more objects are on a line.

(Ivins, 1946, p. 4)

There is an importance in balancing the senses, but also in being able to
rebalance them, so that patterns are not set so hard that it is difficult to
break out of them to perceive otherwise. Technology tends to amplify one
sense in particular, and although expanding the imaginative possibilities
available, an over-reliance on one form of technology can result in a
swamping of the other senses by the augmented one.

ON TRADITION

Tradition is a genetic code. Its persistence in a culture certifies its
function, however tacit that function is…tradition combines
innovation and rules from the past to invent new forms.

(Davenport, 1987, pp. 24–5)

A colleague, Christine Shiu, was in China talking with a group of
mathematics teachers about problem solving and investigative work in
mathematics. One commented, “Yes, but you must learn from the
Ancestors first”. One reason for attending schools is to be among knowers
of the old ways, in a ‘community of memory’, in order to be an inheritor of
traditions. There is perhaps no more fundamental split between a
perception of the primary function of schooling as inculcation into the
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traditions and one of preparation for the future; sometimes this is
unhelpfully polarised between the backward-looking and the forward-
looking.

It is important not to put tradition and individual creativity in
opposition. It is precisely the interrelation between these elements, over
and over, that is the material for the teacher in a classroom. While many
other school subjects experienced a move away from communicating the
traditions as the primary or sole focus (the extreme case might be in
English, moving away from predominant attention to written linguistic
forms to unfettered individual expression in the late 1960s), in
mathematics it was not until the problem-solving movement of the mid-
to-late 1970s that a similar, marked swing occurred in mathematics
teaching in England. This had not been the focus of the new mathematics
reform movements, which primarily altered content alone. As ever,
questions of authority and the nature of teacher guidance (derogatively
termed ‘imposition’) were central.
 

It is, of course, this element of direction that is the ideological
crunch. For a variety of reasons, not always consistent, there is a
developing disinclination by teachers, or by the influential
teacher-training establishment, to be seen to be too heavily
‘directive’. Pupils are to be encouraged to work at ‘their own
mathematics’, at mathematics which is variously seen as being
culturally dependent, gender independent, and struggling to be
free from the shackles of tradition. Wallis’ investigative method
has somehow in recent times acquired the accompanying
restriction that it has to be virginal—innocent of other than self-
created knowledge. Although it is—rightly—sometimes
considered a virtue to share with fellow learners, pupils are not
always so obviously encouraged to share with tradition, with
textbook, or with teachers.

(Tahta, 1988, p. 311)

With the new machines we are placed in a challenging position of
dramatic tension with regard to our mathematical heritage and
traditions. Traditions speak of investments. Investments result in
resistance to change—not necessarily a bad thing as stability can be one
result. To argue that human beings have always used mechanical aids for
mathematical computation is to stress historical continuity without
necessarily having knowledge of what particular assistance was
rendered at different times. It is also to ignore the fundamentally new.
These devices are not just ‘more of the same, only a bit better, faster, more
reliable’. I find it unquestionable that calculators and computers are
extremely useful items in the everyday world. What I am struggling with
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is their particular usefulness, and at what cost, in the learning and
teaching of mathematics.

Davenport (1987, p. 72) writes: “Art is the great abbreviator of
experience into vivid symbols” and later adds:
 

The arts are a way of internalizing experience, allowing us to look
with wonder at a past that is not ours, but enough of ours so that
all stories are, as Joyce says, always “the same anew”. It is not
therefore surprising that the best books are old books rewritten.
The tribe has its tales.

(ibid., p. 83)

I feel the same is true of mathematics. The degree of vividness of the
symbols comes mainly from the condensation of experience that has gone
into them, but they can also serve as a prompter of experience. Attention
does change over time, though there is still a strong commonality across
time and culture of certain experiences (which Chevallard (1990) terms
‘protomathematical’) that give themselves over to becoming mathematics,
over and above what such experiences have to offer in themselves. They
stake a claim to our collective attention.

There is a powerful Australian aboriginal belief that everywhere you
walk, you walk where others have walked before you, but also that as you
walk, you are leaving your footprints for others to walk in. This resonant
image speaks of continuity and community, of chains linking past to
future through ourselves. It accompanies a belief in the importance of the
naming of the dead, and trusting the power of language both to carry the
culture and to allow us to recreate it continually while investing the
storied events and forms with new meanings and significance.

Such beliefs also bear an interesting relationship to the way in which
the particular and individual comes to take part in the creating and
maintaining of a culture which is more enduring (as well as endearing).
The symbolic forms survive, and yet can still offer both access and insight
into the very individual and idiosyncratic ways of seeing and thinking
that gave rise to these forms. This is despite the efforts of centuries of
certain mathematical traditions to cover over and smooth out these
idiosyncratic human hand-traces10 from the artifacts—the human
individuality necessarily imprinted and impressed on the forms.
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ON MANIPULATION

[Geometry is] a science quite the reverse of what is implied by the
terms its practitioners use…. The terms are quite absurd but they
are hard put to find others. They talk about ‘squaring’ and
‘applying’ and ‘adding’ and so on, as if they were doing something
and their reasoning had a practical end, and the subject were not,
in fact, pursued for the sake of knowledge.

(Plato, Republic; given in Fauvel and Gray, 1987, p. 70)

This book has offered an exploration of the metaphor of ‘manipulation’,
asking what (and at times, who) is being manipulated, if anything at all.
Throughout this book, I have found myself using the term ‘manipulation’
over and over as the key metaphor for ‘doing’ mathematics. I am
interested in the language we have for talking about engaging in,
performing or carrying out mathematical activity—and what sort of
activity the ways we talk about it suggest it to be. For instance, how are we
to entertain algebraic things—does manipulation require us to have
mathematical things to be manipulated?

The metaphor of ‘manipulation’ requires a thing to be manipulated,
which in mathematics is, of necessity, a counterpart. Plato complained
about the language of geometry, suggesting that it made it seem to be
about physical things. In the absence of the object (forever the case in
mathematics), what is often manipulated by proxy is the symbol. So much
of school mathematics is about transformation of symbols in various
guises and to various ends. With symbolic systems, the action is restricted
to ‘mental manipulation’.

Michel Foucault, writing in Les Mots et les Choses, speaks of “that less
apparent syntax that causes words and things (next to but also opposite
one another) to ‘hang together’” (quoted in Foucault, 1983, p. 4). He adds
(p. 7): “The relationship of languages to the world is one of analogy rather
than signification; or rather, their value as signs and their duplicating
function are superimposed”. The issue of fluency and understanding is
right here in this superimposition: working with the counterpart
duplicates permits increased fluency; working with the indicative
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function of signs encourages greater understanding. Mathematical
notation acts as symbol for something else as well as providing an object to
be manipulated in its own right. Rather than being unfortunate, the ability
to confuse symbol with object in mathematics is essential to much
mathematical activity, and certainly to any sort of fluency in calculation.

Is mathematics about things or about appearances? Rotman seems in
no doubt that the latter is true and argues extensively in his book
Signifying Nothing for the illusory nature of the seeming anteriority of
things to signs, not just in mathematics, but certainly there. I find his
writing complex, fascinating and persuasive. In my exploration of the
nature of the term ‘manipulation’, I want to suggest that this pushes the
tactile ‘things’ point of view, by requiring that we turn mathematical
‘words’ into things.

An attempt to present pupils solely with objects as the focus of
mathematics, even to the extent of rebus mathematics (recording with
things) in order to see meaning as even primarily referential, is to miscue
fundamentally and in consequence contribute to the common failure to
function mathematically with fluency. Mathematicians use and produce
symbols, endlessly. Rather than recording as occurring after the event,
such a view shifts attention and recognition of the primary act from object
to sign, from presence to presentation. The language of ‘manipulation’ is a
completely dominant metaphor and, as such, is to a great extent invisible.
Symbols become objects, the things of mathematics themselves. Ironically,
manipulation is about touch, whereas symbols are predominantly about
sight, resulting in mathematics being in the grip of a powerful mixed
metaphor.

ON METAPHOR IN MATHEMATICS

Metaphors are actually about ways of seeing (seeing ‘as if), rather than
being fundamentally linguistic entities. To be offered to others, they must
be codified in language—and, once codified, they enter the cultural
resources of that language.
 
• Metaphors are conservative and backward looking They are about seeing

the new in terms of the old. Marshall McLuhan talked about “driving
with your eyes on the rear-view mirror” and offered the example of
‘the train is an iron horse’. One risk of metaphor is that you may miss
what is fundamentally new. How appropriate is the metaphor of
manipulation to describing computer-mediated mathematics?

• Metaphors express particular stressings and ignorings Using metaphors
unawarely (including ‘dead’ metaphors) can result in them stressing
and ignoring for you. Why do we need two core metaphors for
understanding, touch and sight? Conversely, by solely using the
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language of manipulation (connected to grasp), are we losing sight of
other ways of thinking/seeing?

• Metaphors can generate a creative tension They can bring new perceptions
into being (thereby reversing my earlier point—the language coding
the seeing can actually generate a new way of seeing for the hearer).
Their interpretation is far less tightly prescribed by the semantics of the
language. I have to work much harder to produce a meaning—where
do I look? And how?

 
Many people feel there is no place for metaphor in mathematics itself—
that metaphors are inexact and flowery, and therefore inherently
unsuitable for mathematical work. I would like to try to indicate a deeper
reason for this feeling of inappropriateness, without endorsing the view
itself which I do not share.

In order to do so, I provide quite a lengthy quotation (given in Fauvel
and Gray, 1987, p. 52) from a prose poem, The Way of Truth, written by
Parmenides, an ancient Greek philosopher (early fifth century BC), one of
whose students was Zeno. It is not the clearest of texts.

And the goddess greeted me kindly, and took my right hand in hers,
and addressed me with these words:
 

Young man, you who come to my house in the company of
immortal charioteers with the mares which bear you, greetings.
No ill fate has sent you to travel this road—far indeed does it lie
from the steps of men—but right and justice. It is proper that you
should learn all things, both the unshaken heart of well-rounded
truth, and the opinions of mortals, in which there is no true
reliance.

Come now, and I will tell you (and you must carry my account
away with you when you have heard it) the only ways of enquiry
that are to be thought of. The one, that [it] is and that it is
impossible for [it] not to be, is the path of Persuasion (for she
attends upon Truth); the other, that [it] is not and that it is needful
that [it] not be, that I declare to you is an altogether indiscernible
track: for you could not know what is not—that cannot be done—
nor indicate it.

For never shall this be forcibly maintained, that things that are
not are, but you must hold back your thought from this way of
enquiry, nor let habit, born of much experience, force you down
this way, by making you use an aimless eye or an ear and a tongue
full of meaningless sound: judge by reason the strife-
encompassed refutation spoken by me.

I shall not allow you to say nor to think from not being: for it is
not to be said nor thought that it is not: and what need would have
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driven it later rather than earlier, beginning from the nothing, to
grow? Thus it must either be completely or not at all. Nor will the
force of conviction allow anything besides it to come to be ever
from not being. Therefore Justice has never loosed her fetters to
allow it to come to be or to perish, but holds it fast. And the
decision about these things lies in this: it is or it is not.

 
What powerful phrasing: “the unshaken heart of well-rounded truth”, as
well as the exhortation to “judge by reason the strife-encompassed
refutation spoken by me”! But most resonant for me is the final maxim: ‘it
is or it is not’. We have Socrates claiming: “Clearly he always either is or is
not a man” as well as subsequently Shakespeare posing the question: “To
be or not to be”. John Fauvel (1988, p. 6) has drawn our attention to how
precisely this form mirrors and echoes mathematical statements that
appear around Parmenides’ time. Plato argues: “To double the square,
either you double the sides, or you do not”. Aristotle writes: “Either the
diagonal and the side [of the square] are commensurable, or they are
incommensurable”. In Euclid, we find: “Either G is a prime other than A, B
or C, or it is not”.

The way of thinking embodied in the simple phrase ‘it is or it is not’ is
profoundly mathematical. (In passing, there are interesting resonances in
Parmenides of proof by contradiction—arguing apparently from what is
not. There is also a hint of the shock our century has had to contend with
when accepting arguments for the existence of undecidable propositions—
ones for which we will never be able to say whether ‘it is or it is not’.)

I think it is for this reason that metaphor can be found to be so
profoundly disquieting in mathematics. For the very essence of metaphor,
if it is to function as it should, is its assertive ambivalence: to be able to
claim at one and the same time that ‘it is and it is not’! I assert ‘a function is
a machine’ (and yet I also know it is not one)—the strength of the
metaphoric assertion comes through the use of the verb ‘to be’—yet it
carries with it implicitly its own negation. To lose one or other force—the
assertion and its negation made simultaneously—destroys the creative
potential that metaphors can achieve.

THE METAPHOR OF MANIPULATION

The phrase ‘symbol manipulation’ seems so set, such a familiar pairing,
that it can be hard to imagine that it was ever otherwise. Yet according to
the Oxford English Dictionary, until the early nineteenth century, the word
‘manipulation’ had only a technical meaning in mining, referring there to
a method of extracting silver ore1—the Latin root of the word means
“handful”. During the course of the nineteenth century, the word became
more widely used, first to refer to the handling of physical objects, and
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then (in the 1850s and 1860s) to mean operating on things with the mind.
The verb ‘to manipulate’ was coined only then.2

The OED is organised along historical lines, with the oldest recorded
meanings first. A recent attempt by Collins to produce a dictionary where
order within an entry reflected frequency of current usage depended on
the compilation of an extensive computer database. I explored the
evidence in the Bank of English, the corpus built by COBUILD3 at the
University of Birmingham, and found that by far the most common
occurrence of ‘manipulate’ and ‘manipulation’ was of people (the next
word—connected to the direct object—in order of frequency, was ‘it’,
‘their’, ‘his’, ‘her’, ‘them’, ‘people’, ‘him’, ‘others’, ‘me’) and then economic
and political contexts—‘prices’, ‘opinions’, ‘media’ being what was
manipulated. One of the most common preceding adjectives was ‘skilful’.
Bones are manipulated when in traction or at an osteopath. A relatively new
occurrence is with the metaphoric collocation ‘genetic manipulation’, to
refer to a range of gene splicing and other recombinant DNA techniques.4

There were virtually no references to mathematical manipulation in the
200 million word database.

I find it interesting that the most common use of manipulation is in its
negative sense of manipulating people, yet there is apparently no trace of
this in the mathematical connotations. Manipulation is about imposing
my will, directly or indirectly. To be thought ‘manipulative’ is to be seen to
be endeavouring to control and impose my will on others, though on
occasion this ‘handling’ may be done with skill: being manipulative of
other people reflects a view of treating people as if they were objects.

‘Manipulative’ and ‘calculating’ are both quite pejorative labels. To be a
‘calculating’ person, in the words of one dictionary, is to be ‘selfishly
scheming’, to be explicitly conscious of what you intend to do—yet
calculators render actual computations tacit and implicit, inaccessible to
either inspection or control. My will is acting indirectly on and through the
electronic calculator, rather than directly—an important shift in locus of
control as I mentioned elsewhere.

In doing mathematics, there is an overwhelming emphasis on the hand,
of which manipulation is one central component. According to another
dictionary, to manipulate means ‘to handle a person or things with
dexterity’. Does the fact that we have the common collocation ‘fluent’ with
‘manipulation’ rather than ‘dextrous’ indicate that we realise that it isn’t,
at bottom, done with the hands?

‘Manipulate’ is a very odd word for working with symbols, treating
them as if they were objects to be rearranged physically (‘take the x over to
the other side and change the sign’). And if they are the ‘objects’, then the
‘meaning’ of the symbols may not easily be present as well. Counterpart
and signification functions can prove uneasy companions.

With the computer, the development of the mouse as a control interface
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embodies this sense of manipulation, and invites the language of ‘picking
up’ and ‘dropping’. But it is actually gaze that is controlling, and future
developments in computers may act directly in response to gaze direction,
to an act of attention. This merely serves to reinforce my sense that sight
and touch (tangibility and visibility) are key themes in relation to
mathematics.

IN CONCLUSION

 
The word connects the visible trace with the invisible thing, the
absent thing, the thing that is desired or feared, like a frail
emergency bridge flung over an abyss.

(Calvino, 1988, p. 77)

I began this book with an anecdote. I end it likewise.
While walking through an underpass on the edge of Green Park in

London, I heard a young girl experimenting with echoes. What struck me
was that the word she insisted on using repeatedly to generate the effect
was ‘ec-ho’ itself—no other word would apparently serve.

Some words seem magic in conjuring effects in ourselves—and even,
on occasion, in the outside world. They seem particularly resonant, giving
us back an echo. Some words seem closer to the events themselves,
succeeding in making them vividly present. Words and other symbols are
portable; they can help to keep contact with traditions, to maintain rituals
and values which emerged in places far off both in space and time.
Symbols offer visibility, providing substitutes for manipulation and
transformation.

This book has been about the place and importance of words (among
other symbols) in relation to objects, images and meanings in
mathematics—in particular, about the echo relation of call and answer
between symbol and object. What do we emit and what information do we
receive back? But it has also been indirectly about the crucial third term—
the person for whom the signifier signifies.

I have explored some of the varied and complex relations which hold
among word, image and thing, between symbol and the thing symbolised,
which are particularly to the fore when teaching mathematics at any level.
The symbolic aspect of doing (whether manipulating apparatus, exploring
geometric images, working on naming numbers, carrying out arithmetic or
algebraic calculations, interpreting graphs, solving ‘real-world’ problems)
must be a focal point for attention, both by teacher and pupil.

In the Introduction, I posed one general dilemma which to me seems to
be at the heart of many practical and theoretical debates about the
teaching of mathematics in schools at all levels, namely the presumed
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precedence of understanding (and the consequent emphasis on the
presence of ‘concrete’ referents, such as Dienes apparatus for place value)
over fluency in symbol manipulation. I here extend the quotation from
Dick Tahta that I gave in the Introduction (p. 9).
 

In some contexts, what is required—eventually—is a fluency with
mathematical symbols that is independent of any awareness of
concurrent ‘external’ meaning. In linguistic jargon, ‘signifiers’ can
sometimes gain more meaning from their connection with other
signifiers than from what is being signified.

Linguists have called the movement ‘along the chain of
signifiers’ metonymic whereas ‘the descent to the signified’ is
metaphoric…. The important point is that there are two sharply
distinguished aspects (metonymic relations along the chain of
signifiers and metaphoric ones which descend into meaning)
which may be stressed at different times and for different
purposes.

(Tahta, 1985, p. 49)

The key point I want to make is that it is not an either/or, that
‘understanding’ must precede ‘doing’ or conversely. We do not have to
choose to teach solely ‘metaphorically’ or ‘metonymically’ or even the one
way before the other.5 We can offer both Cuisenaire rods and finger
complements and other numeral games. Rods seem to offer a model—i.e.
a metaphor, namely numbers are in some respects like lengths.
Complementing feels like metonymy. What are the fingers in this case? We
can offer material-world situations and mental imaginings and direct work
on symbolic forms. All are potentially mathematical. All contribute to the
development of mathematical meaning. All therefore deserve time and
place in classrooms.

Understanding and appreciation, while taking work and attention,
may not involve someone ‘getting caught up in the action’. The pursuit of
greater fluency, within whichever part of mathematics is currently under
study and in whatever form it takes there, remains for me a central goal of
a mathematical education, despite the incursion of machines—just as in
photography or music, disciplines which I have used in various places for
comparative examples.

It was Simone Weil who offered the challenge of individualising
machinery—a challenge which has particular resonance at this point in
human mathematical development. If the core school mathematical
experience is to become machines manipulating symbols for us, the pupil
may end up “twice removed from the centre of things” (in the words of
George Moore in Tom Stoppard’s play Jumpers). How, for instance, are we
to come to an algebra that is still worthwhile for our pupils to engage in?
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Even though at the end of this book, I am still concerned with origins:
the end, after all, ‘is where we start from’. Michel Serres has inspiringly
written:
 

The tale of inauguration [of mathematics] is that interminable
discourse that we have untiringly repeated since our own dawn.
What is, in fact, an interminable discourse? That which speaks of
an absent object, of an object that absents itself, inaccessibly.

(1982, p. 97)

Serres’ word ‘inaccessibly’ echoes the earlier discussion about
measurement and how mimicry is a key way to make the inaccessible
accessible. Absent objects, like absent parents, engender fierce longings.
We crave the actual object; we are offered substitutes, ‘cover stories’,
counterpart symbols—and necessarily so. It cannot be otherwise. Some of
us learn to be good mimics, but at what cost?

Meaning seeps away when attentions change. Our shifts of attention
wreak changes in the mathematical entities themselves. Stevens writes:
 

Our sense of things changes and they change,
Not as in metaphor, but in our sense
Of them. So sense exceeds all metaphor.

(1967, p. 431)

Meaning comprises a continual dance invoking denotation and
connotation, metaphor and metonymy. And if our collective attention
falters, then these ‘objects’ that the language and symbolism of
mathematics have conjured and called into being also flicker and start to
fade. If the counterpart is eliminated, then its paired part also starts to
disappear.

What is mathematics about? It seems to me it is fundamentally about
we human beings ourselves: our languaging and attentions, our wills
and desires, and the astonishment that these can conjure. It becomes a
place we invest with our dreams of precision, exactness and
permanence. It is about the structures of our attention in relation to our
inner and outer experience, our inner and outer meanings, our inner and
outer worlds.

For the future, I am increasingly intrigued by the roots of mathematical
meaning and its relation to the unconscious. Gaining automaticity is
partly about moving certain functionings to the unconscious. What they
connect to there, as well as the price we pay for having them there, we may
never fully know.
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NOTES

1 INTRODUCTION

1 The fascinating article by Higbee and Kunihira (1985) discusses the specific
design and use in Japan of mnemonics for learning mathematics, and
provoked a lengthy discussion around the theme of ‘doing mathematics
without understanding it’ in the same issue of the journal.

2 For further speculations on such powerful human connections, see Pimm,
(1993a, 1994).

3 For more on the mathematical import of these terms, see Tahta (1991).
4 In this book, I use the terms ‘pupils’, ‘students’ and ‘children’ almost

interchangeably. I like Gattegno’s (1963a, p. 7) simple characterisation: “Pupils
are children of various ages who acquire that name by going to school”.
Primary schools in England roughly match elementary schools in North
America in involving the first seven years of education.

5 And James Joyce adds: “rite words in rote order”. Right words in wrote order
refers to the efficacy of the invention of writing to allow exactly repeatable
verbal statements, formulations of procedures to be followed, evoking Ivins’
(1969) identification of the historical and intellectual importance of being able
to make exactly repeatable pictorial statements. See Chapter 6.

6 A similar view can be found in Carryle (1836; 1987, p. 166): “By Symbols,
accordingly, is man guided and commanded, made happy, made wretched. He
every where finds himself encompassed with Symbols, recognised as such or
not recognised: the Universe is but one vast symbol of God”.

2 MANIPULATIVES AS SYMBOLS

1 I think that viewing the calculator and computer as manipulatives is worthy of
consideration. But they are both purely symbolic objects, however material they
may seem. Through the ages, different devices employing contemporary
technology have been developed to assist and facilitate mathematical
computation. Ancient Babylonian scribes apparently used tables of reciprocals
and squares; abacuses of various sorts have been and continue to be used all
over the world; Napier’s bones and slide-rules, as well as more mechanical
calculating devices, have been relied on, prior to our familiar electronic devices
of the last twenty or thirty years. One progressive development this sequence
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of inventions has followed is the increasing inaccessibility of the means of
functioning to the surface observer—as well, I would argue, as the increasing
irrelevance of any understanding of this for successful use.

2 Dienes’ use of the term ‘embodiment’ produces in me the right sense—
something has been rendered physical in order that it may be directly
manipulated by my body.

3 The mistaken sense of mathematics being seen as in the manipulatives recurs
with calculators and computers. Is the screen object usefully thought of as a
manipulative in this sense? Or is it distance education, where you may not
have to get too involved: a hands-off experience? Where is the interpretative
space for such experiences? See Chapters 4 and 6.

4 There is an important distinction to be made between the mathematical task
offered and the pupil activity generated in response to it. See Love and Mason
(1992), Chapter 3.

5 John Mason (1980) has proposed a ‘manipulating—getting a sense of—
articulating’ helix with regard to mathematical action.

6 Papert offers the turtle as another object to think with, and it plays a role of
transitional object (a term the psychoanalyst Donald Winnicott employed).
However, if screen objects come to be taken as mathematical objects
themselves, then the computer will perforce come to be seen as the locus vivendi
of mathematical objects.

7 Another useful separation (here of language and action, and controlling the
former by the latter) can occur with having one pupil be the ‘head’ and a second
‘the hands’, and only the head can talk and give instructions, and only the hands
can cut, draw or stick, according to what they have understood. The constraints
of the activity are ‘artificial’, but provided they are taken on by the children, then
the constrained situation can offer a powerfully focused context for learning.

I saw a most striking instance of this separation in a saxophone master class,
where the teacher had the pupil provide the breath only, and the teacher put
his own arms round the pupil from behind and moved the keys, in order to
make a point about the independence of the breath from production of the
particular notes. This provided for me a clear illustration of Burner’s notion of
‘scaffolding’ by the teacher in order to focus pupil attention quite narrowly.

8 Actually, volume, but as the blocks are made with uniform thickness, either
area or length becomes the salient variable.

9 Walkerdine (1988, p. 169) writes of Dienes’ apparatus: “In all these examples of
the children beginning place-value, the teacher, in a sense, tells the children
what they are supposed to be experiencing and discovering…she is providing
the children with cues which reveal the properties of place-value which the
objects they are manipulating are supposed to supply”.

10 This list comes from one in Jaworski and Pimm (1986).
11 These verbs refer to the role the pupil’s tactile activity is playing in relation to

the mathematics to be brought into being.
12 Art does not reproduce the visible but makes visible. The very nature of

graphic art lures us to abstraction, readily and with reason…. The purer the
graphic work, that is the more emphasis it puts on the basic formal elements,
the less well suited it will be to the realistic representation of visible things….

Something has been made visible which could not have been perceived
without the effort to make it visible…we must be very clear about the aim
of ‘making-visible’. Are we merely noting things seen in order to try to
remember them or are we also trying to reveal what is not visible?

(Klee, 1964, pp. 76, 454)
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I shall say more about making-visible in Chapter 6 on mathematical
representation. The issue here might be better described as the value of
making-intangible.

13 The child putting things into her mouth is about ‘incorporating’ things into
herself—literally making them part of herself, taking the outside and turning it
into inside. (At a certain stage it seems as if everything is in a baby’s food chain.)
To grasp is the necessary preliminary step to incorporation.

3 GEOMETRIC IMAGES AND SYMBOLS

1 A similar making static can be seen in talking not about ‘moving’ but ‘a
motion’, a process into a thing, a verb into a noun.

2 These fascinating speculations are continued in Tahta (1990a). We also find in
Plato’s dialogue Republic: “And what is more, it must, I think, be admitted that
the objects of [geometrical] knowledge are eternal and not liable to change or
decay”. Geometry has been one regular recipient of a human desire for and
investment in the eternal.

3 ‘Freud says of the maternal body “there is no other place of which one can say
with so much certainty that one has already been there”.’ (Barthes, 1984, p. 40.)

4 This activity is due to Peter Gates.
5 A similar issue lies behind the ‘arithmetisation of analysis’ due to

mathematicians Bolzano and Weierstraß during the last century. The notion of
variable involved motion, something (a variable) moving somehow through a
static sea of points. An alternative individual conception involves checking
(through generality) intervals one by one (this particular delta interval works
for that particular epsilon) for the given function.

6 For an excellent general discussion of issues related to the use of film or video,
see Tahta (1981b).

7 In what follows, I shall predominantly talk about Cabri-géomètre, with which I
am more familiar. There are many similarities and some differences between
these two programs. One of potential importance is the fact that with
Geometer’s Sketchpad you must select the objects first to which you intend to
apply any construction (which requires you to know what they require ahead
of time), whereas with Cabri-géomètre you must select the construction first and
then stipulate the objects to which it is to be applied.

8 The one thing that is absent from this set-up currently is any direct (inertial)
feedback to the hand from the mouse. Such Newtonian ‘pushing back’ is one
thing that Virtual reality’ devices can offer.

9 Rotman writes:

To move from abacus to paper is to shift from a gestural medium (in which
physical movements are given ostensively and transiently in relation to
an external apparatus) to a graphic medium (in which permanent signs,
having their origin in these movements, are subject to a syntax given
independently of any physical interpretation).

(1987, p. 13)

10 See Douady (1985), for more on this important distinction. This is a similar
shift of perspective to that to be discussed in Chapter 5 of seeing an algebraic
expression at one and the same time as both a single, unified object and as a
means of calculation. Being able to contend with such multiple perspectives is
one important criterion for mathematical success.
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11 Geometer’s Sketchpad has a primitive called ‘Mirror’ which achieves this
reflection directly. It is very difficult to enquire into system primitives, yet as
with Logo, their choice is central to the possibilities for creative exploration.
The use of primitives also echoes the restriction of much Greek geometry to
unmarked-ruler and collapsing-compass constructions.

12 In Archimedes, the curve is introduced by its symptom (‘abscissae are as the
square of the ordinates’) rather than a definition by genesis (saying what you
have to do in order to generate the curve).

13 The software tool is called Cabri-géomètre and not Cabri-géomètrie, despite the
English version on occasion being called not ‘Cabri-geometer’ but
‘Cabrigeometry’ (as if it were a type of geometry). Nevertheless, Laborde here
is talking about a different type of geometry.

14 This connects with David Fowler’s characterisation of Greek geometric style of
proof as ‘first draw the right picture and then say the right things about it’.
Much of ancient Greek high mathematics offers not so much evidence of a
preoccupation with geometric objects as with a ubiquity of geometric language
for all of mathematics (as much as ours is algebraic today). The ancient notion
of diknume proofs, ones evident by direct perception (provided you know how
to look at the image), becomes important to contrast with that of calculated
proofs. And as Lee and Wheeler’s (1989) work on algebraic argument and
demonstration has suggested, the conviction produced by algebraic
calculation is only slowly acquired. For more on the sheer difference of Greek
mathematical ontology from our own, see Fowler (1988) and Fauvel’s (1989)
review of it.

15 Mathematical tables, too, offer a particular structuring of space, a structured
holding of relationships, offering a template not of the numbers themselves in
the slots but of the relations among the entries. A spreadsheet offers dynamic
relations, but ones still constrained by horizontal and vertical (developing
Pascal’s triangle can prove a problem). Interestingly, tables seem to be neither
geometric nor algebraic.

16 To me, visualization seems a term invented by algebraists. Some
algebraists think, for example, that the term ‘circle’ denotes the equation
x2+y2=r 2. For them, that lovely curve shaped like the edge of the full
moon does not exist by itself, but only to visualize this isotropic quadratic
equation.

(Mandelbrot, 1991, p. 4)

17 John Mason (1991) has formulated a view of geometry that claims the most
striking thing about geometry is the fact of facts.

18 According to Foucault (1983, p. 36): “Magritte names his paintings in order to
focus attention on the very act of naming”.

4 WHAT COUNTS AS A NUMBER?

1 When I was somewhere between one and nine I brooded over the
possibility of finding a new number, an integer between one and nine that
had somehow been overlooked. Their names and shapes seemed so
arbitrary, ten shapes out of a million trillion thousand hundred and
eleventy possible arrays of lines and loops, so how on earth could the adult
world, the world no longer in single digits, be so smugly sure it had got
them all? This worry has not entirely gone. Like so many people who are
good at sums, I turned out to have no aptitude for mathematics: the ciphers
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continue to haunt me, entering my dreams and my prayers and my
obsessions.

(Korn, 1991, p. 16)

The word ‘cipher’ has a double meaning, that of “numeral”, and that of “zero”. It is
etymologically close to the French word chiffre, meaning “digit” or “figure”.
Rotman (1987, p. 12) tells us that ‘cipher’ is derived from the Sanskrit word sunya,
meaning “void”, and suggests that it is linked with the empty row on an abacus.

2 There are many more resonances to these words, such as conter being the
French verb “to tell stories” and compter “to count”, both deriving from the
same Latin root. But un conte is also “a tale”, and we talk about how many there
are ‘all-told’. A ‘teller’ can be one who counts aloud (money, votes), as well as a
teller of a tale worth the telling—in other words, a tale that counts. To tell tales
is also to reveal secrets. See, also, Love and Tahta (1991, p. 256).

3 A figure is a person, ‘seen, but unidentified’. A figure of speech says something
other than it seems to. Figurative language is full of metaphors rather than
literal, yet figurative (as opposed to abstract) painting is attempting to be
literal, to depict accurately what is there. A figure can be a geometric drawing.
A figure can also be a number symbol. To figure is to do arithmetic, but also to
think. Figures are figments of the imagination. Figures are fictions,
contrivances. All these f-words come from one Latin root, the verb fingo,
meaning “to feign or invent”.

4 The sense of ‘geometer’ may also be in the process of shifting, from the one-
who-images to the one-who-uses-imaging-software.

5
G I R L : 9 8 … P r o c y o n … 9 9 … A l d e b a r a n … 1 0 0 … E l e c t r a .
(The girl stops skipping and counting….)

CISSIE 1: What are you doing up so late?
GIRL: I’m counting the stars.
CISSIE 1: Do you really know all their names?
GIRL: Yes I do.
(There is a long pause.)
CISSIE 1: How many did you count?
GIRL: A hundred.
CISSIE 1: But there are more than a hundred.
GIRL: I know.
(There is a longer pause in complete silence.)
CISSIE 1: Why did you stop?
GIRL: A hundred is enough. Once you have counted one hundred, all
other hundreds are the same.

(Greenaway, 1988, p. 4)

6  What is this, 1? And this, 2? And this, 3? (and so on), and this, 9?
Now I want to write ten: how shall I do it?
Put 1 and 0.
But what has ten done to be different from the rest?
Why should it have two signs instead of one like its neighbours? And
why does it take signs belonging to its neighbours, instead of having
one of its own?
Did ten ask to have two signs? Did it wish to have two? No; then why
did we give it two?
I once asked a young friend of mine why he did something in his sum;
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and he answered: ‘My reason is that I was told to do it at school; but I
know I ought to have another reason, and I know I haven’t.’ I thought
that was a sensible answer. It applied to most things in arithmetic.

(Mary Boole, in Tahta, 1972, p. 30)

7 It is not the case, however, that all languages embody exactly the same
principles. Some languages are more equal than others when it comes to
regularity. The first ten Vietnamese number words in order are:

 
mot, hai, ba, bon, nam, sau, bai, tam, chin, muoi.

Eleven is muoi mot, fourteen is muoi bon, twenty-three is hai muoi ba and thirty-
seven is ba muoi bai.

Translating the Vietnamese number words into English reveals a very
transparent structure. Eleven is ‘ten one’ and twenty-three is ‘two ten three’.
Knowing this, you could form any number word to ninety-nine. If told that the
Vietnamese word for ‘hundred’ is tram, you can now ‘count’ to nine hundred
and ninety-nine.

Counters in English additionally need to know the words ‘eleven’, ‘twelve’,
‘thirteen’, ‘fifteen’, the ‘-teen’ rule, ‘twenty’, ‘thirty’, ‘forty’, ‘fifty’ and the ‘-ty’
rule. In passing, the words eleven and twelve come from Gothic ‘ain-lif’ and
‘twalif’, meaning “one [or two] left” (after taking away ten, presumably).

8 This is a classical example of a metonymy, in fact, of a synecdoche: substituting
the part for the whole. The ‘counting’—one, two, three, four, five—gets
abbreviated into the last word in the counting, five.

9 The number thirteen, plausibly through its metonymic link to the Last Supper,
is often left out in real-world countings. If a building has a thirteenth floor, one
number is commonly skipped and it is called fourteen. It is still the thirteenth
floor ordinally, but the unease-provoking association seems to be with the
number name itself.

10 John Mason (1980), in his article ‘When is a symbol symbolic?’, talks of ‘seeing
through’ a symbol.

11 This need not be the case. Sandy Dawson (1991) has produced an account of
developing a written subtraction algorithm which operates from left to right,
arising from observations made when working with Cuisenaire rods.

12 ‘Working’ shows that work has been done and this is an important part of
classroom ethos, as well as marking an important boundary, that between
work and play (see Walkerdine, 1981).

13 His wonderful practitioner name meaning “of the hand”.
14 Is this true at the electrical level with electronic calculators?
15 Apices is the plural of ‘apex’ (like vertex—vertices), the high point of a triangle.

Apices are pointers as well as counters, a physical embodiment of ‘a four
meaning “four”’. A more familiar example of the apex phenomenon can be
seen with the musical stave. Similar blobs that are filled in or not, with attached
lines or not, indicate relative duration; the lines are not powers of ten but
relative pitch separators, and it is not a calculating device per se, merely a
means of ‘holding’ music.

16 There might have come a point where the apparatus was seen to be too clumsy
and to be unnecessary. If the symbols were removed from the objects and
written down by themselves, then there was a way of computing with
reference to these marks alone: that the smile left as the Cheshire cat vanished
was sufficient. This transitional story, where the numerals ‘substitute’ for the
apices in quite a real and physical sense, does not match the actual history at
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all. Nevertheless, calculating with the written notation in the 1200s may still
have evoked traces of experience with numbered objects for mediaeval
Western users.

17 Something similar happens in Logo when a complex procedure is defined and
named: the name can then be used just like any other primitive in the system.
In this sense, Logo is a pop-down, rather than a pop-up, language.

18 Almighty and most merciful Father,
We have erred and strayed from thy ways like lost sheep,
We have followed too much the devices and desires of our own hearts,
We have offended against thy holy laws,
We have left undone those things which we ought to have done,
And we have done those things that we ought not to have done;
And there is no health in us.

A general confession, The Book of Common Prayer, p. 4.

19 This section draws on Dick Tahta’s (1991) astonishing chapter entitled
‘Understanding and desire’, as well as Brian Rotman’s (1987) important book
Signifying Nothing. The issues they discuss are at the heart of the murky and
complex relationships among symbols and meanings in arithmetic in
particular, and in mathematics in general.

5 ALGEBRA TRANSFORMING

1 The word ‘algebra’ comes from the Arabic term al-jabr, particularly associated
with the title of a work by al-Khwarizmi entitled Al-kitab al-mukhtasar fi hisab al-
jabr w’al-muqabalah. While translations vary, a helpful one is The compendious
book on calculation by completion [al-jabr] and opposition [al-muqabalah]’. This
naming indicates that it is the operations which are perceived as important
(naming frequently does that, even if the perceptions underlying the naming
are no longer current). ‘Completion’ or ‘restoration’ refers to adding the same
thing to both sides of an equation, placing all terms in some standard form.
‘Opposition’ or ‘balancing’ refers to a comparable process of subtraction. For
my purposes here, it is also of relevance that some of al-Khwarizmi’s work was
primarily concerned with ‘manipulating’ geometric areas related to what we
would see as quadratic equations.

2 A colleague, Larry Copes, has told me of a dinner conversation with his
daughter Lynn (aged ten) and her friend Laurel (sixteen).

Lynn said, “We’re doing algebra in math. Give me an algebra problem.
But don’t use those boring letters like x and y.”

“OK”, replied Larry, “Five alpha plus two is seventeen. What is
alpha?”

Laurel, “What’s alpha?”
Larry, “The first Greek letter. It’s definitely not boring.”

Lynn thought a while, and then said “Three”. After expressing
appropriate amazement, Larry asked, “How did you figure it out?”

Lynn, “Well, I tried alpha as one, then two, then as three, and it finally
worked.”

Then Laurel said, “There’s an easier way. You have the equation five
alpha plus two equals seventeen. So you subtract two from each side and
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get five alpha equals fifteen. Then you divide both sides by five to get
alpha equals three.”

Lynn, “I don’t understand a word you said. (Pause) But I have an idea.
What if you subtract two from seventeen to get fifteen and then divide by
three. That’s just undoing what you did to alpha to get seventeen.”

Laurel, “That’s just what I said.”

Lynn, “No it’s not. You were talking about equations and doing
something to both sides. I didn’t understand that.”

The doing, the acting, is important—but gets lost. Once again, mathematics
becomes static, verbs turn into nouns, ‘equating’ becomes ‘an equation’, just as
‘moving’ becomes ‘a motion’ in geometry.

3 Martin Hughes (1986) has made extensive comments about the difficulties
young children have in representing the process of change.

4 A sixty-minute videotape containing extensive extracts from the lessons and
interview is available: see Hewitt (1991). Some of the quotations I cite here are
taken from the written notes he produced to accompany this tape.

5 A similar graphic onomatopoeia can be found in James and Mason (1982),
where they offer the notion of a balloon or bag grouping the things inside,
gradually adapting it to having dotted lines apart from both ends, until finally
the brackets are all that is left.

6 It provides a different variant on the ‘understanding before doing’ story. See
Mason et al. (1985).

7 Logo is not a computer algebra system, it is a fully fledged, sophisticated
computer language. I acknowledge I have done far from justice to the
potentiality of Logo in this context. For a much fuller exploration, see Hoyles
and Sutherland (1989) and, particularly, Hoyles and Noss (1992).

8 Sutherland writes (1992, p. 37): “Pupils can choose to manipulate the formal
Logo procedure or to descend into the geometrical meaning behind the Logo
formalism”.

9 Talking about a non-Logo environment, Kaput (1989, p. 190) comments:

This situation will change as symbol manipulation systems specifically
designed for educational purposes become available…. Some of these
new systems will enable the user to perform certain procedures on
particular cases (say, solve a particular linear equation), while the
system “captures” or records the sequence of actions as a more general
procedure to be executed on other linear equations, much as The
Geometric Supposers (Schwartz and Yerushalmy, 1985) record geometric
constructions as procedures to be re-executed on command.

This provides an instance of how increasing software sophistication can
result in decreased mathematical challenge.

10 This has not stopped many people exploring their potential educational
consequences for schools: see, for instance, the special issue of the ATM journal
Micromath 9(3), 1993 devoted to computer algebra systems.

11 Some software (e.g. Math Connections Algebra I and II) actually creates an
equivalence: thus, apparently, a table of values can be plotted or graphed! The
latter option puts a curve through the points, and indeed occasionally
‘corrects’ table values that have been input if the curve does not exactly fit.

12 What would software look like that did offer forms as forms to be worked on
directly? Dave Hewitt has developed a program called GRID Algebra,
connected with the rulers lessons described earlier, which provides one
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response. Details may be obtained from the Centre for Mathematics Education,
The Open University, Walton Hall, Milton Keynes, Bucks MK7 6AA, England.

13 A lone voice urging and arguing for caution is that of David Wheeler (1989).
14 A similar situation can be seen with the economic instrument known as the

tally stick, which was broken in two as well as doubly graded to show the
amount owed. The possessor of the matching counterpart was the person to
whom the debt was owed.

15 Curiously, the Latinate root of the word ‘object’, a term often used as the
counterpart to ‘symbol’, also has the root meaning “throw” (Lat. jaceo), while
the prefix ‘ob’ indicates “before”: something ‘thrown before the mind’.

16 The Frye piece that I have drawn on for this section is called The symbol as a
medium of exchange’. Money concerns and algebraic concerns are intimately
linked, both as explored by Brian Rotman (1987) and by Simone Weil (1952, p.
139): ‘Money, mechanisation, algebra. The three monsters of contemporary
civilisation…. Algebra and money are essentially levellers.’ I see Weil’s
‘levelling’ in terms of ignoring difference (whether between labour or
dividend as sources of my money, or in algebra in terms of the problem, once
algebraicised, disappearing from view and being treated the same irrespective
of its source). But it also carries a whiff of ‘democracy’, of social levelling. And
as for commonality across her three monsters, one is that they all involve a loss
of action, of will, of agency—an absence or distancing of direct involvement of
the human self.

17 That os is the Latin word for ‘bone’ adds an unexpected resonance to symbolos.
Also, according to Flegg (1983, p. 173), the word algebra “came to have the
pseudo-medical meaning of ‘bone-setter’”.

6 MAKING REPRESENTATIONS AND
INTERPRETATIONS

1 There is a lot of work do be done on the nature of the original in mathematics:
what differences are there among ‘sphere’, ‘a sphere’ and ‘the sphere’? See
Benjamin (1969) for a discussion of how the ability to make mechanical
reproductions of works of art has altered the notion of ‘the original’.

2 This acknowledgement of agency and intent is, for me, some of what gives
force to a remark I heard: “My dog stepped on a calculator the other day and
drew sin(x)”.

3 Virtual reality creates a virtual visual world that is not a reflection, at least not
in the ‘mirror’-generated sense. It is not a representation either. It offers a scene
that is ‘virtually’ there as far as the eyes perceive, as well as offering an
apparently three-dimensional tactile and sonic world.

4 ASA stands for American Standards Association—a metonymy turned into a
unit. The numbers used to indicate relative sensitivity to light form a ratio
scale, that is a film with an ASA rating of 200 reacts to light twice as fast as a
100-rated film.

5 It is true that light meters are becoming more sophisticated and some now
have centre-weighting, to give greater emphasis to the degree of light coming
in from whatever is at the centre of the proposed field of view. In 1970, the
Life magazine photographer Ralph Morse commented about external light
meters: “The meter is a great tool, but remember it is just a dumb mechanical
instrument. You must use your experience and judgement to interpret it”. In
the twenty-odd years since that comment was made, light meters have
become integral devices in the camera and opportunities for either
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developing or exercising ‘experience and judgement’ in interpretation have
been curtailed.

7 SYMBOLS AND MEASURES

1 Originally from Baker Street to Waterloo Station.
2 Ivins, mentioned in the last chapter, comments that museum art writers, even

when two paintings are in a gallery, will bring photographs of them side by
side for comparison, rather than the actual objects, which invites seeing the
taking of photographs as a form of measurement, as well as creating a
counterpart.

3 Nowhere is this clearer than with computer-generated objects (such as in
Geometer’s Sketchpad) which allows ‘measurement’ of areas. Since these
erstwhile geometric objects are actually specified by arithmetic parameters,
there is no sense of error or approximation. The images come from the
measurements, rather than conversely.

4 A mathematical example of unit structure comes with scientific notation: 2.67
×106 metres. There are two sorts of unit here: an arithmetic scale offered by
powers of ten, which is highly non-uniform, despite its deceptive appearance,
and then a physical unit. See Confrey (1991).

5 The standard English pronunciation of this word, with the second syllable
stressed ‘kil-om-etre’, masks this structural link, in a way that the North
American first syllable stressed pronunciation ‘kil-o-meter’ does not.

6 The complexity of economic exchange, the meaning relations among price,
money and value, is well explored in Wallace Shawn’s play The Fever:

He [Marx] used the example that people say, ‘twenty yards of linen are
worth two pounds’. People say about every thing that it has a certain
value. This is worth that. This coat, this sweater, this cup of coffee: each
thing worth some quantity of money, or some number of other things—
one coat, worth three sweaters, or so much money—as if that coat,
suddenly appearing on the earth, contained somewhere inside itself an
amount of value, like an inner soul, as if the coat were a fetish, a physical
object that contains a living spirit. But what really determines the value
of a coat? What is it that determines the price of a coat? The coat’s price
comes from its history, the history of all the people who were involved
in making it and selling it and all the particular relationships they had.
And if we buy the coat, we too form relationships with all of those
people, and yet we hide those relationships from our own awareness by
pretending we live in a world where coats have no history but just fall
down from heaven with prices marked inside. ‘I like this coat,’ we say,
‘it’s not expensive,’ as if that were a fact about the coat itself and not the
end of a story about all the people who made it and sold it.

(Shawn, 1991, p. 27)

7 The terms ‘minutes’ and ‘seconds’ provide a nice pair of units, in that minute
derives from its smallness relative to an hour, and second comes from “a second
order of minuteness”. Both of these words have been turned into names of
measures: along the way, this status has been confirmed by a shift into nouns
and in the first by an altered pronunciation and the second by shedding any
sense of ordinality.

8 This has the characteristic of metaphor: first something is assumed to be
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something else, to enable one result to be determined, then it is believed to be
different, in order to compensate for the fact that it is metaphor and not literal
description that is involved. See Pimm (1994) for more on this view of
metaphor as involving both assertions that it is and that it is not.

9 “And, according to a now-forgotten etymology, a theorem is above all the
object of a vision” (Thom, 1971, p. 697).

10 Ivins, as ever attuned to the particularity of different senses, writes (1969, pp.
53–4) of the centrality of vision in endeavouring to gain knowledge and
acquaintance of objects. In particular, he notes a consonance:

This method of symbolization is the making of pictures or images, which,
unlike spoken words, are apprehended through the same sense organs
which give us the awarenesses we try to symbolize.

He proposes the following criterion.

Thus the more closely we can confine our data for reasoning about things
to data that come to us through one and the same sense channel the more
apt we are to be correct in our reasoning, even though it be much more
restricted in its scope. One of the most interesting things in our modern
scientific practice has been the invention and perfection of methods by
which the scientists can acquire much of their basic data through one and
the same sensuous channel of awareness. I understand that in physics, for
example, the scientists are happiest when they can get their data with the
aid of some dial or other device which can be read by vision. Thus heat,
weight, lengths, and many other things that in ordinary life are
apprehended through senses other than vision have become for science
matters of visual awareness of the positions of mechanical pointers.

 
11 Other objects are used besides numbers as measures in higher mathematics.

Groups, for instance, are widely used as measures of spaces in algebraic
topology. But in each case there is the arithmetic-algebraic displacement which
moves from the particular realm of interest into another.

8 LIVING IN THE MATERIAL WORLD:
SYMBOLS IN CONTEXTS

1 Yves Chevallard (1990, p. 6) writes trenchantly about the need of mathematics
educators to write in defence of their subject:

Such a study [he is reviewing a special issue of a journal on cultural
issues in mathematics education] pertains to the category of apologetical
discourses. To put it plainly: mathematics “noospherians”—members of
the noosphere (reviewer’s personal jargon), i.e. members of the
mathematics education intelligentsia—have “to put over the goods”, to
convince society that mathematics, and therefore, mathematics
education, are highly beneficial to society. However subtly, fighting in
defence of mathematics and mathematics teaching is the common lot of
the literature on mathematics education.

2 This is not new. My mother recalls being in the army during the Second World
War and the officer dividing the new recruits into two groups: those with
‘general schools’ mathematics over there and the rest over there. Those in the
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first group were then offered training in a range of technical tasks such as
repairing the electrical systems of trucks.

3 See, for instance, d’Ambrosio (1985), but also Wheeler’s comments in his
review of Marcia Ascher’s book on ethnomathematics (1992). As I write, a
special issue of For the Learning of Mathematics, 14(2) devoted to this theme has
just appeared.

4 For a subtle analysis of some features and effects of various text styles, see
Dowling (1991a, 1991b).

5 Lesley Lee has remarked to me how at a recent meeting about the teaching and
learning of algebra, she noticed and commented on how every problem in a
beginning set of algebra problems was about money. She was told how
publishers and hence authors were uneasy about offending some or other
group or section of the population (food was also taboo), thus acting against
‘math for air. Such self-censoring may well result in no people now featuring
directly in problems.

She commented, “It seems that one subject of apparent social consensus in
the US is money (and the capitalist system), so that if one wants one’s textbook
to sell to as wide an American market as possible,…” Swetz’ (1987) book
Capitalism and Arithmetic may yet be rewritten about algebra in the US in the
twenty-first century rather than being in part about algebra in fifteenth-
century Italy-seeTahta (1990b).

9 ON FLUENCY AND UNDERSTANDING

1 “One might say that the project [Automath] is a modern version of “Leibniz’s
Dream” of making a language for all scientific discussion in such a way that all
reasoning can be represented by a kind of algebraic manipulation” (de Bruijn,
1986, p. 61).

2 When learning to play the saxophone, one goal was to learn to play the scales
fluently. The temptation to which I regularly succumbed was trying to learn to
play them fast. I was repeatedly told by my teacher to play them more slowly,
evenly and fluently, and that speed would come.

3 In a recent Key Stage 1 SAT (UK national test for seven-year-olds), pupils were
to be given two numbers and asked to add them without giving any indication
of counting on (e.g. no finger movements). What if they looked up? Were they
counting on in their heads?

4 Recall an automaton is a thing which can move by itself, apparently at will and
therefore seemingly embodies a sense of will.

5 For more on the history and development of primary mathematics textbooks,
see Gray (1991).

6  
The apt use of a word (in its poetical sense), its repetition, twice, three
times, or even more frequently, according to the need of the poem, will
not only tend to intensify the internal structure but also bring out
unsuspected spiritual properties in the word itself. Further, frequent
repetition of a word (a favorite game of children, forgotten in later life)
deprives the word of its external reference. Similarly, the symbolic
reference of a designated object tends to be forgotten and only the
sound is retained.

(Kandinsky, 1947, p. 34)

7 In the story Franny and Zooey, Salinger writes of the Jesus Prayer, to be said
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incessantly: “Enlightenment’s supposed to come with the prayer, not before it”
(1964, p. 113).

8 In 1992, a constitutional referendum was held across Canada with regard to the
terms under which anglophones and francophones would agree to Quebec as
a formal part of Canada. The slogan of one unificationist group, ‘Mon Canada
comprend le Québec’, shows both meanings to their full extent. The result of the
referendum suggested that parts of Canada did not choose to ‘understand’
Quebec.

9 A few of the papers include: Skemp (1976), Michener (1978), Sierpinska (1990),
Pirie and Kieren (1989, 1992), Davis (1992) and Sfard (1994). Many of the
approaches involve dividing up understanding into types: for instance, the
distinction between ‘relational’ and ‘instrumental’, made by Mellin-Olsen,
then extended and promulgated by Skemp. One point here about this
particular distinction is the common identification of ‘rote learning’ or ‘rote
teaching methods’ with ‘instrumental understanding’, yet for its delineators, it
was a form of understanding. Similarly, associations derived from symbolic
forms are, for me, a form of meaning.

10 There is a strong analogy with the use of the sense of touch in pottery. Otto
Natzler, in his book Ceramics, writes:

 
When you hold a pot in your hands, when you go over its walls with
your fingers, you feel the hands of the potter, his fingermarks, his touch.
You may not know who he was or what he looked like, but, handling
the pot, be it hundreds or thousands of years old, you can still feel the
imprint of his hands. It is this fact about a pot that makes it so
endearing, so very personal. It makes the physical handling of a pot
such an important part of its appreciation, as important as its visual
impact and at times even more so.

(Natzler, 1968, pp. 38–9)

Consider the technology of pottery. First, pots can be completely hand-
made, formed without tools, producing something which is particular,
idiosyncratic and potentially interesting—there is plenty of room for surprises
and actuality turning out differently from intention. The pot is organic and in
intimate relation with the maker, down to the point of leaving fingerprints on
it—the imprint that personality can impose on form. Then, with pottery
thrown on a wheel, the generative motion creates fewer opportunities for
spontaneous elements, but can offer more symmetry and also speed. Finally,
with slipcasting technology (use of a mould), we have lost all evidence of
individual hands and thus the organic connectedness with the person. The
result inherits a certain uniformity and smoothness, but also a certain
unchangingness from the mould. There is the possibility of exactly repeatable
clay statements.

Apart from completely hand-made pots, all pots are created in part by means
of some technology which has its own functions that can intervene to shape the
end result. More sophisticated tools can expand the imaginative possibilities by
allowing things to be done that could not be done by hand alone. As with the
example of photography in Chapter 6, in terms of artistry, there is a tension
between functioning and automation on the one hand and creativity and
human control (and hence variability) on the other. But there are also different
experiences of that tension, depending on whether you are more novice or
expert.
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10 ON MANIPULATION

1 There is an odd connection here in that Spencer Brown (1977, p. 93) informs us
that the origin of the verb ‘to argue’ also involves silver. He writes:
Although count rests on putare=prune, correct, (and hence) reckon, the
word reason comes from reri=count, calculate, reckon. Thus the reasoning
and computing activities of proof were originally considered as one. We
may note further that argue is based on arguere=clarify (literally ‘make
silver’). We thus find a whole constellation of words to do with the
process of getting it right.

 
2 I am grateful to Eric Love for providing me with this information.
3 COBUILD is a research project sponsored by Harper Collins Publishers at the

University of Birmingham. The Bank of English consists of 200 million words,
held as a number of corpora from a wide range of language sources. It is
possible to search some or all of these corpora for occurrences of particular
words and hence, relative to the scope of the database, to get a feel for relative
frequency and common co-occurrences of words and expressions. The Collins
COBUILD dictionary (1987) was one product of this work.

4 See Pimm (1988) for a discussion of the functioning of creative metaphoric
juxtapositions such as this one.

5 There is a tension between symbol for object (metonymy) and symbol as object
(metaphor). Fluency and understanding result from different balances among
these two always present possibilities. See Tahta (1991) for more detail about
the sense of these terms.

 



206

REFERENCES

Ainley, J. (1988a) ‘Perceptions of teachers’ questioning styles’, Proceedings of the
12th PME Conference, Veszprem, Hungary, pp. 92–9.

Ainley, J. (1988b) ‘Maths in motion’, Child Education, September, 33–5.
Ainley, J. (1991) ‘Is there any mathematics in measurement?’, in Pimm, D. and

Love, E. (eds) Teaching and Learning School Mathematics, London, Hodder and
Stoughton, pp. 69–76.

Ainley, J. (1994) ‘Building on children’s intuitions about line graphs’, Proceedings of
the 18th PME Conference, Lisbon, Portugal, 2, pp. 1–8.

Ainley, J. and Goldstein, R. (1988) Making Logo Work, Oxford, Basil Blackwell.
Atiyah, M. (1986) ‘Mathematics and the computer revolution’, in Churchhouse, R.

et al. (eds) The Influence of Computers and Informatics on Mathematics and its
Teaching, (ICMI Study Series), Cambridge, Cambridge University Press, pp. 43–
51.

ATM (1985) Away with Maths, Derby, Association of Teachers of Mathematics.
ATM (1992) Special Feature on Cabri-Géomètre, Micromath, 8(2), 22–39.
Balacheff, N. (1988) Aspects of proof processes in pupils’ practice of school

mathematics’, in Pimm, D. (ed.) Mathematics, Teachers and Children, London,
Hodder and Stoughton, pp. 216–35.

Balacheff, N. (1991) ‘Construction et analyse d’une situation didactique: le cas de
“la somme des angles d’un triangle”’, Journal fur Didaktik der Mathematik, 12 (2/
3), 199–264.

Barthes, R. (1984) Camera Obscura: Reflections on Photography, London, Fontana.
Beeney, R. et al. (1982) Geometric Images, Derby, Association of Teachers of

Mathematics.
Belenky, M. et al. (1986) Women’s Ways of Knowing: The Development of Self, Voice and

Mind, New York, Basic Books.
Benjamin, W. (1969) The work of art in the age of mechanical reproduction’, in

Benjamin, W., Illuminations, New York, Schocken Books, pp. 217–51.
Bidwell, S. and Clason, R. (1970) Readings in the History of Mathematics Education,

Washington, DC, National Council for Teachers of Mathematics.
Bloomfield, A. (1990) People Maths, Cheltenham, Stanley Thornes.
Boero, P. (1993) About the transformation function of the algebraic code’, Working

conference on Algebraic Processes and the Role of Symbolism, London, Institute of
Education.

Boyer, C. (1968) A History of Mathematics, New York, Wiley.
Brown, L. (1991) ‘Prerequisite’, Mathematics Teaching, 135, 23.
Brown, S. (1974) ‘Musing on multiplication’, Mathematics Teaching, 69, 26–30.



REFERENCES

207

Bruner, J. (1966) Toward a Theory of Instruction, Cambridge, MA, Harvard
University Press.

Cajori, F. (1916) William Oughtred: A Great Seventeenth Century Teacher of
Mathematics, Chicago, IL, Open Court.

Calvino, I. (1988) Six Memos for the Next Millennium, Cambridge, MA, Harvard
University Press.

Carlyle, T. (1836; 1987) Sartor Resartus, Oxford, Oxford University Press.
Channell, J. (1994) Vague Language, Oxford, Oxford University Press.
Chazan, D. (1993) ‘F(x)=G(x)?: an approach to modelling with algebra’, For the

Learning of Mathematics, 13(3), 22–6.
Chevallard, Y. (1990) ‘On mathematics education and culture: critical

afterthoughts’, Educational Studies in Mathematics, 21(1), 3–27.
Churchhouse, R. et al. (eds) (1986) The Influence of Computers and Informatics on

Mathematics and its Teaching, (ICMI Study Series), Cambridge, Cambridge
University Press.

Clement, J. (1989) The concept of variation and misconceptions in Cartesian
graphing’, Focus on Learning Problems in Mathematics, 11(2), 77–87.

COBUILD (1987) The Collins COBUILD English Language Dictionary, London,
Collins.

Confrey, J. (1991) ‘Learning to listen: a student’s understanding of powers of ten’,
in von Glasersfeld, E. (ed.) Radical Constructivism in Mathematics Education,
Dordrecht, Kluwer, pp. 111–38.

D’Ambrosio, U. (1985) ‘Ethnomathematics and its place in the history and
pedagogy of mathematics’, For the Learning of Mathematics, 5(1), 44–8.

Davenport, G. (1987) Every Force Evolves a Form, Berkeley, CA, North Point Press.
Davis, R. (1992) ‘Understanding “understanding”’, Journal of Mathematical Behavior,

11(3), 225–41.
Davydov, V. and Markova, A. (1983) A concept of educational activity for

schoolchildren’, Soviet Psychology, 21(2), 50–76.
Dawson, S. (1991) ‘Learning mathematics does not (necessarily) mean constructing

the right knowledge’, in Pimm, D. and Love, E. (eds) Teaching and Learning
School Mathematics, London, Hodder and Stoughton, pp. 195–204.

de Bruijn, N. (1986) ‘Checking mathematics with the aid of a computer’, in
Churchhouse, R. et al. (eds) The Influence of Computers and Informatics on
Mathematics and its Teaching, (ICMI Study Series), Cambridge, Cambridge
University Press, pp. 61–8.

DES (Department of Education and Science) (1982) Mathematics Counts (the
Cockcroft report), London, HMSO.

DES/WO (Department of Education and Science/Welsh Office) (1988) Mathematics
for Ages 5 to 16, London, HMSO.

Dienes, Z. (1963) An Experimental Study of Mathematics Learning, London,
Hutchinson.

DIME (1985) Feely Box, Diss, Norfolk, Tarquin Publications.
Doerfler, R. (1993) Dead Reckoning: Calculating without Instruments, Houston, TX,

Gulf Publishing Company.
Donaldson, M. (1979) Children’s Minds, London, Fontana.
Douady, R. (1985) The interplay between different settings, tool-object dialectic in

the extension of mathematical ability’, in Streefland, L. (ed.), Proceedings of the
Ninth International Conference for the Psychology of Learning Mathematics, State
University of Utrecht, OW&OC, pp. 33–52.

Douglas, M. (1978) Natural Symbols, Harmondsworth, Penguin.
Douglas, M. (1991) ‘Faith, hope and probability’, London Review of Books, 23 May, 6–8.



208

REFERENCES

Dowling, P. (1991a) ‘Gender, class and subjectivity in mathematics: a critique of
Humpty Dumpty’, For the Learning of Mathematics, 11(1), 2–8.

Dowling, P. (1991b) ‘A touch of class: ability, social class and intertext in SMP 11–
16’, in Pimm, D. and Love, E. (eds), Teaching and Learning School Mathematics,
London, Hodder and Stoughton, pp. 137–52.

Dufour-Janvier, B., Bednarz, N., and Belanger, M. (1984) ‘Pedagogical
considerations concerning the problem of representation’, in Janvier, C. (ed.)
Problems of Representation in the Teaching and Learning of Mathematics, Hillsdale,
NJ, Lawrence Erlbaum Associates, pp. 109–22.

Elson, R. (1964) Guardians of Tradition: American Schoolbooks of the Nineteenth
Century, Lincoln, NE, Nebraska University Press.

Fauvel, J. (1988) Topics in the History of Mathematics (MA290), Milton Keynes, The
Open University, Unit 3.

Fauvel, J. (1989) ‘Academics at the Academy’, Mathematics Teaching, 128, 38–40.
Fauvel, J. and Gray, J. (eds) (1987) The History of Mathematics: A Reader, London,

Macmillan.
Feynman, R. (1988) What do YOU Care what Other People Think?, New York, Norton.
Fisch, M. and Bergin, T. (1944) The Autobiography of Giambattista Vico, a translation

from the Italian original, Ithaca, NY, Cornell University Press.
Flegg, G. (1983) Numbers: Their History and Meaning, London, André Deutsch.
Foucault, M. (1983) This is Not a Pipe, Berkeley, CA, University of California Press.
Fowler, D. (1988) The Mathematics of Plato’s Academy: A New Reconstruction, Oxford,

Clarendon Press.
Freeman, R. (1960) Yesterday’s School Books, Watkins Glen, NY, Century House.
Freudenthal, H. (1973) Mathematics as an Educational Task, Dordrecht, D. Reidel.
Frye, N. (1987) The symbol as a medium of exchange’, in Leith, J. (ed.) Symbols in

Life and Art, Montreal, McGill-Queen’s University Press, pp. 3–16.
Garfinkel, H. (1968) ‘On the origins of the term “ethnomethodology”’, in Hill, R.

and Stones Crittenden, K. (eds) Proceedings of the Purdue Symposium on Ethno-
methodology, Institute Monograph Series No 1, Institute for the Study of Social
Change, Purdue University, pp. 5–11.

Gattegno, C. (1963a) Modern Mathematics with Numbers in Colour, Reading,
Educational Explorers Ltd.

Gattegno, C. (1963b) A matter of relationships’, For the Teaching of Mathematics,
volume 3, Reading, Educational Explorers Ltd., pp. 80–4.

Gattegno, C. (1967) ‘Functioning as a mathematician’, Mathematics Teaching, 39, 6–
9. (Reprinted in A Gattegno Anthology, Brown, L. et al. (eds), Derby, Association
of Teachers of Mathematics, pp. 28–9.)

Gattegno, C. (1970) What We Owe Children, New York, Outerbridge & Dienstfrey.
Gattegno, C. (1974) The Common Sense of Teaching Mathematics, New York,

Educational Solutions.
Gattegno, C. (1983) ‘On algebra’, Mathematics Teaching, 105, 34–5.
Gerdes, P. (1988) ‘On culture, geometrical thinking and mathematics education’,

Educational Studies in Mathematics, 19(2), 137–62.
Gilligan, C. (1982) In a Different Voice: Psychological Theory and Women’s

Development, Cambridge, MA, Harvard University Press.
Goldenberg, E. (1987) ‘Believing is seeing’, Proceedings of the Eleventh International

Conference for the Psychology of Learning Mathematics, Montreal, QC, pp. 197–
203.

Goldenberg, E. (1988) ‘Mathematics, metaphors and human factors: mathematical,
technical and pedagogic challenges in the educational use of graphical
representations of functions’, Journal of Mathematical Behavior, 7, 135–73.



REFERENCES

209

Goldenberg, E. and Feurzeig, W. (1987) Exploring Language with Logo, Cambridge,
MA, MIT Press.

Gould, S. (1981) The Mismeasure of Man, New York, Norton.
Goutard, M. (1964) Mathematics and Children, Reading, Educational Explorers.
Gray, E. (1991) The primary mathematics textbook: intermediary in the cycle of

change’, in Pimm, D. and Love, E. (eds) Teaching and Learning School
Mathematics, London, Hodder and Stoughton, pp. 122–36.

Gray, J. (1988) Topics in the History of Mathematics (MA290), Milton Keynes, The
Open University, Unit 8.

GRE (1993) Information and Registration Booklet of the Graduate Record Examination,
Princeton, NJ, Educational Testing Service.

Greenaway, P. (1988) Drowning by Numbers, London, Faber and Faber.
Halliday, M. (1975) Learning How to Mean, London, Edward Arnold.
Harnasz, C. (1993), ‘Do you need to know how it works?’, in Selinger, M. (ed.)

Teaching Mathematics, London, Routledge, pp. 137–44.
Hatch, G. and Hewitt, D. (1991) ‘On symbolic manipulators’, Mathematics Teaching,

137, 16–18.
Hewitt, D. (1991) Working Mathematically with Symbols in Key Stage 3 (PM647H),

Milton Keynes, The Open University.
Higbee, K. and Kunihira, S. (1985) ‘Cross-cultural applications of Yodai

mnemonics in education’, Educational Psychologist, 20, 57–64.
HMI (Her Majesty’s Inspectorate) (1979) Aspects of Secondary Education, London,

HMSO.
HMI (1985) Mathematics from 5 to 16, Curriculum Matters 3, London, HMSO.
Hoare, C. (1990) The invisible Japanese calculator’, Mathematics Teaching, 131, 12–14.
Hoban, R. (1982) Riddley Walker, London, Picador.
Hockney, D. (1993) Quoted in ‘Sound and Vision’, R.Barnes, The Guardian, 9

August, 2, p. 5.
Howson, G. (1982) A History of Mathematics Education in England, Cambridge,

Cambridge University Press.
Hoyles, C. and Noss, R. (eds) (1992) Learning Mathematics and Logo, Cambridge,

MA, MIT Press.
Hoyles, C. and Sutherland, R. (1989) Logo Mathematics in the Classroom, London,

Routledge.
Hughes, M. (1986) Children and Number, Oxford, Basil Blackwell.
Huxley, A. (1956) The Doors of Perception and Heaven and Hell, New York, Harper

and Row.
Ignatieff, M. (1993) Blood and Belonging, London, Viking Penguin.
Ivins, W. (1946) Art and Geometry: A Study in Space Intuitions, New York, Dover.
Ivins, W. (1969) Prints and Visual Communication, New York, NY, Da Capo Press.
James, N. and Mason, J. (1982) Towards recording’, Visible Language, 16(3), 249–58.
Janvier, C (1984) Translation processes in mathematics education’, in Janvier, C.

(ed.) Problems of Representation in the Teaching and Learning of Mathematics,
Hillsdale, NJ, Lawrence Erlbaum Associates, pp. 27–32.

Jaworski, B. (1985) A poster lesson’, Mathematics Teaching, 113, 4–5.
Jaworski, B. and Pimm, D. (1986) Practical Work in the Secondary Classroom (PM644),

Milton Keynes, The Open University.
Kandinsky, W. (1947) Concerning the Spiritual in Art, New York, George Wittenborn

Inc.
Kaput, J. (1984) ‘Representation systems and mathematics’, in Janvier, C. (ed.)

Problems of Representation in the Teaching and Learning of Mathematics, Hillsdale,
NJ, Lawrence Erlbaum Associates, pp. 19–26.



210

REFERENCES

Kaput, J. (1989) ‘Linking representations in the symbol systems of algebra’, in
Wagner, S. and Kieran, C. (eds) Research Issues in the Learning and Teaching of
Algebra, Reston, VA, Lawrence Erlbaum Associates/NCTM, pp. 167–94.

Kaput, J. (1994) ‘Democratizing access to calculus: new routes using old roots’, in
Schoenfeld, A. (ed.) Mathematical Thinking and Problem Solving, Hillsdale, NJ,
Lawrence Erlbaum Associates, pp. 77–156.

Keitel, C. (1989) ‘Mathematics education and technology’, For the Learning of
Mathematics, 9(1), 7–13.

Kerslake, D. (1982) Talking about mathematics’, in Harvey, R. et al., Mathematics
(Language, Teaching and Learning #6), London, Ward Lock, pp. 41–83.

Kieren, T. (1991) Investigations into a Recursive Theory of Mathematics Understanding
project, Edmonton, AB, University of Alberta.

Kieren, T. and Pimm, D. (1989) ‘Mathematics, Logo and language: two turtles in a
hot tub’, Logo Exchange, 8(3), 26–8.

Klee, P. (1964) The Thinking Eye, New York, George Wittenborn Inc.
Korn, E. (1991) The meaning of Mngwotngwotiki’, London Review of Books, 10

January, p. 16.
Laborde. C. (1993) ‘Do the pupils learn and what do they learn in a computer based

environment? The case of Cabri-géomètre’, Proceedings of the Technology in
Mathematics Teaching Conference, Birmingham, University of Birmingham, pp.
39–52.

Lave, J. (1988) Cognition in Practice, Cambridge, Cambridge University Press.
Lebowitz, F. (1982) Social Studies, London, Arrow.
Lee, L. (1990) ‘Radical practice’, Mathematics Teaching, 133, 55–8.
Lee, L. and Wheeler, D. (1989) The arithmetic connection’, Educational Studies in

Mathematics, 20(1), 41–54.
Lieberthal, E. (1979) The Complete Book of Fingermath, New York, McGraw-Hill.
Lodge, D. (1984) Small World, London, Seeker & Warburg.
Love, E. (1987) Working Mathematically on Film with Sixth Formers (PM647B), Milton

Keynes, The Open University.
Love, E. and Mason, J. (1992) Teaching Mathematics: Action and Awareness, Milton

Keynes, The Open University.
Love, E. and Tahta, D. (1991) ‘Reflections on some words used in mathematics

education’, in Pimm, D. and Love, E. (eds) Teaching and Learning School
Mathematics, London, Hodder and Stoughton, pp. 252–72.

MA (1934) The Teaching of Algebra in Schools, London, G.Bell.
Mandelbrot, B. (1991) Preface, in Peitgen, H.-O., Jürgens, H. and Saupe, D., Fractals

for the Classroom: Part 1, Berlin, Springer-Verlag, p. 4.
Mason, J. (1980) ‘When is a symbol symbolic?’, For the Learning of Mathematics, 1(2),

8–11.
Mason, J. (1990a) Shape and Space (PM649), Milton Keynes, The Open University.
Mason, J. (1990b) ‘Geometry: what, why, where and how?’, Mathematics Teaching,

129, 40–7.
Mason, J. (1991) ‘Questions about geometry’, in Pimm, D. and Love, E. (eds) Teaching

and Learning School Mathematics, London, Hodder and Stoughton, pp. 77–90.
Mason, J. et al. (1985) Routes to / Roots of Algebra (PM641), Milton Keynes, The Open

University.
Maxwell, J. (1985) ‘Hidden messages’, Mathematics Teaching, 111, 18–19.
Michener, E. (1978) ‘Understanding understanding mathematics’, Cognitive

Science, 2, 361–83.
Morelli, L. (1992) ‘A visual approach to algebra concepts’, The Mathematics Teacher,

85(6), 434–7.



REFERENCES

211

Morse, R. (1970) The Life Library of Photography Photographer’s Handbook, New York,
Time inc., p. 21.

Natzler, O. (1968) Gertrud and Otto Natzler: Ceramics, Los Angeles, CA, The Los
Angeles County Museum of Art.

NCTM (1989) Curriculum and Evaluation Standards for School Mathematics, Reston,
VA, National Council for Teachers of Mathematics.

NCTM (1993) Algebra for the Twenty-First Century, Reston, VA, National Council for
Teachers of Mathematics.

Niss, M. (1983) ‘Considerations and experiences concerning integrated courses in
mathematics and other subjects’, in Zweng, M. et al. (eds), Proceedings of the
Fourth International Congress on Mathematical Education, Boston, MA, Birkhäuser,
pp. 247–9.

Noss, R. (1985) ‘Revealing messages’, Mathematics Teaching, 112, 38.
Noss, R. (1986) ‘Constructing a conceptual framework for elementary algebra

through Logo programming’, Educational Studies in Mathematics, 17(4), 335–57.
Noss, R. (1988) The computer as a cultural influence in mathematical learning’,

Educational Studies in Mathematics, 19(3), 251–68.
Noss, R. (1991) The social shaping of computing in mathematics education’, in

Pimm, D. and Love, E. (eds) Teaching and Learning School Mathematics, London,
Hodder and Stoughton, pp. 205–19.

Noss, R. (1994) ‘Structure and ideology in the mathematics curriculum’, For the
Learning of Mathematics, 14(1), 2–10.

NRC (1989) Everybody Counts, Washington, DC, National Academy Press.
Nunokawa, K. (1994) ‘Improving diagrams gradually: one approach to using

diagrams in problem solving’, For the Learning of Mathematics, 14(1), 34–8.
Open University (1989) Using Mathematical Thinking (ME234), Milton Keynes, The

Open University.
Ortony, A. (1975) ‘Why metaphors are necessary and not just nice’, Educational

Theory, 25, 45–53.
O’Shea, T. (1993) The role of manipulatives in mathematics education’, Con-

temporary Education, 65(1), 6–9.
O’Shea, T. (1994) ‘Calculator algorithms and the school mathematics curriculum’

in Marks, S. (ed.) Proceedings of the 1994 International Symposium on Mathematics/
Science Education and Technology, Charlottesville, VA, Association for the
Advancement of Computing in Education, pp. 128–32.

Papert, S. (1980) Mindstorms: Children, Computers and Powerful Ideas, Brighton,
Harvester.

Parsysz, B. (1988) “‘Knowing” vs “seeing”: problems of plane representation of
space geometry figures’, Educational Studies in Mathematics, 19(1), 79–92.

Pimm, D. (1987) Speaking Mathematically: Communication in Mathematics Classrooms,
London, Routledge and Kegan Paul.

Pimm, D. (1988) ‘Mathematical metaphor’, For the Learning of Mathematics, 8(1), 30–4.
Pimm, D. (1993a) The silence of the body’, For the Learning of Mathematics, 13(1), 35–8.
Pimm, D. (1993b) ‘Just a matter of definition’, Educational Studies in Mathematics,

25(3), 261–77.
Pimm, D. (1994) ‘Another psychology of mathematics education’, in Ernest, P. (ed.)

Constructing Mathematical Knowledge: Epistemology and Mathematics Education,
Brighton, Falmer, pp. 111–24.

Pimm, D. and Love, E. (1991) Introduction, in Pimm, D. and Love, E. (eds) Teaching
and Learning School Mathematics, London, Hodder and Stoughton, pp. v-x.

Pirie, S. and Kieren, T. (1989) A recursive theory of mathematical understanding’,
For the Learning of Mathematics, 9(3), 7–11.



212

REFERENCES

Pirie, S. and Kieren, T. (1992) ‘Watching Sandy’s understanding grow’, Journal of
Mathematical Behavior, II, 243–57.

Powell, A. (1986) ‘Economizing learning: the teaching of numeration in Chinese’,
For the Learning of Mathematics, 6(3), 20–3.

Pratt, D. (1994) ‘Active graphing in a computer-rich environment’, Proceedings of
the 18th PME Conference, Lisbon, Portugal, pp. 57–64.

PrIME (1991) Calculators, Children and Mathematics, London, Simon and Schuster.
Random House (1979) The Random House College Dictionary, New York, Random

House.
Reynès, F. (1990) ‘Geometric ou trahison des dessins?’, Petit x, 26, 73–5.
Richards, M. (1989, 2nd edition) Centering, Middletown, CT, Wesleyan University

Press .
Riley, B. (1993) in conversation with E.H. Gombrich, BBC Radio 3, 24th August.
Roth, P. (1985) My Life as a Man, Harmondsworth, Penguin.
Rotman, B. (1987) Signifying Nothing: the Semiotics of Zero, London, Macmillan

Press.
Salinger, J. (1964) Franny and Zooey, Montreal, Bantam.
Schmidt, R. (1986) ‘On the signification of mathematical symbols’, Preface to

Bonasoni, P. (trans. Schmidt) Algebra Geometrica, Annapolis, MD, Golden Hind
Press, pp. 1–12.

Second World Conference (1980) Recommendations of the Second World Conference on
Muslim Education, Islamabad, King Abdulaziz University and Quaid-i-Azam
University.

Serres, M. (1982) Hermes: Literature, Science, Philosophy, Baltimore, MD, Johns
Hopkins University Press.

Sfard, A. (1994) ‘Reification as the birth of metaphor’, For the Learning of
Mathematics, 14(1), 44–55.

Shawn, W. (1991) The Fever, London, Faber and Faber.
Sierpinska, A. (1990) ‘Some remarks on understanding in mathematics’, For the

Learning of Mathematics, 10(3), 24–36.
Skemp, R. (1976) ‘Relational and instrumental understanding’, Mathematics

Teaching, 77, 20–6.
Skovsmose, O. (1985) ‘Mathematical education versus critical education’,

Educational Studies in Mathematics, 16(4), 337–54.
Skovsmose, O. (1990) ‘Mathematical education and democracy’, Educational

Studies in Mathematics, 21(2), 109–28.
Skovsmose, O. (1992) ‘Democratic competence and reflective knowing in

mathematics’, For the Learning of Mathematics, 12(2), 2–11.
Souriau, P. (1881) Théorie de l’Invention, Paris, Hachette et Cie; cited in Hadamard, J.

(1945), An Essay on the Psychology of Invention in the Mathematical Field, Princeton,
NJ, Dover, p. 64.

Spencer Brown, G. (1977) Laws of Form, New York, The Julian Press.
Stevens, W. (1967) The Collected Poems of Wallace Stevens, New York, Alfred A.

Knopf.
Sträßer, R. (1991) ‘Dessin et figure: geometric et dessin technique a l’aide de

l’ordinateur’, Occasional paper no 128, Bielefeld, Germany, Institut fur Didaktik
der Mathematik der Universität Bielefeld.

Sutherland, R. (1992) ‘What is algebraic about programming in Logo?’, in Hoyles,
C. and Noss, R. (eds) Learning Mathematics and Logo, Cambridge, MA, MIT
Press, pp. 37–54.

Swan, M. (1982) The Meaning and Use of Decimals, Nottingham, Shell Centre for
Mathematical Education.



REFERENCES

213

Swetz, F. (1987) Capitalism and Arithmetic, London, Open Court.
Tahta, D. (ed.) (1972) A Boolean Anthology, Derby, Association of Teachers of

Mathematics.
Tahta, D. (1981a) ‘About geometry’, for the Learning of Mathematics, 1(1), 2–9.
Tahta, D. (1981b) ‘Some thoughts arising from the new Nicolet films’, Mathematics

Teaching, 94, 25–9.
Tahta, D. (1985) ‘On notation’, Mathematics Teaching, 112, 49–51.
Tahta, D. (1988) ‘Lucas turns in his grave’, in Pimm, D. (ed.) Mathematics, Teachers

and Children, London, Hodder and Stoughton, pp. 306–12.
Tahta, D. (1990a) ‘Is there a geometrical imperative?’, Mathematics Teaching, 129, 20–9.
Tahta, D. (1990b) ‘Gratifying usefulness’, Mathematics Teaching, 132, 57–8.
Tahta, D. (1991) ‘Understanding and desire’, in Pimm, D. and Love, E. (eds)

Teaching and Learning School Mathematics, London, Hodder and Stoughton, pp.
221–46.

Tahta, D. (1992) ‘Curricular configurations’, Micromath, 8(2), 37–9.
Thom, R. (1971) ‘“Modern” mathematics: an educational and philosophical error?’,

American Scientist, 59, November-December, 695–9.
Thom, R. (1973) ‘Modern mathematics: does it exist?’, in Howson, G. (ed.)

Developments in Mathematical Education, Cambridge, Cambridge University
Press, pp. 194–209.

Thorndike, E. (1973) ‘Measurement’, in Ennis, R. and Krimmerman, L. (eds)
Philosophy of Educational Research, New York, Wiley, pp. 17–24.

van den Brink, J. (1984) ‘Acoustic counting and quantity counting’, For the Learning
of Mathematics, 4(2), 2–12.

Walkerdine, V. (1981) Reading the Signs of Mathematics, London, Report of the
Leverhulme Trust.

Walkerdine, V. (1982) ‘From context to text—a psychosemiotic approach to abstract
thought’, in Beveridge, M. (ed.) Children Thinking Through Language, London,
Edward Arnold, pp. 129–55.

Walkerdine, V. (1988) The Mastery of Reason, London, Routledge.
Walsh, A. (1991) The calculator as a tool for learning’, in Pimm, D. and Love, E. (eds)

Teaching and Learning School Mathematics, London, Hodder and Stoughton, pp. 61–8.
Watson, A. (1991) ‘Getting in touch’, Mathematics Teaching, 135, 26–7.
Weil, S. (1952) Gravity and Grace, London, Routledge and Kegan Paul.
Weizenbaum, J. (1984) Computer Power and Human Reason: From Judgement to

Calculation, Harmondsworth, Pelican.
Weldon, F. (1989) Sacred Cows, London, Chatto and Windus.
Weldon, F. (1991) Letters to Alice, London, Coronet.
Wheatley, G. (1992) The role of reflection in mathematics learning’, Educational

Studies in Mathematics, 23(5), 529–42.
Wheeler, D. (1989) ‘Contexts for research on the teaching and learning of algebra’,

in Wagner, S. and Kieran, C. (eds) Research Issues in the Learning and Teaching of
Algebra, Reston, VA, Lawrence Erlbaum Associates/NCTM, pp. 278–87.

Wheeler, D. (1992) ‘Review of Ethnomathematics: a multicultural view of mathematical
ideas, by Marcia Ascher’, The Mathematical Intelligencer, 14(4), 64–5.

Whitehead, A. (1925) Science in the Modern World, New York, Macmillan.
Whitehead, A. (1947) Essays in Science and Philosophy, New York, Philosophical

Library.
Whitney, H. (1973) Are we off the track in teaching mathematical concepts?’, in

Howson, G. (ed.), Developments in Mathematical Education, Cambridge,
Cambridge University Press, pp. 283–96.

Wittgenstein, L. (1958) The Blue and Brown Books, Oxford, Basil Blackwell.



214

 

 
 
Ainley, Janet 121–2, 141
Archimedes of Syracuse 150, 195
Aristotle 187
Ascher, Marcia 202
Atiyah, Michael 82

Balacheff, Nicolas 50, 110, 151
Barthes, Roland 130–1, 134, 194
Beckett, Samuel 5
Bhaskara 172
Boero, Paolo 89
Bolzano, Bernard 194
Boyer, Carl 147
Brown, Stephen 70
Browning, Robert 29
Bruner, Jerome 193

Calvino, Italo 5, 82, 189
Carlyle, Thomas 108, 192
Chevallard, Yves 5, 157, 202
Copes, Larry 198
Cuisenaire, Georges 28, 174

Davenport, Guy 181–2
Davis, Bob 2
Dawson, Sandy 197
Descartes, René 132, 150
Diderot, Denis 9
Dienes, Zoltan 2, 24, 119, 193
Dieudonné, Jean 132
Diophantos of Alexandria 110
Doerfler, Ronald 71, 83–4
Douady, Régine, 194
Douglas, Mary 8–9, 145

Erathosthenes of Cyrene 147
Euclid of Alexandria 33, 110, 150–1,

155, 187

Euler, Leonhard 105, 107, 132

Fauvel, John 187, 195
Feurzeig, Wally 109
Feynman, Richard xi
Fitzpatrick, Mathew 24
Foucault, Michel 57–8, 128, 184,

195
Fowler, David 195
Freud, Sigmund 194
Frye, Northrop 109, 200

Galileo Galilei 33
Garfinkel, Harold 157
Gates, Peter 194
Gattegno, Caleb 1, 11, 16, 24, 28, 30 126,

172, 175, 192
Gerbert 78, 86
Goldenberg, Paul 109, 124
Gould, Stephen 145
Goutard, Madeleine 20
Gray, Jeremy 150

Hadamard, Jacques 27
Halliday, Michael 119, 179
Harnasz, Costel 76–7
Henderson, David 11
Hewitt, Dave 91–9, 121, 199
Higginson, Bill 5
Hilbert, David 29
Hoare, Catherine 80
Hoban, Russell 60
Howson, Geoffrey 170
Hughes, Martin 111, 199
Huxley, Aldous 109, 168

Ivins, William xii, 55, 122, 128–31, 179,
181, 192

NAME INDEX



215

Jones, Irene 17
Joyce, James 183, 192

Kaput, Jim 74, 99, 103, 105, 199
Klee, Paul 10, 28, 193
Klein, Felix 105

Laborde, Colette 54–5, 58, 195
Lave, Jean 141
Lebowitz, Fran 106
Lee, Lesley 155, 195, 202
Leibniz, Gottfried 172, 203
Lodge, David 125
Love, Eric 9, 47, 51, 156, 204

McLuhan, Marshall 185
Magritte, René 2, 56, 57, 128, 195
Mandelbrot, Benoit 103, 195
Mason, John 180, 195, 197

Nabokov, Vladimir 86
Newton, Isaac 30
Nicolet, Jean 45, 174
Niss, Mogens 153, 155
Noss, Richard 83, 101, 144–5, 166–7,

176

O’Shea, Tom 7, 84

Papert, Seymour 17
Parmenides of Elea 186–7
Plato 187, 194
Polya, George 105
Pratt, Dave 121–2
Pythagoras of Samos 44, 85–6, 151,

172

Recorde, Robert 170
Riley, Bridget 125

Roth, Philip 160
Rotman, Brian 52, 79, 84, 96–7, 100 145,

185, 194, 196, 198, 200

Schmidt, Robert 72–3, 75, 88, 175
Serres, Michel 148–9, 176, 190–1
Shakespeare, William 125, 155, 187
Shiu, Christine 181
Simon, Paul 108
Skemp, Richard 44
Skovsmose, Ole 6, 154–6
Socrates 187
Souriau, Paul 106
Spencer Brown, George 11, 99, 204
Stevens, Wallace 126, 191
Stoppard, Tom 190
Stravinsky, Igor 4
Swetz, Frank 162, 203

Tahta, Dick 35, 56, 86, 99, 111, 175, 182,
194, 198, 203, 205

Tall, David 127
Tavernier, Bertrand 116–17
Thales of Miletus 148–9
Thom, René 4

van den Brink, Jan 65–6

Walkerdine, Valerie 3, 75, 193
Weierstraß, Karl 194
Weil, Simone 127, 177, 190, 200
Weizenbaum, Joseph 137
Weldon, Fay 7, 170
Wheeler, David 105, 195, 199, 202
Whitehead, Alfred 96
Winnicott, Donald 193

Zeno of Elea 186
Zipf, Paul 3
 

NAME INDEX



216

 
 
abacist 84, 86–7
abacus 6, 12–13, 20, 61–2, 65, 72, 76–82,

84–6, 192, 196
abstract/abstraction 11, 27–8, 88, 118,

143–2, 158, 165, 167, 193
algebra 5, 8–9, 11, 22–4, 34, 56–8,

88–117, 118–25, 132, 143, 166, 172,
190, 195, 198, 200, 202

algorist 84–6
algorithm 16, 21, 49, 61–3, 69–71, 73,

75–6, 79, 81, 84, 129, 142, 153, 161–2,
176–7, 197

al-jabr 198
angle 42, 49, 135–6, 151–2
animation 35, 37, 45–8
anticipation 89
apex (pl. apices) 78–9, 86, 197
apparatus 6–7, 12, 14, 18, 19–21, 24–5,

27–8, 70–4, 79–80, 108, 189–90, 193,
197

appearance 42, 125, 185
arithmetic 57, 61, 64, 70–1, 75, 80–1, 85–

7, 88, 92–3, 96–101, 108, 143, 155,
161, 172, 196

arithmos 111
artificial 40
asymptote 124
attention 9, 23, 26, 28–9, 33–4, 40–1, 47,

57, 70, 73, 75, 86, 88, 90, 93, 95–8,
102–3, 107–9, 121–2, 127, 162, 166,
174, 177, 183, 189–91, 195

automatic/automation xiv, 6, 8, 9, 80,
82, 84, 107–8, 170

awareness 69, 88, 98, 106–7, 111, 162,
167, 172, 175, 181, 202

ayatullah 11

baptism xii, xiii, 15, 66

bell-ringing 26
brackets 89, 92, 96

Cabri-drawing 55–6
Cabri-géomètre 34, 48, 51–6, 58, 94, 111,

119, 121, 131, 179, 194–5
Cabri-geometry 54–6, 102, 195
calculator 6, 12, 20, 51, 61–2, 68, 76–7,

79–85, 87, 97, 99, 102, 108, 121–2,
125, 132, 134, 174, 182, 188, 192–3,
197

cardinal 66–8
cipher 61, 195–6
circle 32–3, 35, 39, 43–4, 46–7, 53–4, 57–

8, 124, 137, 140–1, 147, 150–1, 195
compactness 90, 101, 132
competition 85–7
complement 16, 23, 72, 78, 146, 190
completing the square 24
computer (including micro-) 6, 7, 12,

13, 36–8, 48–56, 82–3, 86, 99–100,
118–27, 129, 132, 136, 169, 182, 185,
188–9, 192–3

computer algebra system 99–100, 102–
3, 105, 107–8, 121, 134, 179, 199

concrete 25, 27
condensation 5, 8, 16, 35, 183
configuration 58–9, 181
conscious/consciousness 106, 127, 174
consistency/consistent 93
constraint 30, 37, 40, 46, 50, 68, 129
continuity 46, 52, 62, 111–12, 124, 131,

180–3
count/counting 10, 14–15, 61–2, 63–9,

95, 122, 136, 138, 172–3, 204
counter 61–2, 63, 67, 72, 76, 78–80, 109,

197
counterpart 23, 28, 43, 57, 72–6, 78–80,

SUBJECT INDEX



SUBJECT INDEX

217

86, 88–90, 97, 99, 103–1, 108–10, 112,
116, 120, 122, 124, 126, 128, 135–6,
139, 141, 144, 147–8, 151, 170, 175,
179, 184, 188, 191, 199–201

counting board 20, 61–2, 77–9, 86
cover story 2, 75, 89, 92, 170, 191
cube 40–2
Cuisenaire rods 12, 20, 22, 24, 28, 51,

61, 63, 72–3, 190, 197
curve 107, 124, 132, 150, 195
 
definition 54, 105, 144, 151, 195
density 83–4, 100, 176
depth 83–4, 100, 134, 176
desire 35, 82, 89, 108, 168, 172, 189, 191,

198
device 50–1, 59, 62–3, 70, 72, 76–7, 79–

80, 82–4, 106, 108, 118, 125, 132–5,
169–70, 176, 179, 182, 192, 197–8;
pedagogic 63, 67, 69, 77, 83–4, 86–7,
102, 194, 200

diagram 29, 38, 41–5, 54–7, 72, 94, 111,
119–21, 128–9, 137, 150, 154, 180–1

didactic transposition 176
Dienes blocks 12, 20–2, 51, 61, 63, 72–3,

79, 125
diknume 195
discriminant 107–8
displacement 5, 97, 108
drawing 32, 33, 42–3, 49–50, 54, 57–8,

72–3, 120–1, 123, 128, 130–1, 136,
151, 175, 195–6

dream 172, 175, 191, 203
dynamic 36, 43–4, 45–56, 59, 88, 99, 102,

107, 118, 125, 127, 136, 179
 
efficiency 6, 23, 70, 90, 108, 127, 134,

174
ellipse xiii, 124
embodiment 2, 13, 20, 26, 28, 113, 119,

174, 176, 193
equation 6, 24–5, 70, 89, 91–2, 102, 104–

5, 107, 119, 123–4, 132, 195, 198–9
equivalence/equivalent 5, 16, 79, 88–9,

91, 94–5, 98–9, 102–1, 144, 150–1, 199
ethnomathematics 155–6
expression 88–92, 94–5, 98–9, 101–4,

106, 124, 181, 194
 
facility 82
Feely box 18
figure: geometrical 6, 14, 33, 37, 42, 45,

49–51, 54–5, 111, 147, 150–1, 181,
196; numerical 62, 79, 196

film 45–7, 64, 116
finger 12, 14–16, 23, 29, 61, 64, 66, 72,

78, 100, 173, 178, 190
Fingermath 16–17
fluent/fluency xi, xii, xiv, 8, 9, 23, 63,

66–7, 71, 75–6, 80–1, 84–5, 88, 90–1,
99, 101, 134, 170–5, 177, 179, 184–5,
190, 203

form xiv, 5, 8, 10, 18, 32, 61, 88–9, 91,
94, 98, 101–4, 106–8, 119, 122, 126–7
140, 154, 167, 169, 181, 183, 190, 198
204

fractal 36, 131
fraction 3, 4, 28, 69, 75, 143, 167, 171,

174
function xiv, 28, 31, 72–3, 79, 81, 84, 86,

111, 119, 126, 132–3, 138, 142, 145,
170, 181, 184–5, 187, 204;counterpart
see counterpart; mathematical 6, 71,
84, 101–2, 104–5, 107, 120, 122–6,
132, 187, 194 signification see sign/
signification;symbolic 14, 57, 88, 108

functioning 6, 17, 21, 77, 80, 82–1, 87,
93, 134–5, 172, 176, 191–2, 204

 
general/generality/generalisation 13

14, 45, 47, 57, 59, 88, 90, 99, 101, 111
113, 116, 131, 167, 177, 194

generate/generation/generative 25,
48, 56, 88, 90–1, 94–5, 97, 107, 127,
174

generic 58, 110, 163
geoboard 19–20, 37, 52, 55, 73
Geometer’s Sketchpad 34, 48, 51–6, 111,

194, 201
geometry/geometrical xiii, 17, 32–59,

88, 101, 105, 107, 111, 143, 147–8,
150, 169, 184, 194–5, 199

gesture/gestural 29, 40, 52, 61, 82, 84,
95–6, 194

graph 101–2, 104–7, 118–25, 132, 140,
154, 189, 193

grasp 13, 25, 29, 33, 85, 109, 127, 180,
194

 
hand 27, 29, 60, 74, 76, 79–82, 85, 107–9,

119–22, 128–31, 143, 150, 170 176,
180–1, 183, 188, 193, 197, 204

hot-seat 40
hyperbola xiii, 124



218

SUBJECT INDEX

icon/iconic xiv, 21, 23, 41, 45, 61, 72,
121, 127

ideology 99
illusion 124, 180
illustrate/illustration 25–6, 100, 111, 157
image/imagery xi, 1–2, 7, 8, 11, 15, 16,

17, 19–20, 27–9, 32–59, 68, 71, 76, 80–
1, 85, 96, 103, 106–7, 116, 119, 122,
124–32, 163, 178–89, 201–2

implement/implementability 100–1
inaccessible 121, 147–9, 191
inauguration 109, 191
incidence 35
intangible 27–8, 194
intransitive 64–6, 111, 179
in variance 65, 104, 151
invisible 28, 40, 81, 113, 123, 130–1, 137,

185, 189

jeton 109
jetton 109

kinaesthetic 20, 23

language (including computer
language) 1, 4, 5, 10, 11, 18, 36–7,
40–1, 47–50, 54, 61, 64–5, 75, 88, 90–
1, 95–7, 100–1, 106–7, 110, 119, 127,
140, 170–2, 174, 178, 183–6, 191, 193,
195, 197, 199

language-game 90
logarithm 71, 77, 84
Logo 17, 33–4, 37, 48–51, 54, 100–1, 127,

176, 195, 197, 199

manipulate/manipulation xii, xiv, 6–7,
8–9, 16, 22–4, 27, 29, 31, 33, 44, 51–2,
56, 59, 62, 73, 75–6, 79, 82, 88, 90–1,
97–9, 101, 103–9, 119–20, 122, 133,
135–7, 143, 154, 157, 170–2, 175, 180,
184–91, 193, 199, 203

manipulative 2, 6, 12–13, 100, 179, 187
manipulator, symbolic 6, 9
meaning xiv, 2–3, 4, 10, 13, 23, 36, 47,

56, 64–5, 67, 69, 73, 75, 90–2, 96, 98–
9, 101–3, 106–7, 110, 119, 121, 127,
138, 167, 170–1, 175, 177–9, 183, 185–
6, 189–91

measure/measurement 8, 42–3, 53, 77,
83, 128, 135–52, 161, 201–2

metaphor 29, 31, 52, 61, 106, 119, 123,
126–7, 134, 150, 184–8, 190–1, 196,

201, 205
method 28, 32, 70–1, 74, 80, 134, 157
metonymy 58, 103, 113, 117, 135–6, 190,

191, 197, 200, 205
microcomputer see computer
mimicry 126, 134, 191
mnemonic 2
mouse 34, 37, 51–2, 58–9, 111, 180–1,

188, 194
multiple/multiplicity 5, 16, 89, 94, 102

194
multiplication 3, 5, 70–1, 75, 79, 84, 94–

5, 143–4, 173, 178

name/naming xi–xiv, 1–2, 33–4, 40, 65
68–9, 71–2, 95, 100–1, 103, 108, 111,
113, 116–17, 135–6, 138–9, 141, 151,
170, 183, 189, 195, 198, 201

navigation chart 43, 72
non-Euclidean geometry 54, 102
notation xi, xii, 21, 23, 28, 82, 86, 91–6,

98, 101, 141, 170, 201
number xiv, 2–3, 6, 7, 15, 16, 21–2, 54,

56, 58, 60–87, 91, 93, 95–7, 107, 111,
116–7, 122, 136, 138–40, 142, 145–7,
150–1, 153, 162, 189, 195–6

numeral 54, 63, 75–6, 85–6, 190, 196;
Egyptian 22, 79; Indian-Arabic 61,
74, 76, 79–80, 86; Roman 16, 21, 62,
74, 78–9

numeration system 20, 22, 61, 67–8, 73–
4, 79–80, 90, 107, 127, 141, 147

object xiii, xiv, 2, 4, 5, 14, 15, 16, 18, 22–
4, 28, 30, 32, 36, 40, 43, 52–3, 56–7,
59–60, 64–7, 72, 74–5, 77–8, 84, 86,
88, 96–7, 102–4, 107, 109, 120–1, 125–
7, 129–30, 136, 138–40, 143, 145, 147–
9, 151, 170, 172, 178, 184–5, 187–9,
191, 193–4, 197, 201–2

ontogeny 105
ordinal 67, 197, 201
orientation 44–5, 123

parable 161
parabola xiii, 103, 124
per 140–1
perceptible 27
photograph/photography 36, 58, 72,

119–20, 125–6, 129–34, 190, 201, 204
phylogeny 105
physical 26–9, 36, 61, 79, 82, 86, 122,

139, 143, 146–7



SUBJECT INDEX

219

pixel 124, 132
place-value 16, 21–2, 68, 73, 75, 107, 193
Platonic solids 12, 26
point (geometrical) 33–4, 51–5
poster 38, 40–1, 45
pottery 33, 204
practice xi, xii, 23, 69–71, 75–9, 82, 85–

7, 88–9, 146, 157, 159, 177–8
prediction 39, 51
primitive 38, 49, 53, 81, 83, 100, 194–5,

197
projection 33, 40, 125
proof 11, 45, 58, 99–100, 110, 145, 167,

195
property 35, 54, 58, 126, 135, 142
protomathematics 157, 183
psychic xiv, 35
psychoanalytical 11
purpose xiv, 25, 39, 63, 121–2, 133, 154,

162–3, 171
 
rational/rationality 6, 9
record/recording 13, 20–1, 23, 73–4, 91,

94, 130, 134, 185
reference 3, 57, 62, 90, 103, 128, 143,

170, 178, 197
referent 2, 55, 72, 101–3, 107, 110–11,

117, 126, 131, 143, 145, 178, 185, 190
reflection 39, 51, 86, 172, 176, 194, 200
relation/relationship 53, 59, 72, 89, 101,

105, 110–11, 120, 195
repeatable/repetition 69, 81, 100, 127–

9, 142, 176–8, 192, 203
represent 25–6, 57–8, 90
representation/representative 8, 11, 13,

19, 21, 23, 25–6, 30, 36, 42, 57, 59, 64,
74, 78, 102–3, 107, 118, 121–2, 125,
128–31, 154, 169, 193–4, 200

resemble/resemblance 58, 120, 128–9
rite 9, 192
ritual 8, 98, 178, 189
rote xii, 7, 8, 9, 98, 177, 204
Rubik cube 23, 26
rulers 91, 93–5, 98, 199
 
scale 122–5, 147, 201, 203
semantic 103
sight 7, 16, 18–19, 29, 33, 103, 119, 121,

123, 137, 149, 179, 185, 189
sign/signification 57, 72–5, 78–9, 86,

88, 96–7, 99, 108–9, 120, 131, 141,
163, 170, 175, 179, 184–5, 188, 196

signified 130, 190
signifier 75, 90, 107, 130–1, 189–90
signify 21, 36, 104, 189
similitude 128–9
slide-rule 6, 76–7, 83–4, 192
software 37, 51, 53–4, 101, 107, 121, 174,

176, 199
soroban 21, 80–1
speed 23, 70–1, 134, 173–5, 203–4
square dancing 26
static 36–7, 38–45, 52, 55, 59, 99, 120–1,

131, 136, 180–1, 194
stress and ignore xiii, 16, 35, 44, 55, 57,

105, 119, 129, 133, 136, 165, 185, 190
substitute/substitution 14, 16, 22, 25,

27, 28, 30, 43, 61–2, 72, 77, 84, 88,
106–7, 109, 113, 129, 135 148, 175,
189, 191

suppress 28, 108, 121, 139, 167
symballein 109
symbol, symbolism xii–xiv, 2, 4, 5, 7,

10, 21, 24–6, 28, 31, 35, 41, 47, 50, 55,
62, 67, 72, 74–5, 78, 91–117, 120, 122,
124–5, 137–8, 143, 145, 166, 169–70,
172, 175, 178–80, 182–5, 189, 192, 196

symbolon 109
symbolos 109, 200
symmetry 73
symptom 54, 132, 195
synecdoche 111–12, 197
syntax 38, 55, 97, 119, 158, 184, 194
 
table 67–9, 76–7, 81, 102, 119, 154, 173,

178, 195, 199
tactile/tangible 7, 13, 16, 18–21, 23, 25,

27–8, 61, 72, 77, 117, 119, 143, 148–9,
179, 189

teacher 13, 21–2, 25, 38, 39–41, 57, 61,
68, 75, 77, 98, 119, 127, 146, 154, 159–
62, 166–7, 172, 174, 177, 181–2, 189,
193

technique xiv, 9, 10, 16, 23, 36, 67, 71,
80, 83, 87, 96, 135, 145, 157, 170, 172,
174–6

theorem 44, 57, 108, 149–51, 172, 201
theoretical 27, 83, 102, 189
think-of-a-number 23, 91–2, 98
token 62, 109
touch 7, 13, 14, 16, 18–19, 28–9, 40, 51,

63, 66, 116, 137, 148–9, 179–80, 185,
189, 204

tradition/traditional xi, 8, 54, 73, 78,



220

SUBJECT INDEX

83, 98, 101, 107–8, 134, 146, 153, 158,
163, 181–2, 189

transform/transformation 5, 19, 23, 25,
34, 45, 66, 83, 88–117, 122, 124, 132,
181, 189

transitive 64–6, 68, 138, 179
transparent xivi, 16, 41, 63, 77, 80–2, 84,

86, 90, 101, 121, 130, 172, 175, 197
triangle 38, 44, 52, 57, 58
turtle graphics 18, 34, 37, 48–51, 101–2,

107, 176, 193

unconscious 25, 106–7, 191
understand/understanding xi, xii, 2–3,

7, 8, 9, 13, 14, 25, 29, 50, 55, 76–7, 81–
4, 86–7, 90–1, 101, 103, 107, 127, 130,
136, 146, 153–4, 155, 163, 167, 170–2,
174, 177, 180, 184–5, 189–90, 192,
198–9, 203

unknown 23, 102, 110, 117

variable 23, 97, 101, 104, 111, 193–4
verisimilitude 128
virtual 25, 30, 74, 88, 95, 97, 127, 194,

200
visible 7, 15, 28, 77, 109, 119, 124, 174,

189, 193–4
vision 33, 149, 201–2
visual/visualise 41, 49, 55, 73, 100,

103–4, 106–7, 121, 124, 126, 130, 139,
179, 204

Wall, the 113–16

x 5, 23–5, 42, 68, 73, 89–90, 93–8, 103–4
123, 132, 188, 198, 200

zero 79, 86, 90, 96, 110, 113, 145, 196


	Book Cover
	Title
	Contents
	Acknowledgements
	An idiosyncratic preface
	INTRODUCTION
	MANIPULATIVES AS SYMBOLS
	GEOMETRIC IMAGES AND SYMBOLS
	WHAT COUNTS AS A NUMBER?
	ALGEBRA TRANSFORMING
	MAKING REPRESENTATIONS AND INTERPRETATIONS
	SYMBOLS AND MEASURES
	LIVING IN THE MATERIAL WORLD: SYMBOLS IN CONTEXTS
	ON FLUENCY AND UNDERSTANDING
	ON MANIPULATION
	Notes
	References
	Name index
	Subject index

