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Chapter 1
Introduction

What this book is about. What is a partition function?
The answer depends on who you ask. You get one (multi)set of answers if you ask

physicists, and another (multi)set if you ask mathematicians (we allow multisets, in
case we want to account for the popularity of each answer). In this book, we adopt
a combinatorial view of partition functions. Given a family F of subsets of the set
{1, . . . , n}, we define the partition function ofF as a polynomial in n real or complex
variables x1, . . . , xn ,

pF (x1, . . . , xn) =
∑

S∈F

∏

i∈S
xi . (1.1)

Under typical circumstances, it is unrealistic to try towrite pF as a sumofmonomials
explicitly, for at least one of the following two reasons:

(1) the family F is very large
or
(2) we are not really sure how large F is and it will take us a while to go over all

subsets S of {1, . . . , n} and check whether S ∈ F .

Typically, however, we will have no trouble checking if any particular subset S
belongs toF . A good example is provided by the familyH of all Hamiltonian cycles
in a given graph G (undirected, without loops or multiple edges) with n edges: we
say that a collection S of edges forms a Hamiltonian cycle in G if the set of edges
in S is connected and every vertex of G belongs to exactly two edges from S, see
Fig. 1.1.

A graph with m vertices may contain as many as (m−1)!
2 different Hamiltonian

cycles and it is believed (known, if P �= NP) that it is computationally hard to find
at least one for a graph G supplied by a clever adversary.

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
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2 1 Introduction

Fig. 1.1 A graph with 7
vertices, 12 edges and a
Hamiltonian cycle (thick
lines)

Sometimes we allow F to be a family of multisets, in which case we replace

∏

i∈S
xi −→

∏

i∈S
xμi
i

in formula (1.1), where μi is the multiplicity of i in S.
Sometimes we know pF perfectly well even if we are unable to write it explicitly

as a sum of monomials due to the lack of time. For example, if F = 2{1,...,n} is the
set of all subsets, we have

p2{1,...,n} (x1, . . . , xn) =
∑

S⊂{1,...,n}

∏

i∈S
xi =

n∏

i=1

(1 + xi ) (1.2)

and it is hard to argue that we can know p2{1,...,n} any better than by the succinct product
in (1.2). Our experience teaches us, however, that the cases like (1.2) are quite rare.
For some mysterious reasons they all seem to reduce eventually to some determinant
enumerating perfect matchings in a planar graph, see [Ba82], [Va08] and Chap.10
of [Ai07] for examples and recall that a perfect matching in a graph is a collection
of edges that contains every vertex of the graph exactly once (see Fig. 4.1) and that
the graph is planar if it can be drawn in the plane so that no two edges can possibly
intersect in a point other than their common vertex (see Fig. 4.8).

Although in Sect. 4.3 of the book we describe the classical Kasteleyn’s construc-
tion expressing the partition function of perfect matchings in a planar graph as a
determinant (more precisely, as a Pfaffian), the focus of the book is different. Since
the efficient exact computation of pF in most interesting situations is believed to be
impossible (unless the computational complexity hierarchy collapses, that is, unless
P = #P), we are interested in situations when pF can be efficiently approximated.
By efficiently approximated we understand that we can compute pF approximately
for all x = (x1, . . . , xn) in some sufficiently interesting domain, but not only.We also
approximate pF by some “nice function”, whose behavior we understand reasonably
well. We concentrate mostly on the following three approaches.

http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4


1 Introduction 3

Scaling. It may happen that there is a sufficiently rich group of transformations,
for example of the type xi �−→ λi xi for some λi , which change the value of the
polynomial pF (x1, . . . , xn) in some obvious way and such that after factoring that
group out, we are left with a function that varies little. This is the case for the
permanent (Sect. 3.5), hafnian (Sect. 4.2) and their higher-dimensional extensions
(Sects. 4.4 and 4.5). A closely related approach expresses pF as the coefficient of
a monomial yα1

1 · · · yαN
N in some explicit polynomial P (y1, . . . , yN ) and obtains

an estimate of pF via solution of a convex optimization problem of minimizing
y−α1
1 · · · y−αN

N P (y1, . . . , yN ) for y1, . . . , yN > 0.We apply this approach to estimate
partition functions of flows (Chap. 8).

Correlation decay. We choose a variable (or a small set of variables), say xn ,
and define pFn as the sum of the monomials of pF containing xn . It may happen
that there is some metric on the set {x1, . . . , xn} of variables such that the ratio
pFn (x1, . . . , xn) /pF (x1, . . . , xn) does not depend much on the variables xi that are
sufficiently far away from xn in that metric. This allows us to fix values of those
remote variables to our convenience and quickly approximate the ratio. We then
recover pF by iterating this procedure and telescoping. As a result, we approximate
ln pF (x1, . . . , xn) by a sum of functions, each of which depends on a small number
of coordinates. We apply this method to the matching polynomial (Sect. 5.2) and to
the independence polynomial of a graph (Sects. 6.3 and 6.4).

Interpolation. Suppose that the polynomial pF has no zeros in a domain
� ⊂ C

n . It turns out that ln pF is well approximated in a slightly smaller domain
�′ ⊂ � by a low degree Taylor polynomial, sometimes after a change of coordinates
(Sect. 2.2). We demonstrate this approach for the permanent (Sects. 3.6 and 3.7) and
hafnian (Sect. 4.1), their higher-dimensional extensions (Sect. 4.4), for the matching
polynomial (Sect. 5.1) and the independence polynomial of a graph (Sect. 6.1), and
for the graph homomorphism partition function (Chap. 7). In our opinion, this is the
most general approach.

The correlation decay approach appears to be closely related to a probabilis-
tic approach, known as the Markov Chain Monte Carlo method. Assuming that
x1 > 0, . . . , xn > 0, we consider the family F as a finite probability space, with

Pr (S) =
(

∏

i∈S
xi

)
/pF (x1, . . . , xn) for S ∈ F . (1.3)

Suppose that we can sample a random set S ∈ F in accordance with the probability
distribution (1.3). Then we can measure the frequency of how often a random S
contains a particular element of the ground set, say n, and hence we can estimate
the ratio pFn (x1, . . . , xn) /pF (x1, . . . , xn), which is also the goal of the correlation
decay method. To sample a random S ∈ F , we perform a random walk on F by
starting with some particular S and, at each step, trying to modify S �−→ Ŝ by a
random move of the type Ŝ := (S \ I ) ∪ J for some small sets I, J ⊂ {1, . . . , n}
performed with probability proportional to

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_8
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_7


4 1 Introduction

Pr (Ŝ)

Pr (S)
=

⎛

⎝
∏

j∈J

x j

⎞

⎠
(

∏

i∈I
x−1
i

)
.

It stands to reason that if the ratios of the type pFn (x1, . . . , xn) /pF (x1, . . . , xn)
depend effectively only on a small set of variables, then we can expect the resulting
walk to mix rapidly, that is, we should hit more or less random S after performing a
moderate number of moves.

The Markov Chain Monte Carlo method resulted in a number of remarkable
successes, most notably in a randomized polynomial time approximation algorithm
for the permanent of a non-negative matrix [J+04]. However, we do not discuss it
in this book. First, there are excellent books such as [Je03] describing the method
in detail and second, we are interested in analytic properties of partition functions
that make them amenable to computation (approximation). Granted, the fact that
randomized algorithms are often very efficientmust be telling us something important
about analytic properties of the functions they approximate, but at the moment we
hesitate to say what exactly.

Why this is interesting. Why do we care to approximate pF in (1.1)?
For one thing, it gives us some information about complicated combinatorial

families. As an example, let us consider the family H of all Hamiltonian cycles
in a complete graph Km (undirected, without loops or multiple edges) with m ver-
tices 1, . . . ,m. Hence to every edge (i, j) of Km we assign a variable xi j , to every
Hamiltonian cycle in Km we assign amonomial that is the product of the variables xi j
on the edges of the cycle, and we define pH by summing up all monomials attached
to the Hamiltonian cycles in Km . If we let xi j = 1 for all edges (i, j) then the value
of pH is just the number of Hamiltonian cycles in Km , which is (m − 1)!/2. If we
assign xi j = 1 for some edges of Km and xi j = 0 for all other edges of Km , then the
value of pH is the number of Hamiltonian cycles in the graph G consisting of the
edges selected by the condition xi j = 1 (generally, it is computationally hard even
to tell pH from 0).

Looking at the problem of counting Hamiltonian cycles through the prism of
the partition function pH allows us to interpolate between a trivial problem (count-
ing Hamiltonian cycles in the complete graph) and an impossible one (counting
Hamiltonian cycles in an arbitrary graph) and find some middle ground. Given a
graph G with vertices 1, . . . ,m, let us fix a small ε > 0 (think ε = 10−10) and let us
define

xi j =
{
1 if (i, j) is an edge of G

ε otherwise.

In this case, pH still enumerates Hamiltonian cycles in the complete graph Km , but
it does so deliberately. It counts every Hamiltonian cycle in G with weight 1, while
every Hamiltonian cycle in Km that contains r non-edges ofG is counted with weight
εr . In Sect. 3.8, we show that it is quite easy to approximate pH within a factor of
mO(lnm), where the implicit constant in the “O” notation depends on ε. This gives us

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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some idea about Hamiltonian cycles in G: for example, we can separate graphs G
with many Hamiltonian cycles (the value of pH is large) from graphs G that do not
acquire a single Hamiltonian cycle unless sufficiently many new edges are added to
G (the value of pH is small).

Two particular topics discussed in this book are

(1) connections between the computational complexity of partition functions and
their complex zeros

and
(2) connections between computational complexity and “phase transition” in

physics.

In statistical physics, one deals with the probability space F defined by (1.3)
(sets S ∈ F are called “configurations”), where xi = eβi /t for some constants βi > 0
and a real parameter t , interpreted as temperature. As the ground set {1, . . . , n}
and the set F of configurations grow in some regular way, one can consider two
related, though not identical notions of phase transition. The first notion has to do
with a complex zero of pF , as a function of t , approaching the positive real axis
at some “critical temperature” tc > 0. This implies the loss of smoothness or even
continuity for various physically meaningful quantities, expressed in terms of ln pF
and its derivatives [YL52]. The second notion of phase transition has to do with
the appearance or disappearance of “long-range correlations”. Typically, at a high
temperature t (that is, when xi are close to 1), there is no long-range correlation:
the probability that S contains a given element i of the ground set is not affected by
whether S contains another element j , far away from i in some natural metric. As the
temperature t falls (and hence xi grow), such a dependence may appear. These two
notions of phase transition are related though apparently not identical, see [DS87]
and [Ci87], we discuss this when we talk about the Ising model in Sect. 7.4 .

The correlation decay approach emphasizing (2) was introduced by Bandyopad-
hyay and Gamarnik [BG08] and independently by Weitz [We06] and is generally
well-known in the computational community, while (1) is relatively less articulated
but appears to be no less interesting. Curiously, while the first type of phase tran-
sition is associated with complex zeros of the partition function approaching the
positive real axis, as far as our ability to approximate is concerned, a priori this
does not represent an insurmountable obstacle. What hinders our ability to compute
are the complex zeros “blocking” the reference point in the vicinity of which pF
looks easy, such as the point xi j = 1 for the partition function pH of Hamiltonian
cycles, see also our discussion in Sect. 2.2. The ways of statistical physics and those
of computational complexity diverge at this point, which is probably explained by
the fact that the temperature in the physical world is necessarily a real number, while
for computational purposes we can manipulate with a complex temperature just as
easily.

We stick to the language of combinatorics but the objects and phenomena dis-
cussed in this book have also their names in physics. Thus the “matching polynomial”
of Chap.5 corresponds to the “monomer-dimer model”, the “graph homomorphism
partition function” in Chap. 7 corresponds to a “spin system”, while the cut partition

http://dx.doi.org/10.1007/978-3-319-51829-9_7
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_7


6 1 Introduction

function of Sect. 7.4 corresponds to a “ferromagnetic spin system”. Some of our
results, such as in Sects. 3.6, 3.7, 3.8, 4.2, 4.4, 7.1 and 7.2 correspond to the “mean
field theory” approach, while some others, such as in Chaps. 5 and 6 correspond
to the “hard core” model. For still others, such as in Sects. 3.4, 3.5 and Chap.8,
we were unable to think of an appropriate physics name (though “renormalization”
may work for those in Sects. 3.4 an 3.5). We talk about physical implications of
results in Sect. 7.4 while discussing the Ising model, which connects several direc-
tions explored this book: zeros of partition functions, phase transition, correlation
decay, graph homomorphisms and enumeration of perfect matchings.

Finally, this book may be interesting because it contains an exposition of quite
recent breakthroughs (available before, to the best of our knowledge, only as
preprints, journal or conference proceedings papers). These include the Gurvits
approach connecting certain combinatorial quantities with stable polynomials
(Sects. 3.3 and 8.1), Csikvári and Lelarge approach to the Bethe-approximation of
the permanent (Sects. 5.3 and 5.4) and Weitz correlation decay method for the inde-
pendence polynomial (Sect. 6.4).

Prerequisites, contents, notation, and assorted remarks.Weuse some concepts of
combinatorics, but only very basic, such as graphs and hypergraphs. All other terms,
also very basic, such as matchings, perfect matchings and colorings are explained in
the text. We also employ some computational complexity concepts. As we are inter-
ested in establishing that some functions can be efficiently computed (approximated),
and not in proving that some functions are hard to approximate, we use only some
very basic complexity concepts, such as polynomial time algorithm, etc. The book
[PS98] will supply more than enough prerequisites in combinatorics and computa-
tional complexity (but see also more recent and comprehensive [AB09] and [Go08]).
We also require modest amounts of linear algebra, real and complex analysis. This
book should be accessible to an advanced undergraduate.

In Chap.2, we develop our toolbox. First, we discuss various topics in convexity:
convex and concave functions, entropy and Bethe-entropy, Gauss-Lucas theorem on
the zeros of the derivative of a complex polynomial, the capacity of real polynomials
and the Prékopa-Leindler inequality. Then we present one of our main tools, inter-
polation, which allows us to approximate the logarithm of a multivariate polynomial
p by a low degree polynomial in a domain, given that there are no complex zeros
of p in a slightly larger domain. We discuss interlacing polynomials, H-stable poly-
nomials (polynomials with no roots in the open upper half-plane of C) and D-stable
polynomials (polynomials with no roots in the closed unit disc in C).

Then we begin our study of partition functions in earnest.
In Chap.3, we start slowlywith the permanent, as it is very easy to define and it has

a surprisingly rich structure. All this makes the permanent a very natural candidate
to try our toolbox on.

InChap.4,we consider extensions of the permanent to non-bipartite graphs (hafni-
ans) and hypergraphs (multi-dimensional permanents). We also consider the mixed
discriminant, which is a generalization of the permanent and of the determinant

http://dx.doi.org/10.1007/978-3-319-51829-9_7
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_7
http://dx.doi.org/10.1007/978-3-319-51829-9_7
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_8
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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simultaneously. We observe that some properties of the permanent can be extended
to those more general objects, while some other cannot.

In Chap.5, we consider the matching polynomial of a graph, a relative of the
permanent and hafnian. Here we introduce the correlation decay method, which, as
Bayati, Gamarnik, Katz, Nair and Tetali showed [B+07], looks particularly elegant
and simple in the case of the matching polynomial. It turns out to be very useful too
and provides some additional insight into the permanent.

In Chap.6, we discuss the independence polynomial of a graph. We prove
Dobrushin’s bound on the complex roots and also present the correlation decay
approach at its most technical. We discuss an open question due to Sokal [S01b],
which, if answered affirmatively, would allow us to bridge the gap between different
degrees of approximability afforded by the interpolation and by correlation decay
approaches.

In Chap.7, we present combinatorial partition functions at their most general.
Here we rely entirely on our interpolation technique, although some of the results
can be obtained by the correlation decay approach [LY13]. We also prove the Circle
Theorem of Lee and Yang and discuss the Ising model in some detail.

In Chap.8, we consider partition functions associatedwithmultisets.We study the
partition functions of 0-1 and non-negative integer flows, which present yet another
extension of permanents. Permanents also supply our main technical tool.

Sections, theorems, lemmas, and formulas are numbered separately inside each
chapter. Figures are numbered consecutively in each chapter. For example, Fig. 4.3
is the third figure in Chap.4.

Weuse	 to denote the real part of a complexnumber and
 to denote the imaginary
part of a complex number, so that 	 z = a and 
 z = b for z = a + ib. We denote
by |X | the cardinality of a finite set X .

Finally, the product of complex numbers from an empty set is always 1.
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the Szegő curve (see Sect. 5.5).

This work is partially supported by NSF Grant DMS 1361541.

http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_7
http://dx.doi.org/10.1007/978-3-319-51829-9_8
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_5


Chapter 2
Preliminaries

We assemble our toolbox from real and complex analysis. The main topics are
inequalities inspired by convexity, polynomials with no roots in a particular domain
and relations between convexity and restrictions on the location of the roots. We
discuss the entropy of partitions, the Bethe-entropy, the Prékopa–Leindler inequality
for integrals and the capacity of polynomials with non-negative real coefficients as a
way to estimate a particular coefficient of amultivariate polynomial by solving a con-
vex optimization problem.We discuss polynomials with real roots, polynomials with
no roots in the open upper half-plane (H-stable polynomials) and polynomials with
no roots in the closed unit disc (D-stable polynomials). We prove the Gauss–Lucas
Theorem for the location of the roots of the derivative of a polynomial, the Gurvits
Theorem on the capacity of H-stable polynomials and establish log-concavity of the
coefficients of real-rooted polynomials. We introduce the Taylor polynomial inter-
polation method, which allows us to obtain computationally efficient low-degree
approximations of a polynomial in a complex domain, provided the polynomial has
no zeros in a slightly larger domain.

2.1 Convexity

2.1.1 Convex functions. In what follows, some convex/concave functions will play
an important role. A set A ⊂ R

d is called convex provided

αx + (1 − α)y ∈ A for all x, y ∈ A and all 0 ≤ α ≤ 1.

It follows then that

n∑

i=1

αi xi ∈ A provided xi ∈ A, αi ≥ 0 for i = 1, . . . , n

and
n∑

i=1

αi = 1.

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
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Fig. 2.1 The graph of a
convex function

Let A ⊂ R
d be a convex set. A function f : A −→ R is called convex provided

f
(
αx+(1−α)y

) ≤ α f (x)+(1−α) f (y) for all x, y ∈ A and all 0 ≤ α ≤ 1,

see Fig. 2.1

The function f is called strictly convex if the above inequality is strict whenever
x �= y and 0 < α < 1. It is easy to show that if f is convex then

f

(
n∑

i=1

αi xi

)
≤

n∑

i=1

αi f (xi ) provided xi ∈ A, αi ≥ 0 for i = 1, . . . , n

and
n∑

i=1

αi = 1.

A function f : A −→ R is called concave provided

f
(
αx+(1−α)y

) ≥ α f (x)+(1−α) f (y) for all x, y ∈ A and all 0 ≤ α ≤ 1,

see Fig. 2.2.
The function f is called strictly concave if the above inequality is strict whenever

x �= y and 0 < α < 1. It is easy to show that if f is concave then

f

(
n∑

i=1

αi xi

)
≥

n∑

i=1

αi f (xi ) provided xi ∈ A, αi ≥ 0 for i = 1, . . . , n

and
n∑

i=1

αi = 1.

Here are some functions whose convexity/concavity we will repeatedly use.
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Fig. 2.2 The graph of a
concave function

Fig. 2.3 The graph of ln x

2.1.1.1 Logarithm. As is well known, the function

f (x) = ln x for x > 0

is strictly concave, see Fig. 2.3.
In particular,

ln

(
n∑

i=1

αi xi

)
≥

n∑

i=1

αi ln xi provided xi ,αi > 0 for i = 1, . . . , n

and
n∑

i=1

αi = 1.

Exponentiating, we obtain the arithmetic-geometric mean inequality:
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Fig. 2.4 The graph of x ln x

n∑

i=1

αi xi ≥
n∏

i=1

xαi
i provided xi ,αi > 0 for i = 1, . . . , n

and
n∑

i=1

αi = 1.

2.1.1.2 The function f (x) = x ln x . It is easy to check that the function

f (x) = x ln x for x > 0

is strictly convex, see Fig. 2.4, and, consequently, the function

h(x) = x ln
1

x
for x > 0

is strictly concave.
2.1.1.3 Exponential substitution. Let p(x1, . . . , xn) be a polynomial with non-

negative real coefficients. Then the function f : R
n −→ R defined by

f (t1, . . . , tn) = ln p
(
et1 , . . . , etn

)

is convex. Indeed, it suffices to check that the restriction h of f onto every line in
R

n is convex. Such a restriction h looks as

h(t) = ln

(
m∑

i=1

αi e
λi t

)
,

where λ1, . . . ,λm are real and α1, . . . ,αm are positive real. It suffices then to check
that h′′(t) ≥ 0 for all t ∈ R. Denoting
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g(t) =
m∑

i=1

αi e
λi t ,

we obtain

h′(t) = g′(t)
g(t)

and h′′(t) = g′′(t)g(t) − g′(t)g′(t)
g2(t)

where

g′′(t)g(t) − g′(t)g′(t) =
m∑

i, j=1

λ2
i αiα j e

(λi+λ j )t −
m∑

i, j=1

λiλ jαiα j e
(λi+λ j )t

=
∑

{i, j}
i �= j

(
λ2
i + λ2

j − 2λiλ j
)
αiα j e

(λi+λ j )t

=
∑

{i, j}
i �= j

(
λi − λ j

)2
αiα j e

(λi+λ j )t ≥ 0.

2.1.2 Entropy. Let us consider the simplex �n ⊂ R
n consisting of all vectors

x = (ξ1, . . . , ξn) such that ξi ≥ 0 for i = 1, . . . , n and ξ1 + . . . + ξn = 1. For
x ∈ �n we define the entropy H by

H(x) =
n∑

i=1

ξi ln
1

ξi
where x = (ξ1, . . . , ξn)

and the corresponding term is 0 if ξi = 0. It follows from Sect. 2.1.1.2 that H is
strictly concave. Therefore H attains its minimum value on �n at an extreme point
of �n , that is, where ξi = 1 for some i and ξ j = 0 for all j �= i . In particular,

H(x) ≥ 0 for all x ∈ �n.

Clearly, H is a symmetric function of ξ1, . . . , ξn , so the value of H depends on
the multiset {ξ1, . . . , ξn} but not on the order of ξi s.

By the concavity and symmetry of H , the largest value of H on �n is attained
when ξ1 = . . . = ξn = 1/n, so

H(x) ≤ ln n for all x ∈ �n. (2.1.2.1)

A multiset of non-negative numbers summing up to 1 is naturally interpreted as
a probability distribution. Let � be a probability space and let F = {F1, . . . , Fn} be
its partition into finitely many pairwise disjoint events F1, . . . , Fn , so that

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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� =
⋃

Fi∈F
Fi and Fi ∩ Fj = ∅ for i �= j.

We define the entropy of the partition F by

H(F) = H ({Pr Fi }) =
n∑

i=1

pi ln
1

pi
where pi = Pr (Fi ).

In particular, by (2.1.2.1),

H(F) ≤ ln n provided F consists of not more than n events. (2.1.2.2)

We say that a finite partition G refines a partition F if every event in the partition
G lies in some event in the partition F , see Fig. 2.5, in which case we write F � G.
We often call events of a coarser partition blocks.

Given a pair of partitions F � G, we define the conditional entropy of G with
respect to F as follows:

H(G|F) =
∑

F∈F
Pr (F)

⎛

⎜⎜⎝
∑

G∈G
G⊂F

Pr (G)

Pr (F)
ln

Pr (F)

Pr (G)

⎞

⎟⎟⎠

(if Pr (F) = 0 for some F , the corresponding term in the sum is 0). In words:
each event F of the partition F such that Pr (F) > 0 we consider as a probability
space endowed with the conditional probability measure, compute the entropy of the
partition of F by events of G and average that entropy over all events F ∈ F .

For ω ∈ �, let us denote by F(ω) the event of F containing ω, considered as
a probability space as before, and let F(ω) be the partition of F(ω) induced by G.
Assuming that � is finite, we can write

H(G|F) =
∑

ω∈�

Pr (ω)H(F(ω)). (2.1.2.3)

It is not hard to check that

Fig. 2.5 A partition and its
refinement
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H(G) = H(F) + H(G|F).

Moreover, if F1 � F2 � . . . � Fm , iterating the above identity, we get

H(Fm) = H(F1) +
m−1∑

i=1

H(Fi+1|Fi ) (2.1.2.4)

see, for example, [Kh57].

2.1.3 Bethe-entropy. Let �n ⊂ R
n be, as above, the simplex of all n-vectors

x = (ξ1, . . . , ξn) such that ξi ≥ 0 for i = 1, . . . , n and ξ1 + . . .+ξn = 1. We assume
that n ≥ 2 and for x ∈ �n , we define

g(x) =
n∑

i=1

(
ξi ln

1

ξi
+ (1 − ξi ) ln(1 − ξi )

)
for x = (ξ1, . . . , ξn) .

We call this function theBethe-entropy. We claim that g(x) is a non-negative concave
function on �n . We follow [Gu11], see also [Vo13].

Let

φ(ξ) = ξ ln
1

ξ
+ (1 − ξ) ln(1 − ξ),

see Fig. 2.6.

We have

φ′′(ξ) = 2ξ − 1

ξ(1 − ξ)
,

from which φ is concave for 0 ≤ ξ ≤ 1/2. Since φ(0) = φ(1/2) = 1, it follows that
φ(ξ) ≥ 0 for 0 ≤ ξ ≤ 1/2.

Fig. 2.6 The graph of φ(x)
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Hence g(x) ≥ 0 if ξi ≤ 1/2 for i = 1, . . . , n. Otherwise, there is at most one
value of ξi , say ξn , such that ξn > 1/2. Therefore, the minimum of the concave
function

∑n−1
i=1 φ(ξi ) on the simplex defined by the equation ξ1 + . . .+ξn−1 = 1−ξn

and inequalities ξi ≥ 0 for i = 1, . . . , n − 1 is attained at an extreme point, where
all but one ξi , say ξ1, are equal to 0 and ξ1 = 1 − ξn . Therefore,

g(x) ≥ φ(ξn) + φ (1 − ξn) = 0,

and hence g(x) is indeed non-negative on �n .
To prove that g(x) is concave, it suffices to prove that the restriction of g onto the

relative interior of �n is concave, so we assume that ξ1, . . . , ξn > 0. Computing the
Hessian of g at x = (ξ1, . . . , ξn), we obtain the n × n diagonal matrix

D = diag

(
2ξ1 − 1

ξ1(1 − ξ1)
, . . . ,

2ξn − 1

ξn(1 − ξn)

)
.

Our goal is to prove that the restriction of the quadratic form with matrix D onto the
tangent space to x ∈ �n is negative semi-definite, that is

n∑

i=1

2ξi − 1

ξi (1 − ξi )
α2
i ≤ 0 provided

n∑

i=1

αi = 0. (2.1.3.1)

If ξi ≤ 1/2 for all i = 1, . . . , n then (2.1.3.1) obviously holds. Otherwise, there is at
most one coordinate ξi , say, ξn , such that ξn > 1/2. If αn = 0 then (2.1.3.1) holds,
so we can assume that αn �= 0. Scaling, if necessary, we can further assume that
αn = −1.

Let us denote

βi = 2ξi − 1

ξi (1 − ξi )
for i = 1, . . . , n − 1.

The maximum value of the negative definite quadratic form

(α1 + . . . + αn−1) �−→
n−1∑

i=1

βiα
2
i

on the affine subspace defined by the equation

α1 + . . . + αn−1 = 1

is attained at

αi = λ

βi
for i = 1, . . . , n − 1 and λ =

(
n−1∑

i=1

1

βi

)−1



2.1 Convexity 17

and hence is equal to

λ =
(

n−1∑

i=1

1

βi

)−1

=
(

n−1∑

i=1

ξi (1 − ξi )

2ξi − 1

)−1

.

Consequently,

n∑

i=1

2ξi − 1

ξi (1 − ξi )
α2
i ≤ 2ξn − 1

ξn(1 − ξn)
+

(
n−1∑

i=1

ξi (1 − ξi )

2ξi − 1

)−1

provided
n−1∑

i=1

αi = 1 and αn = −1. (2.1.3.2)

On the other hand, the function

ξ �−→ ξ(1 − ξ)

2ξ − 1
for 0 ≤ ξ <

1

2

is concave, as we have

d2

dξ2
ξ(1 − ξ)

2ξ − 1
= 2

(2ξ − 1)3
< 0 provided 0 ≤ ξ <

1

2
.

Consequently, the minimum value of the concave function

(ξ1, . . . , ξn−1) �−→
n−1∑

i=1

ξi (1 − ξi )

2ξi − 1

on the simplex

ξ1 + . . . + ξn−1 = 1 − ξn and ξ1, . . . , ξn−1 ≥ 0

is attained at an extreme point, where all but one ξi are equal to 0 and the remaining
value of ξi is 1 − ξn . Then from (2.1.3.2) we conclude that

n∑

i=1

2ξi − 1

ξi (1 − ξi )
α2
i ≤ 2ξn − 1

ξn(1 − ξn)
+ 1 − 2ξn

ξn(1 − ξn)
= 0

provided
n−1∑

i=1

αi = 1 and αn = −1,

and (2.1.3.1) follows, establishing the concavity of g.
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Fig. 2.7 The roots of f
(black dots) and the roots of
f ′ (white dots)

2.1.4 Gauss–Lucas Theorem. Let f : C −→ C be a non-constant polynomial.
The Gauss–Lucas Theorem states that the roots of f ′(z) lie in the convex hull of the
roots of f , see Fig. 2.7.

Indeed, without loss of generality, we assume that f is monic. Let γ1, . . . , γn be
the roots of f , counted with multiplicities, so

f (z) =
n∏

k=1

(z − γk).

Let β be a root of f ′, so

0 = f ′(β) =
n∑

k=1

∏

m �=k

(β − γm) and hence
n∑

k=1

∏

m �=k

(β − γm) = 0.

If β = γ j for some j , the result follows instantly. Otherwise, multiplying the last

equation by
n∏

m=1

(β − γm), we obtain

n∑

k=1

(β − γk)
∏

m �=k

|β − γm |2 = 0.

Denoting

αk =
∏

m �=k |β − γm |2
∑m

k=1

∏
m �=k |β − γm |2 ,

we write β as a convex combination of γ1, . . . , γm :

β =
m∑

k=1

αkγk where
m∑

k=1

αk = 1 and αk ≥ 0 for k = 1, . . . ,m.

2.1.5 Capacity. Let

p (x1, . . . , xn) =
∑

m∈M
amxm where xm = xμ1

1 · · · xμn
n (2.1.5.1)
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be a polynomial with non-negative real coefficients am ≥ 0 for m ∈ M . Following
Gurvits [Gu08, Gu15], given a non-negative integer vector r = (ρ1, . . . , ρn), we
define the capacity of p by

capr (p) = inf
x1,...,xn>0

p (x1, . . . , xn)

xρ1
1 · · · xρn

n
.

As follows from Sect. 2.1.1.3, the substitution xi = eti for i = 1, . . . , n expresses
the capacity in terms of the infimum of a convex function on R

n:

ln capr (p) = inf
t1,...,tn

ln p
(
et1 , . . . , etn

) − ρ1t1 − . . . − ρntn. (2.1.5.2)

This makes the capacity efficiently computable, see, for example, [Ne04], provided
the value of the polynomial p is efficiently computable for any given x1, . . . , xn .

It follows from (2.1.5.2) that the function r �−→ ln capr (p), being the point-wise
minimum of a family of affine functions, is concave, meaning that if m1, . . . ,mk are
non-negative integer vectors and

r =
k∑

i=1

αimi where
k∑

i=1

αi = 1 and αi ≥ 0 for i = 1, . . . , k

is also a non-negative integer vector, then

ln capr p ≥
k∑

i=1

αi ln capmi
p.

Weget an immediate upper bound on the coefficients of p in terms of the capacity:

am ≤ capm(p) for all m ∈ M.

We obtain a complementary lower bound if we assume that the functionm �−→ ln am
is (approximately) concave. More precisely, we prove the following statement:

Let 0 < β ≤ 1 be a real and let r ∈ M be an index in (2.1.5.1) such that whenever

r =
k∑

i=1

αimi where mi ∈ M, αi > 0 for i = 1, . . . , k

and
m∑

i=1

αi = 1,

we have

ar ≥ β

k∏

i=1

aαi
mi

.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Then

ar ≥ β

|M |capr (p), (2.1.5.3)

where |M | is the number of monomials in the expansion (2.1.5.1).
Without loss of generality, we assume that am > 0 for allm ∈ M . Let us consider

a lifting
M −→ R

n+1, m �−→ (m, ln am) .

Let us choose an arbitrary γ > ln ar − ln β and let us consider a closed ray

R = {(r,α) : α ≥ γ} .

Then R does not intersect the convex hull of the points (m, ln am) for m ∈ M \
{r}. Therefore, there is a linear function separating R from the set (m, ln am) for
m ∈ M \ {r}. Hence writing r = (ρ1, . . . , ρn), we conclude that there are real
t1, . . . , tn; tn+1 such that

tn+1α +
n∑

i=1

ρi ti > tn+1 ln am +
n∑

i=1

μi ti

for all m ∈ M \ {r}, m = (μ1, . . . ,μn) and all α ≥ γ.

Moreover, we can choose t1, . . . , tn; tn+1 sufficiently generic, so that tn+1 �= 0, in
which case we must necessarily have tn+1 > 0 and which we can further scale to
tn+1 = 1, see Fig. 2.8.

Hence we conclude that

γ +
n∑

i=1

ρi ti > ln am +
n∑

i=1

μi ti for all m ∈ M \ {r}, m = (μ1, . . . ,μn) .

Since γ > ln ar − ln β was chosen arbitrarily, we conclude further that

ln ar+
n∑

i=1

ρi ti ≥ ln am+ln β+
n∑

i=1

μi ti for all m ∈ M\{r}, m = (μ1, . . . ,μn) .

Letting xi = eti for i = 1, . . . , n, we get

ar x
ρ1
1 · · · xρn

n ≥ βamx
μ1
1 · · · xμn

n for all m ∈ M \ {r}, m = (μ1, . . . ,μn) ,

from which
β p (x1, . . . , xn) ≤ |M |ar xρ1

1 · · · xρn

and (2.1.5.3) follows.
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Fig. 2.8 An index m, its
lifting, a ray R and an affine
hyperplane separating R
from the liftings of indices m R

m r

2.1.6 Prékopa–Leindler inequality. We will need the following useful inequal-
ity. Let f, f1, . . . , fk : R

n −→ R+ be non-negative integrable functions and let
α1, . . . ,αk ≥ 0 be reals such that α1 + . . . + αk = 1. Suppose further, that

f

(
k∑

i=1

αi xi

)
≥

k∏

i=1

f αi
i (xi ) for all x1, . . . , xk ∈ R

n.

Then ∫

Rn

f (x) dx ≥
k∏

i=1

(∫

Rn

fi (x) dx

)αi

.

We adapt the proof of Sect. 2.2 of [Le01].
We proceed by induction on the dimension n of the ambient space. Themain work

is done in dimension 1. For n = 1, by continuity we may assume that f1, . . . , fk are
strictly positive and continuous. Scaling, if necessary, we may assume further that

∫ +∞

−∞
fi (x) dx = 1 for i = 1, . . . , k.

Let us define

Fi (t) =
∫ t

−∞
fi (x) dx for i = 1, . . . , k.

Hence Fi (t) is an increasing function Fi : R −→ (0, 1) and let ui : (0, 1) −→ R be
its inverse. Thus ui (t) is also strictly increasing and Fi (ui (t)) = t for i = 1, . . . , k.
We note that Fi and hence ui are differentiable and that

fi (ui (t)) u
′
i (t) = 1 for i = 1, . . . , k. (2.1.6.1)
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Let us define

u(t) =
k∑

i=1

αi ui (t) for t ∈ (0, 1).

Making a substitution x = u(t), we get

∫ +∞

−∞
f (x) dx =

∫ 1

0
f (u(t))u′(t) dt =

∫ 1

0
f

(
k∑

i=1

αi ui (t)

)(
k∑

i=1

αi u
′
i (t)

)
dt

By the condition of the theorem,

f

(
k∑

i=1

αi ui (t)

)
≥

k∏

i=1

f αi
i (ui (t)) ,

while by the arithmetic-geometric mean inequality,

k∑

i=1

αi u
′
i (t) ≥

k∏

i=1

(
u′
i (t)

)αi
.

Summarizing,

∫ +∞

−∞
f (x) dx ≥

∫ 1

0

(
k∏

i=1

(
f (ui (t)) u

′
i (t)

)αi

)
dt = 1

by (2.1.6.1) and the proof for n = 1 follows.
Suppose that n > 1. We represent R

n = R
n−1 ⊕ R, x = (y, t), and define

g(t) =
∫

Rn−1
f (y, t) dy and gi (t) =

∫

Rn−1
fi (y, t) dy for i = 1, . . . , k.

Let us choose arbitrary real t1, . . . , tk and let t = α1t1 + . . . + αk tk . We define
functions h, h1, . . . , hk : R

n−1 −→ R by

h(y) = f (y, t) and hi (y) = fi (y, ti ) for i = 1, . . . , k.

Then

h

(
k∑

i=1

αi yi

)
= f

(
k∑

i=1

αi yi ,
k∑

i=1

αi ti

)
≥

k∏

i=1

f αi (yi , ti ) =
k∏

i=1

hαi
i (yi )

and hence by the induction hypothesis
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g(t) =
∫

Rn−1
h(t) dt ≥

k∏

i=1

(∫

Rn−1
hi (y) dy

)αi

=
k∏

i=1

gαi
i (ti ).

Applying Fubini’s Theorem and the inequality in the 1-dimensional case, we get

∫

Rn

f (x) dx =
∫ +∞

−∞
g(t) dt ≥

k∏

i=1

(∫ +∞

−∞
gi (t) dt

)αi

=
k∏

i=1

(∫

Rn

fi (x) dx

)αi

,

which completes the induction.

2.2 Polynomial Approximations

We start with a simple lemma.

2.2.1 Lemma. Let g(z) be a complex polynomial of degree d and let us suppose that

g(z) �= 0 for all |z| ≤ β,

where β > 1 is a real number. Let us choose a branch of

f (z) = ln g(z) for |z| ≤ 1

and consider its Taylor polynomial

pn(z) = f (0) +
n∑

k=1

(
dk

dzk
f (z)

∣∣∣
z=0

)
zk

k! .

Then

| f (z) − pn(z)| ≤ d

(n + 1)βn(β − 1)
for all |z| ≤ 1.

In particular, assuming that β > 1 is fixed in advance, to achieve

| f (1) − pn(1)| < ε

for some ε > 0, it suffices to choose

n = O

(
ln

d

ε

)
,

where the implicit constant in the “O” notation depends only on β.
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Proof of Lemma 2.2.1. Let α1, . . . ,αd be the roots of g(z), so we can write

g(z) = g(0)
d∏

i=1

(
1 − z

αi

)
where g(0) �= 0 and |αi | > β for i = 1, . . . , d.

Hence

f (z) = ln g(z) = f (0) +
d∑

i=1

ln

(
1 − z

αi

)
for |z| ≤ 1,

and expanding the logarithm, we obtain

ln

(
1 − z

αi

)
= −

n∑

k=1

zk

kαk
i

+ ξi,n for |z| ≤ 1

where
∣∣ξi,n

∣∣ =
∣∣∣∣∣

∞∑

k=n+1

zk

kαk
i

∣∣∣∣∣ ≤ 1

(n + 1)βn(β − 1)
for all |z| ≤ 1.

Therefore,

f (z) = f (0) −
d∑

i=1

n∑

k=1

zk

kαk
i

+ ηn for |z| ≤ 1

where

|ηn| ≤ d

(n + 1)βn(β − 1)
.

To complete the proof, it suffices to notice that

1

k!
dk

dzk
f (z)

∣∣∣
z=0

= −
d∑

i=1

1

kαk
i

.

�

2.2.2 Computing derivatives of f (z) = ln g(z). Let f (z) = ln g(z) as in Lemma
2.2.1, where we assume that g(0) �= 0 and hence a branch of f (z) can be chosen in
a sufficiently small neighborhood of z = 0. Then

f ′(z) = g′(z)
g(z)

and hence g′(z) = f ′(z)g(z).

Differentiating the product k − 1 times, we obtain

dk

dzk
g(z)

∣∣∣
z=0

=
k−1∑

j=0

(
k − 1

j

) (
dk− j

dzk− j
f (z)

∣∣∣
z=0

)(
d j

dz j
g(z)

∣∣∣
z=0

)
. (2.2.2.1)
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Combining the Eq. (2.2.2.1) for k = 1, . . . , n, we obtain a triangular system of linear
equations in f (k)(0)

g′(0) =g(0) f ′(0)
g′′(0) =g′(0) f ′(0) + g(0) f ′′(0)

g(3)(0) =g′′(0) f ′(0) + 2g′(0) f ′′(0) + g(0) f (3)(0)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

g(n)(0) =g(n−1)(0) f ′(0) + (n − 1)g(n−2)(0) f ′′(0) + . . . + g(0) f (n)(0)

with coefficients g(0) �= 0 on the diagonal, from which we can compute the deriv-
atives f (k)(0) for k = 1, . . . , n from g(0) and g(k)(0) for k = 1, . . . , n in O(n2)
time.

Lemma 2.2.1 allows us to approximate ln g(1) by a small (logarithmic) degree
Taylor polynomial of ln g(z) computed at z = 0, provided there are no roots of g(z)
in the disc Dβ = {z : |z| ≤ β} in the complex plane for some radius β > 1. We will
need to construct a similar approximation under a weaker assumption that g(z) �= 0
in a thin strip aligned with the positive real axis, that is, g(z) �= 0 provided

−δ ≤ � z ≤ 1 + δ and |� z| ≤ δ

for some δ > 0. We achieve this by constructing a polynomial φ = φδ : C −→ C

such that

φ(0) = 0, φ(1) = 1 and

−δ ≤ �φ(z) ≤ 1 + δ, |�φ(z)| ≤ δ provided |z| ≤ β

for some β = β(δ) > 1, see Fig. 2.9.
We then consider a composition h(z) = g(φ(z)). Hence h(z) is a polynomial

of deg h = (deg g)(degφ) that does not have zeros in the disc Dβ and such that
h(0) = g(0) and h(1) = g(1). Using Lemma 2.2.1, we approximate ln g(1) by the
Taylor polynomial of ln h(z) of degree n = O (ln deg g + ln degφ) computed at
z = 0. As follows from Sect. 2.2.2, to compute the Taylor polynomial of degree n
of ln h(z) at z = 0, it suffices to compute the Taylor polynomial of h(z) of degree
n at z = 0. On the other hand, to compute the Taylor polynomial of h(z) of degree

Fig. 2.9 A polynomial φ
mapping the disc of radius
β > 1 into a neighborhood
of [0, 1] ⊂ C while mapping
0 to 0 and 1 to 1 0 1 10

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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n at z = 0 it suffices to compute the Taylor polynomial pn of degree n of g(z) at 0,
compute the truncation φn of φ by discarding all monomials of degree higher than n
and then compute the composition pn (φn(z)) and discard all monomials of degree
higher than n (recall that φ(0) = 0 so that the smallest degree of a monomial in φ(z)
is 1).

The following lemma provides an explicit construction of φ.

2.2.3 Lemma. For 0 < ρ < 1, let us define

α =α(ρ) = 1 − e− 1
ρ , β = β(ρ) = 1 − e−1− 1

ρ

1 − e− 1
ρ

> 1,

N =N (ρ) =
⌊(

1 + 1

ρ

)
e1+

1
ρ

⌋
≥ 14, σ = σ(ρ) =

N∑

m=1

αm

m
and

φ(z) =φρ(z) = 1

σ

N∑

m=1

(αz)m

m
.

Then φ(z) is a polynomial of degree N such that φ(0) = 0, φ(1) = 1,

−ρ ≤ �φ(z) ≤ 1 + 2ρ and |�φ(z)| ≤ 2ρ provided |z| ≤ β.

Proof. Clearly, φ(z) is a polynomial of degree N such that φ(0) = 0 and φ(1) = 1.
It remains to prove that φ maps the disc |z| ≤ β into the strip −ρ ≤ � z ≤ 1 + 2ρ,
|� z| ≤ 2ρ.

We consider the function

Fρ(z) = ρ ln
1

1 − z
for |z| < 1.

Since

� 1

1 − z
> 0 if |z| < 1,

the function Fρ(z) is well-defined by the choice of a branch of the logarithm, which
we choose so that

Fρ(0) = ρ ln 1 = 0.

Then for |z| < 1 we have

∣∣� Fρ(z)
∣∣ ≤ πρ

2
and � Fρ(z) ≥ −ρ ln 2 (2.2.3.1)

In addition,

Fρ(α) = 1 and � Fρ(z) ≤ 1 + ρ provided |z| ≤ 1 − e−1− 1
ρ . (2.2.3.2)
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Let

Pn(z) =
n∑

m=1

zm

m
.

Then

∣∣∣∣ln
1

1 − z
− Pn(z)

∣∣∣∣ =
∣∣∣∣∣

∞∑

m=n+1

zm

m

∣∣∣∣∣ ≤ |z|n+1

(n + 1)(1 − |z|) provided |z| < 1.

Therefore, for |z| ≤ β, we have

∣∣Fρ(αz) − ρPN (αz)
∣∣ ≤ ρ

(αβ)N+1

(N + 1)(1 − αβ)

≤ ρ

N + 1

(
1 − e−1− 1

ρ

)N+1
e1+

1
ρ

≤ ρ

N + 1
≤ ρ

15
. (2.2.3.3)

Combining (2.2.3.1)–(2.2.3.3), we conclude that for |z| ≤ β we have

|� ρPN (αz)| ≤ 1.64ρ and − 0.76ρ ≤ � ρPN (αz) ≤ 1 + 1.07ρ. (2.2.3.4)

Substituting z = 1 in (2.2.3.3) and using (2.2.3.2), we conclude that

|1 − ρPN (α)| ≤ ρ

15
. (2.2.3.5)

Since

φ(z) = PN (αz)

PN (α)
= ρPN (αz)

ρPN (α)
,

combining (2.2.3.4) and (2.2.3.5) and noting that ρPN (α) is real, we obtain

|�φ(z)| ≤ 2ρ and − ρ ≤ �φ(z) ≤ 1 + 2ρ provided |z| ≤ β.

�
The construction of Lemma 2.2.3 suggests a general principle:
Suppose we have a polynomial g(z) of degree n such that the k-th derivative

g(k)(0) can be computed in nO(k) time. We want to approximate g(1). If we can find
a sufficiently wide “sleeve” containing 0 and 1 and avoiding the roots of g(z), such
as the one on Fig. 2.10a, we can approximate g(1) within relative error 0 < ε < 1
in nO(ln n−ln ε) time. For that, we construct a polynomial φ(z) such that φ(0) = 0,
φ(1) = 1 and φ maps the disc {z : |z| ≤ β} for some sufficiently large β > 1 into
the sleeve where g(z) �= 0. We then apply Lemma 2.2.1 to g(φ(z)). If the zeros of
g surround 0 as on Fig. 2.10b, the sleeve connecting 0 and 1 and avoiding the roots
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Fig. 2.10 a There is a
sufficiently wide sleeve
connecting 0 and 1 and
avoiding the zeros of g, b the
zeros of g surround 0
precluding the existence of a
wide sleeve connecting 0
and 1

0 1 1
0

(a) (b)

of g(z) will have to be too thin, making the radius β of the disc too close to 1 and
hence making any computational gain impossible.

2.3 Polynomials with Real Roots

We start with a definition.

2.3.1 Definition. Let f be a real polynomial of degree n with n distinct real roots
α1 < . . . < αn . We say that a real polynomial g of degree n − 1 interlaces f if g
has n − 1 real roots β1 < . . . < βn−1 such that

α1 < β1 < α2 < β2 < α3 < . . . < αn−1 < βn−1 < αn,

see Fig. 2.11.

For example, if the roots of f are all real and distinct then f ′ interlaces f .

2.3.2 Theorem.

(1) Let f and g1, . . . , gm be real polynomials such that gk interlaces f for k =
1, . . . ,m. Suppose further that the highest degree terms of g1, . . . , gm have the
same sign. Let λ1, . . . ,λm be non-negative reals, not all 0 and let

g =
m∑

k=1

λkgk .

Then the polynomial g interlaces f ;
(2) Let f and g be real polynomials such that g interlaces f and suppose that the

highest terms of f and g have the same sign. Then for any λ ∈ R the polynomial
f interlaces the polynomial h(x) = (x − λ) f (x) − g(x).

Fig. 2.11 A polynomial g
interlacing a polynomial f

g

f
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Proof. Let α1 < . . . < αn be the roots of f , so deg f = n.
To prove Part (1), we note that since each gk interlaces f , it changes it sign exactly

once inside every interval [αi ,αi+1] for i = 1, . . . , n − 1, see Fig. 2.11. Since the
coefficients of degree n − 1 of all polynomials gk have the same sign, inside each
interval [αi ,αi+1] all the polynomials gk change the sign in the same way (that is,
all positive at αi and negative at αi+1 or all negative at αi and positive at αi+1). It
follows that g changes its sign inside each interval [αi ,αi+1] and hence interlaces f .

To Prove Part (2), without loss of generality we assume that the highest terms of f
and g are positive. Since g interlaces f , the polynomial g changes its sign inside each
interval [αi ,αi+1] for i = 1, . . . , n − 1 and hence the polynomial h also changes its
sign inside each interval. Thus each interval (αi ,αi+1) contains at least one root of
h, which accounts for the total of n − 1 roots.

Let βn−1 ∈ (αn−1,αn) be the largest root of g. Since g(x) does not change its sign
for all x > βn−1, we must have g (αn) > 0 and hence h(αn) < 0. On the other hand,
since the highest term of h(x) is positive, we must have h(x) > 0 for all sufficiently
large x and hence there is a root, say, γn+1 of h(x) satisfying γn+1 > αn .

Similarly, let β1 ∈ (α1,α2) be the smallest root of g. Since g(x) does not change
its sign for all x < β1, we must have have g(α1) > 0 if n is odd (and hence
deg g = n − 1 is even) and g(α1) < 0 if n is even (and hence deg g = n − 1 is odd).
Therefore, h(α1) < 0 if n is odd and h(α1) > 0 if n is even. On the other hand,
since the highest term of h(x) is positive, for all sufficiently small x we must have
h(x) > 0 if n is odd (and hence deg h = n + 1 is even) and h(x) < 0 if n is even
(and hence deg h = (n + 1) is odd). This proves that there is a root, say, γ1 of h(x)
satisfying γ1 < α1. Since the total number of roots of h cannot exceed n + 1, we
conclude that every interval (αi ,αi+1) for i = 1, . . . , n − 1 contains exactly one
root, say γi+1 of h and hence f interlaces h. �

The coefficients of a polynomial with real roots satisfy some interesting inequal-
ities.

2.3.3 Theorem. Suppose that the roots of a real polynomial

p(x) =
n∑

j=0

a j x
j

are real. Then

a2j ≥ a j−1a j+1

(
1 + 1

j

)(
1 + 1

n − j

)
for j = 1, . . . , n − 1.

Equivalently, for

b j = a j(n
j

) ,



30 2 Preliminaries

we have
b2j ≥ b j−1b j+1 for j = 1, . . . , n − 1.

Proof. Repeatedly applying Rolle’s Theorem, we conclude that the roots of the
polynomial

q(x) = d j−1

dx j−1
p(x) =

n∑

k= j−1

k!
(k − j + 1)!akx

k− j+1

are also real. Hence the roots of the polynomial

r(x) = xn− j+1q

(
1

x

)
=

n∑

k= j−1

k!
(k − j + 1)!akx

n−k

are also real. Applying Rolle’s Theorem again, we conclude that the roots of the
quadratic polynomial

s(x) = dn− j−1

dxn− j−1
r(x)

= (n − j + 1)!( j − 1)!a j−1

2
x2 + j !(n − j)!a j x + ( j + 1)!(n − j − 1)!a j+1

2

are real. Therefore,

(
j !(n − j)!a j

)2 ≥ (n − j + 1)!(n − j − 1)!( j − 1)!( j + 1)!a j−1a j+1

and the proof follows. �

When the coefficients a j are non-negative, we conclude that

a2j ≥ a j−1a j+1 for j = 1, . . . , n − 1,

which means that the sequence a0, a1, . . . , an is log-concave (that is, the sequence
c j = ln a j is concave), see [St89].

2.3.4 Estimating the largest absolute value of a root of a polynomial. Let f (t)
be a monic polynomial with real roots a1, . . . , an , so

f (t) =
n∑

i=0

bi t
n−i =

n∏

i=1

(t − ai ),

where b0 = 1.
Let

pk =
n∑

i=1

aki for k = 1, . . .
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be the power sums of roots. Knowing the k + 1 highest coefficients b1, . . . , bk+1 of
f allows us to compute p1, . . . , pk using Newton’s identities:

p1 = −b1, p2 = −b1 p1 − 2b2, p3 = −b1 p2 − b2 p1 − 3b3

and, more generally,

pk = −kbk −
k−1∑

i=1

bi pk−i .

On the other hand, since ai are real, we have

1

n
p2k ≤ max

i=1,...,n
a2ki ≤ p2k .

In particular, by choosing k = O (ln(n/ε)), we can approximate maxi=1,...,n |ai |
within a relative error ε by (p2k)

1/2k .

2.4 H-Stable Polynomials

2.4.1 Definition. Let f (z1, . . . , zn) be a complex polynomial. Given a set � ⊂ C,
we say that f is �-stable provided

f (z1, . . . , zn) �= 0 whenever z1, . . . , zn ∈ �.

If
� = {

z : � z > 0
}

is the open upper half-plane, we call f H-stable. In other words, f is H-stable if

f (z1, . . . , zn) �= 0 whenever � z1, . . . ,� zn > 0.

We note that if f (z) is an H-stable univariate polynomial with real coefficients
then all roots of f are necessarily real, since complex roots of f come in pairs of
complex conjugate.

The following lemma summarizes some properties of H-stable polynomials that
are of critical importance for us. We follow [Wa11].

2.4.2 Lemma.

(1) Let fm : m = 1, . . . , be a sequence of polynomials in n complex variables and
let f be a polynomial such that

fm −→ f
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uniformly on compact subsets of C
n. If all fm are H-stable then either f is

H-stable or f is identically 0;
(2) Let f (z1, . . . , zn) be a H-stable polynomial where n > 1. Then the polynomial

g(z1, . . . , zn−1) = f (z1, . . . , zn−1, 0)

is either H-stable or identically 0.
(3) Let f (z1, . . . , zn) be a H-stable polynomial and let us define

g(z1, . . . , zn) = ∂

∂zn
f (z1, . . . , zn).

Then either g is H-stable or g is identically 0.

Proof. Part (1) follows by the (multivariate) Hurwitz Theorem which asserts that if
� ⊂ C

n is a connected open set, functions fm are analytic on � and have no zeros in
�, and fm −→ f uniformly on compact subsets of� then f either has no zeros in�

or is identically zero in � (the multivariate Hurwitz Theorem immediately follows
from a more standard univariate version by restricting the functions fm and f onto
a complex line in C

n identified with C), see, for example, [Kr01].
To prove Part (2), we define a sequence of polynomials

gm(z1, . . . , zn−1) = f
(
z1, . . . , zn−1, im

−1
)
.

Then gm are H-stable for all positive integer m and gm −→ g uniformly on compact
subsets of C

n−1. The proof now follows by Part (1).
To prove Part (3), without loss of generality we may assume that the degree of f

in zn is d ≥ 1, so we can write

f (z1, . . . , zn) =
d∑

k=0

zknhk(z1, . . . , zn−1), (2.4.2.1)

where hk(z1, . . . , zn−1) are polynomials for k = 0, 1, . . . , d and hd �≡ 0. Let us
consider a sequence of polynomials

fm(z1, . . . , zn) = m−d f (z1, . . . , zn−1,mzn) for m = 1, 2, . . . .

Then the polynomials fm are H-stable and fm −→ zdnhd(z1, . . . , zn−1) uniformly on
compact subsets of C

n . By Part (1), the polynomial zdnhd(z1, . . . , zn−1) is H-stable
and hence the polynomial hd(z1, . . . , zn−1) is H-stable. Hence

hd(z1, . . . , zn−1) �= 0 provided �z1 > 0, . . . ,�zn−1 > 0. (2.4.2.2)
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Let us fix some z1, . . . , zn−1 such that �z1 > 0, . . . ,�zn−1 > 0 and consider a
univariate polynomial

p(z) = f (z1, . . . , zn−1, z) for z ∈ C.

By (2.4.2.1) and (2.4.2.2), we have deg p = d. Since f is H-stable, all the d roots
(counting multiplicity) z of p satisfy �z ≤ 0. By the Gauss–Lucas Theorem, see
Sect. 2.1.4, the roots of p′ lie in the convex hull of the set of roots of p. In particular,
p′(z) �= 0 if �z > 0, that is,

g(z1, . . . , zn−1, z) �= 0 provided �z1 > 0, . . . ,�zn−1 > 0,�z > 0

and g is H-stable. �

Our goal is to prove the following result of Gurvits [Gu08] which bounds coef-
ficients of an H-stable polynomial p with non-negative real coefficients in terms of
its capacity, see Sect. 2.1.5.

2.4.3 Theorem. Let p (x1, . . . , xn) be an H-stable polynomial with non-negative
real coefficients and such that deg p ≤ n. Let us define polynomials pn, pn−1, . . . , p0
by

pn = p and pk = ∂

∂xk+1
pk+1

∣∣∣
xk+1=0

for k = n − 1, . . . , 0,

so that pk is a polynomial in x1, . . . , xk and deg pk ≤ k.
Suppose further that the degree of xk in pk does not exceed an integer dk for

k = n, . . . , 1.
Then

p0 = ∂n

∂x1 · · · ∂xn p ≥
(

n∏

k=1

(
dk − 1

dk

)dk−1
)

inf
x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn ,

where we agree that

(
dk − 1

dk

)dk−1

= 1 if dk = 0 or dk = 1.

The proof of Theorem 2.4.3 proceeds by induction on the number n variables with
the following lemma playing the crucial role.

2.4.4 Lemma. Let R(t) be a univariate polynomial non-negative real coefficients
and real roots. Suppose that deg R ≤ d for some non-negative integer d. Then

R′(0) ≥
(
d − 1

d

)d−1

inf
t>0

R(t)

t
if d > 1

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and

R′(0) = inf
t>0

R(t)

t
if d = 1.

Proof. We note that

h(x) =
(
x − 1

x

)x−1

is a decreasing function of x > 1. Indeed, for

f (x) = ln h(x) = (x − 1) ln(x − 1) − (x − 1) ln x

we have

f ′(x) = ln
x − 1

x
+ 1

x
< 0 for x > 1.

Therefore, without loss of generality, we may assume that deg R = d.
If d ≤ 1 then R(t) = r0 + r1t for some r0, r1 ≥ 0 so that

inf
t>0

R(t)

t
= r1 = R′(0), (2.4.4.1)

where the infimum is attained as t −→ +∞.
Suppose that d ≥ 2. If R(0) = 0 then R(t) = r1t + . . . + rd td for some r1, . . . ,

rd ≥ 0 and we still have (2.4.4.1) where the infimum is attained as t −→ 0+.
Hence we may assume that R(0) > 0, in which case, scaling R if necessary, we

may additionally assume that R(0) = 1. Then we can write

R(t) =
d∏

i=1

(
1 − t

αi

)
,

where α1, . . . ,αd are the roots of R. Since the coefficients of R are non-negative
and theconvex hull of the set roots α1, . . . ,αd are real, we necessarily have α1 <

0, . . . ,αd < 0. Denoting ai = −α−1
i , we obtain

R(t) =
d∏

i=1

(1 + ai t) where a1, . . . , ad > 0.

Then
R′(0) = a1 + . . . + ad > 0

and applying the arithmetic-geometric mean inequality, see Sect. 2.1.1.1, we get

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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R(t) ≤
(
1 + t

d

d∑

i=1

ai

)d

=
(
1 + R′(0)

d
t

)d

for t ≥ 0,

so that

inf
t>0

R(t)

t
≤ inf

t>0
g(t) where g(t) = t−1

(
1 + R′(0)

d
t

)d

.

Since d ≥ 2 we have g(t) −→ +∞ as t −→ +∞ and hence the infimum of g(t) is
attained at a critical point t . Solving the equation g′(t) = 0, we get

t = d

(d − 1)R′(0)

and

inf
t>0

R(t)

t
≤ R′(0)

(
d

d − 1

)d−1

as desired. �

2.4.5 Proof of Theorem 2.4.3. From Parts (3) and (2) of Lemma 2.4.2, each poly-
nomial pk is either H-stable or identically 0. We claim that

pk−1 (x1, . . . , xk−1) ≥
(
dk − 1

dk

)dk−1

inf
xk>0

pk (x1, . . . , xk)

xk
for all x1, . . . , xk−1 > 0 (2.4.5.1)

and k = n, n − 1, . . . , 1 with the standard agreement that

(
dk − 1

dk

)dk−1

= 1 if dk = 1 or dk = 0.

If pk is identically 0 then pk−1 is identically 0 and (2.4.5.1) holds. Hence we
assume that pk is H-stable.

If k = 1 then p1(x) = ax1 + b for some a, b ≥ 0 so that

p0 = a = inf
x1>0

p1(x)

x1
.
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If k ≥ 2, for any fixed x1 > 0, . . . , xk−1 > 0, we define a univariate polynomial

R(t) = Rx1,...,xk−1(t) = pk(x1, . . . , xk−1, t).

We claim that all the roots of R are necessarily real. Indeed, R has real coefficients
and if it had a pair of complex conjugate roots α ± βi for some β > 0 then for all
sufficiently small ε > 0 the univariate polynomial

R̃(t) = pk (x1 + iε, . . . , xk−1 + iε, t)

would have had a root α̃ + i β̃ for some β̃ > 0, which would have contradicted the
H-stability of p. Applying Lemma 2.4.4, we obtain

R′(0) ≥
(
dk − 1

dk

)dk−1

inf
t>0

R(t)

t

which proves (2.4.5.1) and hence completes the proof of the theorem. �

2.4.6 Corollary. Let p be a polynomial as in Theorem 2.4.3. Then

∂n p

∂x1 · · · ∂xn ≥ n!
nn

inf
x1,...,xn>0

p (x1, . . . xn)

x1 · · · xn .

Proof. In Theorem 2.4.3, we can choose dk = k for k = n, n − 1, . . . , 1. Then

n∏

k=2

(
k − 1

k

)k−1

= (n − 1)(n − 2) · · · 1
nn−1

= n!
nn

.

�

In [Gu15], Gurvits noticed that Theorem 2.4.3 leads to a bound on an arbitrary
coefficient of a homogeneous H-stable polynomial in terms of the capacity, see
Sect. 2.1.5.

2.4.7 Theorem. Let
p (x1, . . . , xn) =

∑

m∈M
amxm

be an H-stable homogeneous polynomial with non-negative coefficients. Suppose
further that the degree of p in xk does not exceed dk for k = 1, . . . , n.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Then for a non-negative integer vector r = (ρ1, . . . , ρn) such that ρ1+ . . .+ρn =
deg p and ρk ≤ dk for k = 1, . . . , n, we have

ar ≥
(

n∏

k=1

ρ
ρk
k (dk − ρk)

dk−ρk dk !
ρk ! (dk − ρk)!ddk

k

)
capr p.

Proof. Without loss of generality we assume that ρ1, . . . , ρn > 0 since otherwise we
consider the polynomial p̂ obtained from p by fixing xi = 0 whenever ρi = 0. By
Part (2) of Lemma 2.4.2, the polynomial p̂ is either H-stable or identically zero (in
which case the statement of the theorem trivially holds true). We define a polynomial
q in d variables y11, . . . , y1ρ1 , . . . , yn1, . . . , ynρn by

q
(
. . . , yk1, . . . , ykρk , . . .

) = p

(
. . . ,

yk1 + . . . + ykρk
ρk

, . . .

)
.

It is easy to see that q is an H-stable of degree d and that

ar = ∂dq

∂y11 . . . ∂y1ρ1 · · · ∂ynρn

n∏

k=1

ρ
ρk
k

ρk ! . (2.4.7.1)

The degree of q in every variable yk j does not exceed dk , while the degree of the
polynomial

∂ j q

∂yk1 · · · ∂yk j
∣∣∣
yk1=...=yk j=0

in yk( j+1) does not exceed dk − j for j = 1, . . . , ρk . Therefore, by Theorem 2.4.3,

∂dq

∂y11 . . . ∂y1ρ1 · · · ∂ynρn

≥
n∏

k=1

ρk∏

j=1

(
dk − j

dk − j + 1

)dk− j

× inf
y11,...,y1ρ1>0
.....................
yn1,...,ynρn >0

q
(
y11, . . . , y1ρ1 , . . . , yn1, . . . , ynρn

)

y11 · · · y1ρ1 · · · yn1 · · · ynρn

. (2.4.7.2)

We further simplify

n∏

k=1

ρk∏

j=1

(
dk − j

dk − j + 1

)dk− j

=
n∏

k=1

dk !(dk − ρk)
dk−ρk

(dk − ρk)!ddk
k

. (2.4.7.3)
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Finally, we claim that

inf
y11,...,y1ρ1>0
.....................
yn1,...,ynρn >0

q
(
y11, . . . , y1ρ1 , . . . , yn1, . . . , ynρn

)

y11 · · · y1ρ1 · · · yn1 · · · ynρn

≥ capr p

= inf
x1,...,xn>0

p (x1, . . . , xn)

xρ1
1 · · · xρn

n
. (2.4.7.4)

Indeed, given y11, . . . , y1ρ1 , yn1, . . . , ynρn > 0, let us define

xk = 1

ρk

ρk∑

i=1

yki for k = 1, . . . , n.

By the arithmetic-geometric mean inequality, we have

xρk
k ≥

ρk∏

i=1

yki

and hence we obtain (2.4.7.4).
Combining (2.4.7.1)–(2.4.7.4), we get the desired result. �

2.5 D-Stable Polynomials

Let
D = {

z ∈ C : |z| ≤ 1
}

be the closed unit disc.We are interested inD-stable polynomials, that is, polynomials
p (z1, . . . , zn) such that p (z1, . . . , zn) �= 0 provided |zi | ≤ 1 for i = 1, . . . , n.

We start with multi-affine polynomials, that is sums of square-free monomials.
For a set S ⊂ {1, . . . , n}, let

zS =
∏

i∈S
zi

denote the monomial in the complex variables z1, . . . , zn (we agree that z∅ = 1).
Our first result is as follows.

2.5.1 Theorem. Let

f (z1, . . . , zn) =
∑

S⊂{1,...,n}
aSzS and g (z1, . . . , zn) =

∑

S⊂{1,...,n}
bSzS
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be two D-stable polynomials. Then the polynomial h = f ∗ g defined by

h (z1, . . . , zn) =
∑

S⊂{1,...,n}
cSzS where cS = aSbS

is also D-stable.

The polynomial h = f ∗ g is called sometimes the Schur product and sometimes
the Hadamard product of f and g. We follow [Hi97], see also [Ru71]. The proof is
based on the Asano contractions [As70].

2.5.2 Lemma. Suppose that the bivariate polynomial

p (z1, z2) = a + bz1 + cz2 + dz1z2

is D-stable. Then the univariate polynomial

q(z) = a + dz

is also D-stable.

Proof. Since p isD-stable,we havea �= 0. Seeking a contradiction, suppose thatq(z)
is notD-stable. Then d �= 0 and for the unique rootw of q wehave |w| = |a|/|d| ≤ 1,
so that |d| ≥ |a|.

Without loss of generality, we assume that |b| ≥ |c|. Let us fix a z2 such that
|z2| = 1 and

|b + dz2| = |b| + |d| ≥ |a| + |c|.

Then the set
K = {(b + dz2) z1 : |z1| ≤ 1}

is a disc centered at 0 and of radius |b| + |d| ≥ |a| + |c|. Since

|a + cz2| ≤ |a| + |c|,

the translation K + (a + cz2) of the disc K by a vector a + cz2 whose length does
not exceed the radius of K must contain 0, see Fig. 2.12.

Therefore, for some z1 such that |z1| ≤ 1, we have a + cz2 + bz1 + dz2z1 = 0,
which is a contradiction. Hence |d| < |a| and q is D-stable. �

2.5.3 Proof of Theorem 2.5.1. We proceed by induction on the number n of vari-
ables. If n = 1, then f (z) = a + bz, g(z) = c + dz and h(z) = ac + bdz. Since
f is D-stable, we have a �= 0 and |b| < |a|. Since g is D-stable, we have c �= 0
and |d| < |c|. Therefore, ac �= 0 and |bd| < |ac|, from which it follows that h is
D-stable.
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Fig. 2.12 The disc K and its
translation

0 0

Suppose that n ≥ 2. We can write

f (z1, . . . , zn) =
∑

S⊂{1,...,n}
aSzS =

∑

S⊂{1,...,n−1}

(
aS + znaS∪{n}

)
zS

and

g (z1, . . . , zn) =
∑

S⊂{1,...,n}
bSzS =

∑

S⊂{1,...,n−1}

(
bS + znbS∪{n}

)
zS.

Let us fix any two z, w ∈ D. Then the (n − 1)-variate polynomials

∑

S⊂{1,...,n−1}

(
aS + zaS∪{n}

)
zS and

∑

S⊂{1,...,n−1}

(
bS + wbS∪{n}

)
zS

are D-stable and by the induction hypothesis the polynomial

∑

S⊂{1,...,n−1}

(
aS + zaS∪{n}

) (
bS + wbS∪{n}

)
zS

in n − 1 variables z1, . . . , zn−1 is also D-stable. This means that for any fixed
z1, . . . , zn−1 ∈ D the bivariate polynomial

p(z, w) =
∑

S⊂{1,...,n−1}
aSbSzS + z

∑

S⊂{1,...,n−1}
aS∪{n}bSzS

+ w
∑

S⊂{1,...,n−1}
aSbS∪{n}zS + zw

∑

S⊂{1,...,n−1}
aS∪{n}bS∪{n}zS

is D-stable. Lemma 2.5.2 then implies that for any fixed z1, . . . , zn−1 ∈ D the uni-
variate polynomial

q (zn) =
∑

S⊂{1,...,n−1}
aSbSzS + zn

∑

S⊂{1,...,n−1}
aS∪{n}bS∪{n}zS
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is D-stable. Therefore, for any z1, . . . , zn ∈ D, we have that

h (z1, . . . , zn) =
∑

S⊂{1,...,n−1}
aSbSzS + zn

∑

S⊂{1,...,n−1}
aS∪{n}bS∪{n}zS �= 0,

as required. �
Ruelle [Ru71] generalized Lemma 2.5.2 as follows: let A, B ⊂ C be closed sets

such that 0 /∈ A and 0 /∈ B and let p (z1, z2) = a + bz1 + cz2 + dz1z2 be a bivariate
polynomial such that

p (z1, z2) = 0 =⇒ z1 ∈ A or z2 ∈ B.

Then for the univariate polynomial q(z) = a + dz we have

q(z) = 0 =⇒ z = −z1z2 for some z1 ∈ A and z2 ∈ B.

The corresponding generalizations of Theorem 2.5.1 can be found in [Ru71] and
[Hi97].

Our next goal is to prove the following theorem of Szegő for univariate D-stable
polynomials.

2.5.4 Theorem. Let

f (z) =
n∑

k=0

ak

(
n

k

)
zk and g(z) =

n∑

k=0

bk

(
n

k

)
zk

be D-stable polynomials. Then the polynomial h = f ∗ g defined by

h(z) =
n∑

k=0

ck

(
n

k

)
zk where ck = akbk for k = 0, 1, . . . , n

is also D-stable.

The polynomial h = f ∗ g is called the Schur product of f and g.
For k = 0, . . . , n, let

ek (z1, . . . , zn) =
∑

1≤i1<...<ik≤n

zi1 · · · zik

be the k-th elementary symmetric polynomial in z1, . . . , zn , where we agree that
e0 (z1, . . . , zn) = 1.WededuceTheorem2.5.4 fromTheorem2.5.1 and the following
result of Szegő connecting multivariate and univariate D-stable polynomials.

2.5.5 Theorem. Let

f (z) =
n∑

k=0

ak

(
n

k

)
zk
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be a univariate D-stable polynomial. Then the n-variate polynomial

F (z1, . . . , zn) =
n∑

k=0

akek (z1, . . . , zn)

is also D-stable.

We follow Chapter IV of [Ma66] with some modifications. We start with a lemma
known as Laguerre’s Theorem.

2.5.6 Lemma. Let p(z) be a polynomial and let n be a positive integer. For β ∈ C,
we define the polynomial

q(z) = np(z) + (β − z)p′(z).

(1) If deg p ≤ n then deg q ≤ n − 1;
(2) Suppose that deg p ≤ n, that p is D-stable and that |β| ≤ 1. Then q is also

D-stable.

Proof. If deg p ≤ n − 1 then deg q ≤ deg p ≤ n − 1. If deg p = n with the highest
term anzn then deg p ≤ n − 1 since the coefficient of zn in q(z) is nan − nan = 0,
which completes the proof of Part (1).

By continuity, it suffices to prove Part (2) assuming that deg p = n. Furthermore,
without loss of generality, we assume that p is monic. Let α1, . . . ,αn be the (not
necessarily distinct) roots of p, each listed with its multiplicity, so that

p(z) = (z − α1) · · · (z − αn) and |α j | > 1 for j = 1, . . . , n.

Suppose that ζ is a root of q(z). Without loss of generality, we assume that ζ �= α j

for i = 1, . . . , n. Then
np(ζ) + (β − ζ)p′(ζ) = 0

and since p(ζ) �= 0, we have ζ �= β and

1

ζ − β
= 1

n

p′(ζ)

p(ζ)
= 1

n

n∑

i=1

1

ζ − αi
. (2.5.6.1)

Suppose that |ζ| ≤ 1. The transformation

z �−→ 1

ζ − z
for z ∈ C \ D

is a bijection between C \ D and a set S ⊂ C that is either an open disc (if |ζ| < 1)
or an open halfplane (if |ζ| = 1). In either case, S is convex. Moreover,
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1

ζ − αi
∈ S for i = 1, . . . , n.

Since S is convex, by (2.5.6.1), we have

1

ζ − β
∈ S

which implies that β ∈ C \ D, a contradiction. �

The following lemma gives a closed form description of the polynomials obtained
by a repeated application of the transformation of Lemma 2.5.6.

2.5.7 Lemma. Let

f0(z) = f (z) =
n∑

k=0

ak

(
n

k

)
zk

be a polynomial and let β1, . . . ,βn be a sequence of complex numbers. We define
polynomials f1, . . . , fn by

f j (z) = (n − j + 1) f j−1(z) + (
β j − z

)
f ′
j−1(z) for j = 1, . . . , n.

Then

fn = n!
n∑

k=0

akek (β1, . . . ,βn) .

Proof. By the repeated application of Part (1) of Lemma 2.5.6, we have deg f j ≤
n − j for j = 0, . . . , n, so that fn is a constant. We prove by induction on j that

f j (z) =
j∑

k=0

(n − k)!
(n − j)!ek

(
β1 − z, . . . ,β j − z

) dk

dzk
f (z). (2.5.7.1)

Clearly, (2.5.7.1) holds for j = 0. Assuming that (2.5.7.1) holds for j , we obtain

f j+1(z) =(n − j) f j (z) + (
β j+1 − z

)
f ′
j (z)

=(n − j)
j∑

k=0

(n − k)!
(n − j)!ek

(
β1 − z, . . . ,β j − z

) dk

dzk
f (z)

+ (
β j+1 − z

) d

dz

j∑

k=0

(n − k)!
(n − j)!ek

(
β1 − z, . . . ,β j − z

) dk

dzk
f (z).
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Using that for k > 0 we have

d

dz
ek

(
β1 − z, . . . ,β j − z

) = −
j∑

i=1

ek−1

(
. . . , β̂i − z, . . .

)

= − ( j − k + 1)ek−1
(
β1 − z, . . . ,β j − z

)

we obtain that the coefficient of
dk

dzk
f (z)

in f j+1(z) is

(n − k)!
(n − j − 1)!ek

(
β1 − z, . . . ,β j − z

)

− (n − k)!
(n − j)! ( j − k + 1)

(
β j+1 − z

)
ek−1

(
β1 − z, . . . ,β j − z

)

+ (n − k + 1)!
(n − j)!

(
β j+1 − z

)
ek−1

(
β1 − z, . . . ,β j − z

)

= (n − k)!
(n − j − 1)!ek

(
β1 − z, . . . ,β j − z

)

+ (n − k)!
(n − j − 1)!

(
β j+1 − z

)
ek−1

(
β1 − z, . . . ,β j − z

)

= (n − k)!
(n − j − 1)!ek

(
β1 − z, . . . ,β j+1 − z

)

and the proof of (2.5.7.1) follows.
Since deg fn = 0 so that fn(z) does not depend on z, from (2.5.7.1) we obtain

fn = fn(0) =
n∑

k=0

(n − k)!ek (β1, . . . ,βn) ak

(
n

k

)
k!

=n!
n∑

k=0

akek (β1, . . . ,βn)

as required. �

2.5.8 Proof of Theorem 2.5.5. Let us choose arbitrary β1, . . . ,βn ∈ D and let us
construct the polynomials f j for j = 1, . . . , n as in Lemma 2.5.7. By the repeated
applicationofLemma2.5.6,we conclude that fn isD-stable, that is, fn �= 0.However,
by Lemma 2.5.7 we have

fn = n!F (β1, . . . ,βn)

and hence F (β1, . . . ,βn) �= 0, which completes the proof. �
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2.5.9 Proof of Theorem 2.5.4. From Theorem 2.5.5 we conclude that the polyno-
mials

F (z1, . . . , zn) =
n∑

k=0

akek (z1, . . . , zn) and

G (z1, . . . , zn) =
n∑

k=0

bkek (z1, . . . , zn)

are D-stable. Since the polynomials F and G are multi-affine, by Theorem 2.5.1 the
polynomial

H (z1, . . . , zn) =
n∑

k=0

ckek (z1, . . . , zn)

is also D-stable. Then for any z ∈ D we have

h(z) = H (z, . . . , z) �= 0

and hence h is D-stable. �

We will use the following simple corollary of Theorem 2.5.4.

2.5.10 Corollary. Let

f (z) =
n∑

k=0

akz
k and g(z) =

n∑

k=0

bkz
k

be two polynomials such that f (z) �= 0 whenever |z| ≤ λ and g(z) �= 0 whenever
|z| ≤ μ for some λ,μ > 0. Let h = f ∗ g,

h(z) =
n∑

k=0

ckz
k where ck = akbk(n

k

) for k = 0, . . . , n.

Then h(z) �= 0 whenever |z| ≤ λμ.

Proof. The polynomials f̂ (z) = f (λz) and ĝ = g(μz) are D-stable. Therefore,
by Theorem 2.5.4, the polynomial ĥ(z) = h(λμz) is D-stable. The proof now
follows. �

For extensions and generalizations of Theorems 2.5.1 and 2.5.4, see [BB09].



Chapter 3
Permanents

Introduced in 1812 by Binet and Cauchy, permanents are of interest to combina-
torics, as they enumerate perfect matchings in bipartite graphs, to physics as they
compute certain integrals and to computer science as they occupy a special place in
the computational complexity hierarchy. This is our first example of a partition func-
tion and we demonstrate in detail how various approaches work. Connections with
H-stable polynomials lead, in particular, to an elegant proof of the van der Waerden
lower bound for the permanent of a doubly stochastic matrix. Combining it with the
Bregman -Minc upper bound,we show that permanents of doubly stochasticmatrices
are strongly concentrated. Via matrix scaling, this leads to an efficient approximation
of the permanent of non-negative matrices by a function with many convenient prop-
erties: it is easily computable, log-concave and generally amenable to analysis. As
an application of the interpolation method, we show how to approximate permanents
of a reasonably wide class of complex matrices and also obtain approximations of
logarithms of permanents of positive matrices by low degree polynomials.

3.1 Permanents

3.1.1 Permanent. Let A = (
ai j

)
be an n×n real or complexmatrix. The permanent

of A is defined as

per A =
∑

σ∈Sn

n∏

i=1

aiσ(i), (3.1.1.1)

where Sn is the symmetric group of all n! permutations of the set {1, . . . , n}.
One can see that the permanent does not change when the rows or columns of

the matrix are permuted and that per A is linear in each row and each column of A.
Moreover, if n > 1, then denoting by A j the (n − 1)× (n − 1) matrix obtained from

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9_3
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A by crossing out the first row and the j-th column, we obtain the row expansion

per A =
n∑

j=1

a1 j per A j . (3.1.1.2)

3.1.2 Permanents and perfect matchings. If A is a real matrix and ai j ∈ {0, 1}
for all i, j then per A has a combinatorial interpretation as the number of perfect
matchings in a bipartite graph G with biadjacency matrix A. Namely, the vertices of
G are 1L , 2L . . . , nL and 1R, 2R, . . . , n R (“L” is for “left” and “R” is for “right”),
whereas the edges of G are all unordered pairs {i L , j R} for which ai j = 1. A perfect
matching in a graph G is a collection of edges which contain every vertex of G
exactly once, see Fig. 3.1.

In this case, per A is the number of perfect matchings in G, since every perfect
matching in G corresponds to a unique permutation σ such that aiσ(i) = 1 for all
i = 1, . . . , n. For example, Fig. 3.1 pictures a graph encoded by the matrix

A =

⎛

⎜⎜⎝

1 1 0 0
1 0 0 1
0 0 1 1
0 1 0 0

⎞

⎟⎟⎠ (3.1.2.1)

and a perfect matching corresponding to the permutation

σ =
(
1 2 3 4
1 4 3 2

)
(3.1.2.2)

Fig. 3.1 A bipartite graph
and a perfect matching (thick
edges)

R

1
2
3
4

1
2
3
4

L R
L R
L R
L

Fig. 3.2 A graph and a cycle
cover (thick edges) 2

4

1

3
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3.1.3 Permanents and cycle covers. A different interpretation of the permanent of
a 0–1 matrix A arises if we interpret A as the adjacency matrix of a directed graph
G. In this case, the vertices of G are 1, . . . , n whereas the edges of G are all ordered
pairs (i, j) such that ai j = 1 (in particular, we allow loops). A cycle cover of G is a
collection of edges which contain every vertex of G exactly once as the beginning
point of an edge and exactly once as an endpoint of an edge, see Fig. 3.2.

In this case, per A is the number of cycle covers of G, since every cycle cover of
G corresponds to a unique permutation σ such that aiσ(i) = 1 for all i = 1, . . . , n.
For example, Fig. 3.2 pictures a graph encoded by the matrix (3.1.2.1) and a cycle
cover corresponding to the permutation (3.1.2.2).

Interpretations of Sects. 3.1.2 and 3.1.3 explain why permanents are of interest to
combinatorics, see [LP09] for more.

3.1.4 Permanents as integrals. Let μn be the Gaussian probability measure on the
complex vector space Cn with density

1

πn
e−‖z‖2 where ‖z‖2 = |z1|2 + . . . + |zn|2 for z = (z1, . . . , zn) .

The measure μn is normalized in such a way that

E |zi |2 = 1 for i = 1, . . . , n and E zi z j = 0 for i �= j.

Let f1, . . . , fn; g1, . . . , gn : Cn −→ C be linear forms and let us define an n × n
matrix A = (

ai j
)
by

ai j = E fig j =
∫

Cn

fi (z)g j (z) dμn for all i, j.

Then
E ( f1 · · · fng1 · · · gn) = per A. (3.1.4.1)

Formula (3.1.4.1) is known as (a version of) Wick’s formula, see for example, [Zv97]
and [Gu04]. To prove it, we note that both sides of (3.1.4.1) are linear in each
fi and antilinear in each g j . Namely, denoting the left hand side of (3.1.4.1) by
L ( f1, . . . , fn; g1, . . . , gn) and the right hand side by R ( f1, . . . , fn; g1, . . . , gn), we
observe that

L
(

f1, . . . , fi−1,α1 f ′
i + α2 f ′′

i , fi+1, . . . , fn; g1, . . . , gn
)

= α1L
(

f1, . . . , fi−1, f ′
i , fi+1, . . . , fn; g1, . . . , gn

)

+ α2L
(

f1, . . . , fi−1, f ′′
i , fi+1, . . . , fn; g1, . . . , gn

)

and

R
(

f1, . . . , fi−1,α1 f ′
i + α2 f ′′

i , fi+1, . . . , fn; g1, . . . , gn
)
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= α1R
(

f1, . . . , fi−1, f ′
i , fi+1, . . . , fn; g1, . . . , gn

)

+ α2R
(

f1, . . . , fi−1, f ′′
i , fi+1, . . . , fn; g1, . . . , gn

)

as well as

L
(

f1, . . . , fn; g1, . . . , gi−1,α1g
′
i + α2g

′′
i , gi+1 . . . , gn

)

= α1L
(

f1, . . . , fn; g1, . . . , gi−1, g
′
i , gi+1, . . . , gn

)

+ α2L
(

f1, . . . , fn; g1, . . . , gi−1, g
′′
i , gi+1, . . . , gn

)

and

R
(

f1, . . . , fn; g1, . . . , gi−1,α1g
′
i + α2g

′′
i , gi+1, . . . , gn

)

= α1R
(

f1, . . . , fn; g1, . . . , gi−1, g
′
i , gi+1, . . . , gn

)

+ α2R
(

f1, . . . , fn; g1, . . . , gi−1, g
′′
i , gi+1, . . . , gn

)
.

Hence it suffices to check (3.1.4.1) when each fi and g j is a coordinate function.
Suppose therefore that

( f1, . . . , fn) =
⎛

⎜⎝z1, . . . , z1︸ ︷︷ ︸
m1 times

, . . . , zn, . . . , zn︸ ︷︷ ︸
mn times

⎞

⎟⎠ and

(g1, . . . , gn) =
⎛

⎜⎝z1, . . . , z1︸ ︷︷ ︸
k1 times

, . . . , zn, . . . , zn︸ ︷︷ ︸
kn times

⎞

⎟⎠ ,

where m1, . . . , mn and k1, . . . , kn are non-negative integers such that

m1 + . . . + mn = k1 + . . . + kn = n.

If we have mi �= ki for some i then the left hand side of (3.1.4.1) is 0 since

E zmi
i zki

i = 0 provided mi �= ki .

On the other hand, the right hand side of (3.1.4.1) is also 0. Indeed, without loss of
generality, we may assume that mi > ki . The matrix A contains an mi × (n − ki )

block of 0 s and if mi > ki each of the n! terms of (3.1.1.1) contains and least one
entry from that block and hence is 0. Thus it remains to prove (3.1.4.1) in the case
when mi = ki for all i = 1, . . . , n. Since

E zmi
i zmi

i = mi !,
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Fig. 3.3 The structure of
matrix A

1

1

1

0

0

we conclude that the left hand side of (3.1.4.1) is m1! · · · mn!. The matrix A in this
case consists of the diagonal blocks filled by 1s of sizes m1, . . . , mn , see Fig. 3.3,
and hence the right hand side of (3.1.4.1) is also m1! · · · mn!. �

One immediate corollary of (3.1.4.1) is that

per A ≥ 0 provided A is Hermitian positive semidefinite. (3.1.4.2)

Indeed, any such A = (
ai j

)
can be written as

ai j = E
(

fi f j
)

for all i, j

and some linear forms f1, . . . , fn , in which case by (3.1.4.1) we have

per A = E
(

f1 · · · fn f1 · · · fn
) = E

(| f1|2 · · · | fn|2
) ≥ 0.

The identity of Sect. 3.1.4 has some relevance to statistics of bosons in quantum
physics, see, for example, [AA13] and [Ka16].

3.1.5 Permanents in computational complexity. Permanents occupy a special
place in the theory of computational complexity. Valiant [Va79] proved that com-
puting permanents of 0–1 matrices exactly (that is, counting perfect matchings in
bipartite graphs exactly) is an example of a #P-complete problem, that is, counting
perfect matchings in bipartite graphs in polynomial time exactly would lead to a
polynomial time counting of the number of acceptable computations of a general
non-deterministic polynomial time Turing machine, see also [AB09] and [Go08].
This is especially striking since finding whether there exists a perfect matching in
a given bipartite graph is a famous problem solvable in polynomial time, see for
example, [LP09]. Exact computation of permanents of 0–1 matrices leads by inter-
polation to exact computation of permanents of matrices with 0 and ±1 entries and
those turn out to be sufficient to encode rather involved computations. In the alge-
braic complexity theory, permanents stand out as universal polynomials, see Part 5
of [B+97].

Permanents also stand out as an example of the problem where randomized algo-
rithms so far substantially outperform deterministic algorithms. The Monte Carlo
Markov Chain algorithm of Jerrum, Sinclair and Vigoda [J+04] approximates per-
manents of non-negative matrices in polynomial time and none of the deterministic
algorithms could achieve that so far, see also Sects. 3.7 and 3.9 below.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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3.2 Permanents of Non-negative Matrices
and H-Stable Polynomials

3.2.1 Permanents and products of linear forms. Let A = (
ai j

)
be an n ×n matrix

and let z1, . . . , zn be complex variables. The following simple formula has many
important consequences:

per A = ∂n

∂z1 · · · ∂zn

n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠ . (3.2.1.1)

In other words, per A is the coefficient of z1 · · · zn in the product (3.2.1.1) of linear
forms.

We note that if A = (
ai j

)
is a non-negative real matrix with non-zero rows, then

the polynomial

f (z1, . . . , zn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠

is H-stable, see Sect. 2.4, since

�
⎛

⎝
n∑

j=1

ai j z j

⎞

⎠ > 0 provided �z j > 0 for j = 1, . . . , n.

More generally, let a1, . . . , an be the columns of A, so that A = [a1, . . . , an].
Given a non-negative integer vector m = (m1, . . . , mn) such that m1+ . . .+mn = n,
let

Am =
⎡

⎢⎣a1, . . . , a1︸ ︷︷ ︸
m1 times

, . . . , ak, . . . , ak︸ ︷︷ ︸
mk times

, . . . , an, . . . , an︸ ︷︷ ︸
mn times

⎤

⎥⎦

be the n × n matrix with columns consisting of mk copies of ak for k = 1, . . . , n.
Then

∂n

∂zm1
1 · · · ∂zmn

n

n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠ = per Am (3.2.1.2)

(if mk = 0 for some k then the corresponding partial derivative is missing and so are
the copies of ak in Am). Indeed, the left hand side of (3.2.1.2) is the coefficient of
zm1
1 · · · zmn

n in the product of linear forms

fi (z1, . . . , zn) =
n∑

j=1

ai j z j ,

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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multiplied by m1! · · · mn!. Hence the left hand side of (3.2.1.2) can be written as

∫

Cn

f1 · · · fnzm1
1 · · · zmn

n dμn,

for the Gaussian measure μn of Sect. 3.1.4, and (3.2.1.2) follows by (3.1.4.1).

3.2.2 Alexandrov - Fenchel inequalities. One immediate application of (3.2.1.1)
and (3.2.1.2) is an inequality for permanents of non-negative matrices, which is a
particular case of the Alexandrov - Fenchel inequality for mixed volumes of convex
bodies, see, for example, [Sa93].

Let [a1, . . . , an] denote the n × n matrix with non-negative real columns
a1, . . . , an . Then

per2[a1, . . . , an] ≥ per[a1, a1, a3, . . . , an] per[a2, a2, a3, . . . , an]. (3.2.2.1)

By continuity, it suffices to prove (3.2.2.1) assuming that the coordinates ofa1, . . . , an

are strictly positive. Let ai j > 0 be the i-th coordinate of a j . Then, from Sect. 3.2.1,
the polynomial

f (z1, . . . , zn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j z j

⎞

⎠

is H-stable. Let

g(z1, z2) = ∂n−2

∂z3 · · · ∂zn
f = uz21 + 2vz1z2 + wz22.

Using (3.2.1.2) we observe that

u =1

2
per[a1, a1, a3, . . . , an], v = 1

2
per[a1, . . . , an] and

w =1

2
per[a2, a2, a3, . . . , an].

By the repeated application of Part (3) of Lemma 2.4.2, the quadratic polynomial q is
H-stable, which implies that v2 ≥ uw and we get (3.2.2.1). Indeed, if v2 < uw then
the univariate polynomial t 	−→ u +2vt +wt2 has a pair of complex conjugate roots
α±βi for someβ > 0.Then, for any ε > 0, the point z1 = 1+iε, z2 = (α+βi)(1+iε)
is a root of q(z1, z2) and if ε > 0 is sufficiently small, we have �z2 = αε + β > 0,
which contradicts the H-stability of q.

The connection of (3.2.2.1) to the Alexandrov - Fenchel inequality for mixed
volumes is as follows. Let K1, . . . , Kn ⊂ R

n be convex bodies and let λ1, . . . ,λn be
positive real numbers. We consider a combination λ1K1 + . . . + λn Kn , where

λK = {λx : x ∈ K }

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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is the dilation/contraction by a factor of λ and “+” stands for the Minkowski sum of
convex bodies:

A + B = {x + y : x ∈ A, y ∈ B}.

As is known, the volume vol (λ1K1 + . . . + λn Kn) is a homogeneous polynomial in
λ1, . . . ,λn and its coefficient

V (K1, . . . , Kn) = ∂n

∂λ1 · · · ∂λn
vol (λ1K1 + . . . + λn Kn)

is called the mixed volume of K1, . . . , Kn . The Alexandrov - Fenchel inequality
asserts that

V 2(K1, . . . , Kn) ≥ V (K1, K1, K3, . . . , Kn)V (K2, K2, K3, . . . , Kn). (3.2.2.2)

We obtain (3.2.2.1), if we choose K j to be the parallelepiped, that is the direct product
of axis-parallel intervals:

K j = [0, a1 j ] × . . . × [0, anj ].

In this case λ1K1 + . . . + λn Kn is the parallelepiped

⎡

⎣0,
n∑

j=1

a1 jλ j

⎤

⎦ × . . . ×
⎡

⎣0,
n∑

j=1

anjλ j

⎤

⎦ ,

cf. Fig. 3.4,
so that

Fig. 3.4 Parallelepipeds K1,
K2 and their Minkowski sum
K1 + K2

K1

K1+K2

K2
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vol (λ1K1 + . . . + λn Kn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai jλ j

⎞

⎠

and
V (K1, . . . , Kn) = per A where A = (

ai j
)
,

We note that for general convex bodies K1, . . . , Kn , the polynomial vol(λ1K1 +
. . . + λn Kn) does not have to be H-stable, cf. [Kh84].

3.3 The van der Waerden Inequality and Its Extensions

3.3.1 Doubly stochastic matrices. A real n × n matrix A = (
ai j

)
is called doubly

stochastic if

n∑

j=1

ai j = 1 for i = 1, . . . , n,

n∑

i=1

ai j = 1 for j = 1, . . . , n

and
ai j ≥ 0 for all i, j.

In words: a matrix is doubly stochastic if it is non-negative real with all row and
column sums equal 1.

Clearly, permutation matrices (matrices, containing in each row and column
exactly one non-zero entry equal to 1) are doubly stochastic, as well as the matrix

1

n
Jn,

where Jn is the n × n matrix of all 1s.
The main goal of this section is to prove the following result, known as the

van der Waerden conjecture.

3.3.2 Theorem. Let A be an n × n doubly stochastic matrix. Then

per A ≥ n!
nn

.

Moreover, the equality is attained if and only if A = 1

n
Jn.

Theorem 3.3.2 was first proved by Falikman [Fa81] and Egorychev [Eg81] (earlier
Friedland [Fr79] proved a slightly weaker bound per A ≥ e−n). Our exposition
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follows Gurvits’ paper [Gu08] with some simplifications introduced in [Wa11] and
[LS10]. We use the notion of capacity, see Sect. 2.1.5, Theorem 2.4.3 and Corollary
2.4.6.

3.3.3 Lemma. Let A = (
ai j

)
be an n × n doubly stochastic matrix and let

p(x1, . . . , xn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ .

Then

inf
x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn
= 1.

Proof. Clearly, p(1, . . . , 1) = 1 and hence the infimum does not exceed 1. On the
other hand, using the arithmetic-geometric mean inequality, see Sect. 2.1.1.1, we
conclude that for x1, . . . , xn > 0 we get

n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ≥
n∏

i=1

⎛

⎝
n∏

j=1

x
ai j

j

⎞

⎠ =
n∏

j=1

(
n∏

i=1

x
ai j

j

)
=

n∏

j=1

(
x
∑n

i=1 ai j

j

)
=

n∏

j=1

x j

and hence the infimum is at least 1. �
To prove the van der Waerden inequality, we use H-stability, see Sect. 3.2.

3.3.4 Proof of Theorem 3.3.2. As in Sect. 3.2.1, we define a polynomial p = pA

in n variables x1, . . . , xn:

p (x1, . . . , xn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ .

As we discussed in Sect. 3.2.1, the polynomial p isH-stable and hence by Corollary
2.4.6, we have

∂n p

∂x1 · · · ∂xn
≥ n!

nn
inf

x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn
. (3.3.4.1)

By (3.2.1.1), the left hand side of (3.3.4.1) is per A, while by Lemma 3.3.3, the
infimum in the right hand side of (3.3.4.1) is 1.

In the uniqueness proof, we follow [LS10]. Suppose now that A is a doubly
stochastic matrix such that per A = n!/nn . Then inequality (3.3.4.1) is, in fact,
equation. Analyzing the proof of Theorem 2.4.3 in Sect. 2.4.5, we conclude that for

q(x1, . . . , xn−1) = ∂

∂xn

⎛

⎝
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠

⎞

⎠
∣∣∣∣
xn=0

=
n∑

k=1

akn

∏

i :i �=k

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠ ,

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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we must have

inf
x1,...,xn−1>0

q (x1, . . . , xn−1)

x1 · · · xn−1
=

(
n − 1

n

)n−1

. (3.3.4.2)

Applying the arithmetic-geometric mean inequality, see Sect. 2.1.1.1, we conclude
that for all x1 > 0, . . . , xn−1 > 0, we get

q(x1, . . . , xn−1) ≥
n∏

k=1

∏

i :i �=k

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠
akn

=
n∏

i=1

∏

k:k �=i

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠
akn

=
n∏

i=1

⎛

⎝
n−1∑

j=1

ai j x j

⎞

⎠
1−ain

.

Using the arithmetic-geometric mean inequality again, we conclude that for all x1 >

0, . . . , xn−1 > 0, we have

q(x1, . . . , xn−1) ≥
n∏

i=1

⎛

⎝(1 − ain)

n−1∑

j=1

ai j

1 − ain
x j

⎞

⎠
1−ain

≥
n∏

i=1

⎛

⎝(1 − ain)
1−ain

n−1∏

j=1

x
ai j

j

⎞

⎠

=
(

n∏

i=1

(1 − ain)
1−ain

)⎛

⎝
n−1∏

j=1

x j

⎞

⎠ .

Therefore,

inf
x1,...,xn−1>0

q (x1, . . . xn−1)

x1 . . . xn−1
≥

n∏

i=1

(1 − ain)
1−ain .

By (3.3.4.2), we must have

n∏

i=1

(1 − ain)
1−ain ≤

(
n − 1

n

)n−1

. (3.3.4.3)

Now, since the function t 	−→ t ln t is strictly convex for t > 0, see Sect. 2.1.1.2, we
conclude that

1

n

n∑

i=1

ti ln ti ≥ t1 + . . . + tn
n

ln
t1 + . . . + tn

n

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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for all t1, . . . , tn with equality if and only if t1 = . . . = tn . Applying it with ti =
1 − ain , we get

1

n

n∑

i=1

(1 − ain) ln (1 − ain) ≥ n − 1

n
ln

n − 1

n

with equality if and only if ain = 1/n for i = 1, . . . , n. In other words,

n∏

i=1

(1 − ain)
1−ain ≥

(
n − 1

n

)n−1

with equality if and only if ain = 1/n for i = 1, . . . , n. Comparing thiswith (3.3.4.3),
we conclude that if per A = n!/n, we must have ain = 1/n for i = 1, . . . , n. Since
the matrix obtained from a doubly stochastic matrix by a permutation of columns
remains doubly stochastic with the same permanent, we conclude that ai j = 1/n for
all i and j as desired. �
3.3.5 Sharpening. Suppose that A is a doubly stochastic matrix and that, addi-
tionally, the j-th column of A contains not more than k j non-zero entries for some
1 ≤ k j ≤ n and j = 1, . . . , n. Using Theorem 2.4.3, we obtain

per A = ∂n

∂x1 · · · ∂xn
p ≥

n∏

j=1

(
k j − 1

k j

)k j −1

(3.3.5.1)

or, even sharply,

per A ≥
n∏

j=1

(
min{ j, k j } − 1

min{ j, k j }
)min{ j,k j }−1

, (3.3.5.2)

where the corresponding factor is 1 if min{ j, k j } = 1. Inequalities (3.3.5.1) and
(3.3.5.2) are also due to Gurvits [Gu08]. In the case when all k j = 3 for all j , the
inequality (3.3.5.2) was obtained by Voorhoeve [Vo79] and in the case when all k j

are equal, the inequality (3.3.5.1) was obtained by Schrijver [Sc98]. In the case of
all k j equal, we will give a different proof of (3.3.5.1) in the particular case when
the non-zero entries of A are 1/k in Theorem 5.3.6, where we also show, following
Csikvári [Cs14], that asymptotically, as n grows, the bound is logarithmically exact.

3.4 The Bregman–Minc Inequality and Its Corollaries

The following inequality was conjectured by Minc, cf. [Mi78], and proved by
Bregman [Br73]. We follow the approach of Radhakrishnan [Ra97], only using the
language of partitions instead that of random variables.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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3.4.1 Theorem. Let A = (
ai j

)
be an n × n matrix such that ai j ∈ {0, 1} for all i, j .

Let

ri =
n∑

j=1

ai j

be the number of 1s in the i th row of A. Then

per A ≤
n∏

i=1

(ri !)1/ri .

Let us define

� = {σ ∈ Sn : aiσ(i) = 1 for i = 1, . . . , n}.

Hence
per A = |�|.

Without loss of generality, we assume that � �= ∅, in which case we consider � as
a probability space with uniform measure.

We start with a probabilistic argument.

3.4.2 Lemma. Let us fix a permutation σ ∈ � and an index 1 ≤ i ≤ n. Let us
choose a permutation τ ∈ Sn uniformly at random, find k such that τ (k) = i and
cross out from A the columns indexed by σ(τ (1)), . . . ,σ(τ (k − 1)). Let x be the
number of 1s remaining in the i th row of A after the columns are crossed out. Then

Pr (x = a) = 1

ri
for a = 1, . . . , ri .

Proof. Let J be the set of indices of columns where the i th row of A contains 1 and
let I = σ−1(J ). Then i ∈ I and x is the number of indices in τ−1(I ) that are greater
than or equal to k = τ−1(i). Since τ ∈ Sn is chosen uniformly at random, τ−1(i) is
equally probable to be the largest, second largest, etc. element of τ−1(I ). �

3.4.3 Proof of Theorem 3.4.1
For a permutation τ ∈ Sn we construct a family of partitions

F τ ,0  Fτ ,1  . . .  Fτ ,n

of � as follows. We let Fτ ,0 = {�}. The partition Fτ ,1 consists of the events

Fi = {
σ ∈ � : σ(τ (1)) = i

}
for i = 1, . . . , n

(note that not more than rτ (1) of the events Fi are non-empty). Generally, the partition
Fτ ,k consists of the events
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Fi1,...,ik = {
σ ∈ � : σ(τ (1)) = i1, . . . ,σ(τ (k)) = ik

}

for distinct 1 ≤ i1, . . . , ik ≤ n

(again, some of the events can be empty). In particular, the non-empty events inFτ ,n

are singletons. From (2.1.2.4), using that H({�}) = 0 and H({Fτ ,n}) = ln |�|, we
obtain

ln |�| =
n∑

k=1

H(Fτ ,k |Fτ ,k−1).

Averaging over all τ ∈ Sn , we obtain

ln |�| = 1

n!
∑

τ∈Sn

n∑

k=1

H(Fτ ,k |Fτ ,k−1). (3.4.3.1)

For a permutation σ ∈ �, let Fτ ,k−1(σ) be the block of Fτ ,k−1 that contains σ. We
consider Fτ ,k−1(σ) as a probability space with conditional probability measure and
let Fτ ,k−1(σ) be the partition of that space by the events of Fτ ,k . Then

H(Fτ ,k |Fτ ,k−1) =
∑

σ∈�

Pr (σ)H
(Fτ ,k−1(σ)

)
,

cf. (2.1.2.3), and by (3.4.3.1) we have

ln |�| = 1

n!
∑

τ∈Sn

n∑

k=1

∑

σ∈�

Pr (σ)H
(Fτ ,k−1(σ)

)

=
∑

σ∈�

Pr (σ)
1

n!
∑

τ∈Sn

n∑

k=1

H
(Fτ ,k−1(σ)

)
.

(3.4.3.2)

We fix an arbitrary σ ∈ � and consider the sum

1

n!
∑

τ∈Sn

n∑

k=1

H
(Fτ ,k−1(σ)

)
. (3.4.3.3)

Recall that Fτ ,k−1(σ) is the partition of the probability space � consisting of all
permutations π ∈ � such that π(τ (1)) = σ(τ (1)), . . . ,π(τ (k − 1)) = σ(τ (k − 1))
into the events defined by the choice ofπ(τ (k)).We rearrange (3.4.3.3) in accordance
with the value of i = τ (k):

1

n!
∑

τ∈Sn

n∑

k=1

H
(Fτ ,k−1(σ)

) =
n∑

i=1

1

n!
∑

τ∈Sn

H
(Fτ ,τ−1(i)−1(σ)

)
(3.4.3.4)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and consider each term
1

n!
∑

τ∈Sn

H
(Fτ ,τ−1(i)−1(σ)

)
(3.4.3.5)

separately.
Now, the partitionFτ ,τ−1(i)−1(σ) looks as follows.We fixed σ ∈ � and 1 ≤ i ≤ n.

For the permutation τ , we find k such that τ (k) = i , consider the probability space of
all permutationsπ ∈ � such thatπ(τ (1)) = σ(τ (1)), . . . ,π(τ (k−1)) = σ(τ (k−1))
endowed with uniform probability measure and partition it according to the value of
π(i). By (2.1.2.2),

H
(Fτ ,τ−1(i)−1(σ)

) ≤ ln a provided Fτ ,τ−1(i)−1(σ) contains a events.

By Lemma 3.4.2, the value of (3.4.3.5) does not exceed

1

ri

ri∑

a=1

ln a = 1

ri
ln(ri !).

Then by (3.4.3.4), the value of (3.4.3.3) does not exceed

n∑

i=1

1

ri
ln(ri !).

By (3.4.3.2), we get

ln |�| ≤
n∑

i=1

1

ri
ln(ri !),

and the proof follows. �

3.4.4 Remark. Let Jr be the r × r matrix filled with 1s. If A is a block-diagonal
matrix with blocks Jr1 , . . . , Jrm , then

per A =
m∏

i=1

ri !,

from which it follows that the bound of Theorem 3.4.1 is sharp.

Theorem 3.4.1 allows us to bound permanents of stochastic matrices.

3.4.5 Corollary. Suppose that A = (
ai j

)
is an n × n stochastic matrix, that is,

ai j ≥ 0 for all i, j and

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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n∑

j=1

ai j = 1 for all i = 1, . . . , n. (3.4.5.1)

Suppose that

ai j ≤ 1

bi
for all i, j (3.4.5.2)

and some positive integers b1, . . . , bn. Then

per A ≤
n∏

i=1

(bi !)1/bi

bi
.

Proof. Let us fix all but the i-th row of an n × n matrix A and allow the i th row
vary. Then per A is a linear function in the i-th row ai = (ai1, . . . , ain). Let us
consider the polytope Pi of all n-vectors ai = (ai1, . . . , ain) such that all entries
ai j are non-negative and the conditions (3.4.5.1) and (3.4.5.2) are met. By linearity,
the maximum value of per A on Pi is attained at a vertex of Pi , in which case we
necessarily have ai j ∈ {0, 1/bi j } for j = 1, . . . , n. Indeed, if 0 < ai j1 < 1/bi for
some j1 then there is another j2 �= j1 such that 0 < ai j2 < 1/bi (recall that bi is an
integer). In that case, we can write ai = (

a1
i + a2

i

)
/2, where a1

i is obtained from ai

by the perturbation ai j1 := ai j1 + ε, ai j2 := ai j2 − ε and a2
i is obtained from ai by the

perturbation ai j1 := ai j1 − ε, ai j2 := ai j2 + ε for a sufficiently small ε > 0, which
implies that ai is not a vertex of Pi .

Hence we conclude that the maximum of per A on the set of n × n non-negative
matrices A = (

ai j
)
satisfying (3.4.5.1) and (3.4.5.2) is attained when ai j ∈ {0, 1/bi j }

for all i, j . Let B be the matrix obtained from such a matrix A by multiplying the
i-th row by bi . Then

per B =
(

n∏

i=1

1

bi

)
per A and per B ≤

n∏

i=1

(bi !)1/bi

by Theorem 3.4.1. �

The author learned Corollary 3.4.5 and its proof from A. Samorodnitsky [Sa01],
see also [So03] for a somewhat more general statement with bi not required to be
integer.

3.4.6 Concentration of the permanent of doubly stochastic matrices. The
van der Waerden bound (Theorem 3.3.2) together with the Bregman - Minc bound
(Corollary 3.4.5) implies that per A does not vary much if A is a doubly stochastic
matrixwith small entries. Indeed, suppose that A is an n×n doubly stochasticmatrix.
Then, by Theorem 3.3.2,

per A ≥ n!
nn

≥ e−n .

Let us fix an α ≥ 1 and suppose that, additionally,
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ai j ≤ α

n
for all i, j.

Let
b =

⌊ n

α

⌋
,

so that

ai j ≤ 1

b
for all i, j

and by Corollary 3.4.5,

per A ≤
(

(b!)1/b

b

)n

= e−nnO(α).

Hence if the entries of an n × n doubly stochastic matrix are within a constant factor
of each other, the permanent of the matrix varies within a polynomial in n factor.

In fact,

n∏

i, j=1

(
1 − ai j

)1−ai j ≤ per A ≤ 2n
n∏

i, j=1

(
1 − ai j

)1−ai j (3.4.6.1)

for any n × n doubly stochastic matrix A (if ai j = 1 the corresponding factor is 1),
where the lower bound is due to Schrijver [Sc98] and the upper bound was recently
established by Gurvits and Samorodnitsky [GS14], who also conjectured that the
upper bound holds with 2n replaced by 2n/2.

The following useful inequality was conjectured by Vontobel [Vo13] and deduced
by Gurvits [Gu11] from the lower bound in (3.4.6.1)

Let A = (
ai j

)
be an n × n positive real matrix and let B = (

bi j
)
be an n × n

doubly stochastic matrix.Then

ln per A ≥
n∑

i, j=1

bi j ln
ai j

bi j
+

n∑

i, j=1

(
1 − bi j

)
ln

(
1 − bi j

)
.

We prove the inequality in Theorem 5.4.2 following the approach of Lelarge [Le15].
Note that if A is doubly stochastic, by choosing B = A we recover the lower bound
in (3.4.6.1).

http://dx.doi.org/10.1007/978-3-319-51829-9_5
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3.5 Matrix Scaling

Results of Sects. 3.3 and 3.4 provide us with some rather useful estimates of perma-
nents of doubly stochastic matrices. It turns out that computing the permanent of any
positive real matrix can be easily reduced to computing the permanent of a doubly
stochastic matrix.

3.5.1 Matrix scaling. Let A = (
ai j

)
be an n × n matrix. We say that A is obtained

by scaling from an n × n matrix B = (
bi j

)
if

ai j = λiμ j bi j for all i, j

and some numbers λ1, . . . ,λn , μ1, . . . ,μn .
We note that in this case

per A =
(

n∏

i=1

λi

)⎛

⎝
n∏

j=1

μ j

⎞

⎠ per B. (3.5.1.1)

3.5.2 Theorem. For any n × n matrix A = (
ai j

)
such that

ai j > 0 for all i, j,

there exists a unique n×n doubly stochastic matrix B = (
bi j

)
and positive λ1, . . . ,λn

and μ1, . . . ,μn such that

ai j = λiμ j bi j for all i, j. (3.5.2.1)

The numbers λi and μ j are unique up to a rescaling

λi 	−→ λiτ , μ j 	−→ μ jτ
−1

for some τ > 0.

Proof. Without loss of generality, wemay assume that n ≥ 2. Let�n be the polytope
of all n × n doubly stochastic matrices X = (

xi j
)
and let us consider a function

f : �n −→ R defined by

f (X) =
n∑

i, j=1

xi j ln
xi j

ai j
.

Then f is a strictly convex function, cf. Sect. 2.1.1.2, and hence it attains its unique
minimum, say B = (

bi j
)
, on �n .

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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First, we establish that bi j > 0 for all i, j . Indeed,

∂

∂xi j
f (X) = ln

xi j

ai j
+ 1. (3.5.2.2)

If xi j = 0 we consider the right derivative and conclude that it is equal to−∞, while
for any xi j > 0 the derivative is finite. Let 1

n Jn ∈ �n be the matrix with all entries
equal to 1/n and let B(t) = (1− t)B + t 1

n Jn , so that B(0) = B and B(1) = 1
n Jn . If

bi j = 0 for some i, j then for all sufficiently small t > 0 we have

f (Bt ) < f (B),

which contradicts the definition of B as the minimum point of f .
Thus B is a positive matrix and therefore lies in the relative interior of �n . It

follows from (3.5.2.2) by the Lagrange multiplier conditions that there are numbers
α1, . . . ,αn and β1, . . . ,βn such that

ln
bi j

ai j
= αi + β j for all i, j.

Letting
λi = e−αi and μ j = e−β j ,

we obtain (3.5.2.1).
On the other hand, if a doubly stochastic matrix B = (

bi j
)
satisfies (3.5.2.1)

then necessarily bi j > 0 for all i, j and B is a critical point of f on �n . Since f is
strictly convex, B must be the unique minimum point of f on �n , which proves the
uniqueness of B.

From (3.5.2.1) and the uniqueness of B, we obtain the uniqueness of λi and μ j

up to a rescaling. �

Scaling can be obtained by solving a different optimization problem.

3.5.3 Lemma. Let A = (
ai j

)
be an n × n positive matrix. Let us define a function

gA : Rn ⊕ R
n −→ R by

gA(x, y) =
n∑

i, j=1

ai j e
xi +y j where x = (x1, . . . , xn) and y = (y1, . . . , yn)

and let L ⊂ R
n ⊕ R

n be the subspace defined by the equations

n∑

i=1

xi =
n∑

j=1

y j = 0.
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Then g attains its minimum on L at some point (x∗, y∗) where x∗ = (ξ1, . . . , ξn) and
y∗ = (η1, . . . , ηn). Let

λi = e−ξi

√
gA (x∗, y∗)

n
and μ j = e−η j

√
gA (x∗, y∗)

n

for all i, j and let us define an n × n matrix B = (
bi j

)
by

bi j = λ−1
i μ−1

j ai j for all i, j.

Then B is a doubly stochastic matrix.

Proof. First, we claim that the minimum of gA onL is indeed attained at some point.
Let

δ = min
i j

ai j > 0.

Since for all (x, y) ∈ L, we have xi ≥ 0 and y j ≥ 0 for some i and j , we have

gA(x, y) > gA(0, 0) if xi > ln
gA(0, 0)

δ
or y j > ln

gA(0, 0)

δ

for some i, j . On the other hand, if for some (x, y) ∈ L we have xi < −t for some
t > 0 then x j > t/n for some j and, similarly, if yi < −t for some t > 0 then
y j > t/n for some j . Therefore, the minimum of gA on L is attained on the compact
subset

|xi | ,
∣∣y j

∣∣ ≤ n ln
gA(0, 0)

δ
for all i, j.

At the minimum point, the gradient of gA(x, y) is orthogonal to L, so for some α
and β we have

n∑

j=1

ai j e
ξi +η j = α for i = 1, . . . , n

and
n∑

i=1

ai j e
ξi +η j = β for j = 1, . . . , n.

(3.5.3.1)

Summing the first set of equations over i = 1, . . . , n and the second set of equations
over j = 1, . . . , n, we conclude that

n∑

i, j=1

ai j e
ξi +η j = nα = nβ,
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so

α = β = 1

n
gA

(
x∗, y∗)

and the proof follows from (3.5.3.1). �

3.5.4 Remark. Theorem 3.5.2 was proved by Sinkhorn [Si64], who used a different
approach. He showed that, given a positive matrix A, the repeated row and column
scaling (first, scale all rows to row sum 1, then scale all columns to column sum 1,
then again rows, then again columns, etc.) converges to the desired doubly stochastic
matrix B. An approach to scaling via a solution of an appropriate optimization
problem (similar to our Lemma 3.5.3) was used in [MO68] and several other papers
since then.

Clearly, not every non-negative matrix can be scaled to doubly stochastic (for
example, the matrix of all zeros cannot). Some non-negative matrices can be scaled
arbitrarily close to doubly stochastic, but cannot be scaled exactly, for example the
matrix

A =
(
1 0
1 1

)
.

Indeed, multiplying the first column by ε > 0 and the first row by ε−1, we obtain the
matrix

B =
(
1 0
ε 1

)

with row and column sums arbitrarily close to 1, but never exactly 1. It is shown
in [L+00] that a non-negative matrix A can be scaled arbitrarily close to a doubly
stochastic matrix if and only if per A > 0 and that it can be scaled exactly to a doubly
stochastic matrix, if, in addition, whenever for a set I ⊂ {1, . . . , n} of rows and for
a set J ⊂ {1, . . . , n} of columns such that |I | + |J | = n we have ai j = 0 for i ∈ I
and j ∈ J , we must also have ai j = 0 for all i /∈ I and j /∈ J . The conditions for
approximate and exact scaling can be efficiently (in polynomial time) verified. Also
[L+00] contains the fastest known algorithm for matrix scaling.

As is observed in [L+00], formula (3.5.1.1) together with the inequality

n!
nn

≤ per B ≤ 1

for the permanent of a doubly stochastic matrix B allows one to estimate the perma-
nent of any n × n non-negative matrix A within a multiplicative factor of roughly en

and the inequality (3.4.6.1) improves the factor further to 2n (and, conjecturally, to
2n/2). Computationally, matrix scaling is very efficient and in view of Sect. 3.4.6 it is
natural to ask for which matrices A their doubly stochastic scaling B will not have
large entries, so that a better upper bound on per B can be used.
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3.5.5 Definition. Let A = (
ai j

)
be an n × n positive matrix. For α ≥ 1 we say that

A is α-conditioned if

ai j1 ≤ αai j2 for any 1 ≤ i, j1, j2 ≤ n

and
ai1 j ≤ αai2 j for any 1 ≤ i1, i2, j ≤ n.

In words: an n × n positive matrix is α-conditioned if the ratio of any two entries of
A in the same row and the ratio of any two entries of A in the same column do not
exceed α.

3.5.6 Lemma. Let A be an n × n matrix which is α-conditioned for some α ≥ 1.
Let B = (

bi j
)

be the doubly stochastic matrix obtained from A by scaling. Then B
is α2-conditioned. In particular,

bi j ≤ α2

n
for all i, j.

Proof. Let A = (
ai j

)
and let λ1, . . . ,λn and μ1, . . . ,μn be positive real such that

bi j = λiμ j ai j for all i, j.

Then
bi j1

bi j2

= μ j1

μ j2

ai j1

ai j2

≤ μ j1

μ j2

α for all 1 ≤ j1, j2 ≤ n. (3.5.6.1)

Since
n∑

i=1

bi j1 =
n∑

i=1

bi j2 = 1,

we conclude that
μ j1

μ j2

≥ 1

α
for all j1, j2.

On the other hand, since

ai j1

ai j2

≥ 1

α
for all j1, j2,

from (3.5.6.1) we conclude that

bi j1

bi j2

≥ 1

α2
for all j1, j2. (3.5.6.2)
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Similarly, we prove that
bi1 j

bi1 j
≥ 1

α2
for all i1, i2

and hence B is α2-conditioned.
Since

n∑

j=1

bi j = 1 for all i = 1, . . . , n,

we have

bi j ≥ 1

n
for every i and some j

and the proof follows by (3.5.6.2). �
Lemma 3.5.6 together the observation of Sect. 3.4.6 and formula (3.5.1.1) allows

us, given an n × n positive matrix A whose entries are within a constant factor of
each other, to compute per A by scaling within a polynomial in n factor.

Although the scaling factors λ1, . . . ,λn and μ1, . . . ,μn are not uniquely defined
by thematrix, Theorem3.5.2 implies that their productλ1 · · ·λnμ1 · · · μn is a function
of the matrix. It has some interesting convex properties.

3.5.7 Lemma. For an n × n positive matrix A = (
ai j

)
, let us define a number f (A)

as follows: Let B = (
bi j

)
be a doubly stochastic matrix and let λ1, . . . ,λn and

μ1, . . . ,μn be positive numbers such that

ai j = λiμ j bi j for all i, j.

Let

f (A) =
(

n∏

i=1

λi

)⎛

⎝
n∏

j=1

μ j

⎞

⎠ .

Then f is well-defined and satisfies the following properties:

(1) Function f is homogeneous of degree n:

f (αA) = αn f (A) for all α > 0

and all positive n × n matrices A;
(2) Function f is monotone:

f (C) ≤ f (A)

for any positive n × n matrices A = (
ai j

)
and C = (

ci j
)

such that

ci j ≤ ai j for all i, j;
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(3) Function f 1/n is concave:

f 1/n (α1A1 + α2 A2) ≥ α1 f 1/n(A1) + α2 f 1/n(A2)

for any positive n × n matrices A1 and A2 and any α1,α2 ≥ 0 such that
α1 + α2 = 1.

Proof. Theorem 3.5.2 implies that f is well-defined and Part (1) is straightforward.
As in Lemma 3.5.3, let us define

gA(x, y) =
n∑

i, j=1

ai j e
xi +y j

and let L ⊂ R
n ⊕ R

n be the subspace defined by the equations x1 + . . . + xn = 0
and y1 + . . . + yn = 0. Then, by Lemma 3.5.3,

f (A) = 1

nn
min

(x,y)∈L
gn

A(x, y).

Since gC(x, y) ≤ gA(x, y) for all (x, y) ∈ L provided ci j ≤ ai j for all i, j , the proof
of Part (2) follows.

We have

f 1/n(A) = 1

n
min

(x,y)∈L
gA(x, y)

and hence for A = α1A1 + α2 A2 we have

f 1/n(A) = 1

n
min

(x,y)∈L
gA(x, y) = 1

n
min

(x,y)∈L
α1gA1(x, y) + α2g2A2(x, y)

≥α1

n
min

(x,y)∈L
gA1(x, y) + α2

n
min

(x,y)∈L
gA2 (x, y) = α1 f 1/n(A1) + α2 f 1/n(A2),

which completes the proof of Part (3). �
It is not hard to see that the function f of Lemma 3.5.7 is the capacity

inf
x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn

of the polynomial

p(x1, . . . , xn) =
n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ,

cf. Sect. 2.1.5 and Lemma 3.3.3.
We state the scaling theorem in the most general form (we will use it later in

Chap.8).

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_8
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3.5.8 Theorem. Let r = (r1, . . . , rm) and c = (c1, . . . , cn) be positive integer
vectors such that

m∑

i=1

ri =
n∑

j=1

c j = N .

Then for any positive m × n matrix A = (
ai j

)
there exists an m × n positive matrix

B = (
bi j

)
with row sums r1, . . . , rm and column sums c1, . . . , cn and positive real

λ1, . . . ,λm and μ1, . . . ,μn such that

ai j = λiμ j bi j for all i, j.

Moreover, given r , c and A, the matrix B is unique and can be found as the minimum
point of the function

f =
∑

1≤i≤m
1≤ j≤n

xi j ln
xi j

ai j

on the polytope �r,c of non-negative m × n matrices with row sums r and column
sums c. The numbers λi and μ j are unique up to a rescaling

λi 	−→ λiτ , μ j 	−→ μ jτ
−1

for some τ > 0 and can be found as follows:
Let us define gA : Rm ⊕ R

n −→ R by

gA(x, y) =
∑

1≤i≤m
1≤ j≤n

ai j e
xi +y j for x = (x1, . . . , xm) and y = (y1, . . . , yn)

and let Lr,c ⊂ R
m ⊕ R

n be the subspace defined by the equations

m∑

i=1

ri xi = 0 and
n∑

j=1

c j y j = 0.

Then the minimum of gA on Lr,c is attained at some point x∗ = (ξ1, . . . , ξm) and
y∗ = (η1, . . . , ηn) and we may let

λi = e−ξi

√
gA(x∗, y∗)

N
and μ j = e−η j

√
gA(x∗, y∗)

N

for all i, j . �

The proof is very similar to those of Theorem3.5.2 andLemma 3.5.3 and therefore
omitted.
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3.6 Permanents of Complex Matrices

In this section, we take a look at the permanents of matrices with complex entries.
Such permanents are of interest in physics, see, for example, [AA13] and [Ka16].
First, we prove that the permanents of matrices sufficiently close to the n × n matrix
Jn of all 1s is not 0.

3.6.1 Theorem. There exists an absolute constant δ0 > 0 (one can choose δ0 = 0.5)
such that for any n × n matrix A = (

ai j
)

with complex entries satisfying

∣∣1 − ai j

∣∣ ≤ δ0 for all i, j

we have
per A �= 0.

Geometrically, the �∞ distance from the matrix Jn to the hypersurface per Z = 0
in the spaceCn×n of n×n complex matrices is bounded below by a positive constant,
independent on n. Later, in Theorem 5.5.3, we prove that per A �= 0 if the �1 distance
of every row and column of an n × n complex matrix A to the vector of all 1 s does
not exceed γn for some absolute constant γ > 0 (one can choose γ = 0.0696).

In view of Theorem 3.6.1, we can choose a branch of ln per A for all matrices
A = (

ai j
)
satisfying

∣∣1 − ai j

∣∣ ≤ δ0 such that ln per Jn is a real number, where Jn is
the n × n matrix of all 1s.

3.6.2 Theorem. Let us fix some 0 < δ < δ0, where δ0 is the constant in Theorem
3.6.1. Then there exists γ = γ(δ) > 0 and for any ε > 0 and positive integer n there
exists a polynomial p = pn,δ,ε in the entries of an n × n complex matrix A = (

ai j
)

satisfying
deg p ≤ γ(ln n − ln ε)

and
|ln per A − p(A)| ≤ ε

provided ∣∣1 − ai j

∣∣ ≤ δ for all i, j.

As we will see, the polynomial p(A) can be efficiently computed. The gist of
Theorem 3.6.2 is that ln per A can be efficiently approximated by a low-degree poly-
nomial in the vicinity of the matrix Jn of all 1s, and, in particular, per A can be
approximated there within a relative error of ε in quasi-polynomial nO(ln n−ln ε) time.

Theorems 3.6.1 and 3.6.2 were first proved in [B16b] with a worse constant
δ0 = 0.195. Following [B16+], we give a much simplified proof achieving a better
constant.

First we prove Theorem 3.6.1 and then deduce Theorem 3.6.2 from it. We identify
C = R

2 and measure angles between complex numbers as vectors in the plane.

http://dx.doi.org/10.1007/978-3-319-51829-9_5
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3.6.3 Lemma. Let u1, . . . , un ∈ R
2 be non-zero vectors and suppose that the angle

between any two vectors ui and u j does not exceed α for some 0 ≤ α < 2π/3. Let
u = u1 + . . . + un. Then

|u| ≥
(
cos

α

2

) n∑

i=1

|ui |.

Proof. First, we note that 0 cannot lie in the convex hull of the vectors u1, . . . , un ,
since otherwise by the Carathéodory Theorem it would have lied in the convex hull
of some three vectors ui , u j , uk and then the angle between some two of these three
vectors would have been at least 2π/3, see Fig. 3.5.

Hence the vectors u1, . . . , un lie in an angle measuring at most α. Let us consider
the orthogonal projections of u1, . . . , un onto the bisector of the angle, see Fig. 3.6.

Then the length of the projection of ui is at least |ui | cos(α/2) and the length of
the projection of u is at least (|u1| + . . . + |un|) cos(α/2). Since the length of u is at
least as large as the length of its orthogonal projection, the result follows. �

In [B16b] a weaker bound with
√
cosα instead of cos(α/2) is used (assuming

that α < π/2). The current enhancement is due to Bukh [Bu15].

3.6.4 Lemma. Let u1, . . . , un ∈ C be non-zero complex numbers, such that the
angle between any two vectors ui and u j does not exceed α for some 0 ≤ α < 2π/3
and let 0 ≤ δ < cos(α/2) be a real number. Let a1, . . . , an and b1, . . . , bn be complex
numbers such that

Fig. 3.5 If the origin lies in
the convex hull of the vectors
then the angle between some
two vectors is at least 2π/3

u

u

i

j
k

0

u

Fig. 3.6 Projecting vectors
onto the bisector of the angle

ui

0
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∣∣1 − a j

∣∣ ≤ δ and
∣∣1 − b j

∣∣ ≤ δ for j = 1, . . . , n.

Let

v =
n∑

j=1

a j u j and w =
n∑

j=1

b j u j .

Then v �= 0, w �= 0 and the angle between v and w does not exceed

2 arcsin
δ

cos(α/2)
.

Proof. Let u = u1 + . . . + un . Then, by Lemma 3.6.3, u �= 0 and

|u| ≥ cos
(α

2

) n∑

j=1

|u j |.

By the triangle inequality, we have

|v − u| ≤
n∑

j=1

∣∣1 − a j

∣∣ |u j | ≤ δ

n∑

j=1

|u j |.

Therefore, the angle between v = (v − u) + u and u does not exceed

θ = arcsin
|v − u|

|u| ≤ arcsin
δ

cos(α/2)
,

see Fig. 3.7.
Similarly, the angle between w and u does not exceed θ and hence the angle

between v and w does not exceed 2θ. �

3.6.5 Proof of Theorem 3.6.1. Let us choose

δ0 = 0.5 and α = π

2
.

Fig. 3.7 The angle between
a and a + b does not exceed
arcsin |b|

|a| provided |b| < |a|

a

b
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We denote by Un the closed polydisc Un ⊂ C
n×n consisting of the n × n complex

matrices A = (
ai j

)
such that

|1 − ai j | ≤ δ0 for all i, j.

We prove by induction on n the following statement.
For every matrix Z ∈ Un we have per Z �= 0 and, moreover, if A, B ∈ Un are two

matrices that differ in one row (one column) only, then the angle between non-zero
complex numbers per A and per B does not exceed α.

If n = 1 then any a ∈ U1 is necessarily non-zero, since δ0 < 1. Moreover, the
angle between any two a, b ∈ U1 does not exceed 2 arcsin δ0 = π/3 < α, cf. Fig. 3.7.

Suppose that n ≥ 2 and assume that the above statement holds for matrices
from Un−1. Let A, B ∈ Un be two matrices that differ in one row or in one column
only. Without loss of generality, we assume that the matrix B is obtained from A
by replacing the entries a1 j in the first row by some complex numbers b1 j , where
j = 1, . . . , n. Using the row expansion (3.1.1.2), we obtain

per A =
n∑

j=1

a1 j per A j and per B =
n∑

j=1

b1 j per A j ,

where A j is the (n − 1) × (n − 1) matrix obtained from A by crossing out the first
row and the j-th column. We have A j ∈ Un−1 and, moreover, up to a permutation
of columns, any two matrices A j1 and A j2 differ in at most one column. Therefore,
by the induction hypothesis per A j �= 0 for j = 1, . . . , n and the angle between any
two non-zero complex numbers per A j1 and per A j2 does not exceed α.

We apply Lemma 3.6.4 with u j = per A j , a j = a1 j and b j = b1 j for j =
1, . . . , n. Since δ0 < cos(α/2), by Lemma 3.6.4 we have per A �= 0 and per B �= 0
and the angle between per A and per B does not exceed

2 arcsin
δ0

cos(α/2)
= 2 arcsin

0.5

cos(π/4)
= 2 arcsin

1√
2

= π

2
= α,

which completes the proof. �

The value of δ0 = 0.5 is the largest value of δ for which the equation

α = 2 arcsin
δ

cos(α/2)

has a solution α. Indeed, the above equation can be written as

(
sin

α

2

) (
cos

α

2

)
= δ, that is, sinα = 2δ.
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3.6.6 The optimal value of δ0. What is the optimal value of δ0 in Theorem 3.6.1?
To be more precise, since it is not even clear whether the optimal value δ0 exists,
what is the supremum of all possible values of δ0 in Theorem 3.6.1? Since

per

( 1+i
2

1−i
2

1−i
2

1+i
2

)
= 0

we must have

δ0 <

√
2

2
≈ 0.7071067810.

Moreover, Bukh [Bu15] showed that for

a = 1 + i

2
and b = 1 − i

2

we have

per

⎛

⎜⎜⎜⎜⎝

a b a b . . . a b
b a b a . . . b a
. . . . . . . . . . . . . . . . . . . . . . . .

a b a b . . . a b
b a b a . . . b a

⎞

⎟⎟⎟⎟⎠

︸ ︷︷ ︸
n≡2 mod 4

= 0

and hence there is no hope that the value of δ0 might improve as n grows.

Now we deduce Theorem 3.6.2 from 3.6.1.

3.6.7 Proof of Theorem 3.6.2. Let A = (
ai j

)
be an n×n complex matrix satisfying

|ai j − 1| ≤ δ for all i, j and let J = Jn be the n × n matrix of all 1s. We define a
univariate polynomial

g(z) = per
(
J + z(A − Jn)

)

with deg g ≤ n. Let

β = δ0

δ
> 1.

By Theorem 3.6.1,
g(z) �= 0 provided |z| ≤ β.

Let
f (z) = ln g(z) for |z| ≤ 1,

where we choose the branch of the logarithm that is real for z = 0. We note that by
Theorem 3.6.1 the function f is well defined and we have

f (0) = ln n! and f (1) = ln per A.
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We consider the Taylor polynomial of f at z = 0:

pm(z) = f (0) +
m∑

k=1

zk

k!
dk

dzk
f (z)

∣∣∣
z=0.

(3.6.7.1)

By Lemma 2.2.1, we have

|pm(1) − ln per A| = |pm(A) − f (1)| ≤ n

(m + 1)βm(β − 1)

In particular, to approximate ln per A within an additive error of ε > 0, we can choose
m ≤ γ(ln n − ln ε) in (3.6.7.1) for some γ = γ(δ) > 0.

It remains to show that pm(1) is a polynomial of degree m in the matrix entries
ai j of A. Our first observation is that the k-th derivative g(k)(0) is a polynomial of
degree k in the entries of the matrix A, which can be computed in nO(k) time. Indeed,

dk

dzk
g(z)

∣∣∣
z=0

= dk

dzk

∑

σ∈Sn

n∏

i=1

(
1 + z

(
aiσ(i) − 1

)) ∣∣∣
z=0

=
∑

σ∈Sn

∑

(i1,...,ik )

(
ai1σ(i1) − 1

) · · · (aikσ(ik ) − 1
)
,

where the last sum is taken over all ordered k-subsets (i1, . . . , ik) of indices 1 ≤ i j ≤
n. Since there are (n − k)! permutations σ ∈ Sn that map a given ordered k-subset
(i1, . . . , ik) into a given ordered k-subset ( j1, . . . , jk), we can write

g(k)(0) = (n − k)!
∑

(i1,...,ik )
( j1,..., jk )

(
ai1 j1 − 1

) · · · (aik jk − 1
)
, (3.6.7.2)

where the last sum is taken over all pairs of ordered k-subsets (i1, . . . , ik) and
( j1, . . . , jk) of indices between 1 and n. As follows from Sect. 2.2.2, the deriva-
tives f (k)(0) for k = 1, . . . , m can be found in O(m2) time as linear combinations
of the derivatives g(k)(0) for k = 1, . . . , m with coefficients depending on k only,
which completes the proof. �

Kontorovich and Wu [KW16] implemented the algorithm of Sect. 3.6.7 for com-
puting the polynomial p(A) and performed numerical experiments. Computing
g(k)(0) reduces to computing the sum of permanents of k × k submatrices of A − Jn

and Kontorovich and Wu used for that purpose an efficient algorithm of [FG06]. It
turned out that for n × n matrices A = (

ai j
)
satisfying |1 − ai j | ≤ 0.5 and n ≤ 20

(so that the exact value of per A can be computed for comparison), polynomials p
of degree 3 already provide reasonable approximations (they approximate ln per A
within an about 1% error). On the other hand, polynomials p of degree 3 can be
easily computed for 100 × 100 matrices.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Let A be an n × n complex matrix such that per A �= 0 and suppose that the
�∞-distance from A to the complex hypersurface per Z = 0 is at least δ0 for some
δ0 > 0. It follows from the proof of Sect. 3.6.7 that for any 0 < δ < δ0 there is a
constant γ = γ(δ) > 0 and for any 0 < ε < 1 there is a polynomial p = pA,δ,ε in
the entries of an n × n matrix B = (

bi j
)
such that deg p ≤ γ(ln n − ln ε) and

∣∣ln per B − pA,δ,ε(B)
∣∣ ≤ ε provided

∣∣ai j − bi j

∣∣ ≤ δ for all i, j.

Of course, depending on A, the polynomial p might be hard to compute (it is easy
when A = Jn , the matrix of all 1s).

3.6.8 Remark. If the entries of an n×n realmatrix A = (
ai j

)
are (weakly) decreasing

down each column, that is, if ai j ≥ a(i+1) j for all i, j then the roots of the polynomial
p(z) = per (Jn + z A) are real. Moreover, the n-variate polynomial

p (z1, . . . , zn) = per (Jn D(z1, . . . , zn) + A) ,

where D (z1, . . . , zn) is the diagonal matrix having z1, . . . , zn on the diagonal, is
H-stable [B+11].

A different approach to approximation of permanents by Taylor polynomial
expansions around Jn is described in [Mc14].

3.7 Approximating Permanents of Positive Matrices

As follows from Sect. 3.5, for any α ≥ 1, fixed in advance, the permanent of an
α-conditioned n × n positive matrix A can be approximated in polynomial time
within an nO(α2) factor. Understanding permanents of complex matrices allows us to
approximate permanents of such matrices better: we show that we can approximate
the permanent within arbitrarily small relative error in quasi-polynomial time. More
precisely, we prove the following result.

3.7.1 Theorem. For any 0 ≤ δ < 1, there exists γ = γ(δ) > 0 such that for any
positive integer n and any real 0 < ε ≤ 1 there exists a polynomial p = pn,δ,ε with
deg p ≤ γ

(
ln n − ln ε

)
in the entries ai j of an n × n real matrix A = (

ai j
)

such that

|ln per A − p(A)| ≤ ε

provided ∣∣1 − ai j

∣∣ ≤ δ for all i, j.

We show that the polynomial pn,δ,ε can be computed in nO(ln n−ln ε) time, where the
implicit constant in the “O” notation depends on δ alone.

We deduce Theorem 3.7.1 from the following result.
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3.7.2 Theorem. Let us fix a real 0 ≤ δ < 1 and le

τ = (1 − δ) sin
(π

4
− arctan δ

)
> 0.

Let Z = (
zi j

)
be an n × n complex matrix such that

∣∣1 − � zi j

∣∣ ≤ δ and
∣∣� zi j

∣∣ ≤ τ for all 1 ≤ i, j ≤ n.

Then
per Z �= 0.

We note that

(1 − δ) sin
(π

4
− arctan δ

)
≥ (1 − δ)2

2
for all 0 ≤ δ ≤ 1

and so

τ = (1 − δ)2

2

satisfies the condition of Theorem 3.7.2.
We prove Theorem 3.7.2 first and then deduce Theorem 3.7.1 from it.
As in Sect. 3.6, we identify C = R

2 and measure angles between non-zero com-
plex numbers as between non-zero vectors in the plane. We start with a simple
geometric lemma.

3.7.3 Lemma. Let u1, . . . , un ∈ C be non-zero complex numbers such that the angle
between any two ui , u j does not exceed π/2.

(1) Let

v =
n∑

j=1

α j u j and w =
n∑

j=1

β j u j

where α1, . . . ,αn are non-negative real and β1, . . . ,βn are real such that

|β j | ≤ α j for j = 1, . . . , n.

Then
|w| ≤ |v|;

(2) Let

v =
n∑

j=1

α j u j and w =
n∑

j=1

β j u j

where α1, . . . ,αn and β1, . . . ,βn are real such that
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∣∣1 − α j

∣∣ ≤ δ and
∣∣1 − β j

∣∣ ≤ δ for j = 1, . . . , n

and some 0 ≤ δ < 1. Then v �= 0, w �= 0 and the angle between v and w does
not exceed

2 arctan δ.

(3) Let

v =
n∑

j=1

α j u j and w =
n∑

j=1

β j u j

where ∣∣1 − �α j

∣∣ ≤ δ,
∣∣1 − �β j

∣∣ ≤ δ and
∣∣�α j

∣∣ ≤ τ ,
∣∣�β j

∣∣ ≤ τ for j = 1, . . . , n

and some 0 ≤ δ < 1 and 0 ≤ τ < 1 − δ. Then v �= 0, w �= 0 and the angle
between v and w does not exceed

2 arctan δ + 2 arcsin
τ

1 − δ
.

Proof. We consider the standard inner product in R2 = C, so

〈a, b〉 = � ab.

Hence
〈ui , u j 〉 ≥ 0 for all i, j.

We have
|w|2 =

∑

1≤i, j≤n

βiβ j 〈ui , u j 〉 ≤
∑

1≤i, j≤n

αiα j 〈ui , u j 〉 = |v|2

and the proof of Part (1) follows.
To prove Part (2), let

u =
n∑

j=1

(
α j + β j

2

)
u j and x =

n∑

j=1

(
α j − β j

2

)
u j ,

so that v = u + x and w = u − x , see Fig. 3.8. Clearly, |u| > 0.
Now, if |1 − α| ≤ δ and |1 − β| ≤ δ for some 0 ≤ δ < 1 and α ≥ β we have

α

β
≤ 1 + δ

1 − δ
and hence α(1 − δ) ≤ β(1 + δ)
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Fig. 3.8 Given |u| and |x |,
the angle between v = u + x
and w = u − x is the largest
when u is orthogonal to x

−x

u u
v

vw
w

x
x−x

and
α − β

α + β
− δ = α − β − δ(α + β)

α + β
= α(1 − δ) − β(1 + δ)

α + β
≤ 0.

Therefore for all α and β such that |1− α| ≤ δ and |1− β| ≤ δ for some 0 ≤ δ < 1
we have |α − β|

α + β
≤ δ.

Therefore, by Part (1),
|x | ≤ δ|u|.

The angle between v and w is

arccos
〈v,w〉
|v||w| ,

where
〈v,w〉 = |u|2 − |x |2.

We have
|v|2 + |w|2 = 2|u|2 + 2|x |2

and hence
|v||w| ≤ |u|2 + |x |2

with equality attained when |v|2 = |w|2 = |u|2 + |x |2, that is, when x is orthogonal
to u. Therefore, the angle between v and w does not exceed

arccos
|u|2 − |x |2
|u|2 + |x |2

with equality attained when x is orthogonal to u and the angle is

2 arctan
|x |
|u| ≤ 2 arctan δ,

see Fig. 3.8. The proof of Part (2) now follows.
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In Part (3), let

v′ =
n∑

j=1

(�α j
)

u j , v′′ =
n∑

j=1

(�α j
)

u j , w′ =
n∑

j=1

(�β j
)

u j

and w′′ =
n∑

j=1

(�β j
)

u j .

By Part (2), the angle between non-zero vectors v′ andw′ does not exceed 2 arctan δ.
By Part (1), we have

|v′′| ≤ τ

1 − δ
|v′| and |w′′| ≤ τ

1 − δ
|w′|.

Hence v = v′ + iv′′ �= 0 and w = w′ + iw′′ �= 0 and the angle between v and v′ and
the angle between w and w′ do not exceed

arcsin
τ

1 − δ
,

see Fig. 3.7. The proof of Part (3) now follows. �

Now we are ready to prove Theorem 3.7.2.

3.7.4 Proof of Theorem 3.7.2. For a positive integer n, let Un = Un(δ, τ ) be the
set of n × n complex matrices Z = (

zi j
)
such that

∣∣1 − � zi j

∣∣ ≤ δ and
∣∣� zi j

∣∣ ≤ τ for all i, j.

We prove by induction on n a stronger statement:
For any Z ∈ Un we have per Z �= 0 and, moreover, if A, B ∈ Un are two matrices

that differ in one row (or in one column) only, then the angle between the non-zero
complex numbers per A and per B does not exceed π/2.

Since τ < 1 − δ, the statement holds for n = 1. Assuming that the statement
holds for matrices in Un−1, let us consider two matrices A, B ∈ Un that differ in one
row or in one column only. Without loss of generality, we assume that B is obtained
from A by replacing the entries a1 j in the first row with complex numbers b1 j for
j = 1, . . . , n. Let A j be the (n − 1) × (n − 1) matrix obtained from A by crossing
out the first row and the j-th column. Applying the row expansion (3.1.1.2), we get

per A =
n∑

j=1

a1 j per A j and per B =
n∑

j=1

b1 j per A j .

We have A j ∈ Un−1 for all j = 1, . . . , n, and, moreover any two matrices A j1 and
A j2 differ, up to a permutation of columns, in one column only. Therefore, by the
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induction hypothesis, we have per A j �= 0 for j = 1, . . . , n and the angle between
any two non-zero complex numbers A j1 and A j2 does not exceed π/2. Applying Part
(3) of Lemma 3.7.3 with

u j = per A j , α j = a1 j and β j = b1 j for j = 1, . . . , n,

we conclude that per A �= 0, per B �= 0 and the angle between per A and per B does
not exceed

2 arctan δ + 2 arcsin
τ

1 − δ
= π

2
.

�

3.7.5 Proof of Theorem 3.7.1. Let A = (
ai j

)
be an n × n real matrix such that

∣∣1 − ai j

∣∣ ≤ δ for all i, j,

let Jn = J be the n ×n matrix filled with 1 s and let us define a univariate polynomial

r(z) = per
(
J + z(A − J )

)
for z ∈ C.

Hence
r(0) = per J = n!, r(1) = per A and deg r ≤ n.

First, we observe that as long as −α ≤ � z ≤ 1+ α for some α > 0, the real part
of each entry of the matrix J + z(A − J ) lies in the interval

[1 − δ(1 + α), 1 + δ(1 + α)].

Similarly, as long as |� z| ≤ ρ for some ρ > 0, the imaginary part of each entry of
the matrix J + z(A − J ) does not exceed ρδ in the absolute value. Let us choose an
α = α(δ) > 0 such that δ′ = δ(1 + α) < 1 and choose

ρ = ρ(δ) = 1 − δ′

δ
sin

(π

4
− arctan δ′

)
> 0.

It follows from Theorem 3.7.2 that

r(z) �= 0 provided − α ≤ � z ≤ 1 + α and |� z| ≤ ρ. (3.7.5.1)

Let φ(z) = φδ(z) be the univariate polynomial constructed in Lemma 2.2.3, such
that

φ(0) = 0, φ(1) = 1

and
−α ≤ �φ(z) ≤ 1 + α and |�φ(z)| ≤ ρ

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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provided
|z| ≤ β for some β = β(δ) > 1.

The degree of φ(z) is bounded by a constant depending on δ alone.
Let us define

g(z) = r(φ(z)).

Then g(z) is a univariate polynomial and deg g = (deg r)(degφ) = O(n) where the
implicit constant in the “O” notation depends only on δ. We have

g(0) = r(0) = n!, g(1) = r(1) = per A

and from (3.7.5.1) it follows that

g(z) �= 0 provided |z| ≤ β.

Let us choose a branch of f (z) = ln g(z) in the disc |z| ≤ 1 so that

f (0) = ln n! and f (1) = ln per A

and let pm be the Taylor polynomial of degree m of f (z) computed at z = 0, so

pm(z) = f (0) +
m∑

k=1

(
dk

dzk
f (z)

∣∣∣
z=0

)
zk

k! .

By Lemma 2.2.1, we have

| f (1) − pm(1)| ≤ deg g

(m + 1)βm(β − 1)
.

Hence one can choose m ≤ γ
(
ln n − ln ε

)
for some constant γ = γ(δ) > 0 such

that
|ln per A − pm(1)| ≤ ε.

It remains to show that

pm(1) = f (0) +
m∑

k=1

f (k)(0)

k!

is a polynomial of degree at most m in the entries ai j of the matrix A that can be
computed in nO(m) time.

As follows from Sect. 2.2.2, the derivatives f (k)(0) for k = 1, . . . , m can be found
in O(m2) time as linear combinations of the derivatives g(k)(0) for k = 1, . . . , m
with coefficients depending on k only.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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For a univariate polynomial q(z) and a positive integer m, let q[m](z) be the
truncated polynomial obtained from q by erasing all monomials of degree higher
than m.

Since φ(0) = 0, the constant term of φ(z) is 0 and to compute g[m](z), we com-
pute the truncated polynomials φ[m](z), r[m](z) and then truncate the composition
r[m](φ[m](z)) by discarding all terms of degree higher than m. As in Sect. 3.6.7, we
observe that the k-th derivative r (k)(0) is a polynomial of degree k in the entries of
the matrix A, which can be computed in nO(k) time. Hence g(k)(0) and thus f (k)(0)
are polynomials of degree at most k in the entries ai j of the matrix A = (

ai j
)
. The

proof now follows. �

3.8 Permanents of α-Conditioned Matrices
and Permutations with Few Cycles

Let A = (
ai j

)
be an n × n positive matrix which is α-conditioned for some α ≥ 1,

cf. Definition3.5.5. Let us fix α and let n grow. It turns out that the bulk of the
permanent of A is carried by permutations with a small (logarithmic) number of
cycles. We interpret permanents as sums over cycle covers, see Sect. 3.1.3.

The following result was proved in [Ba15].

3.8.1 Theorem. Let c(σ) denote the number of cycles of a permutation σ ∈ Sn. For
an α-conditioned n × n matrix A = (

ai j
)
, we have

∑

σ∈Sn :
c(σ)<3α2 ln n+6

n∏

i=1

aiσ(i) ≥ 1

2
per A.

Given a positive matrix A = (
ai j

)
, we consider the symmetric group Sn as a

probability space, where

Pr (σ) = (per A)−1

(
n∏

i=1

aiσ(i)

)
for σ ∈ Sn.

3.8.2 Lemma. Let us define random variables

li : Sn −→ R for i = 1, . . . , n,

where li (σ) is the length of the cycle of permutation σ that contains i . Assuming that
A is α-conditioned, we have

Pr
(
σ ∈ Sn : li (σ) = m

) ≤ α2

n − m
for i = 1, . . . , n

and m = 1, . . . , n − 1.
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Fig. 3.9 Merging two cycles

r

1

1

r

Proof. Without loss of generality, we assume that i = 1. Let X ⊂ Sn be the set of
permutations σ ∈ Sn such that l1(σ) = m. We construct a set Y ⊂ Sn as follows.
Each permutation σ ∈ X contributes n − m permutations into Y : we write the cycle
of σ containing 1 as

1 = j1 → j2 → . . . → jm → 1, (3.8.2.1)

pick an element r of the n − m elements not in the cycle, write the cycle of σ
containing r as

r = jm+1 → jm+2 → . . . → jm+k → r (3.8.2.2)

and produce a permutation τ ∈ Y by merging the two cycles together:

1 = j1 → j2 → . . . → jm → r = jm+1 → jm+2 → . . . → jm+k → 1, (3.8.2.3)

see Fig. 3.9.
Since A is α-conditioned, we have

Pr (σ) ≤ α2Pr (τ ). (3.8.2.4)

Next, we observe that each permutation τ ∈ Y is obtained from a unique permutation
σ ∈ X . To reconstruct σ from τ , we find the cycle of σ containing 1, write it as in
(3.8.2.3) and cut into the cycles (3.8.2.1) and (3.8.2.2), see Fig. 3.10

Using (3.8.2.4), we conclude that

Pr (X) ≤ α2

n − m
Pr (Y ) ≤ α2

n − m
.

�

3.8.3 Proof of Theorem 3.8.1. Let li be the random variables of Lemma 3.8.2.
Using Lemma 3.8.2, we estimate
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Fig. 3.10 Cutting a cycle
into two

r

1

1

r

E
(
l−1
i

) =
n∑

m=1

1

m
Pr

(
σ : li (σ) = m

)

=
∑

1≤m≤n/3

1

m
Pr

(
σ : li (σ) = m

) +
∑

n/3<m≤n

1

m
Pr

(
σ : li (σ) = m

)

≤3α2

2n

∑

1≤m≤n/3

1

m
+ 3

n

∑

n/3<m≤n

Pr
(
σ : li (σ) = m

)

≤3α2 ln n

2n
+ 3

n
.

Next, we note that

c(σ) =
n∑

i=1

l−1
i (σ),

since the sum of l−1
i (σ) for all i in a cycle of σ is 1. Therefore,

E c(σ) =
n∑

i=1

E
(
l−1
i (σ)

) ≤ 3α2 ln n

2
+ 3.

Applying the Markov inequality, we conclude that

Pr
(
σ : c(σ) ≥ 3α2 ln n + 6

) ≤ 1

2
,

and the proof follows. �

As is shown in [Ba15], one immediate corollary of Theorem 3.8.1 is that on
α-conditioned matrices, the permanent of A and the Hamiltonian permanent of A,
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ham A =
∑

σ∈Sn :
c(σ)=1

n∏

i=1

aiσ(i)

differ by a factor of nO(α2 ln n) (permutations consisting of a single cycle are called
Hamiltonian cycles). Similarly to the proof of Lemma 3.8.2, the result is obtained by
patching a permutation with O

(
α2 ln n

)
cycles into a single cycle. Consequently, for

α fixed in advance, using the scaling algorithm of Sect. 3.5, we obtain a polynomial
time algorithm for computing ham A within a factor of nO(α2 ln n). As is discussed
in [Ba15], this allows one to distinguish in polynomial time directed graphs on n
vertices that contain many Hamiltonian cycles (at least εn(n − 1)! for some fixed
ε > 0) from graphs that are sufficiently far from having a Hamiltonian cycle (need at
least εn new edges added to acquire one). The algorithm is obtained by approximating
per A and hence ham A for a “soft” version A = (

ai j
)
of the adjacency matrix of the

graph,

ai j =
{
1 if i → j is an edge

δ otherwise

for a sufficiently small δ = δ(ε) > 0.
Vishnoi [Vi12] used the van der Waerden bound for the permanent (see Sect. 3.3)

to prove the existence of long cycles (and of an efficient algorithm to find such cycles)
in regular graphs.

3.9 Concluding Remarks

3.9.1 Permanents and determinants. It is tempting to compare the permanent

per A =
∑

σ∈Sn

n∏

i=1

aiσ(i)

with the syntactically similar determinant

det A =
∑

σ∈Sn

(sgn σ)

n∏

i=1

aiσ(i)

and try exploit the similarity. Godsil and Gutman [GG78] suggested the following
construction.

Suppose that A = (
ai j

)
is an n×n non-negative real matrix. Let ξi j be real-valued

independent random variables such that

E ξi j = 0 and var ξi j = 1 for all i, j = 1, . . . , n



3.9 Concluding Remarks 89

and let us define a random n × n matrix B = (
bi j

)
by

bi j = ξi j
√

ai j for all i, j = 1, . . . , n.

It is not hard to show that
E (det B)2 = per A

and one can ask how well det2 B is likely to approximate per A, see also Chap.8 of
[LP09]. Since det2 B is non-negative, the Markov inequality implies that det2 B is
unlikely to overestimate per A by a lot (for example, the probability that det2 B >

10 per A does not exceed 1/10). However, it may happen that det2 B grossly under-
estimates per A. For example, if n = 2m and A is a block-diagonal matrix consisting

of m blocks J2 =
(
1 1
1 1

)
then per A = 2m . If we choose ξi j to be random signs, so

that

Pr (ξi j = 1) = 1

2
and Pr (ξi j = −1) = 1

2

then det B = 0 with probability 1 − 2−m . This effect can be mitigated if ξi j are
continuous random variables. In [Ba99] it is shown that if ξi j are standard Gaussian
with density

1√
2π

e−x2/2

then with probability approaching 1 as n grows, we have

(det B)2 ≥ (0.28)n per A (3.9.1.1)

(the worst-case scenario is when A = In , the n × n identity matrix). It is also shown
that if ξi j are complex Gaussian with density

1

π
e−|z|2 for z ∈ C,

in which case E |det B|2 = per A then with probability approaching 1 as n grows,
we have

| det B|2 ≥ (0.56)n per A (3.9.1.2)

(again, the worst case scenario is when A = In).
Finally, let us choose ξi j to be quarternionic Gaussian with density

4

π2
e−|h|2 for h ∈ H

(so that E |h|2 = 1, here H denotes the skew field of quaternions and not the upper
half-plane of C as elsewhere in the book). Then B is an n × n quaternionic matrix
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which we write as
B = R + i S + j T + k U,

where R, S, T and U are n × n real matrices. Let BC denote the 2n × 2n complex
matrix

BC =
(

R + i S T + iU
−T + iU R − i S

)
.

It is show in [Ba99] that det BC is a non-negative real number such that E det BC =
per A and that

det BC ≥ (0.76)n per A (3.9.1.3)

with probability approaching 1 as n grows (again, the worst-case scenario is when
A = In).

The idea behind the inequalities of (3.9.1.1)–(3.9.1.3) is roughly as follows. We
note that det B is linear in every row of B. We consider det B as a function of n inde-
pendentGaussiann-vectors xi = (ξi1, . . . , ξin). In the real case (det B)2 is a quadratic
form in each xi , once the values of the remaining vectors x1, . . . , xi−1, xi+1, . . . , xn

are fixed. In the complex case, | det B|2 is a Hermitian form in each xi , once the
values of the remaining vectors x1, . . . , xi−1, xi+1, . . . , xn are fixed. In the quater-
nionic case, det BC is a quaternionic Hermitian form in each xi , once the values of
the remaining vectors x1, . . . , xi−1, xi+1, . . . , xn are fixed.

We deduce (3.9.1.1) from the following: if q : Rn −→ R is a positive semidefinite
quadratic form on the space Rn equipped with the standard Gaussian measure and
such that E q = 1 then

E ln q ≥ − ln 2 − γ, (3.9.1.4)

where γ ≈ 0.5772156649 is the Euler constant and the bound (3.9.1.4) is attained if
q is a form of rank 1, for example,

q (x1, . . . , xn) = x2
1 where (x1, . . . , xn) ∈ R

n.

Since every positive semidefinite quadratic form is a convex combination of positive
semidefinite forms of rank 1, by Jensen’s inequality the minimum in (3.9.1.4) is
indeed attained on forms of rank 1. The constant in (3.9.1.1) is e− ln 2−γ ≈ 0.28.

We deduce (3.9.1.2) from the following: if q : Cn −→ R is a positive semidefinite
Hermitian form on the space Cn equipped with the standard Gaussian measure and
such that E q = 1 then

E ln q ≥ −γ, (3.9.1.5)

and the bound in (3.9.1.5) is attained if q is a form of rank 1, for example,

q (z1, . . . , zn) = |z1|2 where (z1, . . . , zn) ∈ C
n.
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Similarly to the real case, since every positive semidefinite Hermitian form is a
convex combination of positive semidefinite Hermitian forms of rank 1, by Jensen’s
inequality the minimum in (3.9.1.5) is indeed attained on forms of rank 1. We get a
better bound than in the real case, because a complex Hermitian form of rank 1 can
be viewed as a real quadratic form of rank 2. The constant in (3.9.1.2) is e−γ ≈ 0.56.

We deduce (3.9.1.3) from the following: if q : Hn −→ R is a positive semidefinite
Hermitian form on the space Hn equipped with the standard Gaussian measure and
such that E q = 1 then

E ln q ≥ 1 − γ − ln 2 (3.9.1.6)

and the bound in (3.9.1.6) is attained if q is a form of rank 1, for example,

q (h1, . . . , hn) = |h1|2 where (h1, . . . , hn) ∈ H
n.

The constant in (3.9.1.3) is e1−γ−ln 2 ≈ 0.76.
For various special classes of matrices, a subexponential approximation factor is

achieved by (real) Gaussian [F+04], [RZ16] and some non-Gaussian [CV09] random
variables ξi j .

3.9.2 Algorithms for computing permanents. For a general n ×n real or complex
matrix A, themost efficientmethod knownof computing per A exactly, is, apparently,
Ryser’smethod and itsmodifications, seeChap.7 of [Mi78],which achieves O(n22n)

complexity. Essentially, it uses the formula

per A = ∂n

∂x1 · · · ∂xn
p(x1, . . . , xn) where p(x1, . . . , xn) =

n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ,

and computes the derivative as

∂n

∂x1 · · · ∂xn
p(x1, . . . , xn) =

∑

I⊂{1,...,n}
(−1)|I | p(xI ), (3.9.2.1)

where xI is the 0–1 vector with 0 s in positions I and 1s elsewhere (as is easy
to see, formula (3.9.2.1) holds for any homogeneous polynomial p of degree n in
x1, . . . , xn). The exact computation of the permanent is a #P-hard problem already
for 0–1 matrices [Va79], which makes a polynomial time algorithm rather unlikely.
Efficient (polynomial time) algorithms for computing permanents exactly are known
for some rather restricted classes of matrices, for example, for matrices of a small
(fixed in advance) rank [Ba96] and for 0–1 matrices with small (fixed in advance)
permanents [GK87].

Given an n ×n matrix A = (
ai j

)
, let G(A) be the bipartite graph with 2n vertices

1L , . . . nL and 1R, . . . , nR , where vertices iL and jR are connected by an edge if
and only if ai j �= 0, see Sect. 3.1.2. Cifuentes and Parillo found a polynomial time
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algorithm to compute per A exactly provided the treewidth of G(A) is bounded by
a constant, fixed in advance [CP16]. The algorithm is applicable to matrices over
any commutative ring. One can obtain graphs G(A) of a small treewidth provided A
is sufficiently sparse, that is, contains relatively few non-zeros. This is the case, for
example, if A has a band structure, that is, ai j = 0 provided |i − j | ≥ ω for some ω,
fixed in advance.

The greatest success in approximation algorithms is achieved by Jerrum,
Sinclair and Vigoda [J+04] who constructed a Markov Chain Monte Carlo based
fully polynomial time randomized approximation scheme for computing permanents
of non-negative matrices. A scaling based deterministic polynomial time algorithm
approximating permanents of n×n non-negativematriceswithin a factor of en is con-
structed in [L+00], see also Remark 3.5.4. The approximation factor was improved
to 2n [GS14] and it is conjectured that the same algorithm actually achieves a 2n/2

approximation factor, cf. (3.4.6.1). Using the “correlation decay” idea from statis-
tical physics, Gamarnik and Katz obtained a (1 + ε)n approximation factor for any
ε > 0, fixed in advance, when A is a 0–1 matrix of a constant degree expander graph
[GK10].

Less is known about approximation algorithms for not necessarily non-negative
matrices (but see Sects. 3.6, 5.5 and also [Mc14]). Gurvits [Gu05] presented a ran-
domized algorithm, which, given an n × n complex matrix A approximates per A in
O(n2/ε2) time within an additive error of ε‖A‖n , where ‖A‖ is the operator norm of
A, see also [AA13] for an exposition. The idea of the algorithm is to use the formula

per A = E x1 · · · xn

n∏

i=1

⎛

⎝
n∑

j=1

ai j x j

⎞

⎠ ,

where xi = ±1 are independent Bernoulli random variables and replace the expec-
tation by the sample average.

http://dx.doi.org/10.1007/978-3-319-51829-9_5


Chapter 4
Hafnians and Multidimensional Permanents

We explore certain extensions of the permanent: hafnians enumerate perfect
matchings in general graphs and multidimensional permanents enumerate perfect
matchings in hypergraphs. With the notable exception of the mixed discriminant,
which can be thought of as a “permanent-determinant” of a 3-dimensional array, these
extensions no longer have connections to H-stable polynomials, which is a major
disadvantage. However, other methods we tried on permanents generally continue to
work. Using scaling, we establish a decomposition of hafnians andmultidimensional
permanents into the product of an easy to handle “scaling part” and hard to handle
“d-stochastic part”. We prove that the d-stochastic part is still concentrated, though
weaker than in the case of the permanent. Taylor polynomial interpolation works for
hafnians just as well as for permanents, while for multidimensional permanents it
produces efficient approximations in non-trivial real and complex domains. The van
der Waerden lower bound for mixed discriminants works just as well as for perma-
nents, while for the Bregman - Minc bound, we only manage to obtain a somewhat
weaker version.

4.1 Hafnians

4.1.1 Definition. Let n = 2m be a positive even integer and let A = (
ai j
)
be an

n × n symmetric real or complex matrix. The hafnian of A is defined as

haf A =
∑

{i1,i2},...,{i2m−1,i2m }
ai1i2 · · · ai2m−1i2m , (4.1.1.1)

where the sum is taken over all (2m)!/2mm! unordered partitions of the set
{1, . . . , n} into unordered pairs (the name was introduced by physicist Eduardo R.
Caianiello to mark his fruitful research stay in Copenhagen, or “Hafnia” in Latin).

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9_4
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Note that the diagonal entries of A are not involved at all. Equivalently,

haf A = 1

m!2m

∑

σ∈Sn

m∏

i=1

aσ(2i−1)σ(2i), (4.1.1.2)

where Sn is the symmetric group of all n! permutations of the set {1, . . . , n}. Although
one can define the hafnian of any (not necessarily symmetric) matrix by (4.1.1.2),
this does not lead to any more generality, since for a skew-symmetric matrix A the
expression (4.1.1.2) is identically 0, and, moreover, for a general A the value of
(4.1.1.2) is equal to its value on the symmetric part (A + AT )/2 of A.

The permanent of any m ×m matrix is expressed as the hafnian of a (2m)× (2m)

symmetric matrix:

per B = haf A where A =
(

0 B
BT 0

)
.

Indeed, any permutation σ ∈ Sm corresponds to the partition τ of {1, . . . , 2m} into
pairs {i,σ(i)+ m} for i = 1, . . . , m and the contributions of σ to per B via (3.1.1.1)
and of τ to haf A via (4.1.1.1) coincide. Moreover, any partition τ with a non-zero
contribution to haf A corresponds to a unique permutation σ ∈ Sm .

We note a recursive formula

haf A =
n∑

j=2

a1 jhaf A j , (4.1.1.3)

where A j is the (n − 2) × (n − 2) symmetric matrix obtained from A by crossing
out the first and the j-th row and the first and the j-th column.

4.1.2 Hafnians and perfect matchings. If A = (
ai j
)
is a real symmetric matrix

and ai j ∈ {0, 1} for all i, j then haf A has a combinatorial interpretation as the
number of perfect matchings in the graph G with adjacency matrix A, cf. Sect. 3.1.2.
That is, if G = (V, E) is an (undirected, without loops or multiple edges) graph
with set V = {1, . . . , n} of vertices and set E ⊂ (V

2

)
of edges, the adjacency matrix

A = (
ai j
)
is defined by

ai j =
{
1 if {i, j} ∈ E

0 otherwise.

Assuming thatn = 2m is even,we conclude haf A is the number of perfectmatchings
of G.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.1 A graph and a
perfect matching (thick
edges)

6

1

2 3

4

5

For example, Fig. 4.1 pictures a graph with adjacency matrix

A =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 1 1 1 0
1 1 0 1 0 1
0 1 1 0 1 1
0 1 0 1 0 1
0 0 1 1 1 0

⎞

⎟⎟⎟⎟⎟⎟⎠

and a perfect matching of G.

4.1.3 Hafnians as integrals. Let γd be the standard Gaussian probability measure
on Rd with density

1

(2π)d/2
e−‖x‖2/2 where ‖x‖ = x2

1 + . . . + x2
d for x = (x1, . . . , xd) .

In particular,
E x2

i = 1 and E xi x j = 0 provided i �= j.

Let f1, . . . , fn : Rd −→ R be linear forms. Clearly,

E f1 · · · fn = 0 if n is odd.

If n = 2m is even, the expectation of the product is expressed as a hafnian. Namely,
let A = (

ai j
)
be the (necessarily symmetric) n × n matrix defined by

ai j = E fi f j =
∫

Rd

fi (x) f j (x) dγd(x).

Then
E f1 · · · fn = haf A. (4.1.3.1)
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Formula (4.1.3.1) is known asWick’s formula, see [Zv97]. It can be proved as follows.
Let us denote the left hand side of (4.1.3.1) by L ( f1, . . . , fn) and the right hand side
of (4.1.3.1) by R ( f1, . . . , fn). For real parameters t = (t1, . . . , tn), let us define

ft = t1 f1 + . . . + tn fn.

Since L ( f1, . . . , fn) and R ( f1, . . . , fn) are degree n symmetric multilinear func-
tions of f1, . . . , fn , we have

L ( f1, . . . , fn) = 1

n!
∂n

∂t1 · · · ∂tn
L ( ft , . . . , ft ) and

R ( f1, . . . , fn) = 1

n!
∂n

∂t1 · · · ∂tn
R ( ft , . . . , ft ) .

Therefore, it suffices to prove (4.1.3.1) assuming that f1 = . . . = fn . By the rotational
invariance of themeasure γd , it further suffices to prove (4.1.3.1)when f1 = . . . = fn

is the coordinate function, say, x1. In that case, the matrix A is filled by 1s and hence
the right hand side is equal to

(2m)!
2mm! .

The left hand side is

∫

Rd

x2m
1 dγd(x) = 1√

2π

∫ +∞

−∞
x2me−x2/2 dx = 2√

2π

∫ +∞

0
(2t)me−t dt√

2t

= 1√
π
2m

∫ +∞

0
tm− 1

2 e−t dt = 2m

√
π

�

(
m + 1

2

)

= 2m

√
π

(
m − 1

2

)(
m − 3

2

)
· · · 1

2
�

(
1

2

)

=(2m − 1)(2m − 3) · · · 1 = (2m − 1)!
(2m − 2) · · · (2m − 4) · · · 2

= (2m − 1)!
2m−1(m − 1)! = (2m)!

2mm! ,

which completes the proof of (4.1.3.1).
One corollary of (4.1.3.1) is that if A is an n × n symmetric positive semidefinite

matrix then

haf B ≥ 0 for B =
(

A A
A A

)
.

Indeed, A = (
ai j
)
can be written as

ai j = E fi f j for all i, j
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and some linear forms f1, . . . , fn : Rn −→ R, in which case

haf B = E f 21 · · · f 2n ≥ 0.

The following useful inequality relates hafnians and permanents of non-negative
matrices.

4.1.4 Theorem. Let A be an n × n non-negative symmetric matrix, where n is even.
Then

haf A ≤ √
per A.

Proof. We follow [AF08]. Let n = 2m and let us consider (haf A)2 as a polynomial
in the entries ai j of the matrix A.

From the definition (4.1.1.1), we can write

(haf A)2 =
∑

I,J

ai1i2 · · · ai2m−1i2m a j1 j2 · · · a j2m−1 j2m , (4.1.4.1)

where the sum is taken over all ordered pairs (I, J ) of unordered partitions of
the set {1, . . . , 2m} into unordered pairs I = {{i1, i2}, . . . , {i2m−1, i2m}} and J ={{ j1, j2}, . . . , { j2m−1, j2m}} (we allow I = J and count such pairs once). For given
I and J , the union of all pairs in I and J can be viewed as a graph with set {1, . . . , n}
of vertices and possibly multiple edges such that each vertex belongs to exactly two
edges, counting multiplicities, see Fig. 4.2. Such a graph is a union of disjoint cycles,
each cycle consisting of an even number of edges (counting multiplicities). On the
other hand, let � be a graph which is a union of disjoint cycles, each consisting of an
even number of edges, possibly including cycles with two edges, and containing all
n vertices. Let c>2(�) be the number of cycles of � with more than 2 edges. Then �

Fig. 4.2 Two matchings and
their union
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can be represented as a union of two perfect matchings in exactly 2c>2(�) ways and
hence (4.1.4.1) can be written as

(haf A)2 =
∑

�:
each cycle has even length

2c>2(�)
∏

{i, j}∈�

ai j . (4.1.4.2)

To obtain the monomial expansion of per A, we interpret A as the adjacency matrix
of a complete directed graph on n vertices, which includes loops i → i and edges in
both directions i → j and j → i for i �= j , see Sect. 3.1.3. Then

per A =
∑

��

∏

(i, j)∈��
ai j , (4.1.4.3)

where the sum is taken over all directed cycle covers �� of the complete graph. Since
A is symmetric, the contributions of any two ��1 and ��2 that differ just by orientations
on their cycles are the same and therefore (4.1.4.3) can be written as

per A =
∑

�

2c>2(�)
∏

{i, j}∈�

ai j , (4.1.4.4)

where the sum is taken over all graphs � that are disjoint union of undirected cycles
and contain all vertices {1, . . . , n} and where c>2(�) is the number of cycles in �

consisting of more than 2 edges. Comparing (4.1.4.2) and (4.1.4.4), we conclude that

per A ≥ (haf A)2.

�

The results of Sects. 3.6 and 3.7 almost verbatim transfer from permanents to
hafnians.

4.1.5 Theorem. There exists an absolute constant δ0 > 0 (one can choose δ0 = 0.5)
such that for any even integer n and for any n × n symmetric matrix A = (

ai j
)

with
complex entries satisfying

∣∣1 − ai j

∣∣ ≤ δ0 for all i �= j

we have
haf A �= 0.

For any 0 < δ < δ0 there exists γ = γ(δ) > 0 and for any 0 < ε < 1 and positive
even integer n there exists a polynomial p = pn,δ,ε in the entries of an n ×n complex
symmetric matrix A = (

ai j
)

satisfying

deg p ≤ γ(ln n − ln ε)

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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and such that
|ln haf A − p(A)| ≤ ε

provided
∣∣1 − ai j

∣∣ ≤ δ for all i �= j.

Proof. The proof closely follows those of Theorems 3.6.1 and 3.6.2. First, we show
by induction on m that if A = (

ai j
)
and B = (

bi j
)
are two symmetric (2m) × (2m)

complex matrices satisfying
∣∣1 − ai j

∣∣ ≤ 0.5 and
∣∣1 − bi j

∣∣ ≤ 0.5 for all i �= j

and such that the entries of A and B coincide except possibly in the i-th row and
i-th column for some unique i then haf A �= 0, haf B �= 0 and the angle between
non-zero complex numbers haf A and haf B does not exceed π/2.

This clearly holds for m = 1. Assuming that m > 1, without loss of generality we
assume that B is obtained from A by replacing the entries a1 j = a j1 by b1 j = b j1

for j = 2, . . . , 2m. Using (4.1.1.3), we write

haf A =
2m∑

j=2

a1 j haf A j and haf B =
2m∑

j=2

b1 j haf A j ,

where A j is the (2m −2)× (2m −2)matrix obtained from A by crossing out the first
and the j-th row and the first and the j-th column.We note that, up to a simultaneous
permutation of rows and columns, any two matrices A j1 and A j2 differ in at most
the i-th row and i-th column for some unique i , so by the induction hypothesis
haf A j �= 0 for all j = 2, . . . , 2m and the angle between any two non-zero complex
numbers haf A j1 and haf A j2 does not exceed π/2. Applying Lemma 3.6.4 with
u j = haf A j , a j = a1 j and b j = b1 j , as in Sect. 3.6.5, we conclude that haf A �= 0,
haf B �= 0 and the angle between haf A and haf B does not exceed π/2.

Next, we construct the polynomial p. Let J = Jn be the n × n matrix filled with
1 s and let n = 2m. We define the polynomial

g(z) = haf (J + z(A − J ))

of degree at most m, so that

g(0) = haf J = (2m)!
2mm! and g(1) = haf A.

Moreover, for β = δ0/δ > 1, we have g(z) �= 0 whenever |z| ≤ β. We choose a
branch of f (z) = ln g(z) for |z| ≤ 1 such that f (0) is real and use Lemma 2.2.1 to
claim that for some k ≤ γ(ln n − ln ε) the Taylor polynomial

pk(z) = f (0) +
k∑

s=1

f (s)(0)

s! zs

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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approximates f (z) for |z| ≤ 1 within an additive error ε. We need to show that
pk(1) is a polynomial of degree at most k in the entries of A. To finish the proof as
in Sect. 3.6.7, it suffices to show that g(s)(0) is a polynomial in the entries of A of
degree at most s.

Indeed,

ds

dzs
g(z)

∣∣∣
z=0

= ds

dzs

∑

{i1, j1},...,{im , jm }

(
1 + z

(
ai1 j1 − 1

)) · · · (1 + z
(
aim , jm − 1

)) ∣∣∣
z=0

,

where the sum is taken over all unordered partitions of the set {1, . . . , n} into m
unordered pairs {i1, j1}, . . . , {im, jm}. Therefore,

g(s)(0) = (2m − 2s)!s!
(m − s)!2m−s

∑

{i1, j1},...,{is , js }

(
ai1 j1 − 1

) · · · (aim , jm − 1
)
,

where the sum i of s pairwise disjoint unordered pairs {i1, j1}, . . . , {is, js}. �

We observe that for a fixed δ < δ0, the polynomial p(A) in Theorem 4.1.5 can be
computed in nO(ln n−ln ε) time.

4.1.6 Theorem. Let us fix a real 0 ≤ δ < 1 and let

τ = (1 − δ) sin
(π

4
− arctan δ

)
> 0.

For an even n, let Z = (
zi j
)

be an n × n symmetric complex matrix such that

∣∣1 − � zi j

∣∣ ≤ δ and
∣∣ zi j

∣∣ ≤ τ for all i, j.

Then
haf Z �= 0.

As in Sect. 3.7, we deduce from Theorem 4.1.6 the following result.

4.1.7 Theorem. For any 0 ≤ δ < 1 there exists γ = γ(δ) > 0 such that for any
positive even integer n and any real 0 < ε ≤ 1 there exists a polynomial p = pn,δ,ε

in the entries of an n × n symmetric matrix A such that deg p ≤ γ(ln n − ln ε) and

|ln haf A − p(A)| ≤ ε

provided A = (
ai j
)

is a real symmetric matrix satisfying

∣∣1 − ai j

∣∣ ≤ δ for all i, j.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.3 A connected
3-regular graph with no
perfect matchings

Similarly, for any δ > 0, fixed in advance, the polynomial p can be computed in
nO(ln n−ln ε) time.

The proofs of Theorems 4.1.6 and 4.1.7 closely follow the proofs of Sect. 3.7 with
necessary adjustments as in the proof of Theorem 4.1.5, see also [B16+].

Themain difficulty of dealingwith hafnians compared to dealingwith permanents
is that there appears to be no parallel theory relating hafnians to stable polynomials,
cf. Sects. 3.2–3.3, but see also Sect. 6 of [FG06] for an attempt to extend the theory
to hafnians. Consequently, there is no analogue of the van der Waerden inequality
(Theorem 3.3.2) for hafnians. As the following simple example shows, the hafnian
of a symmetric doubly stochastic matrix can be equal to 0. Indeed, if G is a graph
that is a disjoint union of an even number of triangles, and A is the adjacency matrix
of G then B = (1/2)A is a symmetric doubly stochastic matrix and haf B = 0.

Figure4.3 demonstrates a more complicated example of a 3-regular graph without
perfect matchings.

If A is the adjacency matrix of the graph on Fig. 4.3, then B = (1/3)A is a
symmetric doubly stochastic matrix and haf B = 0. On the other hand, the number
of perfect matchings in a bridgeless 3-regular graph is exponentially large in the
number of vertices [E+11].

4.2 Concentration of Hafnians of α-Conditioned Doubly
Stochastic Matrices

Although there is no hafnian analogue of the van der Waerden inequality, some of
the corollaries of that inequality can be extended to hafnians, in particular, concen-
tration of hafnians of doubly stochastic matrices with relatively uniform entries, see
Sect. 3.4.6. We start with a definition.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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4.2.1 Definition. Let A = (
ai j
)
be a symmetric matrix with zero diagonal and

positive off-diagonal entries. For α ≥ 1, we say that A is α-conditioned if

ai j1 ≤ αai j2 for all i �= j1, j2.

The goal of this section is to prove the following result.

4.2.2 Theorem. For any α ≥ 1, there is a γ = γ(α) > 0 such that if A is a 2m ×2m
symmetric doubly stochastic α-conditioned matrix with zero diagonal, we have

m−γe−m ≤ haf A ≤ mγe−m .

We follow [BS11]. First, we need to adapt the technique of matrix scaling, see
Sect. 3.5, to hafnians.

4.2.3 Scaling. Let A = (
ai j
)
be an n × n symmetric matrix with zero diagonal. We

say that A is obtained by scaling from an n × n symmetric matrix B = (
bi j
)
if

ai j = λiλ j bi j for all i, j

and some λ1, . . . ,λn . If n is even, then the hafnians of A and B are defined and

haf A =
(

n∏

i=1

λi

)
haf B.

Note that compared to scaling of general matrices, we get just n scaling factors λi ,
instead of 2n factors λi and μ j in the case of the permanent.

The following result is a more or less straightforward extension of Theorem 3.5.2
and Lemma 3.5.3.

4.2.4 Theorem. Let A = (
ai j
)

be an n × n symmetric matrix with zero diagonal
and positive off-diagonal entries. Then there exists a unique n × n symmetric doubly
stochastic matrix B = (

bi j
)

and unique positive λ1, . . . ,λn such that

bi j = λiλ j ai j for all i, j.

The matrix B can be found as the minimum point of the convex function

f (X) =
∑

1≤i �= j≤n

xi j ln
xi j

ai j

on the polyhedron of n × n symmetric doubly stochastic matrices X with zero diag-
onal, in which case

f (B) = 2
n∑

i=1

ln λi .

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Let C = C(A) ⊂ R
n be the convex set defined by

C =
⎧
⎨

⎩x = (x1, . . . , xn) :
∑

1≤i �= j≤n

ai j e
xi +x j ≤ n

⎫
⎬

⎭

and let x0 = (ξ1, . . . , ξn) where ξi = ln λi . Then x0 is the unique maximum point of
the linear function �(x) = x1 + . . . + xn on C.

Proof. The proof of the first part is very similar to the proof of Theorem 3.5.2 and
therefore omitted. To prove the second part, we observe that the point x0 lies on the
boundary of ∂C that is a smooth strictly convex hypersurface defined by the equation

∑

1≤i �= j≤n

ai j e
xi +x j = n,

cf. Sect. 2.1.1.3. Moreover, the gradient of g(x) = ∑
i �= j ai j exi +x j at x0 is (2, . . . , 2),

from which it follows that the affine hyperplane H defined by the equation �(x) =
�(x0) is tangent to ∂C at x0. Since C is convex, H is the supporting affine hyperplane
at x0 and hence x0 is an extremal point of �. Then x0 has to be the maximum point,
because � is unbounded from below on C. �

Our next result is a version of Lemma 3.5.6 for hafnians.

4.2.5 Lemma. Let A be anα-conditioned n×n symmetric matrix with zero diagonal.
Suppose that A is obtained by scaling from a doubly stochastic symmetric n×n matrix
B. Then B is α2-conditioned.

Proof. Let λ1, . . . ,λn be the scaling factors so that

bi j = λiλ j ai j for all i, j.

Let us choose two 1 ≤ i �= j ≤ n. Then

∑

k �=i, j

aikλiλk =
∑

k �=i, j

bik = 1 − bi j (4.2.5.1)

and ∑

k �=i, j

a jkλ jλk =
∑

k �=i, j

b jk = 1 − bi j . (4.2.5.2)

Comparing (4.2.5.1) and (4.2.5.2) and using that A is α-conditioned, we conclude
that

λi ≤ αλ j for all i, j,

from which B is α2-conditioned. �

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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We prove Theorem 4.2.2 by induction onm, for which we need yet another lemma
which bounds the product of the scaling factors of an α-conditioned matrix.

4.2.6 Lemma. For n > 2, let A = (
ai j
)

be an α-conditioned n × n symmetric
matrix with zero diagonal. Suppose that

∑

1≤i �= j≤n

ai j = n

and that ∣∣∣∣∣∣
1 −

∑

j : j �=i

ai j

∣∣∣∣∣∣
≤ β

n
for i = 1, . . . , n

and some

0 ≤ β ≤ n − 2

2α
.

Suppose that A is obtained from a symmetric doubly stochastic matrix B = (
bi j
)

by
scaling, so that

bi j = λiλ j ai j for all i, j

and some positive λ1, . . . ,λn. Then

0 ≤
n∑

i=1

ln λi ≤ 8β2α

n
.

Proof. Let us define

δi = 1 −
∑

j : j �=i

ai j for i = 1, . . . , n,

so that
n∑

i=1

δi = 0 (4.2.6.1)

and

|δi | ≤ β

n
for i = 1, . . . , n. (4.2.6.2)

Let us define an n × n matrix X = (
xi j
)
by

xi j = ai j + wi j where wi j = δi + δ j

n − 2
for i �= j.
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and xii = 0 for i = 1, . . . , n. We observe that X is a symmetric n × n matrix with
row and column sums 1 and zero diagonal. Moreover, since A is α-conditioned, we
have

ai j ≥ 1

(n − 1)α
for all i �= j (4.2.6.3)

while by (4.2.6.2), we have

∣∣wi j

∣∣ ≤ 2β

n(n − 2)
≤ 1

nα
(4.2.6.4)

and hence xi j ≥ 0, so X is doubly stochastic.
By Theorem 4.2.4,

n∑

i=1

ln λi ≤ 1

2

∑

1≤i �= j≤n

xi j ln
xi j

ai j
= 1

2

∑

1≤i �= j≤n

(
ai j + wi j

)
ln

ai j + wi j

ai j

≤ 1

2

∑

1≤i �= j≤n

(
ai j + wi j

) wi j

ai j
= 1

2

∑

1≤i �= j≤n

(
wi j + w2

i j

ai j

)
.

Now, by (4.2.6.1)

∑

1≤i �= j≤n

wi j = 1

n − 2

∑

1≤i �= j≤n

(δi + δ j ) = 0

and by (4.2.6.2)–(4.2.6.4),

∑

1≤i �= j≤n

w2
i j

ai j
≤ n(n − 1)

4β2α(n − 1)

n2(n − 2)2
≤ 16β2α

n
,

which proves the upper bound for
∑n

i=1 ln λi . To prove the lower bound, we note
that x = (0, . . . , 0) is a feasible point of the set C(A) of Theorem 4.2.4 and hence

n∑

i=1

ln λi ≥ 0.

�

4.2.7 Proof of Theorem 4.2.2. All implicit constants in the “O” notation below
depend only on α.

For a set I ⊂ {1, . . . , 2m}, let A(I ) denote the submatrix of A consisting of
the entries ai j with i, j ∈ I . Hence A(I ) is a symmetric α-conditioned with zero
diagonal. Let B(I ) be the doubly stochastic matrix obtained from A(I ) by scaling.
We prove by induction on k = 1, . . . , m that
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haf B(I ) = exp

⎧
⎨

⎩−k + O

⎛

⎝
k∑

j=1

1

j

⎞

⎠

⎫
⎬

⎭ where |I | = 2k. (4.2.7.1)

Let I ⊂ {1, . . . , 2m} be a subset such that |I | = 2k > 2. Let us pick an i ∈ I . To
simplify the notation somewhat, we denote B(I ) just by B and assume without loss
of generality that i = 1. We use the row expansion (4.1.1.3):

haf B =
∑

j∈I\{1}
b1 j haf B j , (4.2.7.2)

where B j is the matrix obtained from B by crossing out the 1st and the j th row
and the 1st and the j th column. Note that (4.2.7.2) represents haf B as a convex
combination of haf B j .

By Lemma 4.2.5, the matrix B is α2-conditioned. Since B is doubly stochastic,
it follows that the entries of B do not exceed α2/(2k − 1). Let σ j be the sum of the
matrix entries of B j . Hence

σ j = 2k − 4 + O

(
1

k

)
. (4.2.7.3)

Let us scale B j to the total sum of entries 2k − 2, so we define

B̂ j = 2k − 2

σ j
B j for j ∈ I \ {1}.

Then

haf B j =
(

σ j

2k − 2

)k−1

haf B̂ j for j ∈ I \ {1}

and by (4.2.7.3) we conclude that

haf B j = exp

{
−1 + O

(
1

k

)}
haf B̂ j . (4.2.7.4)

To estimate haf B̂ j , we apply Lemma 4.2.6. Let us scale B̂ j to a doubly stochastic
matrix. The doubly stochastic matrix we get is the same matrix we obtain from
A(I \ {1, j}) by scaling, that is, the matrix B(I \ {1, j}).

Since B j is obtained by crossing out two rows and two columns of a doubly
stochastic matrix B, the row and column sums of B j do not exceed 1, but since the
entries of B do not exceed α2/(2k − 1), the row and column sums of B j are at least

1 − 2α2

2k − 1
.



4.2 Concentration of Hafnians of α-Conditioned Doubly Stochastic Matrices 107

By (4.2.7.3), the absolute value of the difference between any row or column sum of
B̂ j and 1 is O(1/k).

Applying Lemma 4.2.6, we conclude that for all k ≥ γ1(α), we have

haf B̂ j = exp

{
O

(
1

k

)}
haf B (I \ {1, j}) , (4.2.7.5)

where γ1(α) is some positive constant. We use a trivial estimate

haf B = eO(1) provided k < γ1(α). (4.2.7.6)

Combining (4.2.7.6), (4.2.7.5), (4.2.7.2) and the induction hypothesis, we complete
the proof of (4.2.7.1). �

4.2.8 Remark. The gist of Theorem 4.2.2 is the lower bound for haf A. As one can
see from the proof, we get a much better upper bound combining the inequalities of
Theorem 4.1.4 and Corollary 3.4.5.

4.3 Hafnians and Pfaffians

4.3.1 Pfaffian. Let n be a positive even integer, n = 2m, and let A = (
ai j
)
be an

n × n skew-symmetric matrix, so that ai j = −a ji for all 1 ≤ i, j ≤ n. The Pfaffian
of A is defined as

Pf A = 1

m!2m

∑

σ∈Sn

(sgn σ)

m∏

i=1

aσ(2i−1)σ(2i), (4.3.1.1)

see, for example, Sect. 1 of Chap. VI of [We97] or Chap.29 of [Pr94]. Note that
while different permutations σ may contribute the same product in (4.3.1.1), all those
products are counted with the same sign: if σ1 = σ2τ , where τ is the transposition,
τ = (2i − 1, 2i), say, then sgn σ1 = − sgn σ2 but since A is skew-symmetric, the
signs of monomials in (4.3.1.1) corresponding to σ1 and σ2 coincide. Similarly, if
σ1 = σ2τ where τ is the product of two transpositions, τ = (2i1−1, 2i2−1)(2i1, 2i2),
then sgn σ1 = sgn σ2 and the signs of monomials corresponding to σ1 and σ2

coincide.
One can of course define Pf A for an arbitrary matrix A by (4.3.1.1) but then the

Pfaffian of an arbitrary matrix will coincide with the Pfaffian of its skew-symmetric
part:

Pf A = Pf

(
A − AT

2

)
.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Assuming that A is a skew-symmetric complex matrix, we may identify with A the
exterior 2-form ωA ∈ ∧2

C
n ,

ωA =
∑

1≤i< j≤n

ai j ei ∧ e j ,

where e1, . . . , en is the standard basis of Cn . In this case,

ωA ∧ . . . ∧ ωA︸ ︷︷ ︸
m times

= (m!Pf A) e1 ∧ . . . ∧ en . (4.3.1.2)

Let G be an n × n complex matrix. Then the matrix B = GT AG is skew-symmetric
and

ωB =
∑

1≤i< j≤n

ai j (Gei ) ∧ (Ge j ).

Since
(Ge1) ∧ . . . ∧ (Gen) = (det G) (e1 ∧ . . . ∧ en) ,

it follows from (4.3.1.2) that

Pf (G AGT ) = (det G)Pf A. (4.3.1.3)

Equation (4.3.1.3) allows us to compute Pf A efficiently: indeed, for every 2m ×2m
skew-symmetricmatrix A, one can easily compute amatrixG such that A = GT K G,

where K is a 2m × 2m block-diagonal matrix with blocks

(
0 1

−1 0

)
, so

K =

⎛

⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 . . . 0 0
−1 0 0 0 . . . 0 0
. . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0 0 0 1
0 0 . . . 0 0 −1 0

⎞

⎟⎟⎟⎟⎟⎟⎠
, (4.3.1.4)

see, for example, Sect. 21 of [Pr94]. Then

Pf A = Pf
(
GT K G

) = (det G)Pf K = det G.

4.3.2 Perfect matchings in directed graphs. Let �H be a directed graph with set
{1, . . . , n} of vertices, no loops and at most one edge �i j or �j i connecting any two
vertices i and j . We assume that n is an even integer, n = 2m. A collection I ={−→

i1i2, . . . ,
−→

in−1in

}
of pairwise disjoint edges of �H is called a perfect matching of �H .
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We define sgn I = sgn σ where σ ∈ Sn is a permutation such that σ(k) = ik for
k = 1, . . . , n (as before, the sign of I does not depend on the order in which we list
the edges of I ).

Let I and J be two perfect matchings in �H then the union I ∪ J is a cycle cover
� of �H by even cycles (that is, cycles having an even length), cf. Fig. 4.4.

We call a cycle of � evenly oriented if, when we choose an orientation of the
cycle, the number of edges co-oriented with the cycle is even. Otherwise, we call
the cycle oddly oriented. Since the cycle is even, the definition does not depend on
the choice of an orientation of the cycle. For example, on Fig. 4.4, the 6-cycle is
evenly oriented while the 4- and 2-cycles are oddly oriented.

4.3.3 Lemma. For any two perfect matchings I and J of �H, we have

(sgn I )(sgn J ) = (−1)k,

where k is the number of evenly oriented cycles in I ∪ J .

Proof. First, we observe that if the conclusion of the lemma holds for �H , it also
holds for the graph obtained from �H by reversing the direction of one edge. Indeed,
if that edge belongs neither to I nor to J then reversing its direction does not change
sgn I , sgn J or k. If the edge belongs to I and to J both, then reversing its direction
changes both sgn I and sgn J . However, since that edge forms a 2-cycle in I ∪ J ,
which is always oddly oriented, cf. Fig. 4.4, changing the direction of the edge does
not change the number of evenly oriented cycles. Finally, if the edge belongs to I
and not to J then changing the direction of the edge reverses sgn I , leaves sgn J
intact and changes k by 1.

Therefore, without loss of generality, we assume that all cycles of length greater
than 2 in I ∪ J are oriented, cf. Fig. 4.5.

In this case, k is the number of cycles of � of length greater than 2. We define two
permutations σ, τ ∈ Sn as follows: We number the cycles of �, listing the cycles of
length greater than 2 first, list the vertices of the first cycle in the order of the cycle,
then the vertices of the second cycle in the order of the cycle, etc., just obtaining a
permutation i1 . . . in . We define σ(l) = il for l = 1, . . . , n. To define τ (l), we first
determine the cycle in which the l-th vertex il lies. If il lies in a cycle of length greater
than 2, we let τ (l) to be the next vertex of the same cycle in the order of the cycle.
If il lies in the cycle of length 2, we let τ (l) = il .

Fig. 4.4 A cycle cover � of
�H
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Fig. 4.5 Oriented cycles
and a 2-cycle
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For example, for the cycle cover on Fig. 4.5, we define σ(l) = il for l = 1, . . . , 12
and τ (1) = i2, τ (2) = i3, τ (3) = i4, τ (4) = i5, τ (5) = i6, τ (6) = i1, τ (7) = i8,
τ (8) = i9, τ (9) = i10, τ (10) = i7, τ (11) = i11 and τ (12) = i12, in which case σ

corresponds to the perfect matching
−→
i1i2,

−→
i3i4,

−→
i5i6,

−→
i7i8,

−→
i9i10,

−→
i11i12 and τ corresponds

to the perfect matching
−→
i2i3,

−→
i4i5,

−→
i6i1,

−→
i8i9,

−→
i10i7,

−→
i11i12.

We have
(sgn I )(sgn J ) = (sgn σ)(sgn τ ) = sgn

(
τσ−1

)
.

However, τσ−1 is the permutation that is the product of k even cycles, so

sgn
(
τσ−1

) = (−1)k .

For the example on Fig. 4.5, we have τσ−1 = (i1i2i3i4i5i6) (i7i8i9i10) �

4.3.4 Theorem. Let A be a skew-symmetric n × n matrix, where n = 2m is an even
integer. Then

(Pf A)2 = det A.

Proof. The result immediately follows from (4.3.1.3) and the fact that det K = 1 for
the matrix K defined by (4.3.1.4). It is instructive, however, to give a combinatorial
proof along the lines of the proof of Theorem 4.1.4.

Let �G be a complete directed graph with set {1, . . . , n} of vertices and edges �i j for
all pairs i, j including i = j . We introduce weights ai j on the edges �i j (in particular,
loops �i i have weight 0).

We write
det A =

∑

��
(sgn ��)

∏

�i j∈��
ai j , (4.3.4.1)

where the sum is taken over all directed cycle covers �� of �G and sgn �� is defined as
the sign of the corresponding permutation, cf. Sect. 3.1.3. Note that sgn �� depends
only on the cycle structure of ��, that is, on the number cycles of each length.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.6 Reversing the
orientation of an odd cycle

Suppose that �� contains a cycle of an odd length (an odd cycle). Since A is
skew-symmetric, reversing the orientation of an odd cycle changes the sign of the
corresponding term in (4.3.4.1), cf. Fig. 4.6.

Consequently, cycle covers �� in (4.3.4.1) containing an odd cycle cancel each
other out, and so we can write

det A =
∑

�� has no odd cycles

(−1)c(��)
∏

�i j∈��
ai j , (4.3.4.2)

where c(��) is the number of cycles in ��.
Next, let G be the complete undirected graphwith set {1, . . . , n} of vertices and no

loops and let Ĝ be a directed graph obtained by orienting the edges of G arbitrarily,
so that for every pair i �= j exactly one edge �i j or �j i is included in Ĝ. Then we can
write (4.3.1.1) as

Pf A =
∑

I=
{−→

i1i2,...,
−→

in−1in

}
(sgn I )ai1i2 · · · ain−1in ,

where the sum is takenover all perfectmatchings I of Ĝ, cf. Sect. 4.3.2.Consequently,

(Pf A)2 =
∑

I=
{−→

i1i2,...,
−→

in−1in

}

J=
{ −→

j1 j2,...,
−→

jn−1 jn

}

(sgn I )(sgn J )ai1i2 · · · ain−1in a j1 j2 · · · a jn−1 jn ,

where the sum is taken over all ordered pairs (I, J ) (we allow I = J and count

such pairs once). The union of edges
−→
i1i2, . . .,

−→
in−1in ,

−→
j1 j2, . . .,

−→
jn−1 jn is a cycle

cover � of Ĝ, where each cycle has an even length, cf. Fig. 4.4. Let c>2(�) be
the number of cycles of � of length greater than 2 (hence c>2(�) = 2 for the
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cycle cover on Fig. 4.4). Then � can be represented as an ordered union I ∪ J of
vertex-disjoint perfect matchings I and J in 2c>2(�) ways. By Lemma 4.3.3, the
product (sgn I )(sgn J ) is independent on the representation, which allows us to
define

ε(�) = (sgn I )(sgn J )

for perfect matchings I and J whose union is the cycle cover �. Hence we can write

(Pf A)2 =
∑

� has no odd cycles

ε(�)2c>2(�)
∏

�i j∈�

ai j , (4.3.4.3)

Furthermore, since A is skew-symmetric, the cycle cover obtained by reversing
the orientation of a single edge in Ĝ contributes the same monomial to (4.3.4.3).
Moreover, since the cycle cover � of the undirected graph G can be oriented in
2c>2(�) ways, we can rewrite (4.3.4.3) as

(Pf A)2 =
∑

�� has no odd cycles

ε(��)(−1)c2(��)
∏

�i j∈��
ai j , (4.3.4.4)

where the sum is taken over all oriented cycle covers �� of the complete directed
graph �G by even cycles and c2(��) is the number of 2-cycles in ��. By Lemma
4.3.3, ε(��) = (−1)c>2(�) and comparing (4.3.4.2) and (4.3.4.4), we complete the
proof. �

4.3.5 Pfaffian orientation. In view of Theorem 4.3.4, formula (4.3.1.3) and the fact
that the Pfaffian can be efficiently computed, the following question is of interest:
Given a 2m × 2m symmetric matrix A = (

ai j
)
with zero diagonal, is it possible to

reverse the signs of some of the entries of A (that is, replace some ai j by −ai j ) so
that the resulting matrix B is skew-symmetric and haf A = Pf B?

Given such a matrix A, let us consider an undirected graph G A with set {1, . . . , n}
of vertices and edges {i, j} provided ai j �= 0. We obtain a skew-symmetric matrix
B if for every unordered pair {i, j} we reverse the sign of exactly one entry among
ai j and a ji . This procedure is encoded by making the graph G A directed: for every
edges {i, j} of G A we introduce the directed edge �i j if the sign of ai j is not reversed.
We denote the resulting directed graph by �G B . If haf A = Pf B, we say that �G B is
the Pfaffian orientation of G A.

Our next goal is to sketch a proof the famous result of Kasteleyn [Ka63], see also
[TF61], that if G A is a planar graph then it has a Pfaffian orientation, which can be
constructed efficiently. We follow [LP09].

We call an even cycle C in G A relevant if the graph obtained by deleting from
G A the vertices of C and all adjacent edges contains a perfect matching.

4.3.6 Lemma. Let �G B be an orientation of G A. Suppose that every relevant cycle
C is oddly oriented. Then sgn I = sgn J for any two perfect matchings in �G B.
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Fig. 4.7 A drawing of a
planar graph
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Proof. As follows from Lemma 4.3.3, (sgn I )(sgn J ) = 1 for any two perfect
matchings I and J . �

Let us consider a drawing of a directed planar graph �G in the plane. Connected
components of R2 \ �G are called faces of �G. There is one unbounded face, and there
can be no, one or several bounded faces. By choosing the orientation of the plane, we
can talk about the edges of any bounded face oriented clockwise or counterclockwise,
see Fig. 4.7.

For example, for the graph on Fig. 4.7, we have:
For the face I , the edges 3, 6 and 5 are oriented clockwise while the edge 8 is

oriented counterclockwise;
For the face I I , the edges 4 and 9 are oriented clockwise while the edges 6 and

7 is oriented counterclockwise;
For the face I I I , the edge 1 is oriented clockwise while the edges 3, 4 and 2 are

oriented counterclockwise.
The set of edges 1, 2, 7, 9, 8, 5 form a cycle C . With respect to that cycle, the

edges 1, 9 and 5 are oriented clockwise while the edges 2, 7 and 8 are oriented
counterclockwise.

Note that if the same edge belongs to two bounded faces then in one of the faces
it is oriented clockwise and in the other counterclockwise.

Similarly, we define the orientation of the edges of any directed cycle drawn on
the plane.

We will use the Euler formula relating the vertices, edges and faces of a planar
graph G. To apply Euler’s formula, we need the graph G to be 2-connected, meaning
that every two vertices of G can be connected by at least 2 vertex-disjoint (with
the exception of the endpoints) paths in G, so that G has no “loose ends” and the
embedding of G looks like the one on Fig. 4.8.

4.3.7 Lemma. Let �G be a drawing of a 2-connected directed graph, without loops
or multiple edges, in the plane. Suppose that every bounded face has an odd number
of edges oriented clockwise. Then every relevant cycle C is �G oddly oriented.

Proof. Since C is relevant, the graph obtained from �G by deleting the vertices of C
and all adjacent edges contains a perfect matching and, therefore, the number v of
vertices of �G lying inside the region bounded by C is even, so
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Fig. 4.8 A drawing of a
2-connected planar graph

v ≡ 0 mod 2.

Let w be the number of vertices of C and hence also the number of edges of C . Let
f be the number of faces lying inside C , let ci be the number of clockwise oriented
edges in the i-th face and let c be the number of clockwise edges in C . Since each ci

is odd, we have
f∑

i=1

ci ≡ f mod 2.

Let e be the number of edges inside C . Then by the Euler’s formula,

(v + w) − (e + w) + f = 1

and hence
e = v + f − 1

Since every interior edge is counted as clockwise for exactly one face, we have

f∑

i=1

ci = e + c

and hence
f ≡ e + c = c + v + f − 1 mod 2.

It follows then that
c ≡ 1 mod 2,

as required. �

Now it is clear how to construct a Pfaffian orientation of a planar graph: we build
the graph edge by edge so that at most one new bounded face appears at each step.
We orient the edge in such a way that the new face has an odd number of clockwise
oriented edges, see Fig. 4.9.
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Fig. 4.9 Constructing a Pfaffian orientation of a graph

As follows by Lemmas 4.3.6 and 4.3.7, for any two perfect matchings I and J
in the graph, we have sgn I = sgn J and hence haf A = |Pf B| for the skew-
symmetric matrix B constructed from a given symmetric matrix A. If it so happens
that haf A = −Pf B, we reverse the sign of the first row and column of B.

Galluccio and Loebl proved that if the genus of the graph G A is g then haf A can
be written as a sum of 4g Pfaffians [GL99]. While no efficient algorithm for checking
whether a given graph has a Pfaffian orientation appears to be known, in the case of a
bipartite graph there is a polynomial time algorithm [R+99], see [Th06] for a survey.

4.3.8 Hafnians as expectations of random Pfaffians. Let A = (
ai j
)
be a non-

negative real symmetric n × n matrix, where n = 2m is even. For 1 ≤ i < j ≤ n let
ξi j be real valued independent random variables such that

E ξi j = 0 and var ξi j = 1 for all 1 ≤ i < j ≤ n.

Let us define a skew-symmetric random matrix B = (
bi j
)
by

bi j =

⎧
⎪⎨

⎪⎩

ξi j
√

ai j if i < j

−ξi j
√

ai j if i > j

0 if i = j.

It is not hard to see that
haf A = E (Pf B)2 .
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As in Sect. 3.9.1, the Markov inequality implies that the probability that (Pf B)2

overestimates haf A by a factor of λ > 1 does not exceed 1/λ. In [Ba99] it is shown
that if ξi j are independent standard Gaussian then with probability approaching 1 as
n grows, we have

(Pf B)2 > cn haf A

for some absolute constant c > 0 (one can choose c ≈ 0.28). As in Sect. 3.9, we can
get a better constant c ≈ 0.56 by switching to complex Gaussian ξi j and replacing
(Pf B)2 by |Pf B|2, but unlike in the case of the permanent there does not seem to
exist a viable quaternionic version of the estimator.

In [R+16], the authors identified a class ofmatrices A for which the approximation
factor is subexponential in n.

4.4 Multidimensional Permanents

4.4.1 Permanents of tensors. Let A = (
ai1...id

)
be a d-dimensional cubical n ×

. . . × n array (tensor) of complex numbers. We define the d-dimensional permanent
of A by

PER A =
∑

σ2,...,σd∈Sn

n∏

i=1

aiσ2(i)...σd (i),

where the sum is taken over all (d −1)-tuples (σ2, . . . ,σd) of permutations sampled
independently from the symmetric group Sn . In particular, if d = 2 then A is an n×n
matrix and PER A = per A, cf. Sect. 3.1.1.

If ai1...id ∈ {0, 1} for all 1 ≤ i1, . . . , id ≤ n, then PER A is naturally interpreted
as the number of perfect matchings in the d-partite hypergraph H encoded by A: the
vertices of H are split among d classes, where each class contains exactly n vertices,
numbered 1, . . . , n and the edges of H consist of the d-tuples (i1, . . . , id) where
ai1...id = 1 and i j denotes the i j -th vertex from the j-th class. A perfect matching in
H is a collection of edges containing each vertex exactly once.

For example, the perfect matching in a 3-partite hypergraph pictured on Fig. 4.10
corresponds to the pair of permutations (σ2,σ3), where

σ2 =
(
1 2 3 4
2 3 1 4

)
and σ3 =

(
1 2 3 4
3 2 1 4

)
.

Hence for d ≥ 3 it is an NP-hard problem to decide whether PER A > 0 for a given
d-dimensional array A with 0-1 entries.

Given a d-dimensional array A, we call a (k, j)-th slice of A the set of all entries
ai1...id where ik = j . Hence if d = 2 a slice is a row (k = 1) or a column (k = 2) of
the matrix A and for a general d, each entry of A is contained in exactly d slices and
each slice consists of some nd−1 entries of A.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.10 A perfect
matching in a 3-partite
hypergraph

Similarly to (3.1.1.2), we obtain the “(1, 1)-slice expansion” of the permanent of
a tensor:

PER A =
∑

1≤i2,...,id≤n

a1i2...id PER Ai2...id , (4.4.1.1)

where Ai2...id is the d-dimensional (n − 1) × . . . × (n − 1) array obtained from A by
crossing out all slices containing a1i2...id .

Some (but far from all) of the results and methods developed in Chap. 3 extend to
multi-dimensional permanents. In particular, the permanents of tensors whose entries
are close to 1 can be efficiently approximated, cf. Theorems 3.6.1 and 3.6.2.

4.4.2 Theorem. For an integer d ≥ 2 let us choose

δd = sin
α

2
cos

(d − 1)α

2

for some α = αd > 0 such that

(d − 1)α <
2π

3
.

Hence 0 < δd < 1 and we can choose δ2 = 0.5, δ3 = √
6/9 ≈ 0.272, δ4 ≈ 0.1845

and δd = �(1/d).

(1) For any d-dimensional cubical array Z = (
zi1...id

)
of complex numbers satisfying

∣∣1 − zi1...id

∣∣ ≤ δd for all 1 ≤ i1, . . . , id ≤ n

we have
PER Z �= 0.

(2) For any 0 < δ < δd there is γ = γ(δd/δ) > 0 and for any ε > 0 and integer
n ≥ 1 there is a polynomial p = pd,n,ε,δ in the entries of a d-dimensional
n × . . . × n array A such that

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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deg p ≤ γ(ln n − ln ε)

and
|ln PER A − p(A)| ≤ ε

provided A = (
ai1...id

)
is a cubical d-dimensional n × . . . × n array of complex

numbers satisfying

∣∣1 − ai1...id

∣∣ < δ for all 1 ≤ i1, . . . , id ≤ n.

Proof. The proof is similar to those of Sect. 3.6. In Part (1), let α = αd be a real
number such that 0 < (d − 1)α < 2π/3 and

δd = sin
α

2
cos

(d − 1)α

2
.

We prove by induction on n that if A = (
ai1...id

)
and B = (

bi1...id

)
are two n × . . .×n

arrays of complex numbers satisfying

∣∣1 − ai1...id

∣∣ ≤ δd and
∣∣1 − bi1...id

∣∣ ≤ δd

for all 1 ≤ i1, . . . , id ≤ n and such that A and B differ in at most one slice, then
PER A �= 0, PER B �= 0 and the angle between two non-zero complex numbers
PER A and PER B does not exceed α.

For n = 1, then clearly PER A �= 0 and PER B �= 0 and the angle between the
two numbers does not exceed 2 arcsin δd < α. Assuming that n > 1, without loss of
generality, we assume that B is obtained from A by replacing a1i2...,id by b1i2...id for
all 1 ≤ i2, . . . , id ≤ n. By (4.4.1.1), we have

PER A =
∑

1≤i2,...,id≤n

a1i2...id PER Ai2...id and

PER B =
∑

1≤i2,...,id≤n

b1i2...id PER Ai2...id ,

where Ai2...id is the (n −1)× . . .×(n −1) array obtained from A by crossing out all d
slices containing a1i2...id . Next, we observe that any two arrays Ai2 ...id and A j2... jd , up to
a permutation of slices, differ in at most (d − 1) slices. By the induction hypothesis
we have PER Ai2...id �= 0 for all 1 ≤ i2, . . . , id ≤ n and the angle between any two
non-zero complex numbers PER Ai2...id and PER A j2... jd does not exceed (d − 1)α.
Applying Lemma 3.6.4, we conclude that PER A �= 0, PER B �= 0 and the angle
between PER A and PER B does not exceed

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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2 arcsin
δd

cos (d−1)α
2

= α,

which completes the proof of Part (1).
To prove Part (2), let J = Jd,n be the n × . . . × n tensor filled with 1s. We define

a polynomial
g(z) = PER (J + z(A − J ))

of degree at most n, so that

g(0) = PER J = (n!)d−1 and g(1) = PER A.

Moreover, for β = δd/δ > 1 we have g(z) �= 0 whenever |z| ≤ β. We choose a
branch of f (z) = ln g(z) for |z| ≤ 1 such that f (0) is real and use Lemma 2.2.1 to
claim that for some k ≤ γ(ln n − ln ε) the Taylor polynomial

pk(z) = f (0) +
k∑

m=1

f (m)(0)

m! zm

approximates f (z) for |z| ≤ 1 within an additive error ε. We need to show that
pk(1) is a polynomial of degree at most k in the entries of A. To finish the proof as
in Sect. 3.6.7, it suffices to show that g(m)(0) is a polynomial in the entries of A of
degree at most m. Indeed,

g(m)(0) = dm

dzm

∑

σ2,...,σd∈Sn

n∏

i=1

(
1 + z

(
aiσ2(i)...σd (i) − 1

)) ∣∣∣
z=0

=
∑

σ2,...,σd∈Sn

∑

(i1,...,im )

(
ai1σ2(i1)...σd (i1) − 1

) · · · (aimσ2(im )...σd (im ) − 1
)
,

where the last sum is taken over all ordered m-tuples of distinct indices (i1, . . . , im).
Therefore,

g(m)(0) = ((n − m)!)d−1

×
∑

(i11,...,i1m )

(i21,...,i2m )

.........
(id1,...,idm )

(
ai11i21...id1 − 1

) (
ai12i22...id2 − 1

) · · · (ai1mi2m ...idm − 1
)
,

where the sum is taken over ordered d-tuples of ordered m-tuples
(
i j1, . . . , i jm

)
for

1 ≤ j ≤ d of distinct indices i jk . �

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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For fixed d and δ, the polynomial p can be computed in nO(ln n−ln ε) time. Later,
in Theorem 5.5.3, we prove that PER A �= 0 if the �1 distance of each slice of a
d-dimensional n× . . .×n complex cubical array A to the array of 1 s does not exceed
γdnd−1, where γd = (α(d − 1))d−1/dd and α ≈ 0.278 is an absolute constant.

If the entries of the tensor are real positive, we obtain better bounds, although
for d > 2 the improvement is not as substantial as in the case of permanents, see
Sect. 3.7.

4.4.3 Theorem. For an integer d ≥ 2, let

δd = tan
π

4(d − 1)

so that δ2 = 1, δ3 = √
2 − 1 ≈ 0.41, δ4 = 2 − √

3 ≈ 0.27, etc.

(1) Let us fix real δ and τ where

0 ≤ δ < δd and τ = (1 − δ) sin

(
π

4(d − 1)
− arctan δ

)
> 0

Let Z = (
zi1...id

)
be a d-dimensional n ×· · ·×n array of complex numbers such

that for all 1 ≤ i1, . . . , id ≤ n we have

∣∣1 − � zi1...id

∣∣ ≤ δ and
∣∣ zi1...id

∣∣ ≤ τ .

Then
PER Z �= 0.

(2) For any integer d ≥ 2 and any 0 ≤ δ < δd there is a constant γ = γ(δd/δ) > 0
and for any positive integer n and real 0 < ε < 1 there is a polynomial p =
pn,d,δ,ε of deg p ≤ γ (ln n − ln ε) in the entries of a d-dimensional n × · · · × n
array such that

|ln PER A − p(A)| ≤ ε

for any d-dimensional n ×· · ·×n array A = (
ai1...id

)
of real numbers satisfying

∣∣1 − ai1...id

∣∣ ≤ δ for all 1 ≤ i1, . . . , id ≤ n.

Proof. The proof is similar to those of Sect. 3.7. LetUn = Un(d, δ, τ ) be the set of all
d-dimensional n × . . . × n complex tensors Z = (

zi1...id

)
that satisfy the conditions

of Part (1). We prove by induction on n that for any two tensors A, B ∈ Un that differ
in at most one slice, we have PER A �= 0, PER B �= 0 and the angle between the

complex numbers does not exceed
π

2(d − 1)
.

If n = 1 then clearly PER A �= 0, PER B �= 0 and the angle between PER A
and PER B does not exceed

http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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2 arctan
τ

1 − δ
≤ π

2(d − 1)
− 2 arctan δ <

π

2(d − 1)
.

Suppose that n > 1. Without loss of generality, we assume that B is obtained by A
by replacing a1i2...id by b1i2...id for all 1 ≤ i2, . . . , id ≤ n. We have

PER A =
∑

1≤i2,...,id≤n

a1i2...id PER Ai2...id and

PER B =
∑

1≤i2,...,id≤n

b1i2...id PER Ai2...id ,

where Ai2...id is the (n −1)× . . .×(n −1) array obtained from A by crossing out all d
slices containing a1i2...id . Next, we observe that any two arrays Ai2 ...id and A j2... jd , up to
a permutation of slices, differ in at most (d − 1) slices. By the induction hypothesis,
we have PER Ai2...id �= 0 for all 1 ≤ i2, . . . , id ≤ n and that the angle between any
two non-zero complex numbers PER Ai2...id and PER A j2... jd does not exceed π/2.
Applying Part (3) of Lemma 3.7.3, we conclude that PER A �= 0, PER B �= 0 and
that the angle between PER A and PER B does not exceed

2 arctan δ + 2 arcsin
τ

1 − δ
= π

2(d − 1)
.

To prove Part (2), Let J = Jn,d be the n × · · · × n tensor filled with 1 s and let us
define a univariate polynomial

r(z) = PER (J + z(A − J )).

Suppose that
− α ≤ � z ≤ 1 + α and | z| ≤ ρ (4.4.3.1)

for some α > 0 and ρ > 0. Then

1 − (1 + α)δ ≤ � (
1 + z

(
ai1...id − 1

)) ≤ 1 + (1 + α)δ and
∣∣ (

1 + z
(
ai1...id − 1

))∣∣ ≤ ρδ.

Let us choose a sufficiently small α = α(δ) > 0 so that δ′ = (1 + α)δ < δd and let

ρ = 1 − δ′

δ
sin

(
π

4(d − 1)
− arctan δ′

)
.

Then by Part (1) we have r(z) �= 0 for all z satisfying (4.4.3.1). Let φ(z) = φδd/δ(z)
be a univariate polynomial constructed in Lemma 2.2.3, such that

φ(0) = 0, φ(1) = 1

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and
−α ≤ �φ(z) ≤ 1 + α and |φ(z)| ≤ ρ

provided
|z| ≤ β for some β = β(δd/δ) > 1.

We define the composition
g(z) = r(φ(z)).

Then g(z) is a univariate polynomial and deg g = (deg r)(degφ) = O(n), where the
implicit constant in the “O” notation depends only on δd/δ. In addition,

g(0) = r(0) = PER J = (n!)d−1 and g(1) = r(1) = PER A

and
g(z) �= 0 provided |z| ≤ β.

The proof is finished as in Sect. 3.7.5. We choose a branch of f (z) = ln g(z) in the
disc |z| ≤ 1 so that

f (0) = (d − 1) ln n! and f (1) = ln PER A.

Let pm(z) be the Taylor polynomial of f (z) of degree m computed at z = 0. By
Lemma 2.2.1, we can choose m = O(ln n − ln ε), where the implicit constant in the
“O” notation depends on δd/δ, so that pm(1) approximates f (1) within an additive
error of ε. It remains to show that the k-th derivative f (k)(0) is a polynomial of degree
k in the entries of the tensor A. From Sect. 2.2.2, it suffices to show that g(k)(0) is
a polynomial of degree k in the entries of the tensor A. We showed in the proof of
Theorem 4.4.2 that r (k)(0) is a polynomial in the entries of A of degree k and we
compute the expansion of the composition g(z) = r(φ(z)) as in Sect. 3.7.5. �

For fixed d and δ, the polynomial p in Part (2) of Theorem 4.4.3 can be computed
in nO(ln n−ln ε) time.

Figure4.11 pictures regions for the entries of a tensor allowable by Theorem 4.4.2
(disc) and allowable by Theorem 4.4.3 (rectangle).

4.4.4 Scaling. Similarly to the scaling of matrices (see Sect. 3.5), one can define the
scaling of tensors. We say that the d-dimensional n × . . . × n tensor A = (

ai1...id

)
is

obtained from the d-dimensional n × . . . × n tensor B = (
bi1...id

)
by scaling if there

exist λk j > 0 for k = 1, . . . , d and j = 1, . . . , n such that

ai1...id = λ1i1 · · · λdid bi1...id for all 1 ≤ i1, . . . , id ≤ n.

Clearly, in this case,

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.11 A neighborhood
for the entries of A (disc)
where PER A is
approximated by Theorem
4.4.2 and a neighborhood for
the entries of A (rectangle)
where PER A is
approximated by Theorem
4.4.3 10

PER A =

⎛

⎜⎜⎝
∏

1≤k≤d
1≤ j≤n

λk j

⎞

⎟⎟⎠PER B. (4.4.4.1)

We say that B is d-stochastic if the entries of B are non-negative:

bi1...id ≥ 0 for all 1 ≤ i1, . . . , id ≤ n

and the sum of entries in every slice is 1:

∑

1≤i1,...,ik−1,ik+1,...,id≤n

bi1...ik−1i ik+1...id = 1

for all k = 1, . . . , d and all i = 1, . . . , n. (4.4.4.2)

4.4.5 Theorem. Any d-dimensional cubical tensor A = (
ai1...id

)
with real positive

entries
ai1...,id > 0 for all 1 ≤ i1, . . . , id ≤ n

can be obtained by scaling from a unique d-stochastic tensor B. The tensor B can
be found as a necessarily unique minimum of the convex function

f (X) =
∑

1≤i1,...,id≤n

xi1...id ln
xi1...id

ai1...id

on the convex polytope of d-stochastic n × . . . × n tensors X. Thus we have

bi1...id = λ1i1 · · ·λdid ai1...id for all 1 ≤ i1, . . . , id ≤ n

and some λk j > 0 for k = 1, . . . , d and j = 1, . . . , n. The numbers λk j are unique
up to a rescaling
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λk j −→ τkλk j for all k, j,

for some τ1, . . . , τd > 0 such that τ1 · · · τd = 1.

The proof is very similar to the proof of Theorem 3.5.2, see [BS11] and also [Fr11]
for extensions in the case of non-negative tensors A. We note that

f (B) =
∑

1≤i1,...,id≤n

bi1...id ln
bi1...id

ai1...id

=
∑

1≤i1,...,id≤n

bi1...id

(
d∑

k=1

ln λkik

)

=
d∑

k=1

n∑

j=1

ln λk j

⎛

⎜⎜⎝
∑

1≤i1,...,id≤n
ik= j

bi1...id

⎞

⎟⎟⎠ =
d∑

k=1

n∑

j=1

ln λk j .

For d ≥ 3, it is relatively easy to construct an example of a d-stochastic tensor B
such that PER B = 0, see [BS11]. The situation with the d-dimensional permanent
is somewhat similar to that with the hafnian, cf. Sect. 4.2: while there is no van
der Waerden-type lower bound, there is concentration of the permanents of well-
conditioned d-stochastic tensors.

4.4.6 Definition. Let A = (
ai1...id

)
be a d-dimensional tensor with positive entries.

For α ≥ 1, we say that A is α-conditioned if

ai1...ik ...id ≤ αai1...i ′
k ...id for all 1 ≤ i1, . . . , ik, i ′

k, . . . , id ≤ n

and all k = 1, . . . , d. (4.4.6.1)

In words: a tensor with positive entries isα-conditioned if the ratio of any two entries
which differ in one index does not exceed α.

4.4.7 Lemma. Let A be an α-conditioned d-dimensional cubical tensor and let B
be a d-stochastic tensor obtained from A by scaling. Then B is α2-conditioned.

The proof is very similar to that of Lemma 3.5.6, see also [BS11] for details.
Our next goal is to prove the concentration of d-dimensional permanents of well-

conditioned d-stochastic tensors.

4.4.8 Theorem. For any real α ≥ 1 and any integer d > 1 there exists γ =
γ(d,α) > 0 such that if A is an α-conditioned d-stochastic n × . . . × n array then

n−γe−n(d−1) ≤ PER A ≤ nγe−n(d−1).

The proof follows the same scheme as the proof of Theorem 4.2.2 for hafnians, see
also [BS11].

First, we need the dual description of the scaling factors λk j in Theorem 4.4.5, cf.
Theorem 4.2.4.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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4.4.9 Lemma. Let A = (
ai1...id

)
be a d-dimensional n × . . .×n tensor with positive

entries and let λk j > 0 : 1 ≤ k ≤ d, 1 ≤ j ≤ n be real numbers such that the tensor
B = (

bi1...id

)
where

bi1...id = λ1i1 · · ·λdid ai1...id for all 1 ≤ i1, . . . , id ≤ n

is d-stochastic. Then the point
ξk j = ln λk j

is a maximum point of the linear function � : Rd×n −→ R,

�(x) =
d∑

k=1

n∑

j=1

xk j for x = (
xk j
)

on the convex set C = C(A) ⊂ R
d×n defined by the inequality

C =
⎧
⎨

⎩x = (
xk j
) :

∑

1≤i1,...,id≤n

ai1...id exp

⎧
⎨

⎩

d∑

k=1

n∑

j=1

xk j

⎫
⎬

⎭ ≤ n

⎫
⎬

⎭ .

The proof is similar to that of Theorem 4.2.4.
Next, we show that if a d-dimensional tensor which is close to d-stochastic is

scaled to d-stochastic, then the product of the scaling factors is close to 1.

4.4.10 Lemma. Let A = (
ai1...id

)
be an α-conditioned d-dimensional n × . . . × n

tensor such that the sum of entries of A in the (k, j)-th slice is 1 − δk j , where

∣∣δk j

∣∣ ≤ β

n
for k = 1, . . . , d and j = 1, . . . , n

and some
0 ≤ β ≤ n

αd−1d
.

Suppose further that the sum of the entries of A is n. Let B = (
bi1...id

)
be a d-stochastic

tensor obtained from A by scaling, so that

bi1...id = λ1i1 · · ·λdid ai1...id for all 1 ≤ i1, . . . , id ≤ n

and some λk j > 0. Then

0 ≤
d∑

k=1

n∑

j=1

ln λk j ≤ αd−1β2d2

n
.
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Proof. Since the point xk j = 0 belongs to the convex set C of Lemma 4.4.9, we
conclude that

d∑

k=1

n∑

j=1

ln λk j ≥ 0.

Since the sum of entries of A is n, we have

n∑

j=1

δk j = 0 for k = 1, . . . , d. (4.4.10.1)

Let us define a tensor X = (
xi1...id

)
by

xi1...id = ai1...id + wi1...id where wi1...id = 1

nd−1

d∑

k=1

δkik .

It follows by (4.4.10.1) that the sum of entries of X in every slice is 1. Since A is
α-conditioned, we have

ai1...id ≥ 1

(αn)d−1
for all i1, . . . , id (4.4.10.2)

and hence X is d-stochastic. From Theorem 4.4.5,

d∑

k=1

n∑

j=1

ln λk j ≤
∑

1≤i1,...,id≤n

xi1...id ln
xi1...id

ai1...id

=
∑

1≤i1,...,id≤n

(
ai1...id + wi1...id

)
ln

(
1 + wi1...id

ai1...id

)

≤
∑

1≤i1,...,id≤n

(
ai1...id + wi1...id

) wi1...id

ai1...id

=
∑

1≤i1,...,id≤n

w2
i1...id

ai1...id

.

Since ∣∣wi1...id

∣∣ ≤ βd

nd
,
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by (4.4.10.2) we conclude that

d∑

k=1

n∑

j=1

ln λk j ≤
∑

1≤i1,...,id≤n

w2
i1...id

ai1...id

≤ nd β2d2

n2d
(αn)d−1 = αd−1β2d2

n
.

�

Now we are ready to prove Theorem 4.4.8.

4.4.11 Proof of Theorem 4.4.8. All implied constants in the “O” notation below
depend on α and d only.

For subsets I1, I2, . . . , Id ⊂ {1, . . . , n} such that |I1| = . . . = |Id |, we denote
by A (I1, . . . , Id) the d-dimensional tensor consisting of the entries ai1...id where
ik ∈ Ik for k = 1, . . . , d. Let B (I1, . . . , Id) be the d-stochastic tensor obtained from
A (I1, . . . , Id) by scaling. We prove by induction on m = |I1| = . . . = |Id | that

PER B (I1, . . . , Id) = exp

⎧
⎨

⎩−m(d − 1) + O

⎛

⎝
m∑

j=1

1

j

⎞

⎠

⎫
⎬

⎭ (4.4.11.1)

Substituting m = n, we get the desired result.
Let I1, . . . , Id ⊂ {1, . . . , n} be subsets such that |I1| = . . . = |Id | = m and let

us choose i1 ∈ I1. To simplify the notation, we denote B (I1, . . . , Id) just by B and
also assume that i1 = 1. We use the (1, 1)-slice expansion (4.4.1.1):

PER B =
∑

i2∈I2,...,id∈Id

b1i2...id PER Bi2...id , (4.4.11.2)

where Bi2...id is the tensor obtained from B by crossing out all slices containing b1i2 ...id .
Note that (4.4.11.2) represents PER B as a convex combination of PER Bi2...id .

By Lemma 4.4.7, the tensor B is α2-conditioned. Since B is d-stochastic, the
entries of B do not exceed α2(d−1)/md−1. Let σi2...id be the sum of the entries of
Bi2...id . Hence

σi2...id = m − d + O

(
1

m

)
(4.4.11.3)

(we obtain a lower bound when we subtract from the total sum of the entries of B
the sums over d slices and we obtain an upper bound if we add back the sums over
all pairwise intersections of slices).

We scale Bi2...id to the total sum of entries m − 1, so we define

B̂i2...id = m − 1

σi2...id

Bi2...id .
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Then

PER Bi2...id =
(

σi2...id

m − 1

)m−1

PER B̂i2...id

and by (4.4.11.3), we conclude that

PER Bi2...id = exp

{
−(d − 1) + O

(
1

m

)}
PER B̂i2...id . (4.4.11.4)

To estimate PER B̂i2...id we use Lemma 4.4.10. Let us scale B̂i2...id to a d-stochastic
tensor. The resulting d-stochastic tensor is the same tensor we obtain from A(I \{i1},
. . . , Id\{id})by scaling, that is, the tensor B (I1 \ {i1}, . . . , Id \ {id}). Since the tensor
B is d stochastic and the entries of B do not exceed α2(d−1)/md−1, we conclude that
the sum of entries in every slice of Bi2...id is at most 1 and at least 1 − α2(d−1)/m.
Consequently, the absolute value of the difference of the sum of entries in every
slice B̂i2...id and 1 is O(1/m). Applying Lemma 4.4.10, we conclude that as long as
m > γ1(α, d) for some constant γ1 depending on α and d only, we have

PER B̂i2...id = exp

{
O

(
1

m

)}
PER B (I1 \ {i1}, . . . , Id \ {id}) . (4.4.11.5)

We use a trivial estimate

PER B = eO(1) provided m ≤ γ1(α, d). (4.4.11.6)

Applying the induction hypothesis to PER B (I1 \ {i1}, . . . , Id \ {id}) and combining
(4.4.11.6), (4.4.11.5) and (4.4.11.2), we complete the proof of (4.4.11.1). �

4.4.12 Algorithmic applications. It follows fromTheorem 4.4.5, Lemma 4.4.7 and
Theorem4.4.8 that for anyα ≥ 1, fixed in advance, the permanent of a d-dimensional
α-conditioned n×. . .×n tensor can be efficiently (in polynomial time) approximated
within a polynomial in n factor of nγ for some γ = γ(α, d). As is argued in [BS11],
this allows us to distinguish d-partite hypergraphs that are far from having a perfect
matchings from d-partite hypergraphs that have sufficiently many perfect matchings
even when “sufficiently many” means that the probability to hit a perfect matching
at random is exponentially small.

Let V = V1 ∪ . . . ∪ Vd be the set of vertices of a d-partite hypergraph H , where
|V1| = . . . = |Vd | = n and for every edge S of H we have |S ∩ V1| = . . . =
|S ∩ Vd | = 1. We identify each “part” Vi with a copy of the set {1, . . . , n}, fix an
0 < ε < 1 and construct a d-dimensional n × . . . × n tensor A = (

ai1...id

)
by

ai1...id =
{
1 if (i1, . . . , id) is an edge of H

ε otherwise.
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Then H is 1/ε-conditioned, and applying Theorem 4.4.5, Lemma 4.4.7 and Theorem
4.4.8 we can estimate in polynomial time PER A within a multiplicative factor of
nγ(ε,d). Now, if every matching in H consists of at most (1 − δ)n edges for some
δ > 0, we have PER A ≤ εδn(n!)d−1. On the other hand, if H has at least βn(n!)d−1

perfect matchings for some 0 < β ≤ 1, we have PER A ≥ βn(n!)d−1. As long as
εδ < β, by computing PER A within a factor of nγ(ε,d), we can distinguish these two
cases.

We note that similar results can be obtained for the d-dimensional version of a
hafnian, cf. [BS11]. We also note that there is a Bregman-Minc type upper bound,
cf. Sect. 3.4, for d-dimensional permanents of 0–1 tensors [DG87].

The entropy-based method of proof of the Bregman-Minc inequality found in
[Ra97] (see Sect. 3.4) was further applied to obtain non-trivial upper bounds for the
number of independent sets in graphs [Ka01], the number of Hamiltonian cycles
in graphs [CK09] and hypergraphs of particular types [LL13], [LL14]. In contrast,
lower bounds are usuallymuch harder to come by. A recent breakthrough byKeevash
[Ke14], [Ke15] establishes the existence and the asymptotic of the number of designs,
which can be interpreted as a result on a lower bound for multidimensional perma-
nents for some special (very symmetric) arrays with 0–1 entries, see also [Po15] for
lower bounds complementing [LL13] and [LL14].

Efficient algorithms for computing thed-dimensional permanent exactly in special
cases are discussed in [CP16].

4.5 Mixed Discriminants

4.5.1 Definition. Let Q1, . . . , Qn be n × n real symmetric matrices. Then

p (x1, . . . , xn) = det (x1Q1 + . . . + xn Qn)

is a homogeneous polynomial of degree n and its mixed term

∂n

∂x1 · · · ∂xn
p (x1, . . . , xn) = D (Q1, . . . , Qn)

is called themixed discriminantof Q1, . . . , Qn .Mixeddiscriminantswere introduced
by A.D. Alexandrov in his work on mixed volumes [Al38], see also [Le93].

We can express the mixed discriminant as a polynomial in the entries of the

matrices Q1, . . . , Qn as follows: suppose that Qk =
(

qk
i j

)
for 1 ≤ i, j ≤ n and

k = 1, . . . , n. Then

x1Q1 + . . . + xn Qn = (
x1q

1
i j + . . . + xnqn

i j

)
for 1 ≤ i, j ≤ n

and hence

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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det (x1Q1 + . . . + xn Qn) =
∑

σ∈Sn

(sgn σ)

n∏

i=1

(
x1q

1
iσ(i) + . . . + xnqn

iσ(i)

)

and, consequently,

D(Q1, . . . , Qn) =
∑

σ,τ∈Sn

(sgn σ)

n∏

i=1

qτ (i)
iσ(i) (4.5.1.1)

Thus the mixed discriminant D(Q1, . . . , Qn) can be interpreted as a version of the
determinant of an n × n × n array whose 2-dimensional slices are identified with the
matrices Q1, . . . , Qn , cf. Sect. 4.4.

As follows by (4.5.1.1), the mixed discriminant is linear in each argument. It is
immediate from the definition that if T is an n × n matrix then

D
(
T ∗ Q1T, . . . , T ∗ QnT

) = (det T )2 D (Q1, . . . , Qn) , (4.5.1.2)

where T ∗ is the transpose of T .
In general, we obtain the monomial expansion

det (x1Q1 + . . . + xn Qn)

=
∑

m1,...,mn≥0
m1+...+mn=n

xm1
1 · · · xmn

n

m1! · · · mn! D

⎛

⎝Q1, . . . , Q1︸ ︷︷ ︸
m1 times

, . . . , Qn, . . . , Qn︸ ︷︷ ︸
mn times

⎞

⎠ .
(4.5.1.3)

Indeed, it follows from the definition that D(Q, . . . , Q) = n! det Q for every n × n
symmetric matrix Q. For x = (x1, . . . , xn), let Qx = x1Q1 + . . . + xn Qn . Then

det Qx = 1

n! D (Qx , . . . , Qx )

and we obtain (4.5.1.3) since the mixed discriminant is linear in each argument and
symmetric, that is, does not depend on the order of matrices.

Mixed discriminants generalize permanents: given an n × n matrix A = (
ai j
)
, let

us define n × n symmetric matrices Q1, . . . , Qn by Qi = diag (ai1, . . . , ain), that
is, Qi is the diagonal matrix having the i-th row of A on the diagonal. Then

det (x1Q1 + . . . + xn Qn) =
n∏

j=1

(
n∑

i=1

xi ai j

)

and hence D (Q1, . . . , Qn) = per A, cf. Sect. 3.2.1.
Just as the permanent of a non-negative matrix is non-negative, the mixed dis-

criminant of positive semidefinite matrices is non-negative.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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4.5.2 Lemma. Suppose that Q1, . . . , Qn are positive semidefinite n × n matrices.
Then

D (Q1, . . . , Qn) ≥ 0.

Moreover, if Q1, . . . , Qn are positive definite then D (Q1, . . . , Qn) > 0.

Proof. Since D (Q1, . . . , Qn) is a continuous function of Q1, . . . , Qn , without loss
of generality we may assume that Q1, . . . , Qn are positive definite, in which case we
prove that D (Q1, . . . , Qn) > 0. We proceed by induction on n. The case of n = 1
is clear. Suppose that n > 1. Since Q1 is positive definite, we can write Q1 = T ∗T
for some invertible n × n matrix T and then by (4.5.1.2)

D (Q1, . . . , Qn) =D
(
T ∗T, Q1, . . . , Qn

)

=(det T )2D
(

I,
(

T −1
)∗

Q2T −1, . . . ,
(

T −1
)∗

Qn T −1
)

,
(4.5.2.1)

where I is the n ×n identity matrix. For i = 1, . . . , n, let ui be the matrix having 1 in
the i-th diagonal position and zeros elsewhere, so that I = u1 + . . . + un . Denoting

Q′
k = (

T −1
)∗

Qk T −1 for k = 2, . . . , n (4.5.2.2)

we conclude that Q′
2, . . . , Q′

n are positive definite matrices and by linearity we have

D
(
I, Q′

2, . . . , Q′
n

) =
n∑

i=1

D
(
ui , Q′

2, . . . , Q′
n

)
. (4.5.2.3)

On the other hand, as follows from the definition or from (4.5.1.1), we have

D
(
ui , Q′

2, . . . , Q′
n

) = D
(
Q′

2i , . . . , Q′
ni

)
, (4.5.2.4)

where Q′
ki is the (n − 1) × (n − 1) symmetric matrix obtained from Q′

k by crossing
out the i th row and i th column. Since the matrices Q′

2i , . . . Q′
ni are positive definite,

by the induction hypothesis we conclude that D
(
Q′

2i , . . . , Q′
ni

)
> 0 and combining

(4.5.2.1)– (4.5.2.4), we conclude the proof. �
4.5.3 Combinatorial applications of mixed discriminants. For a vector u =
(u1, . . . , un), we denote by u ⊗ u the n × n matrix whose (i, j)-th entry is ui u j .
Clearly, u ⊗ u is positive semidefinite. Various combinatorial applications of mixed
discriminants are based on the following formula:

D (u1 ⊗ u1, . . . , un ⊗ un) = (det [u1, . . . , un])
2 , (4.5.3.1)

where u1, . . . , un ∈ R
n are vectors and [u1, . . . , un] is the n×n matrix with columns

u1, . . . , un . By continuity, it suffices to check (4.5.3.1) when u1, . . . , un is a basis of
R

n and then it follows by (4.5.1.2) from the obvious special case when u1, . . . , un is
the standard orthonormal basis of Rn .
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The following application is from Chap. V of [BR97]. Let G be a connected
(undirected, with no loops or multiple edges) graph with n vertices and m edges, and
suppose that the edges are colored with n −1 different colors. Let us direct the edges
arbitrarily and consider the n × m incidence matrix A = (

ai j
)
of G, where

ai j =

⎧
⎪⎨

⎪⎩

1 if vertex i is the beginning of edge j,

−1 if vertex i is the end of edge j,

0 otherwise.

Let us remove an arbitrary row of A and let u1, . . . , am be the columns of the resulting
matrix, interpreted as vectors from R

n−1. For k = 1, . . . , n − 1, let Jk ⊂ {1, . . . , m}
be the set of indices of edges colored into the k-th color and let

Qk =
∑

j∈Jk

u j ⊗ u j for k = 1, . . . , n − 1.

Then Q1, . . . , Qn−1 are positive semidefinite matrices and D (Q1, . . . , Qn−1) is the
number of spanning trees in G having exactly one edge of each color. Indeed, by
linearity of the mixed discriminant and (4.5.3.1), we have

D (Q1, . . . , Qn−1) =
∑

j1∈J1,..., jn−1∈Jn−1

(
det

[
u j1 , . . . , u jn−1

])2
.

As is well-known (see, for example, Chap. 4 of [E+84]), we have

det
[
u j1 , . . . , u jn

] =
{

±1 if the edges j1, . . . , jn−1 form a spanning tree in G

0 otherwise.

4.5.4 Doubly stochastic n-tuples. Pursuing an analogy with the permanent, we
say that the n-tuple (Q1, . . . , Qn) of n × n positive semidefinite matrices is doubly
stochastic if

tr Q1 = . . . = tr Qn = 1 and Q1 + . . . + Qn = I,

the identity matrix. Indeed, if Q1, . . . , Qn are diagonal matrices then (Q1, . . . , Qn)

is doubly stochastic if and only if the n × n matrix A whose i-th row is the diagonal
of Qi is doubly stochastic.

The following result was conjectured by Bapat [Ba89] and proved by Gurvits
[Gu06], [Gu08].

4.5.5 Theorem. Let (Q1, . . . , Qn) be a doubly stochastic n-tuple. Then

D (Q1, . . . , Qn) ≥ n!
nn

.
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The proof follows the approach of Sect. 3.3, which in turn follows [Gu08].

4.5.6 Lemma. Let Q1, . . . , Qn be n × n positive definite matrices. Then the poly-
nomial

p (x1, . . . , xn) = det (x1Q1 + . . . + xn Qn)

is H-stable and the coefficient of every monomial of degree n is positive.

Proof. Let us choose z1, . . . , zn ∈ C such that  zk > 0 for k = 1, . . . , n and
suppose that p (z1, . . . , zn) = 0. Then the matrix

Q =
n∑

k=1

zk Qk

is not invertible and hence there is a vector y ∈ C
n \ {0} such that Qy = 0. We

consider the standard inner product

〈x, y〉 =
n∑

k=1

xk yk for x = (x1, . . . , xn) and y = (y1, . . . , yn)

in Cn . Thus we have

0 = 〈Qy, y〉 =
n∑

k=1

zk〈Qk y, y〉. (4.5.6.1)

However, since Q1, . . . , Qn are positive definite matrices, the numbers 〈Qk y, y〉
are positive real, which contradicts (4.5.6.1) since the imaginary part of each zk is
positive.

Finally, by (4.5.1.3) and Lemma 4.5.2 the coefficient of xm1
1 . . . xmn

n in p where
m1 + . . . + mn = n is positive. �

Next, we discuss the capacity of p, see also Lemma 3.3.3.

4.5.7 Lemma. Let Q1, . . . , Qn be a doubly stochastic n-tuple and let

p(x1, . . . , xn) = det (x1Q1 + . . . + xn Qn) .

Then

inf
x1,...,xn>0

p (x1, . . . , xn)

x1 · · · xn
= 1.

Proof. Let us define a function f : Rn −→ R by

f (t1, . . . , tn) = ln det
(
et1 Q1 + . . . + etn Qn

)

and let H ⊂ R
n be the hyperplane t1 + . . . + tn = 0. It suffices to show that

the minimum of f on H is attained at t1 = . . . = tn = 0. By Lemma 4.5.6 and

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Sect. 2.1.1.3, the function f is convex so it suffices to verify that the gradient of f
at t = 0 is proportional to the vector (1, . . . , 1).

Since
∇ (ln det X) = (X∗)−1,

denoting

S(t) =
n∑

k=1

etk Qk,

we obtain

∂ f

∂tk

∣∣∣
t1=...=tn=0

= etk tr
(
Qk S−1(t)

) ∣∣∣
t1=...=tn=0

= tr Qk = 1

and the proof follows. �

4.5.8 Proof of Theorem 4.5.5. The proof follows by Lemmas 4.5.6, 4.5.7 and
Corollary 2.4.6. �

There is a notion of scaling for n-tuples of positive semidefinite matrices. Just as
an n × n matrix can be scaled to a doubly stochastic matrix, see Theorem 3.5.2, an
n-tuple of positive definite matrices can be scaled to a doubly stochastic n-tuple. The
following result was obtain by Gurvits and Samorodnitsky [GS02].

4.5.9 Theorem. Let Q1, . . . , Qn be n × n positive definite matrices. Then there is
a doubly stochastic n-tuple (B1, . . . , Bn), an invertible n × n matrix T and positive
reals τ1, . . . , τn such that

Qk = τk T ∗ Bk T for k = 1, . . . , n.

Proof. As in the proof of Lemma 4.5.7, we consider the function f : Rn −→ R

defined by
f (t1, . . . , tn) = ln det

(
et1 Q1 + . . . + etn Qn

)

and the hyperplane H defined by the equation t1 + . . . + tn = 0. It is not hard to see
that f attains its minimum on H at some point (x1, . . . , xn) where the gradient of
f is proportional to (1, . . . , 1). As in the proof of Lemma 4.5.7, we obtain that for
some real α and

S = ex1 Q1 + . . . + exn Qn,

we have

∂ f

∂tk

∣∣∣
t1=x1,...,tn=xn

= exk tr
(
Qk S−1

) = α for k = 1, . . . , n. (4.5.9.1)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Since

nα =
n∑

k=1

exk tr
(
Qk S−1

) = tr

(
n∑

k=1

exk Qk S−1

)
= n,

we conclude that
α = 1. (4.5.9.2)

Since S is positive definite, we can write it as S = T ∗T for an invertible n ×n matrix
T . We define

Bk = exk
(
T −1

)∗
Qk T −1 and τk = e−xk for k = 1, . . . , n.

Clearly, B1, . . . , Bn are positive definite matrices,

Qk = τk T ∗ Qk T for k = 1, . . . , n

and
n∑

k=1

Bk = (
T ∗)−1

(
n∑

k=1

exk Qk

)
T −1 = (

T ∗)−1
ST −1 = I.

By (4.5.9.1) and (4.5.9.2) we get

tr Bk = exk tr
(
T −1)∗ Qk T −1 = exk tr Qk T −1 (T −1)∗ = exk tr Qk S−1 = 1,

which completes the proof. �

In [GS02], Gurvits and Samorodnitsky also discuss scaling of n-tuples of positive
semidefinite matrices.

4.6 A Version of Bregman–Minc Inequalities for Mixed
Discriminants

Theorem 4.5.5 is an extension of the van derWaerden inequality from permanents of
doubly stochastic matrices, see Sect. 3.3, to mixed discriminants of doubly stochastic
n-tuples ofmatrices.One can ask if there is a version of theBregman -Minc inequality
for mixed discriminants, see Sect. 3.4. Some weak version of such an inequality is
suggested in [B16a]. For what follows, it is convenient to associate with an n × n
matrix Q the quadratic form q : Rn −→ R,

q(x) = 〈Qx, x〉 for x ∈ R
n,

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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where 〈·, ·〉 is the standard inner product in R
n . We define the eigenvalues, trace

and determinant of q as those of Q. Similarly, we define the mixed discriminant
D(q1, . . . , qn) of quadratic forms q1, . . . , qn −→ R as D(Q1, . . . , Qn), where Qi

is the matrix of qi . We observe that if we choose a different orthonormal basis inRn ,
the matrices Qi change Qi := U ∗ QiU for some orthogonal n × n matrix U , so that
the eigenvalues of Qi and the mixed discriminant D(Q1, . . . , Qn) do not change.

In particular, q1, . . . , qn : Rn −→ R is a doubly stochastic n-tuple of quadratic
forms, if the forms q1, . . . , qn are positive semidefinite, tr qi = 1 for i = 1, . . . , n
and

n∑

i=1

qi (x) = ‖x‖2,

where ‖ · ‖ is the standard Euclidean norm in R
n .

4.6.1 Definition. Given a real α ≥ 1, we say that an n × n positive definite matrix
Q is α-conditioned if

λmax(Q) ≤ αλmin(Q),

where λmax and λmin are respectively the largest and the smallest eigenvalues of Q.
Equivalently, Q is α-conditioned if for the corresponding quadratic form, we have

q(x) ≤ αq(y) for all x, y ∈ R
n such that ‖x‖ = ‖y‖ = 1. (4.6.1.1)

An n-tuple (Q1, . . . , Qn) of n × n positive definite matrices is α-conditioned if
each matrix Qk is α-conditioned for k = 1, . . . , n and

qi (x) ≤ αq j (x) for all 1 ≤ i, j ≤ n and all x ∈ R
n,

where q1, . . . , qn are the corresponding quadratic forms.

Definition 4.6.1 extends Definition 3.5.5 from α-conditioned positive matrices
to n-tuples of n × n positive definite matrices. The following result is obtained in
[B16a].

4.6.2 Theorem. Let (Q1, . . . , Qn) be an α-conditioned doubly stochastic n-tuple
of positive definite n × n matrices. Then

D (Q1, . . . , Qn) ≤ nα2
e−(n−1).

Combining Theorems 4.5.5 and 4.6.2, we conclude that for a fixed α ≥ 1, the mixed
discriminant of an α-conditioned doubly stochastic n-tuple of matrices varies within
a polynomial in n factor of e−n , just like in the case of permanents of doubly sto-
chastic matrices, cf. Sect. 3.4.6, hafnians of doubly stochastic symmetric matrices
(Theorem 4.2.2) and similarly to multidimensional permanents of d-stochastic ten-
sors (Theorem 4.4.8). It would be interesting to find out if in Theorem 4.6.2 we

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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can just require that the eigenvalues of the matrices Q1, . . . , Qn do not exceed α/n
(that would have been a true extension of the Bregman - Minc inequality to the
mixed discriminant). By and large, the proof follows the same scheme as the proofs
of Theorems 4.2.2 and 4.4.8. It proceeds by combining induction and scaling.

To proceed with the induction, we need a way to pass from an n-tuple of n × n
matrices to (n − 1)-tuple of (n − 1) × (n − 1) matrices. We do so by considering
a restriction of the quadratic forms onto a subspace. Let q1, . . . qn : Rn −→ R be
quadratic forms and let L ⊂ R

n be a subspace, dim L = m. Then the restrictions
qi |L : L −→ R are quadratic forms on L . Since the subspace L inherits theEuclidean
structure from R

n , we can define the mixed discriminant D (q1|L , . . . , qm |L).
First, we obtain a version of recursive formulas (3.1.1.2), (4.1.1.3) and (4.4.1.1).

4.6.3 Lemma. Let q1, . . . , qn : Rn −→ R be quadratic forms and let

qn(x) =
n∑

i=1

λi 〈ui , x〉2,

where λ1, . . . ,λn are the eigenvalues and u1, . . . , un are the corresponding unit
eigenvectors of qn. Then

D (q1, . . . , qn) =
n∑

i=1

λi D
(
q1|u⊥

i , . . . , qn−1|u⊥
i

)
,

where u⊥
i ⊂ R

n is the orthogonal complement of ui .

Proof. Since the mixed discriminant is linear in each argument, it suffices to prove
that

D
(
q1, . . . , qn−1, 〈u, x〉2) = D

(
q1|u⊥, . . . , qn−1|u⊥) (4.6.3.1)

for any unit vector u ∈ R
n . Let us choose an orthonormal basis in R

n containing
u as the last vector, and let Q1, . . . , Qn−1 be the matrices of q1, . . . , qn−1 in this
basis. Then the matrices Q′

1, . . . , Q′
n−1 of the restrictions q1|u⊥, . . . , qn−1|u⊥ are

the (n − 1) × (n − 1) upper left submatrices of Q1, . . . , Qn−1 while the matrix En

of 〈u, x〉 is the matrix whose (n, n)-th entry is 1 and all other entries are 0. It then
follows that

∂

∂tn
det (t1Q1 + . . . + tn−1Qn−1 + tn En) = det

(
t1Q′

1 + . . . + tn−1Q′
n−1

)

and (4.6.3.1) follows by Definition 4.5.1. �

Next, we show that if we scale an α-conditioned n-tuple of positive definite
matrices to a doubly stochastic n-tuple, we get anα2-conditioned n-tuple of matrices
(cf. Lemmas 3.5.6, 4.2.5 and 4.4.7). As we will have to deal with restrictions of
quadratic forms, we prove the statement in more generality.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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4.6.4 Lemma. Let q1, . . . , qn : Rn −→ R be an α-conditioned n-tuple of positive
definite quadratic forms, let L ⊂ R

n be an m-dimensional subspace, let T : L −→
R

n be a linear transformation such that ker T = {0}, let τ1, . . . , τm > 0 be reals,
and let us define quadratic forms p1, . . . , pm : L −→ R by

pi (x) = τi qi (T x) for x ∈ L and i = 1, . . . , m.

Suppose that the m-tuple (p1, . . . , pm) is doubly stochastic. Then the m-tuple
(p1, . . . , pm) is α2-conditioned.

Proof. Let us define q : Rn −→ R by

q(x) =
m∑

i=1

τi qi (x) for x ∈ R
n.

Then by (4.6.1.1) the form q is α-conditioned, so

λmax(q) ≤ αλmin(q),

where λmax(q) and λmin(q) are, respectively, the largest and the smallest eigenvalues
of q. For all x, y ∈ L such that ‖x‖ = ‖y‖ = 1, we have

1 = q(T x) ≥ λmin(q)‖T x‖2 and 1 = q(T y) ≤ λmax(q)‖T y‖2,

from which it follows that

‖T x‖2 ≤ α‖T y‖2 for all x, y ∈ L such that ‖x‖ = ‖y‖ = 1. (4.6.4.1)

Using that each quadratic form qi is α-conditioned, we deduce from (4.6.4.1) that
for all x, y ⊂ L such that ‖x‖ = ‖y‖ = 1, we have

pi (x) =τi qi (T x) ≤ τi λmax(qi )‖T x‖2 ≤ ατi λmax(qi )‖T y‖2 ≤ α2τi λmin(qi )‖T y‖2
≤ α2τi qi (T y) = α2 pi (y)

and hence each quadratic form pi is α2-conditioned.
Let us now define quadratic forms ri : L −→ R by ri (x) = qi (T x) for x ∈ L

and i = 1, . . . , m. Since the n-tuple (q1, . . . , qn) is α-conditioned, we have

ri (x) ≤ αr j (x) for all x ∈ L and all i, j.

Therefore,
tr ri ≤ α tr r j for all i, j.



4.6 A Version of Bregman–Minc Inequalities for Mixed Discriminants 139

Since
1 = tr pi = τi tr ri for i = 1, . . . , m,

we conclude that
τi ≤ ατ j for all 1 ≤ i, j ≤ m. (4.6.4.2)

Since the n-tuple (q1, . . . , qn) is α-conditioned, we deduce from (4.6.4.2) that for
all x ∈ L we have

pi (x) = τi qi (T x) ≤ ατ j qi (T x) ≤ α2τ j q j (T x) = α2 p j (x),

and the m-tuple (p1, . . . , pm) is α2-conditioned. �

The last ingredient we need to prove Theorem 4.6.2 is a one-sided version of the
inequalities of Lemmas 4.2.6 and 4.4.10.

4.6.5 Lemma. Let Q1, . . . , Qn be n × n positive definite matrices such that

n∑

i=1

tr Qi = n.

Let (B1, . . . , Bn) be a doubly stochastic n-tuple, constructed in Theorem 4.5.9, so
that

Qk = τk T ∗ Bk T for k = 1, . . . , n.

Then
D (B1, . . . , Bn) ≥ D (Q1, . . . , Qn) .

Proof. Let Q = Q1 + . . . + Qn and let λ1, . . . ,λn be the eigenvalues of Q. Then

det Q =
n∏

i=1

λi ≤
(
1

n

n∑

i=1

λi

)n

=
(
1

n
tr Q

)n

= 1.

We have

D (Q1, . . . , Qn) =
(

n∏

k=1

τk

)
(det T )2D (B1, . . . , Bn) .

In the notation of Theorem 4.5.9,

n∏

k=1

τk = exp

{
−

n∑

k=1

xk

}
= 1,

where x = (x1, . . . , xk) is the minimum point of the function
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f (t1, . . . , tn) = ln det
(
et1 Q1 + . . . + etn Qn

)

on the hyperplane t1 + . . . + tn = 0. In addition,

(det T )2 = det
(
ex1 Q1 + . . . + exn Qn

) = exp { f (x1, . . . , xn)}
≤ exp { f (0, . . . , 0)} = det (Q1 + . . . + Qn) = det Q ≤ 1,

and the proof follows. �

Now we are ready to prove Theorem 4.6.2.

4.6.6 Proof of Theorem 4.6.2. We prove a more general statement:
Let q1, . . . , qn : R

n −→ R be an α-conditioned n-tuple of positive definite
quadratic forms, let L ⊂ R

n be an m-dimensional subspace, let T : L −→ R
n be a

linear transformation such that ker T = {0} and let τ1, . . . , τm > 0 be reals. Let us
define quadratic forms pi : L −→ R by

pi (x) = τi qi (T x) for x ∈ L and i = 1, . . . , m.

Suppose that (p1, . . . , pm) is a doubly stochastic m-tuple. Then

D (p1, . . . , pm) ≤ exp

{
−(m − 1) + α2

m∑

k=2

1

k

}
. (4.6.6.1)

We obtain Theorem 4.6.2 if m = n, T = I is the identity map and τi = 1 for
i = 1, . . . , n.

We proceed to prove the above statement by induction on m.
If m = 1 then D(p1) = det p1 = 1 and the statement clearly holds.
Suppose that m ≥ 2. Let

pm(x) =
m∑

j=1

λ j 〈u j , x〉2

is the spectral decomposition of pm , where λ j are the eigenvalues and u j are the
corresponding unit eigenvectors of pm . Since tr pm = 1, we have

m∑

j=1

λ j = 1. (4.6.6.2)

Let L j = u⊥
j for j = 1, . . . , m. Hence L j ⊂ L and dim L j = m−1. Let p̂i j = pi |L j

be the restriction of pi onto L j , so p̂i j : L j −→ R are positive definite quadratic
forms. By Lemma 4.6.3,
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D (p1, . . . , pm) =
m∑

j=1

λ j D
(

p̂1 j , . . . , p̂(m−1) j
)
. (4.6.6.3)

We note that

tr p̂m j = tr pm − λ j = 1 − λ j ≥ 1 − α2

m
,

since by Lemma 4.6.4 the quadratic form pm is α2-conditioned.
Using that p̂1 j + . . . + p̂(m−1) j = ‖x‖2 for all x ∈ L j , we get

σ j =
m−1∑

i=1

tr p̂i j = (m − 1) − tr p̂m j ≤ (m − 2) + α2

m

for j = 1, . . . , m. (4.6.6.4)

We define quadratic forms ri j : L j −→ R by

ri j = m − 1

σ j
p̂i j for i = 1, . . . , m − 1 and j = 1, . . . , m.

In particular,
m−1∑

i=1

tr ri j = m − 1 for j = 1, . . . , m. (4.6.6.5)

From (4.6.6.4), we get

D
(

p̂1 j , . . . , p̂(m−1) j
) =

(
σ j

m − 1

)m−1

D
(
r1 j , . . . , r(m−1) j

)

≤
(
1 − 1

m − 1
+ α2

m(m − 1)

)m−1

D
(
r1 j , . . . , r(m−1) j

)

≤ exp

{
−1 + α2

m

}
D
(
r1 j , . . . , r(m−1) j

)
for j = 1, . . . , m.

(4.6.6.6)

Let
(
w1 j , . . . , w(m−1) j

)
be the doubly stochastic (m − 1)-tuple of quadratic forms,

wi j : L j −→ R, obtained from r1 j , . . . , r(m−1) j by scaling as in Theorem 4.5.9.
From (4.6.6.5) and Lemma 4.6.5, we have

D
(
w1 j , . . . , w(m−1) j

) ≥ D
(
r1 j , . . . , r(m−1) j

)

and hence from (4.6.6.6), we get

D
(

p̂1 j , . . . , p̂(m−1) j
) ≤ exp

{
−1 + α2

m

}
D
(
w1 j , . . . , w(m−1) j

)
. (4.6.6.7)
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Now we would like to apply the induction hypothesis to the quadratic forms

w1 j , . . . , w(m−1) j : L j −→ R.

Since the (m −1)-tuple
(
w1 j , . . . , w(m−1) j

)
is obtained by scaling from the (m −1)-

tuple
(
r1 j , . . . , r(m−1) j

)
, there is an invertible linear transformation Sj : L j −→ L j

and positive numbers μ1 j , . . . ,μ(m−1) j such that

wi j (x) =μi j ri j
(
Sj x

) = (m − 1)μi j

σ j
p̂i j (Sj x) = (m − 1)μi j

σ j
pi (Sj x)

= (m − 1)μi jτi

σ j
qi (T Sj x) for all x ∈ L j

and i = 1, . . . , m − 1. For each j = 1, . . . , m, we have a linear transformation
T Sj : L j −→ R

n with ker T Sj = {0} and hence by the induction hypothesis

D
(
w1 j , . . . , w(m−1) j

) ≤ exp

{
−(m − 2) + α2

m−1∑

k=2

1

k

}
(4.6.6.8)

for j = 1, . . . , m.
Combining (4.6.6.2), (4.6.6.3), (4.6.6.7) and (4.6.6.8), we obtain (4.6.6.1), which

completes the proof. �

4.6.7 Computing mixed discriminants. If the n-tuple (Q1, . . . , Qn) is a doubly
stochastic then by Lemma 4.5.6 we have D (Q1, . . . , Qn) ≤ det (Q1 + . . . + Qn) =
1. This, together with Theorem 4.5.5, the scaling algorithm of Theorem 4.5.9 and
the formula

D
(
λ1T ∗ B1T, . . . ,λnT ∗ BnT

) =
(

n∏

k=1

λk

)
(det T )2 D (B1, . . . , Bn) (4.6.7.1)

results in a deterministic polynomial time algorithm to approximate the mixed
discriminant D (Q1, . . . , Qn) of positive semidefinite matrices within a multiplica-
tive factor of n!/nn ≈ e−n [GS02]. A better approximation factor can be achieved by
a randomized polynomial time algorithm [Ba99], extending the permanent approx-
imation algorithm of Sect. 3.9.1. Namely, given n × n positive semidefinite matri-
ces Q1, . . . , Qn , we compute n × n matrices T1, . . . , Tn such that Qk = T ∗

k Tk for
k = 1, . . . , n. Let u1, . . . , un be vectors sampled independently at random from the
standard Gaussian distribution in R

n and let [T1u1, . . . , Tnun] be the n × n matrix
with columns T1u1, . . . , Tnun . Using formula (4.5.3.1) it is not hard to show that

D (Q1, . . . , Qn) = E (det [T1u1, . . . , Tnun])
2 ,

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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and that with probability approaching 1 as n grows we have

det ([T1u1, . . . , Tnun])
2 ≥ (0.28)n D (Q1, . . . , Qn) .

If vectors u1, . . . , un are sampled independently at random from the standard
Gaussian distribution in Cn then

D (Q1, . . . , Qn) = E |det [T1u1, . . . , Tnun]|2 ,

and that with probability approaching 1 as n grows we have

|det [T1u1, . . . , Tnun]|2 ≥ (0.56)n D (Q1, . . . , Qn) .

Finally, assume that u1, . . . , un are sampled from the standard Gaussian distribution
in the quaternionic space Hn and let [T u1, . . . , T un]C be 2n × 2n complex matrix
constructed from the n × n quaternionic matrix [T u1, . . . , T un] as in Sect. 3.9.1.
Then det [T u1, . . . , T un]C is a non-negative real,

E det [T u1, . . . , T un]C = D (Q1, . . . , Qn)

and with probability approaching 1 as n grows, we have

det [T u1, . . . , T un]C ≥ (0.76)n D (Q1, . . . , Qn) .

Assume now that the n-tuple (Q1, . . . , Qn) is α-conditioned. As follows from
Theorem 4.6.2 and Lemma 4.6.4, the scaling algorithm of Theorem 4.5.9, together
with formula (4.6.7.1) and Theorem 4.5.5, approximates the mixed discriminant
D (Q1, . . . , Qn) within a factor of nO(α2), which is polynomial in n provided α is
fixed in advance, cf. also Sects. 3.5, 4.2 and 4.4.

In their proof of the Kadison–Singer Conjecture [M+15], Marcus, Spielman and
Srivastava introduce and study the mixed characteristic polynomial

pQ1,...,Qn (x) =
n∏

i=1

(
1 − ∂

∂zi

)
det

(
x I +

n∑

i=1

zi Qi

) ∣∣∣
z1=...=zn=0

,

where Q1, . . . , Qn are real symmetric or complex Hermitian m × m matrices. If
Q1, . . . , Qn are positive semidefinite then the roots of the mixed characteristic poly-
nomial are real and necessarily non-negative. If m = n then the constant term of
pQ1,...,Qn , up to a sign, is equal to the mixed discriminant D(Q1, . . . , Qn). The rela-
tion of the mixed characteristic polynomial to the mixed discriminant is similar to
the relation of the matching polynomial of Chap.5 to the permanent and hafnian.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_5


Chapter 5
The Matching Polynomial

Known in statistical physics as the partition function of the monomer-dimer model,
the matching polynomial of a graph is an extension of the hafnian, as it enumerates
all, not necessarily perfect, matchings in the graph. The Heilmann–Lieb Theorem
asserts that the roots of the matching polynomial (with non-negative real weights on
the edges) are negative real, which allows us to efficiently approximate the polyno-
mial through interpolation anywhere away from the negative real axis. We demon-
strate the “correlation decay” phenomenon of the probability for a random matching
to contain a given vertex to be asymptotically independent on whether the matching
contains some other remote vertex. Through the Csikvári–Lelarge “lifting” argu-
ment, it allows us to lower bound the matching polynomial of a bipartite graph by
the matching polynomial of a covering tree, which produces a useful Bethe-entropy
estimate. Finally, we prove a general bound on the complex roots of the hypergraph
matching polynomial, which allows us to obtain new interpolation results for (mul-
tidimensional) permanents of matrices and tensors that are not very far from the
matrices (tensors) of all 1 s in the �1 distance on the slices.

5.1 Matching Polynomial

5.1.1 Definition. Let A = (
ai j

)
be an n×n symmetric matrix. For a positive integer

m such that 2m ≤ n, we define

hafm(A) =
∑

{i1 j1},...,{im , jm }
ai1 j1 · · · aim jm , (5.1.1.1)

where the sum is taken over all unordered collections ofm pairwise disjoint unordered
pairs {i1, j1}, . . . , {im, jm}where 1 ≤ i1, j1, . . . , im, jm ≤ n. In particular, if n is even
and n = 2m then hafm(A) = haf A. We also agree that h0(A) = 1. Thus hm(A)

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9_5
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146 5 The Matching Polynomial

enumerates all matchings consisting of m edges in a complete weighted graph with
n vertices.

We define the univariate matching polynomial by

pA(t) =
�n/2�∑

m=0

hafm(A)tm .

In statistical physics, pA(t) is known as the partition function of the “monomer-dimer
model”, where edges of the matching correspond to “dimers” while the vertices of
the graph not covered by the matching correspond to single “atoms”.

The following remarkable result was obtained by Heilmann and Lieb [HL72].

5.1.2 Theorem. Let A be an n × n symmetric matrix with non-negative entries and
let

β = βA = max
i=1,...,n

∑

j : j �=i

ai j .

Then the roots of the matching polynomial pA(t) are negative real and satisfy the
inequality

t ≤ − 1

4β
.

The bound on the roots obtained in [HL72] is, in fact, slightly better, cf. Remark
5.1.4 below.

We follow [HL72] and deduce Theorem 5.1.2 from the following result.

5.1.3 Theorem. For a symmetric n×n matrix A let us define a univariate polynomial

qA(t) =
�n/2�∑

m=0

(−1)mhm(A)tn−2m .

(1) Suppose that A is a real symmetric matrix with positive off-diagonal entries and
let Ai be the (n − 1) × (n − 1) matrix obtained from A by crossing out the i-th
row and i-th column of A for some i = 1, . . . , n. Then the roots of qA(t) and
qAi (t) are real and qAi (t) interlaces qA(t) provided n ≥ 2.

(2) Suppose that A is a non-negative real matrix. Then the roots of qA(t) are real.
(3) Let A be an n × n symmetric non-negative real matrix and let

β = βA = max
i=1,...n

∑

j : j �=i

ai j .

If qA(t) = 0 then |t | ≤ 2
√

β.

Proof. To prove Part (1), we proceed by induction on n = deg qA. If n = 2 and
i ∈ {1, 2} we have
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qA(t) = t2 − a12 and qAi (t) = t,

and hence qAi (t) indeed interlaces qA(t).
Suppose that n > 2. We split all matchings in the complete graph with vertices

{1, . . . , n} contributing to (5.1.1.1) into two classes: those that contain i and those
that do not. Then we obtain the recurrence relation:

qA(t) = tqAi (t) −
∑

j : j �=i

ai j qAi j (t), (5.1.3.1)

where Ai j is the (n−2)× (n−2) symmetric matrix obtained from A by crossing out
the i-th and j-th row and the i-th and j-th column. The polynomial qAi (t) in (5.1.3.1)
accounts for the matchings not containing i while the sum in (5.1.3.1) accounts for
thematchings containing i . We note that the highest terms of qA(t), qAi (t) and qAi j (t)
are positive (with coefficients equal to 1).

By the induction hypothesis, each qAi j (t) interlaces qAi (t) and hence by Part (1)
of Theorem 2.3.2, the polynomial

p(t) =
∑

j : j �=i

ai j qAi j (t)

interlaces qAi (t). Then by Part (2) of Theorem 2.3.2, the polynomial qAi (t) interlaces
qA(t) = tqAi (t) − p(t).

As follows by Part (1), the roots of qA(t) are real if A is a symmetric real matrix
with positive off-diagonal entries. It then follows by continuity that the roots of qA(t)
are real if A is a non-negative real matrix, which proves Part (2).

To prove Part (3), we may assume that β > 0 since the case of β = 0 is trivial.
For a subset I ⊂ {1, . . . , n} we denote by AI the submatrix of A obtained from A
by crossing out rows and columns in I . We denote qAI (t) just by qI (t) and prove by
descending induction on |I | = n − 2, n − 3, . . . , 0 that

qI (t) �= 0 and
qI (t)

qI∪{i}(t)
≥ √

β provided i /∈ I and t ≥ 2
√

β.

Indeed, if I = {1, . . . , n} \ {i, j}, we have

qI (t) = t2 −ai j , qI∪{i}(t) = t and
qI (t)

qI∪{i}(t)
= t − ai j

t
≥ 2

√
β − 1

2

√
β ≥ √

β

provided t ≥ 2
√

β.
If |I | < n − 2, using (5.1.3.1), for all i /∈ I we can write

qI (t) = tqI∪{i}(t) −
∑

j : j /∈I
j �=i

ai j qI∪{i, j}(t) (5.1.3.2)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and hence
qI (t)

qI∪{i}(t)
= t −

∑

j : j /∈I
j �=i

ai j
qI∪{i, j}(t)
qI∪{i}(t)

.

By the induction hypothesis, for t ≥ 2
√

β we have

qI∪{i, j}(t)
qI∪{i}(t)

≤ 1√
β

and hence

qI (t)

qI∪{i}(t)
≥ 2

√
β − 1√

β

∑

j : j /∈I
j �=i

ai j ≥ 2
√

β − √
β = √

β,

which completes the induction. Hence we proved that qA(t) �= 0 provided t > 2
√

β.
Since the polynomial qA(t) is even when n is even and odd when n is odd, the proof
follows. �

5.1.4 Remark. In [HL72] a slightly stronger bound is proven (by a more careful
induction): let us define

wi =
⎛

⎝
∑

j : j �=i

ai j

⎞

⎠ − min
j : j �=i
ai j>0

ai j

β1 = max
i=1,...,n

wi

β2 =1

4
max
i, j

ai j

β =max {β1,β2} .

Then qA(t) �= 0 for |t | ≥ 2
√

β. In particular, if A is the adjacency matrix of a
graph G with maximum degree �(G) > 1 of a vertex, we have qA(t) �= 0 for
|t | ≥ 2

√
�(G) − 1.

5.1.5 Proof of Theorem 5.1.2. Let qA(t) be the polynomial of Theorem 5.1.3. Then

qA(t) = tn pA

(
− 1

t2

)
.

By Part (2) of Theorem 5.1.3 it follows that the roots of pA(t) are the (necessarily
real negative) numbers −1/t2 where t are non-zero roots of qA(t). Since by Part (3)
of Theorem 5.1.3, every real root t of qA(t) satisfies |t | ≤ 2

√
β, we conclude that

all roots of pA(t) satisfy t ≤ −1/4β, as desired. �
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One immediate corollary is that the numbers hafm(A) form a log-concave
sequence.

5.1.6 Corollary. Let A = (
ai j

)
be a non-negative symmetric matrix. Then

(hafm(A))2 ≥ hafm−1(A) hafm+1(A) for m = 1, . . . , �n/2� − 1.

Proof. Follows by Theorem 5.1.2 and Theorem 2.3.3. �

5.1.7 Computing the matching polynomial. Let A be an n × n non-negative
real symmetric matrix, let pA(t) be the corresponding matching polynomial and let
β = βA ≥ 0 be as defined in Theorem 5.1.2. Let us fix some 0 < δ < 1. One
can deduce from Theorem 5.1.2 that for any given 0 < ε < 1 and complex t the
value of pA(t) can be approximated within a relative error of ε in quasi-polynomial
nO(ln n−ln ε) time as long as |t | ≤ δ/4β, and, moreover, ln pA(t) can be approximated
within an additive error ε > 0 by a polynomial of degree O(ln n − ln ε) in t and the
entries of A. Given such a t , we define a univariate polynomial

gA(z) = pA(t z).

From Theorem 5.1.2, we deduce that g(z) �= 0 as long as |z| ≤ 1/δ. We define

f A(z) = ln gA(z)

and use Lemma 2.2.1 to approximate f A(1) = ln pA(t) by the Taylor polynomial of
f A(z) at z = 0 of some degree d = O(ln n − ln ε). Since the values of hafm(A) can
be computed exactly in nO(m) time, we can compute the m-th derivative of pA(t) at
t = 0 in nO(m) time and hence the m-th derivative of f A(z) at z = 0 in nO(m) time,
cf. Sect. 2.2.2, see also [Re15].

In fact, for any δ > 1, fixed in advance, the value of pA(t) at a complex t can be
approximated within a relative error 0 < ε < 1 in nO(ln n−ln ε) time as long as

Fig. 5.1 The region where
pA(t) can be efficiently
approximated; z0 is an upper
bound on the roots of pA(t)

z0

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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|t | ≤ δ

4β
and |π − arg t | ≥ 1

δ
.

Moreover, in that region ln pA(t) can be approximated within an error ε by a poly-
nomial of degree O(ln n − ln ε) in t and the entries of A. Figure5.1 shows a domain
of t ∈ C for which pA(t) can be approximated in quasi-polynomial time. It consists
of an outer disc of radius δ|z0| for some fixed δ > 1, where z0 is an upper bound on
the roots of pA, with a sector of a fixed angle removed, and an inner disc of radius
γ|z0| for some fixed 0 < γ < 1.

To approximate pA(t), using Lemma 2.2.3 we first construct a disc D = {
z ∈ C :

|z| ≤ β
}
of some radius β = β(δ) > 1 and a polynomial ψ = ψδ : C −→ C such

that ψ(0) = 0, ψ(1) = 1 and the image ψ(D) lies in a sufficiently thin strip aligned
with the positive real axis, so that the set tψ(D) does not contain the roots of pA. We
then consider the composition

gA(z) = pA(tψ(z))

and use the Taylor polynomial of f A(z) = ln gA(z) at z = 0 to approximate gA(1) =
pA(t), cf. Sect. 3.7 and see [PR16] for detail.

Patel and Regts further showed [PR16] that if A is the adjacency matrix of a
graphG with the largest degree�(G) of a vertex bounded above in advance, then the
above algorithm for approximating pA(t) can bemade polynomial and not just quasi-
polynomial. They show that in that case the values of hafm(A) form = O(ln n−ln ε)
can be computed in time polynomial in n and 1/ε, see also Sect. 6.6.

Let z0 be the largest root of the matching polynomial pA(t) (since z0 < 0, it is
also the root of pA(t) nearest to the origin). Then ±1/

√−z0 are the roots of the
polynomial qA(t) of Theorem 5.1.3 of the largest absolute value. We note that qA(t)
is a monic polynomial and that the coefficient hm(A) of tn−2m can be computed in
nO(2m) time simply by enumerating all matchings of size m in the complete graph.
Arguing as in Sect. 2.3.4, we can estimate the largest absolute value of the root of
qA(t) and hence the value of z0 within relative error ε in nO(ln n−ln ε) time.

There is a Markov Chain based randomized polynomial time algorithm approxi-
mating pA(t) for real t ≥ 0, see Chap. V of [Je03]. If A is the adjacency matrix of a
graph, the complexity of the algorithm is polynomial in t .

For zeros of partition functions of subgraphs with various degree constraints, see
[Ru99, Wa99].

5.2 Correlation Decay for the Matching Polynomial

5.2.1 Graphs and probabilities. In what follows, it is convenient to switch from
the language of symmetric matrices to the language of weighted graphs.We consider
a graph G = (V, E; A), undirected, without loops or multiple edges, with set V of

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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vertices, set E of edges and non-negative weights ae : e ∈ E on the edges. We
define the matching polynomial

PG(t) =
�|V |/2�∑

k=0

hkt
k, where hk =

∑

e1,...,ek∈E :
e1,...,ek pairwise disjoint

ae1 · · · aek .

We call the product ae1 · · · aek the weight of a matching e1, . . . , ek .
When G is the complete graph with set V = {1, . . . , n} of vertices and weights

ae = ai j for e = {i, j}, where A = (
ai j

)
is a symmetric non-negative matrix, we

obtain the matching polynomial pA(t) of Sect. 5.1.1.
We assume that the parameter t is non-negative real. Let us consider the set of

all matchings in G as a finite probability space, where the probability of a matching
consisting of the edges e1, . . . , ek is proportional to t kae1 · · · ek (if k = 0 we assume
that the product is equal to 1). Then the probability that a random matching contains
k edges is t khk/PG(t) and

t P ′
G(t)

PG(t)
= t

d

dt
ln PG(t) = P−1

G (t)
�|V |/2�∑

k=0

khkt
k

is the expected number of edges in a random matching.
Let G = (V, E; A) be a weighted graph as above, and let S ⊂ V be a set of

its vertices. We denote by G − S the weighted graph obtained from G by deleting
all vertices from S together with incident edges. We start with a recurrence relation
similar to (5.1.3.1):

PG(t) = PG−v(t) + t
∑

w∈V :
{w,v}∈E

a{v,w}PG−v−w(t) (5.2.1.1)

Herev is a vertex ofV , the term PG−v(t) enumerates allmatchings inG not containing
v whereas the sum accounts for all matchings in G containing v (we use G − v as
a shorthand for G − {v} and G − v − w as a shorthand for G − {v,w}) We rewrite
(5.2.1.1) as

PG−v(t)

PG(t)
=

⎛

⎜⎜⎝1 + t
∑

w∈V :
{w,v}∈E

a{v,w}
PG−v−w(t)

PG−v(t)

⎞

⎟⎟⎠

−1

. (5.2.1.2)

We note that PG−v(t)/PG(t) is the probability that a random matching does not
contain vertex v whereas PG−v−w(t)/PG−v(t) is the conditional probability that a
random matching does not contain vertex w given that it does not contain vertex v.
We note that the sum
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1

2

∑

v∈V

(
1 − PG−v(t)

PG(t)

)

represents the expected number edges (half of the expected number of vertices) in a
random matching, and hence we get

t
d

dt
ln PG(t) = 1

2

∑

v∈V

(
1 − PG−v(t)

PG(t)

)
. (5.2.1.3)

Formula (5.2.1.2) can be naturally generalized as follows: for a set S ⊂ V of vertices
and a vertex v ∈ V \ S, we have

PG−S−v(t)

PG−S(t)
=

⎛

⎜⎜⎝1 + t
∑

w∈V \S:
{w,v}∈E

a{v,w}
PG−S−v−w(t)

PG−S−v(t)

⎞

⎟⎟⎠

−1

. (5.2.1.4)

We interpret PG−S−v(t)/PG−S(t) as the conditional probability that a randommatch-
ing in G does not contain vertex v, given that it does not containing vertices from
S.

We discuss a dynamic programming type algorithm for computing the proba-
bilities PG−S−v(t)/PG−S(t) and, as a corollary, the matching polynomial PG(t),
which exhibits an interesting phenomenon, called the “correlation decay”. We fol-
low [B+07] with some modifications.

5.2.2 Lemma. Let us consider the set X of all non-negative vectors x = (
xS,v

)
with

coordinates parameterized by a pair consisting of a set S ⊂ V of vertices and a
vertex v ∈ V \ S and let us define a transformation T : X −→ X by

T (x) = y where yS,v =

⎛

⎜⎜⎝1 + t
∑

w∈V \S:
{w,v}∈E

a{v,w}x{S,v},w

⎞

⎟⎟⎠

−1

.

Let
β = max

v∈V
∑

w∈V :
{v,w}∈E

a{v,w}

and suppose that

t = λ

β
for some λ > 0.

(1) Suppose that
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1

1 + λ
≤ xS,v ≤ 1 for all S ⊂ V and v ∈ V \ S.

Then for y = T (x) we have

1

1 + λ
≤ yS,v ≤ 1 for all S ⊂ V and v ∈ V \ S.

(2) For any x ′, x ′′ ∈ X and y′ = T (x ′), y′′ = T (x ′′), we have

max
S⊂V,

v∈V \S

∣∣ln y′
S,v − ln y′′

S,v

∣∣ ≤ λ

λ + 1
max
S⊂V,

v∈V \S

∣∣ln x ′
S,v − ln x ′′

S,v

∣∣ .

Proof. Since xS,v ≥ 0 for all S and v, for y = T (x) we have yS,v ≤ 1 for all S and
v. If, in addition, xS,v ≤ 1 for all S and v then

t
∑

w∈V \S:
{w,v}∈E

a{v,w}x{S,v},w = λ

β

∑

w∈V \S:
{w,v}∈E

a{v,w} ≤ λ

and yS,v ≥ (1 + λ)−1 for all S and v, which proves Part (1).
To prove Part (2), we introduce the substitution

ξS,v = − ln xS,v and ηS,v = − ln yS,v.

Then the transformation T is written as

ηS,v = ln

⎛

⎜⎜⎝1 + t
∑

w∈V \S:
{w,v}∈E

a{v,w}e−ξ{S,v},w

⎞

⎟⎟⎠ .

Then

∑

w∈V \S
{w,v}∈E

∣∣∣∣
∂ηS,v

∂ξ{S,v},w

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣∣

t
∑

w∈V \S:
{w,v}∈E

a{v,w}e−ξ{S,v},w

1 + t
∑

w∈V \S:
{w,v}∈E

a{v,w}e−ξ{S,v},w

∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣

1 − 1

1 + t
∑

w∈V \S:
{w,v}∈E

a{v,w}e−ξ{S,v},w

∣∣∣∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣1 − 1

1 + λ

∣∣∣∣ = λ

1 + λ

and the proof of Part (2) follows. �

5.2.3 Correlation decay. The transformation T of Lemma 5.2.2 is a contraction.
If we start with a vector xS,v = 1 (or any other vector (1 + λ)−1 ≤ xS,v ≤ 1) and
iterate T , then the vector Tm(x) necessarily converges to the unique fixed point x∗
of T , which, by (5.2.1.4) necessarily satisfies

x∗
S,v = PG−S−v(t)

PG−S(t)
.

As follows from Lemma 5.2.2, to approximate x∗ by Tm(x) coordinate-wise within
a relative error 0 < ε < 1, we can choose

m = O

(
ln 1/ε

ln(λ + 1) − ln λ

)
(5.2.3.1)

iterations.
Let us introduce a metric on the set V of vertices, where dist(u, v) is the smallest

possible number of edges ofG in a path connecting u and v (we let dist(u, v) = +∞
if vertices u and v lie in different connected components). We note that to compute
the (S, v)-coordinate of Tm(x), we only need to access (S′, w′)-coordinates, where
dist (u, v) ≤ m for all u ∈ (

S′ \ S
) ∪ {w′}. As follows from (5.2.3.1), if λ is fixed

in advance, we obtain a quasi-polynomial algorithm of |V |O(ln |V |−ln ε) complexity to
approximate x∗

S,v within relative error 0 < ε < 1.
In particular, if we fix some λ0 > 0 and ε > 0 then for any λ ≤ λ0, up to an

additive error ε, the value of PG−{v}(t)/PG(t) depends only on the structure of G in
the m-neighborhood of v for some m = m(ε,λ0). In other words, for two weighted
graphs G1 = (V1, E1; A1) and G2 = (V2, E2; A2) and for two vertices v1 ∈ V1 and
v2 ∈ V2 we have ∣∣∣∣

PG1−v1(t)

PG1(t)
− PG2−v2(t)

PG2(t)

∣∣∣∣ ≤ ε

provided the m-neighborhoods of v1 of G1 and of v2 in G2 are isomorphic.
One particularly interesting case is when ae = 1 for all e ∈ E , when
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PG(t) =
|V |/2∑

k=0

(the number of k-matchings inG ) t k .

Then β = �(G), the largest degree of a vertex of G. If λ and �(G) are fixed in
advance, we obtain a polynomial time algorithm for approximating x∗

S,v , because
the number of different coordinates (S′, w′) we need to access while computing the
(S, v)-coordinate of the iteration Tm(x) grows roughly as�(G)m , which, by (5.2.3.1)
bounded by a polynomial in ε−1. By looking at the two consecutive iterations of T ,
in [B+07] a better rate of convergence is established. It is shown that T 2 in fact, a
contraction with a factor of

1 − �

(
1√

t�(G)

)
.

This phenomenon of fast convergence is called correlation decay because to approx-
imate x∗

S,v we do not need to care at all about coordinates (S′, w′) with {S′, w′} very
different from {S, v}.

We note that once we approximate x∗
S,v , we can approximate the value of PG(t)

by telescoping. Namely, we number vertices v1, . . . , vn of G and let

PG(t) = PG(t)

PG−v1(t)

PG−v1(t)

PG−v1,v2(t)
· · · PG−v1−...−vn (t)

PG−v1−...−vn−1(t)

= (
x∗
S0,v1x

∗
S1,v2 · · · x∗

Sn−1,vn

)−1
,

where S0 = ∅, S1 = {v1}, S2 = {v1, v2}, . . . , Sn−1 = {v1, . . . , vn−1}.
5.2.4 Definition. For positive integers m and k ≥ 2, we define Tk

m as the tree with
vertices at the levels 0, 1, . . . ,m, with one vertex, called the root at the 0th level
connected to k − 1 vertices at the level 1, and with every vertex at the i-th level
connected to one vertex at the (i −1)st level and k−1 vertices at the (i +1)-st level,
for i = 1, . . . ,m − 1. Each vertex at the m-th level is connected to one vertex at the
(m − 1)st level, see Fig. 5.2.

We set the weight on every edge of Tk
m equal to 1.

Fig. 5.2 The tree T3
3

w
v
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5.2.5 Lemma. Let us fix k and let vm be the root of Tk
m. For any t > 0, we have

lim
m−→∞

PTk
m−vm (t)

PTk
m
(t)

=
√
1 + 4t (k − 1) − 1

2t (k − 1)
.

Moreover, for any t0 > 0, the convergence is uniform on the interval 0 < t ≤ t0.

Proof. As follows from Sect. 5.2.3, for any ε > 0 there is m0 = m0(ε, k, t0) such
that for t ≤ t0 the value of PTk

m−vm (t)/PTk
m
(t), up to an error ε, depends only on the

m0-neighborhood of vm . However, for allm ≥ m0 them0-neighborhoods of vm ∈ T
k
m

remains the same, from which it follows that the limit in question, call it x , indeed
exists.

If we remove the root vm of Tk
m and all incident edges, we get a vertex-disjoint

union of (k − 1) trees Tk
m−1, see Fig. 5.2. Hence by (5.2.1.2) the limit x satisfies the

equation

x = 1

1 + t (k − 1)x
,

from which

x =
√
1 + 4t (k − 1) − 1

2t (k − 1)
.

�

We interpret the limit in Lemma 5.2.5 as the limit probability that a random
matching in Tk

m does not contain the root, cf. Sect. 5.2.1.

5.2.6 Regular graphs of large girth. A graph G is called k-regular if every vertex
of G is incident to precisely k edges. The girth of an undirected graph G = (V, E)

without loops or multiple edges, denoted gr G, is the smallest number g of ver-
tices of a cycle v1 − v2 − . . . − vg − v1, where v1, . . . , vg ∈ V are distinct and
{v1, v2}, {v2, v3}, . . . , {vg−1, vg}, {vg, v1} ∈ E . If G has no cycles, that is, if G is
a forest, we say that gr G = +∞. Locally (that is, in the vicinity of each vertex),
a graph of a large girth looks like a tree, which often allows us to understand the
behavior of its matching polynomial.

5.2.7 Lemma. Let us fix an integer k > 1 and let Gn = (Vn, En; 1), n ∈ N, be
a sequence of k-regular graphs such that gr Gn −→ +∞ as n −→ ∞ and with
uniform weights equal 1 on every edge of Gn. Let vn ∈ Vn be a sequence of vertices.
Then, for the matching polynomials PGn (t) and PGn−vn (t) we have

lim
n−→∞

PGn−vn (t)

PGn (t)
= 2k − 2

k
√
1 + 4t (k − 1) + k − 2

for all t > 0

and the convergence is uniform over vn ∈ Vn. Moreover, for any fixed t0 > 0, the
convergence is also uniform over all 0 ≤ t ≤ t0.
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Fig. 5.3 A 3-regular tree
with root at 0 and 3 levels
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Proof. Let us fix t0 > 0 and an ε > 0. As is discussed in Sect. 5.2.3, there exists
m0 = m0(ε, t0, k) such that up to an error ε, the ratio PGn−vn (t)/PGn (t) depends only
on the m0-neighborhood of vn in Gn . If gr Gn > m, the neighborhood of vn looks
like the k-regular tree with root at vn , uniform weight 1 on every edge and m levels,
see Fig. 5.3. Hence it follows that the limit in question, say y, indeed exists.

If we remove the vertex vn with incident edges, then the m-neighborhood of vn
in the resulting graph will be a vertex-disjoint union of k trees Tk

m−1. From (5.2.1.2)
it follows that

y = 1

1 + tkx
,

where x is the limit in Lemma 5.2.5. �

Again, we interpret the limit in Lemma 5.2.7 as the limit probability that a random
matching in Gn does not contain a particular vertex vn .

Finally, we compute the logarithmic asymptotic of the partition function PGn (t)
for k-regular graphs of growing girth.

5.2.8 Theorem. Let us fix an integer k > 1 and let Gn = (Vn, En; 1), n ∈ N, be
a sequence of k-regular graphs such that gr Gn −→ +∞ as n −→ ∞ and with
uniform weights equal 1 on every edge of Gn. Then, for any t > 0 we have

lim
n−→∞

ln PGn (t)

|Vn| =k − 1

2
ln

(
1 + √

1 + 4tk − 4t

2

)

− k − 2

2
ln

(
k
√
1 + 4tk − 4t + k − 2

2k − 2

)

+ 1

2
ln

(
2kt − 2t√

1 + 4tk − 4t − 1

)
.

Proof. By Lemma 5.2.7 and (5.2.1.3), we have
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Fig. 5.4 The graph of the
limit in Theorem 5.2.8 for
10-regular graphs Gn of
growing girth, as a function
of t

lim
n−→∞

1

|Vn| t
d

dt
ln PGn (t) = 1

2
− k − 1

k
√
1 + 4t (k − 1) + k − 2

,

where for any t0 > 0, the convergence is uniform over 0 ≤ t ≤ t0. Let us fix an
0 < ε < t . Then

lim
n−→∞

(
1

|Vn| ln PGn (t) − 1

|Vn| ln PGn (ε)

)

=
∫ t

ε

(
1

2τ
− k − 1

kτ
√
1 + 4τ (k − 1) + τ (k − 2)

)
dτ . (5.2.8.1)

Since Gn is k-regular, the number of edges of Gn is k|Vn|/2 and we can bound

1

|Vn| ln PGn (ε) ≤ 1

|Vn| ln (1 + ε)k|Vn |/2 ≤ k

2
ln(1 + ε).

One can show that the integrand in (5.2.8.1) is regular at τ = 0, and in fact,

1

2τ
− k − 1

kτ
√
1 + 4τ (k − 1) + τ (k − 2)

= k

2
+ O(τ ) as τ −→ 0 + .

Hence we can take the limit in (5.2.8.1) as ε −→ 0+. Computing the integral, we
complete the proof. �

The graph of the limit for 10-regular graphs as a function of t is pictured on
Fig. 5.4.

5.3 Matching Polynomials of Bipartite Graphs

5.3.1 Definition. We consider the special case of PG(t) for a bipartite graph G.
Alternatively, for a given n×n non-negativematrix A = (

ai j
)
and integer 1 ≤ k ≤ n,

we define
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perk(A) =
∑

1≤i1<...<ik≤n
j1,..., jk pairwise distinct

ai1 j1 · · · aik jk ,

the sum of permanents of all k × k submatrices of A and let

rA(t) =
n∑

k=0

perk(A)t k, (5.3.1.1)

where we agree that per0(A) = 1.

Our exposition loosely follows Csikvári [Cs14] and Lelarge [Le15].

5.3.2 A 2-lift of a graph and a 2-lift of a matrix. Let G = (V, E; A) be an
undirected weighted graph without loops or multiple edges. We construct its 2-lift
H as follows. For each vertex v of G, we introduce two vertices, say v1 and v2 of H .
For each edge {u, v} if G we introduce two edges: either a pair {v1, u1} and {v2, u2}
of edges or a pair {v1, u2} and {v2, u1} of edges (we have a choice here), see Fig. 5.5.
We make H a weighted graph by copying the weight of edge e on the lifts of e.

For example, if G is a cycle with n vertices then a 2-lift H can be a pair of vertex
disjoint n-cycles of a 2n-cycle, see Fig. 5.6.

One can similarly define n-lifts. Random lifts of graphswere studied in connection
with expander constructions [AL06], but also in connection with perfect matchings
[LR05].

Following [Le15], we define a 2-lift of an n × n matrix A = (
ai j

)
as a 2n × 2n

matrix B = (
bi j

)
, where for all 1 ≤ i, j ≤ n we have

either bi j = b(i+n)( j+n) = ai j and b(i+n) j = bi( j+n) = 0

or bi( j+n) = b(i+n) j = ai j and bi j = b(i+n)( j+n) = 0.

Fig. 5.5 Two ways to lift
an edge
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Fig. 5.6 2-lifts of a triangle
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For example, if

A =
(
1 2
3 4

)
(5.3.2.1)

then

B =

⎛

⎜⎜⎝

1 2 0 0
3 4 0 0
0 0 1 2
0 0 3 4

⎞

⎟⎟⎠ ,C =

⎛

⎜⎜⎝

1 0 0 2
0 4 3 0
0 2 1 0
3 0 0 4

⎞

⎟⎟⎠ and D =

⎛

⎜⎜⎝

1 0 0 2
3 4 0 0
0 2 1 0
0 0 3 4

⎞

⎟⎟⎠ (5.3.2.2)

are 2-lifts of A. It is clear that our definitions of a 2-lift of a matrix and a 2-lift of a
weighted bipartite graph agree.

The following result was proved by Csikvári [Cs14] in the case of uniformly
weighted graphs and then extended by Lelarge [Le15] to arbitrary positive weights.

5.3.3 Theorem. Let G be a weighted bipartite graph with positive weights on the
edges and let H be a 2-lift of G. Then

PH (t) ≤ P2
G(t) for all t ≥ 0.

Equivalently, if A is an n × n non-negative matrix and B is a 2-lift of A then for the
polynomials rA(t) and rB(t) defined by (5.3.1.1), we have

rB(t) ≤ r2A(t) for all t ≥ 0.

Proof. Let Ĝ be a trivial 2-lift of G consisting of two vertex-disjoint copies of G,
say, G0 and G1. Since every matching in Ĝ can be written uniquely as a disjoint
union of a matching in G0 and a matching in G1, we deduce that
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PĜ(t) = P2
G(t)

(here we don’t use that G is bipartite).
Next, we are going to prove that

PH (t) ≤ PĜ(t) for all t ≥ 0. (5.3.3.1)

Let e1, . . . , ek be a matching in H and let us consider the edges f1, . . . , fk of G that
are the images of e1, . . . , ek under the natural projection H −→ G. Since e1, . . . , ek
is a matching, each vertex in G belongs to at most two of the edges f1, . . . , fk .
Consequently, the multiset F = { f1, . . . , fk} is a vertex-disjoint union of edges
of mutiplicity 2, paths, and cycles. Since G is a bipartite graph, the cycles have
necessarily an even number of vertices.

Let us fix a multiset F = { f1, . . . , fk} of edges as above, obtained by a projection
of a k-matching in H , and let us compare the total weights WH (F) and WĜ(F) of
matchings in H and Ĝ respectively, projected onto F . If F can be represented as a
vertex-disjoint union F = F1 ∪ F2 then clearly

WH (F1 ∪ F2) = WH (F1)WH (F2) and WĜ(F1 ∪ F2) = WĜ(F1)WĜ(F2),

so is suffices to compare WH (F) and WĜ(F) when F is connected.
If F consists of a single edge of multiplicity 2, then WH (F) = WĜ(F), as there

are exactly two edges of equal weight projected onto the edge in F , see Fig. 5.5.
If F is a path then WH (F) = WĜ(F), since if F is a projection of a matching

in H , there are exactly two matchings in H of the same weight projecting into
F , whose union consists of two vertex-disjoint paths projected onto F . Similarly,
there are exactly two matchings in Ĝ projected onto F whose union consists of two
vertex-disjoint paths projected onto F , see Fig. 5.7.

In particular, every path in G can be lifted to two matchings in Ĝ.
Finally, if F is an even cycle then WH (F) = WĜ(F). If a matching in H is

projected onto an even cycle in G, then there are exactly two such matchings in H .
Similarly, there are two vertex-disjoint cycles in Ĝ projected onto F containing two
matchings in Ĝ projected onto F , see Fig. 5.8.

This concludes the proof of (5.3.3.1) and hence the proof of the theorem. �

Fig. 5.7 If there is a
matching in H projecting
onto a path in G then there
are exactly two such
matchings in H (one of thick
lines and the other of thin
lines). Similarly, there are
exactly two matchings in Ĝ
projecting onto the same
path in G

H G

GG
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Fig. 5.8 If there is a
matching in H projecting
onto an even cycle, then
there are exactly two such
matchings (one of thick lines
and the other of thin lines).
Similarly, there are exactly
two matchings in Ĝ
projected onto the cycle

H

G G

G

Fig. 5.9 If a 4-cycle in G is
lifted to two vertex-disjoint
4-cycles in H then there is a
4-matching in H projected
onto the cycle. If a 4-cycle in
G is lifted to an 8-cycle in H
then there is no 4-matching
in H projected onto the cycle

G G

G H

Some remarks are in order. We may have PH (t) < P2
G(t) = PĜ(t), since there

can be a 2k-cycle in G which is the projection of a 4k-cycle in H . In that case, there
is a 2k-matching in Ĝ projecting onto the 2k-cycle but there is no 2k-matching in H
projecting onto that 2k-cycle, see Fig. 5.9.

For example, for matrix A of (5.3.2.1), we have per B = per C = 100 = 102 for
2-lifts B and C of (5.3.2.2), while per D = 52 < 102 for the 2-lift D of (5.3.2.2).

We note that if G is a triangle and H is a 2-lift that is a 6-cycle such as on Fig. 5.6,
then PG(t) is a polynomial of degree 1 (since the maximum matching in G consists
of one edge) while PH (t) is a polynomial of degree 3 (since the maximum matching
in H consists of 3 edges). Therefore, Theorem 5.3.3 does not hold ifG is not required
to be bipartite. For non-bipartite graphs, the proof breaks down at the last step: if F
is an odd cycle which is a projection of a matching in H , then F is a projection of
exactly two such matchings whose union is an even cycle of twice the length of F
and not two vertex-disjoint copies of F , see Fig. 5.10.

Applying 2-lifts repeatedly, one can obtain from a general graph a graph with a
larger girth that locally looks more and more like a tree.

The following result and its proof is attributed to Linial in [Cs14, Le15].

5.3.4 Lemma. Let G = (V, E) be an undirected graph without loops or multiple
edges. Then there is a graph H obtained by repeated applications of 2-lifts to G such
that gr H > gr G.
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Fig. 5.10 If there is a
matching projecting onto a
cycle of length 3, then there
are exactly two such
matchings (one of thick lines
and the other of thin lines)
whose union is an even cycle
of length 6

G

H

Proof. Suppose that gr G = g and let k be the number of cycles of length g. Let Ĝ be
a random 2-lift of G, where independently for each edge {u, v} of G, we choose the
lift {u1, v1} and {u2, v2} or the lift {u1, v2} and {u2, v1}, with probability 1/2 each,
see Sect. 5.3.2. Then a g-cycle inG is lifted to a pair of g-cycles in Ĝ with probability
1/2 and to a 2g-cycle in Ĝ with probability 1/2. Indeed, a path v1 − v2 − . . . − vg of
length g is lifted to a pair of paths of length g each in Ĝ, and then the closing edge
v1−vg is either lifted to a pair of edges closing each path to a cycle of length g or to a
pair of edges patching the paths into a cycle of length 2g, see Fig. 5.9. Consequently,
for every 2-lift Ĝ of G we have gr Ĝ ≥ g and the expected number of g-cycles in Ĝ
is k. Since with positive probability Ĝ consists of two vertex-disjoint copies of G, in
which case the number of g-cycles in Ĝ is 2k > k, there is a lift Ĝ which has fewer
than k cycles of length g. Iterating, we conclude that there is a sequence of 2-lifts of
G which produces a graph H with no g-cycles, in which case gr H > gr G. �

As a corollary of Lemma 5.3.4, Theorems 5.3.3 and 5.2.8, we obtain the following
lower bound.

5.3.5 Theorem. Let G = (V, E; 1) be a k-regular bipartite graph with uniform
weights 1 on all edges. Then, for k ≥ 2,

ln PG(t)

|V | ≥ k − 1

2
ln

(
1 + √

1 + 4tk − 4t

2

)

− k − 2

2
ln

(
k
√
1 + 4tk − 4t + k − 2

2k − 2

)

+ 1

2
ln

(
2kt − 2t√

1 + 4tk − 4t − 1

)
.

for all t > 0.
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Proof. Using Lemma 5.3.4, for n = 1, . . . , we construct an infinite sequence Gn =
(Vn, En; 1) of graphs where G1 = G, graph Gn+1 is a 2-lift of Gn for all n and
gr Gn −→ +∞ as n −→ ∞. Since |Vn+1| = 2|Vn|, from Theorem 5.3.3 we
conclude that

ln PGn (t)

|Vn| for n = 1, . . . ,

is a non-increasing sequence. The proof now follows from Theorem 5.2.8. �

Taking the limit as t −→ +∞, we obtain a lower bound for the number of perfect
matchings in a k-regular bipartite graph.

5.3.6 Theorem. Let A be an n × n matrix with 0-1 entries such that every row and
every column of A contains exactly k 1s. Then

ln per A

n
≥ (k − 1) ln(k − 1) − (k − 2) ln k.

Moreover, there is a sequence of {An} of n × n matrices with 0-1 entries, each
containing exactly k 1s such that

lim
n−→∞

ln per An

n
= (k − 1) ln(k − 1) − (k − 2) ln k.

Proof. Let rA(t) be the matching polynomial of A, see Definition 5.3.1. Then rA(t)
is a polynomial of degree n with the coefficient of tn equal to per A > 0, see, for
example, Theorem 3.3.2.

Therefore,

lim
t−→+∞

(
ln rA(t)

n
− ln t

)
= ln per A

n
.

On the other hand, by Theorem 5.3.5,

ln rA(t)

n
≥ (k − 1) ln

(
1 + √

1 + 4tk − 4t

2

)

− (k − 2) ln

(
k
√
1 + 4tk − 4t + k − 2

2k − 2

)

+ ln

(
2kt − 2t√

1 + 4tk − 4t − 1

)

and hence

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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ln rA(t)

n
− ln t ≥ (k − 1) ln

(
1 + √

1 + 4tk − 4t

2
√
t

)

− (k − 2) ln

(
k
√
1 + 4tk − 4t + k − 2

(2k − 2)
√
t

)

+ ln

(
2kt − 2t

(√
1 + 4tk − 4t − 1

) √
t

)
.

Taking the limit as t −→ +∞, we obtain

ln per A

n
≥k − 1

2
ln(k − 1) − k − 2

2
ln

k2

k − 1
+ 1

2
ln(k − 1)

= (k − 1) ln(k − 1) − (k − 2) ln k,

as required.
As in the proof of Theorem5.3.5,matrices {An} are obtained as adjacencymatrices

of graphs Gn that are repeated 2-lifts of a given bipartite k-regular graph and such
that gr Gn −→ +∞ as n −→ ∞. �

We can rewrite the bound of Theorem 5.3.6 as

per A ≥ kn
(
k − 1

k

)(k−1)n

,

in which case it becomes the familiar bound (3.3.5.1).

5.3.7 Upper bounds for the matching polynomial of a k-regular graph. In
[D+15], Davies, Jenssen, Perkins and Roberts prove that ifG = (V, E) is a k-regular
graph then, for any t > 0, the quantity

t

|E |
d

dt
ln PG(λ) = t

|E |
P ′
G(t)

PG(t)

attains its maximum when G is the k-regular complete bipartite graph, see Fig. 5.11.
This quantity is naturally interpreted as the expected proportion of the edges of G
covered by random matching in G, where the probability that a random matching
contains exactly s edges is proportional to t s .

As is remarked in [D+15], this implies that for any t > 0, the maximum of

P1/|V |
G (t)

over k-regular graphsG = (V, E) is attainedwhenG is the complete bipartite graph.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 5.11 The complete
bipartite 3-regular graph

5.4 The Bethe-Entropy Lower Bound

The goal of this section is to prove the following result due to Lelarge [Le15].

5.4.1 Theorem. For a positive n × n matrix A = (
ai j

)
and a real t > 0, let

rA(t) =
n∑

k=0

perk(A)t k

be the matching polynomial, where perk(A) is the sum of the permanents of all k × k
submatrices of A and per0(A) = 1.

On the set Mn of n × n nonnegative real matrices X = (
xi j

)
such that

n∑

j=1

xi j ≤ 1 for i = 1, . . . , n and
n∑

i=1

xi j ≤ 1 for j = 1, . . . , n

let us define a function

fA,t (X) =
n∑

i, j=1

ln
(
tai j

)
xi j −

n∑

i, j=1

xi j ln xi j +
n∑

i, j=1

(1 − xi j ) ln(1 − xi j )

−
n∑

i=1

⎛

⎝1 −
n∑

j=1

xi j

⎞

⎠ ln

⎛

⎝1 −
n∑

j=1

xi j

⎞

⎠

−
n∑

j=1

(
1 −

n∑

i=1

xi j

)
ln

(
1 −

n∑

i=1

xi j

)
.

Then fA,t is strictly concave onMn, attains maximum onMn at a unique point and

ln rA(t) ≥ max
X∈Mn

f A,t (X).

Taking the limit as t −→ +∞, we obtain a lower bound for the permanent.

5.4.2 Theorem. Let Bn be the polytope of n × n doubly stochastic matrices, that is,
non-negative matrices X = (

xi j
)
such that
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n∑

j=1

xi j = 1 for i = 1, . . . , n and
n∑

i=1

xi j = 1 for j = 1, . . . , n.

For a positive n × n matrix A = (
ai j

)
and X ∈ Bn, let

gA(X) =
n∑

i, j=1

xi j ln
ai j
xi j

+
n∑

i, j=1

(
1 − xi j

)
ln

(
1 − xi j

)
.

Then gA is a concave function and

ln per A ≥ max
X∈Bn

gA(X).

The inequality of Theorem5.4.2was conjectured byVontobel [Vo13] and deduced
by Gurvits [Gu11] from Schrijver’s inequality [Sc98]. We take a different route here,
due to Lelarge [Le15], first proving Theorem 5.4.1 and then obtaining Theorem 5.4.2
as a limit case. If A = (

ai j
)
is a doubly stochastic matrix, from Theorem 5.4.2 we

get

ln per A ≥ gA(A) =
n∑

i, j=1

(
1 − ai j

)
ln

(
1 − ai j

)
,

which is Schrijver’s inequality.
The lower bounds for ln rA(t) of Theorem 5.4.1 and for ln per A of Theorem 5.4.2

are known as the Bethe-entropy lower bounds. Their advantage is that they supply
an easily computable lower bound as a solution to a convex optimization problem.

We prove Theorem 5.4.1 by taking a closer look at the lift of an arbitrary positive
matrix. We follow Lelarge [Le15] with some modifications.

Let A = (
ai j

)
be an n × n positive matrix, which we interpret as the matrix

of weights on the complete bipartite graph Kn,n with vertices 1L , . . . , nL and
1R, . . . , nR, so that the weight on the edge i L and j R is ai j , cf. Sect. 3.1.2. As
we iterate 2-lifts m times, as described in Sect. 5.3.2, we obtain a graph G with
N = 2m+1n vertices,where each vertex has type 1L , . . . , nL or 1R, . . . , nR, depend-
ing on where it projects under the natural projection G −→ Kn,n . Each vertex of
type i L is connected by an edge to a vertex of type j R with weight ai j on the edge
for j = 1, . . . , n and each vertex of type j R is connected by an edge to a vertex of
type i L with weight ai j on the edge for i = 1, . . . , n, see Fig. 5.12.

In particular, G = (V, E) is an n-regular graph. Our goal is to compute the
asymptotic of ln PG(t)/|V | as the girth of G grows. First, we prove a refinement of
Lemma 5.2.5, for which we introduce trees Li j

m andRi j
m that are refinements of trees

T
k
m from Sect. 5.2.4.

5.4.3 Definition. The tree Li j
m is a tree with m levels that has the root of type i L at

the level 0 connected to n − 1 vertices at the level 1 of type kR for all k �= j . Every
vertex at the level 1 is connected to n vertices of the type kL for k = 1, . . . , n, one

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 5.12 A part of the lift
of a 3 × 3 matrix

33
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1R 3R
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3L 2L
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Fig. 5.13 The L11
3 tree for

n = 3

33

1L
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1R 3R 1R 3R 2R1R 1R 2R
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aaa a
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12 13

22 32 33

a21

23
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23

a
21
a a22 3131 32

of which is the root while the other n − 1 are at the level 2. Every vertex at the level
2 is connected to n vertices of the type kR for k = 1, . . . , n, one of which is at the
level 1 and the other n − 1 are at the level 3, etc.

The tree Ri j
m is a tree with m levels that has the root of type j R at the level 0

connected to n− 1 vertices at the level 1 of type kL for all k �= i . Every vertex at the
level 1 is connected to n vertices of the type kR for k = 1, . . . , n, one of which is the
root while the other n − 1 are at the level 2. Every vertex at the level 2 is connected
to n vertices of the type kL for k = 1, . . . , n, one of which is at the level 1 and the
other n − 1 are at the level 3, etc.

If we remove an edge connecting vertices of the type i L and j R in a lift of a
matrix, in the neighborhood of the removed edge, the lift will look like the union of
two trees of the types Li j and Ri j , see Figs. 5.12 and 5.13.

The weights on the edges are replicated in the usual way: an edge connecting
vertices of types i L and j R has weight ai j , see Fig. 5.13.

5.4.4 Lemma. Let us fix a positive n × n matrix A = (
ai j

)
. Let vm denote the root

of Li j
m , respectively Ri j

m . For every t > 0 the limits
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lim
m−→∞

PLi j
m−vm

(t)

PLi j
m
(t)

= li j = li j (A, t)

and

lim
m−→∞

PRi j
m−vm

(t)

PRi j
m
(t)

= ri j = ri j (A, t)

exist and satisfy the system of equations

li j =
⎛

⎝1 + t
∑

k: k �= j

aikrik

⎞

⎠
−1

and ri j =
⎛

⎝1 + t
∑

k: k �=i

ak j lk j

⎞

⎠
−1

for all 1 ≤ i, j ≤ n. Moreover, for any t0 > 0 the convergence is uniform over all
0 < t ≤ t0.

Proof. The proof is a refinement of that of Lemma 5.2.5. As follows from Sect. 5.2.3,
for any ε > 0 there is m0 = m0(ε, A, t0) such that for t < t0, the value of
PLi j

m−vm
(t)/PLi j

m
(t), up to an error ε, depends only on the m0-neighborhood of vm

in Li j
m . However, for m > m0 the m0 neighborhood of vm in Li j

m remains the same,
from which it follows that the limit li j indeed exists. The existence of the limit ri j is
proved similarly.

If we remove the root vm of Li j
m with all incident edges, we get a vertex-disjoint

union of n − 1 trees Rik
m−1 for k �= j and if we remove the root of vm of Ri j

m with

all incident edges, we get a vertex-disjoint union of n − 1 trees Lk j
m−1 for k �= i . The

equations for li j and ri j then follow from (5.2.1.2). �

A crucial observation of Lelarge [Le15] relates the probabilities li j and ri j to the
solution of a convex optimization problem.

5.4.5 Lemma. Let us fix an n × n positive matrix A = (
ai j

)
and t > 0. Let the set

Mn of matrices X = (
xi j

)
and a function f = f A,t be defined as in Theorem 5.4.1.

Then f is a strictly concave function.
Let li j = li j (A, t) and ri j = ri j (A, t) be the probabilities from Lemma 5.4.4. Then

the matrix X∗ = X∗(A, t) =
(
x∗
i j

)
defined by

x∗
i j = tai j li j ri j

1 + tai j li j ri j

is the maximum point of f onMn.

Proof. For i = 1, . . . , n, let us define
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gi (X) = −
n∑

j=1

xi j ln xi j +
n∑

j=1

(1 − xi j ) ln(1 − xi j )

−
⎛

⎝1 −
n∑

j=1

xi j

⎞

⎠ ln

⎛

⎝1 −
n∑

j=1

xi j

⎞

⎠ +
⎛

⎝
n∑

j=1

xi j

⎞

⎠ ln

⎛

⎝
n∑

j=1

xi j

⎞

⎠

and

ui (X) =
⎛

⎝
n∑

j=1

xi j

⎞

⎠ ln

⎛

⎝
n∑

j=1

xi j

⎞

⎠ .

For j = 1, . . . , n, let us similarly define

h j (X) = −
n∑

i=1

xi j ln xi j +
n∑

i=1

(1 − xi j ) ln(1 − xi j )

−
(
1 −

n∑

i=1

xi j

)
ln

(
1 −

n∑

i=1

xi j

)
+

(
n∑

i=1

xi j

)
ln

(
n∑

i=1

xi j

)

and

v j (X) =
(

n∑

i=1

xi j

)
ln

(
n∑

i=1

xi j

)
.

FromSect. 2.1.3, the functionsgi (X) andh j (X) are concave,while fromSect. 2.1.1.2,
the functions ui and v j are convex.

Since we have

f (X) =
n∑

i, j=1

ln
(
tai j

)
xi j +

n∑

i=1

gi (X) +
n∑

j=1

h j (X) −
n∑

i=1

ui (X) −
n∑

j=1

v j (X),

we conclude that f (X) is concave. Moreover, since
∑n

i=1 ui (X) + ∑n
j=1 v j (X) is a

strictly convex function, the function f (X) is strictly concave.
To check that X∗ is indeed the maximum point of f , we compute the gradient

of f .
We have

∂

∂xi j
f (X) = ln

(
tai j

)−ln xi j −ln
(
1 − xi j

)+ln

(
1 −

n∑

k=1

xik

)
+ln

(
1 −

n∑

k=1

xk j

)
.

Using the equations of Lemma 5.4.4, we write

tai j li j ri j = tai j li j
1 + t

∑
k: k �=i ak j lk j

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and

1 + tai j li j ri j = 1 + tai j li j
1 + t

∑
k: k �=i ak j lk j

= 1 + t
∑n

k=1 akj lk j
1 + t

∑
k: k �=i ak j lk j

,

from which

x∗
i j = tai j li j

1 + t
∑n

k=1 akj lk j
. (5.4.5.1)

Similarly, we write

tai j li j ri j = tai j ri j
1 + t

∑
k: k �= j aikrik

and

1 + tai j li j ri j = 1 + t
∑n

k=1 aikrik
1 + t

∑
k: k �= j aikrik

from which
x∗
i j = tai j ri j

1 + t
∑n

k=1 aikrik
. (5.4.5.2)

It follows from (5.4.5.1) that

1 −
n∑

k=1

x∗
k j =

(
1 + t

n∑

k=1

akj lk j

)−1

(5.4.5.3)

and it follows from (5.4.5.2) that

1 −
n∑

k=1

x∗
ik =

(
1 + t

n∑

k=1

aikrik

)−1

. (5.4.5.4)

In particular, it follows from (5.4.5.3) and (5.4.5.4) that X∗ is a feasible point of f .
Using (5.4.5.1)–(5.4.5.4) we obtain that

∂

∂xi j
f (X)

∣∣∣
X=X∗

= ln
(
tai j

) − ln
tai j li j

1 + t
∑n

k=1 akj lk j
− ln

1 + t
∑

k: k �= j aikrik

1 + t
∑n

k=1 aikrik

− ln

(
1 + t

n∑

k=1

aikrik

)
− ln

(
1 + t

n∑

k=1

akj lk j

)

= − ln li j − ln

⎛

⎝1 + t
∑

k: k �= j

aikrik

⎞

⎠ = 0.
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Hence the gradient of a strictly concave function f at a feasible point X∗ is 0 and
X∗ is the maximum point of f . �

Next, we prove a refinement of Lemma 5.2.7.

5.4.6 Lemma. Let us fix a positive n × n matrix A = (
ai j

)
, a real t > 0 and let

X∗ = X∗(A, t) =
(
x∗
i j

)
be the maximum point of the function fA,t (X) in Lemma

5.4.5.
Let Gm be a sequence of weighted graphs obtained from the complete bipar-

tite graph Kn,n with weights A by a repeated application of 2-lifts and such that
gr Gm −→ +∞ as m −→ ∞. Let vm be a vertex of Gm. Then

lim
m−→∞

PGm−vm (t)

PGm (t)
= 1 −

n∑

j=1

x∗
i j provided vm is of type i L

and

lim
m−→∞

PGm−vm (t)

PGm (t)
= 1 −

n∑

i=1

x∗
i j provided vm is of type j R.

The convergence is uniform over vm ∈ Gm.Moreover, for any fixed t, the convergence
is also uniform over all 0 ≤ t ≤ t0.

Proof. We begin as in the proof of Lemma 5.2.7. Let us fix t0 > 0 and an ε > 0. As
is discussed in Sect. 5.2.3, there exists m0 = m0(ε, A, t) such that up to an error ε,
the ratio PGm−vm (t)/PGm (t) depends only on the m0-neighborhood of vm . However,
if gr Gm > m0, the m0-neighborhood depends only on the type of the vertex vm , see
Fig. 5.13, from which it follows that the limit indeed exists.

If vm is of type i L and gr Gm > s then in the s-neighborhood of vm , the graph
Gm − vm looks like a vertex-disjoint union of n trees Rs−1

i j , for j = 1, . . . , n.
Therefore, by (5.2.1.2) and Lemma 5.4.4, the limit is equal to

⎛

⎝1 + t
n∑

j=1

ri j

⎞

⎠
−1

= 1 −
n∑

j=1

x∗
i j ,

where the last equation follows by (5.4.5.4).
If vm is of type j L and gr Gm > s then in the s-neighborhood of vm , the graph

Gm−vm looks like a vertex-disjoint unionofn treesLs−1
i j , for i = 1, . . . , n. Therefore,

by (5.2.1.2) and Lemma 5.4.4, the limit is equal to

(
1 + t

n∑

i=1

li j

)−1

= 1 −
n∑

i=1

x∗
i j ,

where the last equation follows by (5.4.5.3). �
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5.4.7 Proof of Theorem 5.4.1. Let us fix a t0 > 0. For m = 1, 2, . . ., let Gm be
a weighted graph obtained from Kn,n with matrix A of weights by a sequence of m
2-lifts and such that gr Gm −→ +∞ as m −→ ∞, see Lemma 5.3.4. Then Gm has
n2m+1 vertices. For each i = 1, . . . , n, exactly 2m of the vertices have type i L and
for each j = 1, . . . , n, exactly 2m of the vertices have type j R. Applying (5.2.1.3)
and Lemma 5.4.6, we conclude that

lim
m−→∞

d

dt

ln PGm (t)

n2m+1
= 1

2nt

n∑

i, j=1

x∗
i j (t), (5.4.7.1)

and the convergence is uniform for all 0 < t ≤ t0.
On the other hand, since the function t �−→ f A,t (X) is smooth and strictly con-

cave, the maximum point X∗(t) depends smoothy on t . Since X∗(t) is the maximum
point, we get

∂

∂xi j
ft (X)

∣∣∣
X=X∗(t)

= 0 for all i, j

and, therefore,

d

dt
ft

(
X∗(t)

) =
n∑

i, j=1

(
∂

∂xi j
ft (X)

∣∣∣
X=X∗(t)

) (
d

dt
x∗
i j (t)

)
+ ∂

∂t
ft (X)

∣∣∣
X=X∗(t)

=1

t

n∑

i, j=1

x∗
i j (t).

Therefore, by (5.4.7.1)

lim
m−→∞

d

dt

ln PGm (t)

n2m+1
= 1

2n

d

dt
ft

(
X∗(t)

)
(5.4.7.2)

and the convergence is uniform over all 0 < t ≤ t0.
As is easy to see,

lim
t−→0+ ft

(
X∗(t)

) = lim
t−→0+ max

X∈Mn

ft (X) = 0

and, as in the proof of Theorem 5.2.8, we have

lim
t−→0+

ln PGm (t)

n2m+1
= 0.

Then from (5.4.7.2), we obtain

lim
m−→∞

ln PGm (t)

n2m+1
= 1

2n
ft

(
X∗(t)

) = 1

2n
max
X∈Mn

ft (X) (5.4.7.3)
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for all 0 < t ≤ t0 and hence t0 was chosen arbitrarily, (5.4.7.3) holds for all t > 0.
Since by Theorem 5.3.3, we have

ln rA(t)

2n
≤ ln PGm (t)

n2m+1
,

the proof follows. �

5.4.8 Proof of Theorem 5.4.2. Since rA(t) is a polynomial with the highest term
(per A) tn with per A > 0, we have

lim
t−→+∞ ln rA(t) − n ln t = ln per A. (5.4.8.1)

By Sect. 2.1.3, gA(X) is a continuous concave function and hence the maximum of
gA on Bn is attained, say, at doubly stochastic matrix X∗. Then X∗ ∈ Mn , where
Mn is the set of matrices defined in Theorem 5.4.1 and hence by Theorem 5.4.1, for
every t > 0 we have

ln rA(t) − n ln t ≥ f A,t
(
X∗) − n ln t = gA(X

∗) − n ln t + (ln t)
n∑

i, j=1

x∗
i j = gA

(
X∗)

and the proof follows by (5.4.8.1).

�

5.5 Hypergraph Matching Polynomial

5.5.1 Thematchingpolynomial of a hypergraph. Let H = (V, E) be a d-uniform
hypergraph with set V of vertices and set E of edges. Hence each edge e ∈ E is a
set of d vertices from V . A matching in H is a set of pairwise vertex-disjoint edges.
Given complex weights w : E −→ C on the edges of H , we define the weight of a
matching {e1, . . . , ek} by w(e1) · · · w(ek). We consider the matching with no edges
as having weight 1. We define the matching polynomial of H by

PH (w) =
∑

e1,...,ek∈E :
e1,...,ek is a matching

w(e1) · · · w(ek),

where the sum includes all matchings in H , including the empty matching with the
corresponding product equal to 1.

The following result bounds from below the distance from complex zeros of
PH (w) to the origin.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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5.5.2 Theorem. Let H = (V, E) be a d-uniform hypergraph for d > 1 and let
w : E −→ C be complex weights such that

∑

e∈E :
v∈e

|w(e)| ≤ (d − 1)d−1

dd
for all v ∈ V .

Then
PH (w) �= 0.

Proof. Given a set S ⊂ V of vertices, let H − S be the hypergraph with set V \ S
of vertices and consisting of the edges of H that do not intersect S. We denote the
restriction of w : E −→ C onto H − S also by w. Then for any vertex v ∈ V , we
have

PH (w) = PH−v(w) +
∑

e∈E :
v∈e

w(e)PH−e(w), (5.5.2.1)

where PH−v(w) accounts for all matchings not containing v, whereas the sum
accounts for all matchings containing v (we use H − v as a shorthand for H − {v}).

We prove by induction on |V | that PH (w) �= 0 and, moreover, for any vertex v

of V , we have ∣∣∣∣1 − PH−v(w)

PH (w)

∣∣∣∣ ≤ 1

d − 1
.

If |V | < d, we have PH (w) = PH−v(w) = 1 and the inequality holds. If |V | = d,
the hypergraph may contain either one edge or no edges. In the former case, we have
PH (w) = 1 + w(e) while PH−v(w) = 1 and the inequality reduces to

∣∣∣∣1 − 1

1 + w(e)

∣∣∣∣ =
∣∣∣∣

w(e)

1 + w(e)

∣∣∣∣ ≤ 1

d − 1
,

which obviously holds when w(e) = 0. If w(e) �= 0, we can further write

∣∣∣∣
w(e)

1 + w(e)

∣∣∣∣ =
∣∣∣∣

1

1 + w(e)−1

∣∣∣∣ ≤
(

dd

(d − 1)d−1
− 1

)−1

= (d − 1)d−1

dd − (d − 1)d−1

<
(d − 1)d−1

dd − dd−1
= 1

d − 1
.

If H contains no edges then PH−v(w) = PH (w) = 1 and the inequality holds as
well.

Suppose now |V | > d. By the induction hypothesis, for every vertex v1 ∈ V , we
have PH−v1(w) �= 0. We rewrite (5.5.2.1) as
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PH (w)

PH−v1(w)
= 1 +

∑

e∈E :
v∈e

w(e)
PH−e(w)

PH−v1(w)
. (5.5.2.2)

Telescoping, for every edge e = {v1, v2, . . . , vd} containing v1, we can write

PH−e(w)

PH−v1(w)
= PH−e(w)

PH−{v1,v2,...,vd−1}(w)
· · · PH−{v1,v2}(w)

PH−{v1}(w)
, (5.5.2.3)

where by the induction hypothesis, we have

PH−{v1,...,vk+1}(w) �= 0 and
∣∣∣∣1 − PH−{v1,...,vk+1}(w)

PH−{v1,...,vk }(w)

∣∣∣∣ ≤ 1

d − 1
for all k = 1, . . . , d − 1,

from which
∣∣∣∣
PH−{v1,...,vk+1}(w)

PH−{v1,...,vk }(w)

∣∣∣∣ ≤ d

d − 1
for k = 1, . . . , d − 1. (5.5.2.4)

Combining (5.5.2.2)–(5.5.2.4), we conclude that

∣∣∣∣1 − PH (w)

PH−v1(w)

∣∣∣∣ ≤ (d − 1)d−1

dd

(
d

d − 1

)d−1

= 1

d
, (5.5.2.5)

from which it follows that
PH (w) �= 0.

The transformation z �−→ 1/z maps the disc

D =
{
z : |1 − z| ≤ 1

d

}

onto the disc with center on the real axis and whose boundary intersects the real axis
in the points d/(d + 1) and d/(d − 1). Therefore, from (5.5.2.5), we have

∣∣∣∣1 − PH−v1(w)

PH (w)

∣∣∣∣ ≤
∣∣∣∣1 − d

d − 1

∣∣∣∣ = 1

d − 1
,

which completes the induction. �

The bound of Theorem 5.5.2 decreases as 1/ed as d grows.
For a weight w : E −→ C and a parameter z ∈ C, let zw denote the weight on

the edges of H scaled by z. Then
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dk

dzk
PH (wz)

∣∣∣
z=0

= k!
∑

e1,...,ek
is a matching

w (e1) · · · w (ek) .

In particular, the derivative can be computed in |E |O(k) time by the direct enumeration
of all matchings of k edges in H . As follows from Lemma 2.2.1 and Sect. 2.2.2, for
any 0 ≤ δ < 1, fixed in advance, for any complex weights w : H −→ C satisfying

∑

e∈E :
v∈E

|w(e)| ≤ δ
(d − 1)d−1

dd

and any 0 < ε < 1, the value of PH (w) can be approximated within relative error ε
in |E |O(ln |E |−ln ε) time. If the largest degree of a vertex is bounded above in advance,
the computation can be done in genuine polynomial time via the approach of [PR16],
see also Sect. 6.6.

The correlation decay approach to computing PH (w)was tried in [D+14], [S+16].
In particular, a polynomial time approximation algorithm was constructed in [D+14]
that counts the number of matchings in a 3-uniform hypergraph such that the degree
of every vertex does not exceed 3.

We apply Theorem 5.5.2 to multidimensional permanents, see Sect. 4.4. We show
that if each slice of a d-dimensional tensor A = (

ai1...id
)
is close in the �1-metric to the

tensor of all 1s, then PER A �= 0 and, consequently, ln PER A can be approximated
in quasi-polynomial time. This contrasts with Theorem 4.4.2, where we require the
deviation to be small in the �∞-metric.

5.5.3 Theorem. Let A = (
ai1...id

)
be an n × . . . × n array of nd complex numbers,

such that ∑

1≤i1,...,i j−1,i j+1,...,id≤n

∣∣1 − ai1...id
∣∣ ≤ αd−1 (d − 1)d−1

dd
nd−1

for all 1 ≤ i j ≤ n and all j = 1, . . . , d, where

α ≈ 0.2784645428

is the positive solution of the equation

xe1+x = 1.

Then
PER A �= 0.

The following lemma is a weaker version of a bound from [Wa03].

5.5.4 Lemma. For a positive integer n, let us define a polynomial

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
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pn(z) =
n∑

k=0

zk

k! .

Then
pn(z) �= 0 provided |z| ≤ αn,

where α ≈ 0.2784645428 is the constant of Theorem 5.5.3.

Proof. First, we observe that

∣∣ze1−z
∣∣ ≤ |z|e1+|z| ≤ 1 provided |z| ≤ α.

Then for |z| ≤ α, we have

∣∣1 − e−nz pn(nz)
∣∣ =

∣∣∣∣∣e
−nz

∞∑

k=n+1

(nz)k

k!

∣∣∣∣∣ =
∣∣∣∣∣
(
ze(1−z)

)n
e−n

∞∑

k=n+1

nkzk−n

k!

∣∣∣∣∣

≤ e−n
∞∑

k=n+1

nk

k! < 1

and hence pn(nz) �= 0. �

Szegő proved that as n grows, the zeros of pn(nz) converge to the curve

{
z : ∣∣ze1−z

∣∣ = 1, |z| ≤ 1
}
,

see [PV97].

5.5.5 Proof of Theorem 5.5.3. We have

PER A =
∑

σ2,...,σd∈Sn

n∏

i=1

aiσ2(i)...σd (i) =
∑

σ2,...,σd∈Sn

n∏

i=1

(
1 + (

aiσ2(i)...σd (i) − 1
))

.

We consider the complete d-partite graph H = (V, E)with n+. . .+n = nd vertices
and the weight of the edge (i1, . . . , id) equal ai1...id − 1. Let

Wk =
∑

e1,...,ek∈E :
e1,...,ek is a matching

w(e1) · · · w(ek)

be the total weight of k-matchings in H , where we agree that W0 = 1. Then

PER A =
n∑

k=0

((n − k)!)d−1 Wk = (n!)d−1
n∑

k=0

(
1

k!
)d−1 (

n

k

)−(d−1)

Wk .
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Let us define the univariate polynomial

q(z) =
n∑

k=0

Wkz
k .

Interpreting the value of q(z) as the value of the hypergraph matching polynomial
PH on the scaled weights z

(
ai1...id − 1

)
, from Theorem 5.5.2 we deduce that

q(z) �= 0 provided |z| ≤ 1

(αn)d−1
.

Let

p(z) =
n∑

k=0

zk

k! .

By Lemma 5.5.4,
p(z) �= 0 provided |z| ≤ αn.

Applying Corollary 2.5.10 successively to the pairs {p, q}, {p, p ∗ q}, . . . , {p, p ∗
. . . ∗ p ∗ q}, we conclude that the polynomial

r(z) =
n∑

k=0

(
1

k!
)d−1 (

n

k

)−(d−1)

Wkz
k

satisfies
r(z) �= 0 provided |z| ≤ 1.

In particular,

r(1) =
n∑

k=0

(
1

k!
)d−1 (

n

k

)−(d−1)

Wk = (n!)−(d−1) PER A �= 0,

as claimed. �

http://dx.doi.org/10.1007/978-3-319-51829-9_2


Chapter 6
The Independence Polynomial

Known in statistical physics as the partition function of a hard core model, the
independence polynomial of a graph is a far-reaching extension of the matching
polynomial, demonstrating a much more complicated behavior. The roots of the
independence polynomial do not have to be real, but the Dobrushin–Scott–Sokal
bound for its complex roots is similar to the bound for the roots of the match-
ing polynomial. The correlation decay is observed for sufficiently small activities
but disappears for large activities, so there is phase transition. The highlight of the
chapter is in establishing the exact point of that phase transition, first for regular
trees, and then, following Weitz, for arbitrary graphs. It also provides us with an
instance where the correlation decay approach outperforms the Taylor polynomial
interpolation method (so far). The two methods would achieve the same degree of
approximation if there are no roots of the independence polynomial near the positive
real axis up to the Weitz bound, as was conjectured by Sokal. We prove a result
of Regts stating that there are indeed no roots near the positive real axis halfway
between the Dobrushin–Scott–Sokal and Weitz bounds.

6.1 The Independence Polynomial of a Graph

6.1.1 Definition. Let G = (V, E) be an undirected graph with set V of vertices, set
E of edges, without loops or multiple edges. A setU ⊂ V of vertices is independent
if no two vertices ofU span an edge of G. We consider the empty set ∅ independent.
Let CV be the complex vector space with coordinates indexed by the vertices of G,
hence we write z = (zv : v ∈ V ) for a typical z ∈ C

V . For a subset U ⊂ V we
consider the monomial

zU =
∏

v∈U
zv,

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9_6
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where we agree as usual that
z∅ = 1.

We define the independence polynomial of G, ind : CV −→ C, by

indG(z) =
∑

U⊂V
U is independent

zU .

In particular, indG(0) = 1. We call zv the activity of v. In statistical physics, indG(z)
is known as the partition function of the “hard core model”. It describes mutually
repelling particles that can occupy positions at the vertices of a graph and avoid
coming too close to each other, that is, avoid occupying adjacent vertices.

Let v ∈ V be a vertex and let

Nv = {u ∈ V : {u, v} ⊂ E}

be theneighborhoodof v inG (note thatwedonot include v in its ownneighborhood).
For sets A, B ⊂ V of vertices, byG(A)wedenote the subgraph induced by the subset
A of vertices (hence two vertices from A span an edge of G(A) if and only if they
span an edge of G) and by G(A) − B we denote the graph obtained from G(A) by
deleting all vertices from B together with incident edges. If an independent set U
contains v then it cannot contain any of the vertices adjacent to v and we arrive to
the identity

indG(z) = indG−v(z) + zv indG−v−Nv
(z), (6.1.1.1)

see Fig. 6.1 (we use G − v − Nv as a shorthand for G − ({v} ∪ Nv)).

Fig. 6.1 a A graph G with a
vertex v, b the graph G − v

and c the graph G − v − Nv

(b)

v

(a)

(c)
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The following result on the location of zeros of indG was obtained by Dobrushin,
see [Do96] and [SS05]. We follow [CF16], which, in turn, contains a modification
of an argument from [Bo06].

6.1.2 Theorem. Let G = (V, E) be a graph and let 0 < rv < 1 : v ∈ V be reals.
Suppose that

|zv| ≤ (1 − rv)
∏

u∈V :{u,v}∈E

ru .

Then
indG(z) �= 0.

Proof. Recall that for a set A ⊂ V of vertices, we denote by G(A) the induced
subgraph on the set A. We formally consider the polynomial indG(A) as a function on
C

V , although the variables zv with v /∈ A do not enter into it. We prove by induction
on |A| the following two inequalities:

indG(A)(z) �= 0 (6.1.2.1)

and
∣∣∣∣
indG(B)(z)

indG(A)(z)

∣∣∣∣ ≤
⎛

⎝
∏

u∈A\B
ru

⎞

⎠
−1

for any B ⊂ A (6.1.2.2)

and z ∈ C
V satisfying the conditions of the theorem. We agree that the right hand

side of (6.1.2.2) is 1 if B = A. If A = V then (6.1.2.1) is what we need.
If A = ∅ then (6.1.2.1) and (6.1.2.2) hold trivially. Suppose that A �= ∅ and that

(6.1.2.1) and (6.1.2.2) hold for all proper subsets of A. Let us choose v ∈ A. By the
induction hypothesis, indG(A)−v(z) �= 0 and using (6.1.1.1) we can write

indG(A)(z) = indG(A)−v(z) + zv indG(A)−v−Nv
(z)

= indG(A)−v(z)

(
1 + zv

indG(A)−v−Nv
(z)

indG(A)−v(z)

)
. (6.1.2.3)

By the induction hypothesis, from (6.1.2.2) it follows that

∣∣∣∣
indG(A)−v−Nv

(z)

indG(A)−v(z)

∣∣∣∣ ≤
⎛

⎝
∏

u∈(A\{v})\(A\({v}∪Nv))

ru

⎞

⎠
−1

=
⎛

⎜⎝
∏

u∈A:{u,v}∈E

ru

⎞

⎟⎠

−1

,

where the last equality follows since every vertex u ∈ (A \ {v}) \ (A \ ({v} ∪ Nv))

is necessarily connected to v by an edge, cf. Fig. 6.1. Therefore,
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∣∣∣∣zv

indG(A)−v−Nv
(z)

indG(A)−v(z)

∣∣∣∣ ≤ (1 − rv) < 1 (6.1.2.4)

and (6.1.2.1) follows by (6.1.2.3). We also note that from (6.1.2.3) and the first
inequality in (6.1.2.4) it follows that

∣∣∣∣
indG(A)−v(z)

indG(A)(z)

∣∣∣∣ ≤ r−1
v . (6.1.2.5)

Let B ⊂ A be a subset. If B = A then (6.1.2.2) holds trivially, so we assume that
B is a proper subset of A. Then for some v ∈ A we have B ⊂ A \ {v} and applying
the induction hypothesis to the pair B ⊂ A \ {v} and using (6.1.2.5) we obtain

∣∣∣∣
indG(B)(z)

indG(A)(z)

∣∣∣∣ =
∣∣∣∣
indG(B)(z)

indG(A−v)(z)

∣∣∣∣

∣∣∣∣
indG(A)−v (z)

indG(A)(z)

∣∣∣∣ ≤
⎛

⎝
∏

u∈(A\{v})\{B}
ru

⎞

⎠
−1

r−1
v

=
∏

u∈A\B
r−1
u ,

which completes the proof. �

Suppose that the degree of every vertex of G does not exceed some � ≥ 1.
Choosing

rv = �

� + 1
for all v ∈ V

we obtain from Theorem 6.1.2 that

indG(z) �= 0 provided |zv| ≤ ��

(� + 1)�+1
for all v ∈ V .

Scott and Sokal [SS05] showed that the bound can be improved somewhat.

6.1.3 Theorem. Suppose that the degree of every vertex of G does not exceed some
� ≥ 2. Then

indG(z) �= 0 provided |zv| ≤ (� − 1)�−1

��
for all v ∈ V .

Proof. The proof is very similar to that of Theorem 5.5.2. We proceed by induction
on the number |V | of vertices. If |V | = 1, the result holds, sowe assume that |V | > 1.

We embed into our inductive proof yet another inductive argument (the inner
induction as opposed to the outer induction). Namely, we prove by induction on |V |
that if G = (V, E) is a graph with the largest degree �(G) ≤ � of a vertex and if
v ∈ V is a vertex of degree at most � − 1 then

http://dx.doi.org/10.1007/978-3-319-51829-9_5


6.1 The Independence Polynomial of a Graph 185

indG(z) �= 0 and

∣∣∣∣1 − indG−v(z)

indG(z)

∣∣∣∣ <
1

� − 1

provided |zu | ≤ (� − 1)�−1

��
for all u ∈ V .

The case of |V | = 1 is easily verified, so we assume that |V | ≥ 2. By the outer
induction hypothesis, indG−v(z) �= 0, so we can rewrite (6.1.1.1) as

indG(z)

indG−v(z)
= 1 + zv

indG−v−Nv
(z)

indG−v(z)
. (6.1.3.1)

Let Nv = {v1, . . . , vk} for some 0 ≤ k ≤ � − 1. If k = 0, that is, if v is an isolated
vertex, then ∣∣∣∣1 − indG−v(z)

indG(z)

∣∣∣∣ =
∣∣∣∣1 − 1

1 + zv

∣∣∣∣ <
1

� − 1

and the step of the inner induction is completed.
Suppose that k > 0 so that v has neighbors in G. Then

indG−v−Nv
(z)

indG−v(z)
= indG−v−v1(z)

indG−v(z)
· · · indG−v−v1−...−vk (z)

indG−v−v1−...−vk−1(z)
. (6.1.3.2)

By the inner induction hypothesis

indG−v−v1−...−vi (z) �= 0 for i = 1, . . . , k.

Moreover, since the degree of vi in the graph G−v−v1− . . .−vi−1 does not exceed
� − 1, by the inner induction hypothesis

∣∣∣∣1 − indG−v−v1−...−vi (z)

indG−v−v1−...−vi−1(z)

∣∣∣∣ <
1

� − 1
for i = 1, . . . , k. (6.1.3.3)

Hence from (6.1.3.2) we conclude that

∣∣∣∣
indG−v−Nv

(z)

indG−v(z)

∣∣∣∣ <

(
�

� − 1

)�−1

and from (6.1.3.1) we conclude that

∣∣∣∣1 − indG(z)

indG−v(z)

∣∣∣∣ <
(� − 1)�−1

��
· ��−1

(� − 1)�−1
= 1

�
.
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Therefore, indG(z) �= 0 and, as in the proof of Theorem 5.5.2, we conclude that

∣∣∣∣1 − indG−v(z)

indG(z)

∣∣∣∣ <
1

� − 1
,

which concludes the inner induction.
To conclude the outer induction, it remains to prove that indG(z) �= 0 if the degree

of every vertex v of G is �. We choose an arbitrary vertex v and use (6.1.3.1) and
(6.1.3.2) as above, only that the right hand side of (6.1.3.2) is a product of � (as
opposed to �− 1) factors. Still, the degree of vi in G − v − v1 − . . . − vi−1 does not
exceed � − 1 and therefore (6.1.3.3) still holds. Hence from (6.1.3.2) we conclude
that ∣∣∣∣

indG−v−Nv
(z)

indG−v(z)

∣∣∣∣ <

(
�

� − 1

)�

and from (6.1.3.1) we have

∣∣∣∣1 − indG(z)

indG−v(z)

∣∣∣∣ <
(� − 1)�−1

��
· ��

(� − 1)�
= 1

� − 1

and indG(z) �= 0. �

As is discussed in [SS05], the bound of Theorem 6.1.3 is optimal, as it is asymp-
totically achieved on regular trees. Also, see [SS05] for extensions, generalizations
and connections to Lovász’s Local Lemma.

6.1.4 Example: the Tutte polynomial of a graph. In [CF16], Csikvári and and
Frenkel deduced from Theorem 6.1.2 bounds on the zeros of a wide class of graph
polynomials, which they call polynomials of exponential type. We consider one
example from [CF16], the Tutte polynomial of a graph.

Let G = (V, E) be a graph. Let w = (we : e ∈ E) be a vector of complex
variables indexed by the edges e of G and let ζ be yet another complex variable. We
define the Tutte polynomial of G by

TG(ζ, w) =
∑

A⊂E

ζκ(A)
∏

e∈A

we,

where the sum is taken over all sets A of edges of G and κ(A) is the number
of connected components in the graph with set V of vertices and set A of edges.
In particular, TG is a monic polynomial in ζ of degree |V | since for A = ∅ the
corresponding monomial is just ζ |V |.

We express TG(ζ, w) in terms of the independence polynomial of some other
graph Ĝ = (V̂ , Ê) as follows. The vertex set V̂ consists of all subsets U ⊂ V such
that |U | ≥ 2. Two subsets U1 and U2 span an edge in Ĝ if and only if U1 ∩U2 �= ∅.
Hence the independent sets in Ĝ are the collections of pairwise disjoint subsets

http://dx.doi.org/10.1007/978-3-319-51829-9_5
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U1, . . . ,Uk ⊂ V , each of cardinality at least 2. Let G(U ) be the subgraph of G
induced on U . We define the activity zU of a vertex U of Ĝ by

zU = 0 if G(U ) is not connected

and by
zU = ζ1−|U | ∏

e∈E
both endpoints of e lie in U

we if G(U ) is connected.

If U1, . . . ,Uk ⊂ V are pairwise disjoint subsets of cardinality at least 2, such that
all induced subgraphs G(U1), . . . ,G(Uk) are connected then for the set A ⊂ E of
edges that is the union of the sets of edges in G(U1), . . . ,G(Uk), we have

κ(A) = k +
(

|V | −
k∑

i=1

|Ui |
)

,

since the connected components of the graphwith set V of vertices and set A of edges
are the induced subgraphs G(U1), . . . ,G(Uk) and the remaining isolated vertices.
On the other hand,

k∑

i=1

(1 − |Ui |) = k −
k∑

i=1

|Ui |,

from which we deduce that

TG(ζ, w) = ζ |V | indĜ(z). (6.1.4.1)

Let us consider constant weights we = w0 for some w0 ∈ C. Using (6.1.4.1) and
Theorem 6.1.2, Csikvári and and Frenkel [CF16] prove that TG(ζ, w) �= 0 if

|ζ| > γ�(G) (1 + |w0|)�(G)

for some absolute constant γ > 0 (one can choose γ = 21).
For some specializations of the Tutte polynomial better bounds are known. For

example, if we = −1 for all e ∈ E then chrG(ζ) = TG(ζ, w) is the chromatic
polynomial of G, which, for positive integer ζ counts the number of ways to color
the vertices of G into at most ζ colors so that no two vertices spanning an edge of
G are colored with the same color, see also Lemma 6.5.5. Sokal [S01a] proved that
chrG(ζ) �= 0 if |ζ| > 8�(G).

6.1.5 Computing the independence polynomial.As was noticed in [Re15], Theo-
rem 6.1.3 allows one to approximate indG(z) within relative error ε in |V |O(ln |V |−ln ε)

time provided

|zv| ≤ δ
(� − 1)�−1

��
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for any 0 < δ < 1, fixed in advance, where � = �(G) ≥ 2 is the largest degree of
vertex of G. To see that, let us consider a univariate function f (ζ) = ln indG(ζz).
Let pm(ζ) be the Taylor polynomial of degree m of f (ζ) at ζ = 0. It follows from
Lemma 2.2.1 that pm(1) approximates f (1) within an additive error ε provided
m = O(ln |V | − ln ε). Moreover, by Sect. 2.2.2, to compute the pm(ζ) it suffices to
compute

dk

dζk
indG(ζz)

∣∣∣
ζ=0

,

which in turn reduces to the enumeration of all independent sets of G of size at most
m, which can be accomplished in |V |O(m) time. Patel and Regts show [PR16] that
if the largest degree �(G) of a vertex of G is fixed in advance then indG(z) can be
approximated in polynomial time (|V |/ε)O(1), see Sect. 6.6.

Similar algorithms are described in [PR16] and [Re15] for other combinatorial
polynomials. As Regts notes [Re15], for some polynomials p computing values
p(z) for with |z| large is feasible, for which one should apply Lemma 2.2.1 to the
polynomial

p̃(z) = zdeg p p(1/z).

A natural example is provided by the chromatic polynomial, see Sect. 6.1.4 and
Lemma 6.5.5, where Lemma 2.2.1 produces a quasi-polynomial approximation
algorithm to compute chrG(ζ) provided |ζ| > γ�(G) for any γ > 8, fixed in
advance. Sokal conjectured, see [Ja03], that chrG(ζ) �= 0 provided � ζ > �(G).
Should this conjecture be true, chrG(ζ) can be efficiently approximated provided
� ζ > (1 + δ)�(G) for any fixed δ > 0, see [PR16].

We note that

(� − 1)�−1

��
= 1

�e

(
1 + O

(
1

�

))

as � −→ +∞.

(6.1.5.1)

It is shown in [LV99] that the problem of approximating indG(z) is NP-hard provided
z = (λ, . . . ,λ) for λ > c/�(G), where c > 0 is an absolute constant.

There are certain parallels between the matching polynomial considered in
Chap. 5 and the independence polynomial. Given a graph G = (V, E), one can
consider its line graph L(G). The vertices of L(G) are the edges of E and two ver-
tices of L(G) span an edge if the corresponding edges in G share a vertex. Then a
matching inG corresponds to an independent set in L(G) and vice versa. Line graphs
form a rather restricted class of graphs, for example, they are always claw-free, that
is, do not contain an induced subgraph pictured on Fig. 6.2.

Extending Theorem 5.1.2, Chudnovsky and Seymour [CS07] proved that the roots
of the univariate independence polynomial (when all activities zv are equal) of a claw-
free graph are real. In that case, using Lemma 2.2.3 and arguing as in Sect. 5.1.7, for
any δ ≥ 1, fixed in advance and any complex z such that

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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Fig. 6.2 A claw

|z| ≤ δ
(� − 1)�−1

��
and |π − arg z| ≥ 1

δ

we can approximate indG at zv = z for all v ∈ V within a relative error ε > 0 in
nO(ln n−ln ε) time. Furthermore, Patel and Regts show [PR16] that if �(G) is fixed in
advance, the algorithm can be made genuinely polynomial, see also Sect. 6.6.

We also note that the nearest to the origin complex root of the univariate indepen-
dence polynomial of any graph is necessarily negative real [SS05]. More precisely,
let us fix any vector of non-negative real activities x = (xv ≥ 0 : v ∈ V ) at the
vertices V of a graph G and for a ζ ∈ C, let us consider its scaling

ζx = (ζxv : v ∈ V ) .

Then among the roots of the univariate polynomial

g(z) = indG(ζx) where ζx = (ζxv : v ∈ V )

nearest to the origin, there is necessarily a negative real root. We prove this later in
Theorem 6.5.4.

6.2 The Independence Polynomial of Regular Graphs

6.2.1 The probability space of independent sets. Let G = (V, E) be a graph. For
a real t > 0 we consider the value of the independence polynomial indG(z) where
zv = t for all v ∈ V , which we denote just by indG(t). We consider the set of all
independent sets S ⊂ V , including the empty set, as a finite probability space with

Pr (S) = t |S|

indG(t)
.

Then
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t
d

dt
ln indG(t) = t ind′

G(t)

indG(t)
= 1

indG(t)

∑

S⊂V
is independent

|S|t |S|

=
∑

S⊂V
is independent

|S|Pr (S) = E|S| (6.2.1.1)

is naturally interpreted as the expected size of a random independent set S. Conse-
quently,

t

|V |
d

dt
ln indG(t)

is naturally interpreted as the expected fraction of vertices contained in a random
independent set S.

Assume now that G is k-regular, that is, every vertex of G is incident to exactly k
edges of G. Davies, Jenssen, Perkins and Roberts proved [D+15] that the expected
fraction of vertices contained in a random independent set of a k-regular graph
is maximized when G is the vertex-disjoint union of k-regular complete bipartite
graphs, cf. Fig. 5.11. We follow their proof below, see also [Zh16] for a survey.

6.2.2 Theorem. Let G = (V, E) be a k-regular graph. Then for any t > 0 we have

t

|V |
d

dt
ln indG(t) ≤ t (1 + t)k−1

2(1 + t)k − 1
,

where equality is attained if and only if G is the vertex-disjoint union of k-regular
complete bipartite graphs. Consequently,

indG(t) ≤ (
2(1 + t)k − 1

) |V |
2k ,

where equality is attained if and only if G is the vertex-disjoint union of k-regular
complete bipartite graphs.

Following [D+15], we start with a lemma.

6.2.3 Lemma. Let G = (V, E) be a graph where 0 < |V | ≤ n. Then for t > 0 we
have

ind′
G(t)

indG(t) − 1
≤ n(1 + t)n−1

(1 + t)n − 1
,

with equality obtained if and only if E = ∅ so that G consists of n isolated vertices.

Proof. First, let us assume that |V | = n. Let G◦ = (V,∅) be the graph with set V
of vertices and no edges. Then every set S ⊂ V of vertices is independent and

indG◦(t) =
n∑

m=0

(
n

m

)
tm = (1 + t)n.

http://dx.doi.org/10.1007/978-3-319-51829-9_5
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Let

indG(t) =
n∑

m=0

am(G)tm,

where am is the number of independentm-sets inG. Since each independent (m+1)-
set in G contains exactly m + 1 independent m-sets and any independent m-set in G
is contained in at most |V | − m independent sets of size m + 1, we obtain

(m + 1)am+1 ≤ (n − m)am for m = 0, 1, . . . , n − 1 (6.2.3.1)

and, consequently,

am+1( n
m+1

) ≤ am(n
m

) for m = 0, . . . , n − 1.

Iterating, we obtain a j/
(n
j

) ≤ ai/
(n
i

)
provided j ≥ i , which we write as

a j

(
n

i

)
≤ ai

(
n

j

)
provided n ≥ j ≥ i ≥ 0. (6.2.3.2)

Let

t ind′
G◦(t) (indG(t) − 1) =

2n∑

m=2

bm(G)tm and

t ind′
G(t) (indG◦(t) − 1) =

2n∑

m=2

cm(G)tm,

where

bm =
∑

i+ j=m
i, j>0

j

(
n

j

)
ai and cm =

∑

i+ j=m
i, j>0

iai

(
n

j

)
.

Hence

bm − cm =
∑

i+ j=m
i, j>0

ai

(
n

j

)
( j − i) =

∑

i+ j=m
j>i>0

( j − i)

(
ai

(
n

j

)
− a j

(
n

i

))
≥ 0

by (6.2.3.2). In addition, bm = cm for all m if and only if (6.2.3.1) holds for all m.
Hence

t ind′
G◦(t) (indG(t) − 1) ≥ t ind′

G(t) (indG◦(t) − 1) for all t > 0
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with equality if and only if G = G◦ and the proof follows assuming that |V | = n.
Since for n ≥ 2, we have

(1 + t)n − 1

n(1 + t)n−1
− (1 + t)n−1 − 1

(n − 1)(1 + t)n−2
= 1 + nt − (1 + t)n

n(n − 1)(1 + t)n−1
< 0,

we conclude that
n(1 + t)n−1

(1 + t)n − 1
>

(n − 1)(1 + t)n−2

(1 + t)n−1 − 1

and the proof follows for any |V | ≤ n. �

Given an independent set S ⊂ V in G, we call a vertex v ∈ V occupied by S
if v ∈ S and unoccupied otherwise. A vertex v ∈ V is called uncovered by S if
it is not adjacent to any occupied vertex and covered otherwise. In particular, an
occupied vertex is necessarily uncovered but an uncovered vertex may or may not
be occupied. The set of neighbors of v that are not adjacent to any vertex u ∈ S
that is not a neighbor of v is called the free neighborhood of v (the vertex v is not
a neighbor of itself). Vertices in the free neighborhood may or may not be covered,
see Fig. 6.3.

As in Sect. 6.2.1, we consider the set of independent sets in G as a probability
space.

6.2.4 Lemma. Let v ∈ V be a vertex, let pv be the probability that v is occupied
and let qv be the probability that v is uncovered. Then

1. We have
pv = t

1 + t
qv.

2. Let us fix a set U of neighbors of v such that the probability that U is a free
neighborhood of v with respect to an independent set is positive and let H be
the subgraph induced by U. Then the conditional probability that v is uncovered
given that U is the free neighborhood of v is 1/ indH (t), where we agree that the
ratio is 1 if U is empty.

Fig. 6.3 An independent set
(black dots), covered vertices
(grey dots), uncovered
vertices (white dots) and the
free neighborhood of the
central vertex (dots inside
the shaded region)
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3. Let U and H be as in Part (2). Then the conditional expectation of |U ∩ S| given
that U is the free neighborhood of v is t ind′

H (t)/ indH (t), where we agree that
the ratio is 0 if U is empty.

Proof. In Part (1), if v is unoccupied and uncovered by an independent set S then
S′ = S∪{v} is an independent set,Pr(S′) = tPr(S) andv is occupiedby S′. Similarly,
if v is occupied by S then S′ = S \ {v} is an independent set, Pr(S′) = t−1Pr and v

is uncovered by S. Consequently,

qv =
∑

S:v is uncovered

Pr(S) =
∑

S:v is occupied

Pr(S) +
∑

S:v is uncovered
and unoccupied

Pr(S)

=
∑

S:v is occupied

Pr(S) + t−1
∑

S:v is occupied

Pr(S) = 1 + t

t
pv

and the proof of Part (1) follows.
In Part (2), if U = ∅ then then every neighbor u of v is covered by a vertex that

is not a neighbor of v and hence u /∈ S and v is necessarily uncovered. Suppose
now that U �= ∅ and let � be the set of independent sets S for which U is the
free neighborhood of v. Then, for S ∈ � the vertex v is uncovered if and only if
S ∩U = ∅. If S ∈ � is an independent set then S1 = S ∩U is an independent set in
H , S2 = S \U is an independent set in G such that S2 ∈ � and Pr(S) = t |S1|Pr(S2).
Vice versa, if S1 ⊂ U is an independent set in H and S2 ∈ � is an independent set
such that S2 ∩ U = ∅ then S = S1 ∪ S2 is an independent set such that S ∈ � and
Pr(S) = Pr(S2)t |S1|. Hence

∑

S∈�

Pr(S) =
∑

S1: S1 is independent in H
S2∈�: S2∩U=∅

t S1Pr(S2)

= indH (t)
∑

S2∈�: S2∩U=∅
Pr(S2)

(6.2.4.1)

and

Pr
(
S ∈ � : S ∩U = ∅∣∣S ∈ �

) =
(

∑

S∈�: S∩U=∅
Pr(S)

) / (
∑

S∈�

Pr(S)

)

= 1

indH (t)

and the proof of Part (2) follows.
To prove Part (3), we define � as above. Clearly, if U = ∅ then the conditional

expectation of |U ∩ S| is 0. We assume therefore thatU �= ∅. Arguing as in the proof
of Part (2), we obtain
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∑

S∈�

|U ∩ S| · Pr(S) =
∑

S1: S1 is independent in H
S2∈�: S2∩U=∅

|S1|t |S1|Pr(S2)

=t ind′
H (t)

∑

S2∈�: S2∩U=∅
Pr(S2)

and by (6.2.4.1)

E (|S ∩U | : S ∈ �) =
(

∑

S∈�

|S ∩U | · Pr(S)

) / (
∑

S∈�

Pr(S)

)

= t ind′
H (t)

indH (t)
,

which concludes the proof of Part (3). �

Now we are ready to prove Theorem 6.2.2.

6.2.5 Proof of Theorem 6.2.2. As before, we consider the set of all independent
sets in G as a probability space. For a vertex v ∈ V , let pv be the probability that
the vertex is occupied and let qv be the probability that the vertex is uncovered. Let
Nv be the neighborhood of v in G and let Uv,S be the free neighborhood of v with
respect to an independent set S.

Let Uv be the set of all subsets U ⊂ V that appear as the free neighborhood of v

with positive probability yv,U , so that

∑

U∈Uv

yv,U = 1 for all v ∈ V .

Let
U =

⋃

v∈V
Uv

and for U ∈ U let
xU =

∑

v: U∈Uv

yv,U .

Hence ∑

U∈U
xU =

∑

v∈V

∑

U∈Uv

yv,U = |V |. (6.2.5.1)

Let G(U ) denote the subgraph induced by U .
Using Part (1) of Lemma 6.2.4, we express the average size of a random indepen-

dent set S as follows:
E|S| =

∑

v∈V
pv = t

1 + t

∑

v∈V
qv.
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From Part (2) of Lemma 6.2.4 we further write

∑

v∈V
qv =

∑

v∈V

∑

U∈Uv

yv,U

indG(U )(t)
=

∑

U∈U

xU
indG(U )(t)

.

Hence
E|S| = t

1 + t

∑

U∈U

xU
indG(U )(t)

. (6.2.5.2)

On the other hand, since every vertex u ∈ S has k neighbors, for any independent
set S we can write

|S| = 1

k

∑

v∈V
|Nv ∩ S| = 1

k

∑

v∈V
|Uv,S ∩ S|.

Using Part (3) of Lemma 6.2.4, we write

E|S| = 1

k

∑

v∈V
U∈Uv

t ind′
G(U )(t)

indG(U )(t)
yv,U = 1

k

∑

U∈U

t ind′
G(U )(t)

indG(U )(t)
xU . (6.2.5.3)

Since |U | ≤ k, from Lemma6.2.3 we have

t

k
ind′

G(U )(t) ≤ t (1 + t)k−1

(1 + t)k − 1

(
indG(U )(t) − 1

)

and hence using that x(U ) > 0 we obtain from (6.2.5.3)

E|S| ≤ t (1 + t)k−1

(1 + t)k − 1

∑

U∈U
x(U ) − t (1 + t)k−1

(1 + t)k − 1

∑

U∈U

x(U )

indG(U )(t)
.

Using (6.2.5.2), we conclude that

E|S| ≤ t (1 + t)k−1

(1 + t)k − 1

∑

U∈U
x(U ) − (1 + t)k

(1 + t)k − 1
E|S|,

so that

E|S| ≤ t (1 + t)k−1

2(1 + t)k − 1

∑

U∈U
x(U ).

Applying (6.2.5.1), we obtain

1

|V |E|S| ≤ t (1 + t)k−1

2(1 + t)k−1
. (6.2.5.4)
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The desired inequality follows by (6.2.1.1). We get equality in (6.2.5.4) if every free
neighborhood that appears with positive probability consists of exactly k discon-
nected points or empty. �

6.3 Correlation Decay for Regular Trees

6.3.1 Occupancy probabilities on graphs and trees. Let G = (V, E) be a graph
and let z = (

zv : v ∈ V
)
be a vector of non-negative activities. We consider the set

of independent sets S in a given graph G as a finite probability space where

Pr(S) = (indG(z))−1
∏

v∈S
zv

(if S = ∅ then the corresponding product is 1). Let p(v) be the probability that a
vertex v is occupied, that is, belongs to a random independent set S. We rewrite
(6.1.1.1) as

indG−v(z)

indG(z)
= 1

1 + zv
indG−v−Nv (z)
indG−v(z)

. (6.3.1.1)

Then

1 − p(v) = indG−v(z)

indG(z)

is the probability that a random independent set S in G does not contain v.

If G is a tree then G − v is a vertex-disjoint union of trees and hence the ratio

indG−v−Nv
(z)

indG−v(z)

is naturally interpreted as the probability that none of the neighbors of v is occupied
in each of the trees obtained from G by deleting v.

First, we consider the case of an (almost) regular tree Tk
n , see Sect. 5.2.4, in detail.

6.3.2 Trees Tk
n and the phase transition. Let us consider a tree Tk

n , with vertices
at the levels 0, 1, . . . , n, with one vertex, called the root, at the 0th level connected
to (k − 1) vertices at the level 1 and with every vertex at the i-th level connected
to one vertex at the (i − 1)-st level and k − 1 vertices at the (i + 1)-st level, for
i = 1, . . . , n − 1, see Sect. 5.2.4 (we assume that k ≥ 3). If a vertex v at the i-th
level is connected to a vertex u at the (i + 1)-st level, we call u a descendant of v.

We fix a t > 0 and, as in Sect. 6.3.1 consider the set of all independent sets in Tk
n

as a probability space, with probability of an independent set S proportional to t |S|.
In other words, we set all activities zv = t . Let pn = pk,n(t) be the probability that

http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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root is occupied, that is, lies in a random independent set of Tk
n . We are interested in

the asymptotic behavior of pn when k and t are fixed and n grows.
The equation (6.3.1.1) implies that

1 − pn = 1

1 + t (1 − pn−1)
k−1 where p0 = t

1 + t
. (6.3.2.1)

It turns out that the asymptotic behaviors of pn for large and small t are very different.
Namely, let

tc = (k − 1)k−1

(k − 2)k
,

called the critical t . Then for t < tc there exists

p∞ = lim
n−→∞ pn

while for t > tc there exist limits

peven = lim
n−→∞ p2n and podd = lim

n−→∞ p2n+1

and peven �= podd. The values t < tc are called subcritical whereas values t > tc are
called supercritical. Physicists say that the model experiences a phase transition at
t = tc.

In view of (6.3.2.1), the results follow from the following general theorem, cf.
[Sp75].

6.3.3 Theorem. Fix some t > 0 and an integer k > 2 and consider the transforma-
tion

T (x) = Tt,k(x) = 1

1 + t xk−1
for 0 ≤ x ≤ 1.

Let

tc = (k − 1)k−1

(k − 2)k
.

For a positive integer n, let T n denote the n-th iteration of T , so that T 2(x) =
T (T (x)), T 3(x) = T (T (T (x)), etc.

Then there exists a unique point x0 = x0(t, k) such that T (x0) = x0. If t < tc
then

lim
n−→∞ T n(x) = x0 for all 0 ≤ x ≤ 1.

Moreover, the convergence is exponentially fast, meaning that there exist γ =
γ(t, k) > 0 and 0 < δ = δ(t, k) < 1 such that

∣∣ln T n(x) − ln x0
∣∣ ≤ γδn for all 0 ≤ x ≤ 1.
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If t > tc then there exist x− = x−(t, k) and x+ = x+(t, k) such that

x−< x0 < x+

while
lim

n−→∞ T 2n(x) = x− for all 0 ≤ x < x0

and
lim

n−→∞ T 2n(x) = x+ for all x0 < x ≤ 1.

Proof. It is convenient to parameterize x = e−s for 0 ≤ s ≤ +∞. In the new
coordinates, T can be written as

T (s) = ln
(
1 + te−s(k−1)

)
.

Since T (s) is decreasing from T (0) = ln(1 + t) > 0 to T (+∞) = 0, there is a
unique fixed point a = a(t) such that T (a) = a, see Fig. 6.4.

Moreover, if s > a then T (s) < T (a) = a and if s < a then T (s) > T (a) = a.
Since for s > 0 we have Tt1(x) > Tt2(x) if and only if t1 > t2 we conclude that a(t)
is an increasing continuous function of t . In addition,

lim
t−→0+ a(t) = 0 and lim

t−→+∞ a(t) = +∞

and hence the set of possible values of a(t) is the interval (0,+∞).
We have

T ′(s) = − t (k − 1)e−s(k−1)

1 + te−s(k−1)

and

T ′(a) = − t (k − 1)e−a(k−1)

1 + te−a(k−1)
.

Fig. 6.4 The graphs of
y = ln

(
1 + 3e−2x

)
and

y = x .
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Since
1 + te−a(k−1) = ea,

we conclude that

t = ea(k−1)
(
ea − 1

)
and T ′(a) = −(k − 1)

(
1 − e−a

)
.

If a = ln k−1
k−2 then T ′(a) = −1 and

t =
(
k − 1

k − 2

)k−1 1

k − 2
= (k − 1)k−1

(k − 2)k
= tc.

Since a(t) is an increasing function of t , we conclude that for t < tc we have
0 > T ′(a) > −1 and for t > tc we have T ′(a) < −1.

It is now clear that if t > tc then a is an unstable fixed point: if s �= a is sufficiently
close to a then |T (s) − a| > |s − a| and hence for any s �= 0 the sequence T n(s)
cannot converge to a. On the other hand, if t < tc then a is a locally stable fixed
point: if s is sufficiently close to a then |T (s) − a| ≤ δ|x − a| for some 0 < δ < 1
and for any s sufficiently close to a the sequence T n(s) converges to a.

We consider the second iteration T (T (s)). Clearly, T (T (s)) is an increasing func-
tion of s. We claim that T (T (s)) is either concave or has exactly one inflection point,
where it changes from convex to concave, see Fig. 6.5.

We have

(T (T (s))′ =T ′(T (s))T ′(s)

=
(

− t (k − 1)
(
1 + te−s(k−1)

)−(k−1)

1 + t
(
1 + te−s(k−1)

)−(k−1)

)(
− t (k − 1)e−s(k−1)

1 + te−s(k−1)

)

= t2(k − 1)2e−s(k−1)

(
1 + te−s(k−1)

)k + t
(
1 + te−s(k−1)

) .

Fig. 6.5 The graph of
T (T (s)) for t = 2 and
k = 11
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Thus we need to show that (T (T (s))′ is either decreasing or first increasing and then
decreasing.

Equivalently, letting y = e−s(k−1), we have to show that the function

f (y) = (1 + t y)k + t (1 + t y)

y
for 0 ≤ y < 1

is either decreasing or first decreasing and then increasing. We write

f (y) = t (t + k) + 1 + t

y
+

k∑

j=2

t j
(
k

j

)
y j−1,

from which it follows that f is convex. Since

lim
y−→0+ f (y) = +∞,

this proves that f (y) is either decreasing for 0 < y ≤ 1 or first decreasing and
then increasing. Consequently, T (T (s))′ is either decreasing or first increasing and
then decreasing. Therefore, T (T (s)) is either concave for s ≥ 0 or has exactly one
inflection point, where it changes from convex to concave.

Next, we observe that s = a, where a is the unique fixed point of T must also be
a fixed point of T 2. If b < a is a fixed point of T 2 then c = T (b) > a is another
fixed point of T 2 and if c > a is a fixed point of T 2 then b = T (c) < a is also a
fixed point of T 2. Since T 2 has at most one inflection point, there cannot be more
than 3 fixed points, see Fig. 6.6.

If there are three fixed points of T 2 then we must have (T ′(a))2 = T (T (a))′ > 1
which means that t > tc, see Fig. 6.6a. If t < tc, we must have one fixed point of T 2,
which is also the fixed point of T . Moreover, T 2(s) is an increasing function such
that T 2(s) < s for s < a and T 2(s) > s for s > a.

It follows that if t < tc then for any 0 ≤ s < a, the sequence T 2n(s) is an
increasing sequence converging to a, while for any s > a, the sequence is T 2n(a) is
a decreasing sequence converging to a, see Fig. 6.7.

Fig. 6.6 The map T 2 has
either three (a) or one (b)
fixed points. In a, the fixed
point a of T is locally
repelling and in (b) it is
locally attracting

s

(a) (b)

ab c as
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Fig. 6.7 Iterations T 2n(s)
for s < a and s > a when
t < tc

a s0

Fig. 6.8 Iterations T 2n(s)
when t > tc.

0 scab

Therefore,
lim

n−→∞ T n(s) = a for all 0 ≤ s < ∞.

If t > tc then for any 0 ≤ s < b the sequence T 2n(s) is an increasing sequence
converging to b and for any b < s < a the sequence T 2n(s) is a decreasing sequence
converging to b, while for any a < s < c the sequence T 2n(s) is an increasing
sequence converging to c and for any s > c the sequence T 2n(s) is a decreasing
sequence converging to c, see Fig. 6.8.

Therefore,

lim
n−→∞ T 2n(s) = b for all 0 ≤ s < a and

lim
n−→∞ T 2n(s) = c for all s > a.

It remains to show that if t < tc then |T n(s) − a| decreases exponentially fast
with n. Since T switches sets s < a and s > a it suffices to prove exponential decay
for one of the two sets. However, see Fig. 6.7, we have that

0 ≤ d

ds
T 2(s) ≤ d

ds
T 2(s)

∣∣∣
s=a

< δ for all s ≤ a or for all s ≥ a
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and some δ = δ(t) < 1. Thus T 2 is a contraction for all s > a or for all s < a, so
that

∣∣T 2n(a) − T 2n(s)
∣∣ ≤ δn |s − a| for all s > a or for all s < a.

Since for

a ≤ s ≤ +∞ we have T 2(a) = a ≤ T 2(s) ≤ T 2(+∞) = ln(1 + t),

the proof follows. �

6.3.4 Correlation decay in trees Tk
n . Let us consider the tree T

k
n of Sect. 6.3.2 and

fix some subcritical

t < tc = (k − 1)k−1

(k − 2)k
.

Let pon = pok,n(t) be the conditional probability that the root of T
k
n is occupied given

that all vertices at the n-th level are occupied, see Fig. 6.9a.

Arguing as in Sects. 6.3.1 and 6.3.2, we conclude that pon satisfies the recursion

1 − pon = 1

1 + t
(
1 − pon−1

)k−1 where po0 = 1.

Fig. 6.9 Black dots are
occupied vertices, white dots
are unoccupied vertices and
grey dots are the vertices that
can be occupied or
unoccupied

(c)

(a) (b)
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Hence by Theorem 6.3.3, we have

lim
n−→∞ pon = 1 − x (6.3.4.1)

where x is the unique real solution of the equation

x = 1

1 + t xk−1
. (6.3.4.2)

Moreover, the convergence in (6.3.4.1) is exponentially fast, meaning that

∣∣ln
(
1 − pon

) − ln (1 − x)
∣∣ ≤ γδn,

for some γ = γ(t, k) > 0 and some 0 < δ(t, k) < 1.
Next, let pun = puk,n(t) be the conditional probability that the root ofT

k
n is occupied

given that all vertices at the n-th level are unoccupied, see Fig. 6.9b. Arguing as in
Sects. 6.3.1 and 6.3.2, we conclude that pun satisfies the recursion

1 − pun = 1

1 + t
(
1 − pun−1

)k−1 where pu0 = 0.

Hence by Theorem 6.3.3, we have

lim
n−→∞ pun = 1 − x, (6.3.4.3)

where x is the same unique real solution of the Eq. (6.3.4.2). Moreover, the conver-
gence in (6.3.4.3) is exponentially fast, meaning that

∣∣ln
(
1 − pun

) − ln (1 − x)
∣∣ ≤ γδn,

for some γ = γ(t, k) > 0 and some 0 < δ(t, k) < 1. In particular, the limits in
(6.3.4.1) and (6.3.4.3) coincide.

Finally, let us impose impose some arbitrary occupancy constraints � at the n-th
level of Tk

n , see Fig. 6.9c and let p�
n = p�

n,k(t) be the conditional probability that
the root is occupied given those constraints. For a vertex v of Tk

n , let p
�(v) be the

conditional probability that v is occupied given the constraints � at the n-th level.
Arguing as in Sects. 6.3.1 and 6.3.2, we arrive to the recurrence

1 − p�(v) = 1

1 + t
(
1 − p�

v1

) · · · (1 − p�
vk−1

) , (6.3.4.4)

where v1, . . . , vk−1 are the descendants of v and the initial conditions are p�(v) = 1
if vertex v at the n-th level is occupied and p�(v) = 0 if vertex v at the n-th level is
unoccupied.
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For vertices v at the n-th level, we clearly have

0 = pu0 ≤ p�(v) ≤ 1 = po0 .

From (6.3.4.4), for the vertices v at the (n − 1)-st level, we have

0 = po1 ≤ p�(v) ≤ pu1 .

Iterating, we obtain,
pum ≤ p�(v) ≤ pom,

when m is even and v is a vertex at the (n − m)-th level and

pom ≤ p�(v) ≤ pum,

when m is odd and v is a vertex at the (n − m)-th level. Therefore,

min
{
pun , pon

} ≤ p�
n ≤ max

{
pun , pon

}
.

From (6.3.4.1) and (6.3.4.3), we conclude that

lim
n−→∞ p�

n = 1 − x, (6.3.4.5)

where x is the unique real solution of (6.3.4.2). In other words, asymptotically, as
n grows, the conditional probability that the root is occupied does not depend on
the occupancy constraint � at the n-th level if Tk

n . Hence we say that for subcritical
t < tc the model exhibits correlation decay. Moreover, the convergence in (6.3.4.5)
is exponentially fast, meaning that

∣∣ln
(
1 − p�

n

) − ln(1 − x)
∣∣ ≤ γδn,

for some γ = γ(t, k) > 0 and some 0 < δ = δ(t, k) < 1.
For supercritical values t > tc the root of the tree Tk

n remembers the occupancy
constraint on the leaves, no matter how large n is. If pon = pon(t) is the conditional
probability that the root is occupied given that all leaves are occupied, we have

lim
n−→∞ po2n > lim

n−→∞ po2n+1

(both limits exist). Similarly, for the conditional probability pun = pun (t) that the root
is occupied given that all leaves are unoccupied, we have

lim
n−→∞ pu2n < lim

n−→∞ pu2n+1
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(both limits exist). Imposing the condition that all leaves are occupied, makes the
vertices on them-th level more likely to be occupied ifm ≡ n mod 2 and less likely
to be occupied if m ≡ n + 1 mod 2.

6.4 Correlation Decay for General Graphs

Our next goal is to show that the similar correlation decay for subcritical t holds
not only for trees but also for general graphs. This was proved by Weitz [We06] and
we follow his exposition. As the first and crucial step, we consider trees Tk

n with
different non-negative real activities zv at vertices.

6.4.1 Trees Tk
n with different activities at vertices. Suppose now that each vertex

v of Tk
n has its own real activity zv ≥ 0. From (6.3.1.1), the probability p(v) that

vertex v is occupied satisfies

1 − p(v) = 1

1 + zv

(
1 − p(u1)

) · · · (1 − p(uk−1)
) , (6.4.1.1)

where u1, . . . , uk−1 are the descendants of v. Following [We06], we introduce ratios

r(v) = p(v)

1 − p(v)

for each vertex v of Tk
n . Then

0 ≤ r(v) ≤ +∞, p(v) = r(v)

1 + r(v)

and the recursion (6.4.1.1) is written as

r(v) = zv(
1 + r(u1)

) · · · (1 + r(uk−1)
) , (6.4.1.2)

where u1, . . . , uk−1 are the descendants of v.

Let rmax
n = rmax

n (z) denote the largest possible value of r(v) at the root v of Tk
n

given the vector of activities z = (zu : u ∈ V ) where the maximum is taken over all
possible choices of the initial values r(u) at the leaves u of Tk

n and let r
min
n = rmin

n (z)
denote the smallest possible value of r(v) at the root v of Tk

n given the vector of
activities z = (zu : u ∈ V ) where the minimum is taken over all possible choices of
the initial values r(u) at the leaves u of Tk

n . We denote rmax
n (t), respectively rmin

n (t)
the corresponding quantities when zu = t for some t ≥ 0 and all vertices u.
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6.4.2 Theorem. Suppose that
0 < zu ≤ t

for some t > 0 and all vertices u of Tk
n. Then for n ≥ 2, we have rmax

n (z) < +∞,
rmin
n (z) > 0 and the inequalities

rmax
n (z)

rmin
n (z)

≤ rmax
n (t)

rmin
n (t)

(6.4.2.1)

and
1 + rmax

n (z)

1 + rmin
n (z)

≤ 1 + rmax
n (t)

1 + rmin
n (t)

(6.4.2.2)

hold. In addition, rmax
1 (z) < +∞ and (6.4.2.2) holds for n = 1.

Some remarks are in order. As follows from (6.4.1.2), if n is odd, the value of
rmax
n is attained when r(v) = 0 for all leaves v of Tk

n and the value of r
min
n is attained

when r(v) = +∞ for all leaves v of Tk
n , while if n is even, the value of rmax

n is
attained when r(v) = +∞ for all leaves v of Tk

n and the value of rmin
n is attained

when r(v) = 0 for all leaves v of Tk
n . By continuity, inequality (6.4.2.2) holds when

0 ≤ zv ≤ t . It can be written as

1 − pmin
n (z)

1 − pmax
n (z)

≤ 1 − pmin
n (t)

1 − pmax
n (t)

,

where pmax, respectively, pmin is the maximum, respectively minimum, probability
that the root is occupied taken over all possible initial occupancy probabilities 0 ≤
p(v) ≤ 1 on the leaves of Tk

n . As is discussed in Sect. 6.3.4, for subcritical values

t < tc = (k − 1)k−1

(k − 2)k

we have

lim
n−→∞

1 − pmin
n (t)

1 − pmax
n (t)

= 1

and hence necessarily

lim
n−→∞

1 − pmin
n (z)

1 − pmax
n (z)

= 1.

In other words, the tree T
k
n with different subcritical activities at each vertex also

exhibits correlation decay.
We prove Theorem 6.4.2 by induction on n. First, we establish some inequalities.
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6.4.3 Lemma.

(1) Let a, b, c and d be non-negative numbers such that b > 0, d > 0,

a ≤ c and 1 ≤ a

b
≤ c

d
.

Then
1 + a

1 + b
≤ 1 + c

1 + d
.

(2) Let c ≥ b ≥ 0 be reals. Then for any α ≥ δ ≥ 0, we have

1 + αc

1 + αb
≥ 1 + δc

1 + δb
.

Proof. We have

1 + c

1 + d
− 1 + a

1 + b
= (1 + c)(1 + b) − (1 + a)(1 + d)

(1 + d)(1 + b)
= (b + c) − (a + d) + (cb − ad)

(1 + d)(1 + b)
.

Since
c

d
− a

b
= cb − ad

db
≥ 0,

we conclude that cb − ad ≥ 0.
Writing c = γa for some γ ≥ 1, we conclude that d ≤ γb and hence

(b + c) − (a + d) ≥ b + γa − a − γb = (γ − 1)(a − b) ≥ 0

and the proof of Part (1) follows.
To prove Part (2), we note that

1 + αc

1 + αb
− 1 + δc

1 + δb
= (1 + αc)(1 + δb) − (1 + δc)(1 + αb)

(1 + δb)(1 + αb)
= (c − b)(α − δ)

(1 + δb)(1 + αb)
≥ 0.

�
6.4.4 Lemma. Let k > 2 be a positive integer, and t, b and c be non-negative real
such that

b ≤ c, c ≥ t

(1 + b)k−1
and b ≤ t

(1 + c)k−1
.

Let us define a function

f (α1, . . . ,αk−1) = 1 + t (1 + α1b)
−1 · · · (1 + αk−1b)

−1

1 + t (1 + α1c)
−1 · · · (1 + αk−1c)

−1 for α1, . . . ,αk−1 ≥ 0.
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Then

f (α1, . . . ,αk−1) ≤ f (1, . . . , 1) for all 0 ≤ α1, . . . ,αk−1 ≤ 1.

Proof. We need to prove that

f (1, . . . , 1)
(
1 + t (1 + α1c)

−1 · · · (1 + αk−1c)
−1

)

≥ 1 + t (1 + α1b)
−1 · · · (1 + αk−1b)

−1

provided 0 ≤ α1, . . . ,αk−1 ≤ 1. Since for α1 = . . . = αk−1 = 1 we attain equality
above, it suffices to prove that the function

g (α1, . . . ,αk−1) =1 + t (1 + α1b)
−1 · · · (1 + αk−1b)

−1

− f (1, . . . , 1) − t f (1, . . . , 1) (1 + α1c)
−1 · · · (1 + αk−1c)

−1

is non-decreasing in every variable 0 ≤ αi ≤ 1 provided the remaining variables
0 ≤ α j ≤ 1 are fixed. By symmetry, it suffices to check that

∂

∂α1
g (α1, . . . ,αk−1) ≥ 0

provided 0 ≤ α1, . . . ,αk−1 ≤ 1. Computing the derivative, we obtain

∂

∂α1
g (α1, . . . ,αk−1) = −tb (1 + α1b)

−1 (1 + α1b)
−1 · · · (1 + αk−1b)

−1

+ tc f (1, . . . , 1) (1 + α1c)
−1 (1 + α1c)

−1 · · · (1 + αk−1c)
−1.

Hence it suffices to prove that

1 + α1c

1 + α1b
· (1 + α1c) · · · (1 + αk−1c)

(1 + α1b) · · · (1 + αk−1b)
≤ c

b
f (1, . . . , 1). (6.4.4.1)

On the other hand,

c

b
f (1, . . . , 1) = c + tc(1 + b)−(k−1)

b + tb(1 + c)−(k−1)
≥ t (1 + b)−(k−1) + tc(1 + b)−(k−1)

t (1 + c)−(k−1) + tb(1 + c)−(k−1)

= (1 + c)(1 + b)−(k−1)

(1 + b)(1 + c)−(k−1)
= (1 + c)k

(1 + b)k
.

(6.4.4.2)

By Part (2) of Lemma 6.4.3, we have

1 + αi c

1 + αi b
≤ 1 + c

1 + b
for i = 1, . . . , k − 1
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and hence

1 + α1c

1 + α1b
· (1 + α1c) · · · (1 + αk−1c)

(1 + α1b) · · · (1 + αk−1b)
≤ (1 + c)k

(1 + b)k
. (6.4.4.3)

Combining (6.4.4.3) and (6.4.4.2), we obtain (6.4.4.1) and hence complete the
proof. �

The final lemma before we embark on the proof of Theorem 6.4.2.

6.4.5 Lemma. For any t > 0 we have

rmax
n (t) ≤ rmax

n−1(t) and rmin
n (t) ≥ rmin

n−1(t)

for all positive integer n.

Proof. We proceed by induction on n. We have

rmax
0 (t) = +∞ and rmin

0 (t) = 0

and, by (6.4.1.2),

rmax
1 (t) = t

(
1 + rmin

0 (t)
)k−1 = t < rmax

0 (t)

and
rmin
1 (t) = t

(
1 + rmax

0 (t)
)k−1 = 0 = rmin

0 (t).

For n > 1 by (6.4.1.2) and the induction hypothesis, we have

rmax
n (t) = t

(
1 + rmin

n−1(t)
)k−1 ≤ t

(
1 + rmin

n−2(t)
)k−1 = rmax

n−1(t)

and, similarly,

rmin
n (t) = t

(
1 + rmax

n−1(t)
)k−1 ≥ t

(
1 + rmax

n−2(t)
)k−1 = rmin

n−1(t),

which completes the proof. �

6.4.6 Proof of Theorem 6.4.2. Let v be the root of Tk
n . We have

rmax
0 (z) = rmax

0 (t) = +∞ and rmin
0 (z) = rmin

0 (t) = 0,



210 6 The Independence Polynomial

from which

rmax
1 (z) = zv, rmax

1 (t) = t, rmin
1 (z) = rmin

1 (t) = 0.

Since zv ≤ t , we have

1 + rmax
1 (z)

1 + rmin
1 (z)

= 1 + zv ≤ 1 + t = 1 + rmax
1 (t)

1 + rmin
1 (t)

which proves (6.4.4.2) for n = 1.

If we remove v with adjacent edges from T
k
n , we obtain a vertex-disjoint union of

k − 1 trees Tk
n−1, the i-th tree with activity vector zi satisfying zi (u) ≤ t for all u.

Applying (6.4.1.2), we obtain

rmax
n (z) = zv(

1 + rmin
n−1(z1)

) · · · (1 + rmin
n−1(zk−1)

) and

rmin
n (z) = zv(

1 + rmax
n−1(z1)

) · · · (1 + rmax
n−1(zk−1)

)
(6.4.6.1)

and, similarly,

rmax
n (t) = t

(
1 + rmin

n−1(t)
)k−1 and rmin

n (t) = t
(
1 + rmax

n−1(t)
)k−1 .

We proceed by induction on n. For n = 2, by (6.4.6.1) we have

rmax
2 (z) = zv, rmax

2 (t) = t, rmin
2 (z) > 0, rmin

2 (t) > 0

and

rmax
2 (z)

rmin
2 (z)

= 1 + rmax
1 (z1)

1 + rmin
1 (z1)

· · · 1 + rmax
1 (zk−1)

1 + rmin
1 (zk−1)

≤
(
1 + rmax

1 (t)

1 + rmin
1 (t)

)k−1

= rmax
2 (t)

rmin
2 (t)

,

which establishes (6.4.2.1) forn = 2.Moreover, since rmax
2 (z) ≤ rmax

2 (t), the inequal-
ity (4.3.2) follows by Part (1) of Lemma 6.4.3.

Suppose that n > 2. Applying the induction hypothesis, we obtain from (6.4.6.1)

rmax
n (z)

rmin
n (z)

= 1 + rmax
n−1(z1)

1 + rmin
n−1(z1)

· · · 1 + rmax
n−1(zk−1)

1 + rmin
n−1(zk−1)

≤
(
1 + rmax

n−1(t)

1 + rmin
n−1(t)

)k−1

= rmax
n (t)

rmin
n (t)

.

In particular, rmax
n (z) < +∞, rmin

n (z) > 0 and (6.4.2.1) follows.
Hence our goal is to prove (6.4.2.2).
First, we observe that if

rmax
n (z) ≤ rmax

n (t)
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then (6.4.2.2) follows by (6.4.2.1) and Part (1) of Lemma 6.4.3. Hence without loss
of generality, we may assume that

rmax
n (z) > rmax

n (t). (6.4.6.2)

Let z′ be the vector of activities obtained from z by replacing the activity zv of the
root by t ≥ zv . From (6.4.6.1) it follows that

rmax
n (z′) = t

zv

rmax
n (z) and rmin

n (z′) = t

zv

rmin
n (z)

so that by Part (2) of Lemma 6.4.3, we have

1 + rmax
n (z′)

1 + rmin
n (z′)

≥ 1 + rmax
n (z)

1 + rmin
n (z)

.

Therefore, without loss of generality, we may assume that

zv = t. (6.4.6.3)

Recall that zi is the vector of activities at the vertices of the i-th treeTk
n−1 obtained

from T
k
n by removing the root v with the adjacent edges. Let I ⊂ {1, . . . , k − 1} be

the set of indices i such that

rmin
n−1(zi ) ≥ rmin

n−1(t).

Let z′ be the vector of activities at the vertices of Tk
n obtained by replacing the vector

zi of activities at the vertices of the i-th tree Tk
n−1 by t for all i ∈ I and let z′

i be the
corresponding vector of activities at the vertices of the i-th tree Tk

n−1 (hence z
′
i = zi

if i /∈ I and z′
i is the constant vector of t if i ∈ I ).

By the induction hypothesis,

1 + rmax
n−1(zi )

1 + rmin
n−1(zi )

≤ 1 + rmax
n−1(t)

1 + rmin
n−1(t)

and using (6.4.6.1) and (6.4.6.3), we conclude that

rmax
n (z)

rmin
n (z)

≤ rmax
n (z′)
rmin
n (z′)

.

Moreover, we have

rmin
n−1(z

′
i ) ≤ rmin

n−1(zi ) for all i = 1, . . . , k − 1
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and by (6.4.6.1) and (6.4.6.3) we have

rmax
n (z) ≤ rmax

n (z′).

It follows then by Part (1) of Lemma 6.4.3 that

1 + rmax
n (z)

1 + rmin
n (z)

≤ 1 + rmax
n (z′)

1 + rmin
n (z′)

.

Therefore, without loss of generality, we may assume that I = ∅ and hence

rmin
n−1(zi ) ≤ rmin

n−1(t) for i = 1, . . . , k − 1. (6.4.6.4)

In view of (6.4.6.4), let us define 0 ≤ α1, . . . ,αk−1 ≤ 1 such that

rmin
n−1(zi ) = αi r

min
n−1(t) for i = 1, . . . , k − 1.

By the induction hypothesis,

rmax
n−1(zi )

rmin
n−1(zi )

≤ rmax
n−1(t)

rmin
n−1(t)

and hence
rmax
n−1(zi ) ≤ αi r

max
n−1(t) for i = 1, . . . , k − 1.

Applying (6.4.6.1) and (6.4.6.3), we conclude that

1 + rmax
n (z)

1 + rmin
n (z)

≤ 1 + t
(
1 + α1rmin

n−1(t)
)−1 · · · (1 + αk−1rmin

n−1(t)
)−1

1 + t
(
1 + α1rmax

n−1(t)
)−1 · · · (1 + αk−1rmin

n−1(t)
)−1 .

Besides, from Lemma 6.4.5,

rmax
n−1(t) ≥ rmax

n (t) = t
(
1 + rmin

n−1(t)
)k−1 and

rmin
n−1(t) ≤ rmin

n (t) = t
(
1 + rmax

n−1(t)
)k−1 .

Applying Lemma 6.4.4, we obtain

1 + rmax
n (z)

1 + rmin
n (z)

≤ 1 + t
(
1 + rmin

n−1(t)
)−(k−1)

1 + t
(
1 + rmax

n−1(t)
)−(k−1)

= 1 + rmax
n (t)

1 + rmin
n (t)

which proves (6.4.2.2) and completes the proof of the theorem. �
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6.4.7 Correlation decay for general graphs. Let G = (V, E) be a general graph
and suppose that the degrees of vertices do not exceed � ≥ 3. Weitz [We06] showed
that if

t < tc = (� − 1)�−1

(� − 2)�

then the probability p(v) that a particular vertex is occupied is asymptotically inde-
pendent on whether vertices far away from v are occupied (as in Sect. 5.2.3, we
measure the distance between a pair of vertices by the smallest number of edges in a
path connecting the vertices). Weitz [We06] deduced this result from Theorem 6.4.2,
and we sketch the reduction here.

First, we note that Theorem 6.4.2 implies correlation decay on k-regular trees
with subcritical activities

0 ≤ zu ≤ t < tc = (k − 1)k−1

(k − 2)k
(6.4.7.1)

at the vertices. Indeed, suppose that v is the root of a k-regular tree with n levels,
see Fig. 5.3, and let u1, . . . , uk be the neighbors of v. Let us impose some occupancy
condition � on the leaves of the tree (that is, set some leaves as occupied, as the rest
as unoccupied). If we remove v with incident edges, the remaining graph splits into
the vertex-disjoint union of k trees Tk

n−1, and from (6.3.1.1) we deduce the following
recursive relation

1 − p�(v) = 1

1 + zv

(
1 − p�(u1)

) · · · (1 − p�(uk)
)

for the probabilities p�(u) of occupancy. Theorem 6.4.2 implies that as n grows, the
probabilities p�(u1), . . . , p�(uk) converge to limits independent on the occupancy
condition � at the leaves of the tree and hence the probability p�(v) that the root is
occupied also converges to a limit independent of �.

The next observation is that we have correlation decay if G is a tree where the
degree of every vertex is at most k and subcritical activities (6.4.7.1) at every vertex.
This case reduces to the case of a k-regular tree by adding auxiliary vertices where
needed with zero activities, cf. Fig. 6.10.

Finally,Weitz [We06] reduces the case of a general graphG = (V, E)with largest
degree �(G) > 2 of a vertex and subcritical activities at the vertices to the case of a
tree with degrees of the vertices not exceeding �(G). We present a modification of
that construction suggested by Gamarnik [Ga16].

We start by rewriting (6.3.1.1) for the case when zv = t for all v ∈ V :

indG−v(t)

indG(t)
= 1

1 + t indG−v−Nv (t)
indG−v(t)

. (6.4.7.2)

http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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Fig. 6.10 A tree (black
nodes) with a vertex v

appended (white nodes) to a
3-regular tree with root v

v

Let v1, . . . , vk , k ≤ �(G), be the vertices of Nv (that is, the neighbors of v), listed
in some order. We can further rewrite

indG−v−Nv
(t)

indG−v(t)
= indG−v−v1(t)

indG−v(t)
· indG−v−v1−v2(t)

indG−v−v1(t)
· · ·

× indG−v−v1−...−vk (t)

indG−v−v1−...−vk−1(t)
.

(6.4.7.3)

Let p(v, v1, . . . , vi ; vi+1) be the conditional probability that a random independent
set contains vi+1 given that it does not contain any of the vertices v, v1, . . . , vi . Then

1 − p (v, v1 . . . , vi ; vi+1) = indG−v−v1−...−vi+1(t)

indG−v−v1−...−vi (t)

and combining (6.4.7.2) and (6.4.7.3), we obtain

1 − p(v) = 1

1 + t (1 − p (v; v1)) (1 − p (v, v1; v2)) · · · (1 − p
(
v, v1, . . . , vk−1; vk

)) .

On the other hand, each of the probabilities p (v, v1, . . . , vi ; vi+1) can be computed
as the probability of occupancy of vi+1 in the graph G − v − v1 − . . . − vi obtained
from G by removing the vertices v, v1, . . . , vi together with incident edges. This
allows us to arrange the computation of p(v) recursively into a tree. For example,
for suppose we want to compute the probability p(v) of occupancy in the graph on
Fig. 6.11.

Then we obtain the tree pictured on Fig. 6.12.
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e

a

b c

d

v

Fig. 6.11 A graph and a vertex v
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Fig. 6.12 Computational tree to compute the occupancy probability p(v) for the graph on Fig. 6.11.
We recursively compute occupancy probabilities for black nodes in the corresponding subgraphs
of the graph

Denoting by pX (u) the occupancy probability of a vertex u in a graph X , we
obtain recursively:

1 − pM(e) = 1 − pK (d) = 1 − pL(c) = 1 − pI (e) = 1

1 + t
,

1 − pJ (d) = 1 − pG(e) = 1 − pH (e) = 1 − pE (c) = 1

1 + t 1
1+t

= 1 + t

1 + 2t
,

1 − pF (b) = 1 − pD(d) = 1

1 + t 1+t
1+2t

= 1 + 2t

1 + 3t + t2
,

1 − pC(c) = 1 − pB(b) = 1

1 + t 1+2t
1+3t+t2

1+t
1+2t

= 1 + 3t + t2

1 + 4t + 2t2
,
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1 − pA(a) = 1

1 + t 1+3t+t2
1+4t+2t2

= 1 + 4t + 2t2

1 + 5t + 5t2 + t3
and

1 − p(v) = 1

1 + t 1+4t+2t2
1+5t+5t2+t3

1+3t+t2
1+4t+2t2

= 1 + 5t + 5t2 + 5t3

1 + 6t + 8t2 + 2t3

so that finally

p(v) = t + 3t2 + t3

1 + 6t + 8t2 + 2t3
.

Indeed, it is easy to see that for the graph on Fig. 6.11, there are two independent
sets of 3 vertices, one of which contains v, there are 8 independent sets of 2 vertices,
three of which contain v, there are 6 independent sets of one vertex, one of which
contains v, there is a unique independent set of 0 vertices not containing v and there
are no independent sets of 4 or more vertices.

This construction establishes correlation decay for general graphs of maximum
degree k and subcritical activities zu satisfying (6.4.7.1). Using telescoping as in
Sect. 5.2.3, Weitz [We06] further deduced that for such a family of graphs one can
approximate indG(z) for non-negative weights z = (zv) within relative error ε in
time polynomial in |V | and ε−1 as long as (6.4.7.1) holds. In particular, as long as
�(G) ≤ 5, the value of indG(1, . . . , 1), that is, the number of independent sets in
G, can be efficiently approximated. On the other hand, Sly [Sl10] and Sly and Sun
[SS14] showed that the approximate counting of independent sets in computationally
hard when (6.4.7.1) is violated.

6.5 The Roots on and Near the Real Axis

We note that

(� − 1)�−1

(� − 2)�
= e

�

(
1 + O

(
1

�

))
as � −→ +∞.

Although the above bound and (6.1.5.1) are both inversely proportional to�(G), the
correlation decay bound above achieves a better constant.

Sokal conjectured [S01b] that for any 0 < ε < 1 there exists δ = δ(ε) > 0 such
that for any graph G with the largest degree of a vertex not exceeding � > 2, we
have indG(z, . . . , z) �= 0 provided

0 ≤ � z ≤ (1 − ε)
(� − 1)�−1

(� − 2)�
and |� z| ≤ δ.

Should this conjecture be true, the technique of Lemma 1.2.3, see also [PR16]
and Sections 3.7, 5.1.7 and 6.1.5, would allow us to bridge the gap between the

http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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approximations achievable via the Taylor polynomial method and the correlation
decay method1.

Below we present a result of Regts [Re16] confirming the absence of the roots
near the positive real axis “halfway between” the Dobrushin - Scott - Sokal bound
(6.1.5.1) and the conjectured Sokal bound.

6.5.1 Theorem. Let us choose an 0 < ε < 1. Let G be a graph with the largest
degree of vertex not exceeding � ≥ 2. Then

indG(z) �= 0

for all activities z = (zv) such that

|zv| ≤ tan
π

(2 + 2ε) (� − 1)
and |arg zv| ≤ επ

2 + 2ε
for all v ∈ V .

The proof is based on the following geometric lemma.

6.5.2 Lemma. Let us fix a real 0 < ε < 1, let d ≥ 1 be an integer and for k ≤ d let
w1, . . . , wk be complex numbers such that

∣∣w j

∣∣ ≤ 1 and
∣∣argw j

∣∣ ≤ π

(2 + 2ε)d
for j = 1, . . . , k.

Let z be a complex number such that

|z| ≤ tan
π

(2 + 2ε)d
and | arg z| ≤ επ

2 + 2ε

and let

w = 1

1 + zw1 · · · wk

Then
|w| ≤ 1 and | argw| ≤ π

(2 + 2ε)d
.

Proof. Clearly,

|w1 · · ·wk | ≤ 1 and |argw1 · · · wk | ≤ π

2 + 2ε
.

In particular, � (zw1 · · ·wk) ≥ 0 and hence |1 + zw1 . . . wk | ≥ 1 and |w| ≤ 1.
Moreover, see Fig. 6.13,

|arg (1 + zw1 . . . wk)| ≤ arctan |zw1 · · · wk | ≤ arctan |z| ≤ π

(2 + 2ε)d
.

1Added in Proofs: The conjecture was proved in H. Peters and G. Regts, “On a conjecture of Sokal
concerning roots of the independence polynomial”, preprint arXiv:1701.08049 (2017)

http://arxiv.org/abs/1701.08049
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Fig. 6.13 The real axis
(horizontal), the vectors
u = zw1 · · ·wk and 1 + u

u

0

1

The proof now follows. �

6.5.3 Proof of Theorem 6.5.1. The proof is somewhat similar to that of Theo-
rem 6.1.3. We proceed by induction on the number |V | of vertices of G (the outer
induction). If |V | = 1, the result clearly holds, so we assume that |V | > 1.

Weembed in the proof another inductive argument.Namely,weproveby induction
on |V | that if G = (V, E) is a graph of the largest degree �(G) ≤ � of a vertex and
if v is a vertex of degree at most � − 1 then

indG(z) �= 0,

∣∣∣∣
indG−v(z)

indG(z)

∣∣∣∣ ≤ 1 and
∣∣∣∣arg

indG−v(z)

indG(z)

∣∣∣∣ ≤ π

(2 + 2ε)(� − 1)
. (6.5.3.1)

The case of |V | = 1 is easy to check, so we assume that |V | ≥ 2. As in the proof
of Theorem 6.1.3, we use the recursive formulas (6.1.3.1) and (6.1.3.2) and note
that the product in the right hand side of (6.1.3.2) contains k ≤ � − 1 factors. If
k = 0, so that v is an isolated vertex of G then indG−v(z) �= 0 by the outer induction
hypothesis and

indG−v(z)

indG(z)
= 1

1 + zv

,

so that (6.5.3.1) holds. Hence we assume that k > 0 and v has neighbors v1, . . . , vk
in G.

Since the degree of vi in G − v − v1 − . . . − vi−1 does not exceed � − 1, by the
induction hypothesis, we have

∣∣∣∣
indG−v−v1−...−vi−1(z)

indG−v−v1−...−vi (z)

∣∣∣∣ ≤ 1 and
∣∣∣∣arg

indG−v−v1−...−vi−1(z)

indG−v−v1−...−vi (z)

∣∣∣∣ ≤ π

(2 + 2ε)(� − 1)
for i = 1, . . . , k.

(6.5.3.2)

Applying Lemma 6.5.2 with d = �− 1, we deduce from (6.1.3.1) and (6.1.3.2) that
(6.5.3.1) holds, which completes the inner induction.

It remains to check that indG(z) �= 0 if the degree of every vertex v of G is �.
Let us pick an arbitrary vertex v. We still use (6.1.3.1) and (6.1.3.2), only that the
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product in the right hand side of (6.1.3.2) now contains � factors. Since the degree
of vi in G − v − v1 − . . . − vi−1 still does not exceed � − 1, we still have (6.5.3.2).
From (6.1.3.2) and (6.5.3.2) we conclude that

∣∣∣∣arg zv

indG−v−Nv
(z)

indG−v(z)

∣∣∣∣ ≤ π�

(2 + 2ε)(� − 1)
+ επ

2 + 2ε
< π

and indG(z) �= 0 by (6.1.3.1). �
The correlation decay method for complex activities is explored in [H+16].
Our next goal is to prove that among the roots of the univariate independence

polynomial nearest to the origin, one is necessarily real and hence negative real
[SS05]. More generally, we prove the following result.

6.5.4 Theorem. Let G = (V, E) be a graph and let x = (xv : v ∈ V ) be non-
negative real activities at the vertices of G, so that xv ≥ 0 for all v ∈ V . For ζ ∈ C

let us define ζx = (ζxv : v ∈ V ) and let

g(ζ) = indG(ζx)

be the corresponding univariate polynomial. Then

min
ζ∈C: g(ζ)=0

|ζ| = min
ζ∈R: g(ζ)=0

|ζ|,

that is, among the roots of g(ζ) nearest to the origin, one is negative real.

We follow [Lo12], Sect. 5.3.1. First, we define the chromatic polynomial of a
graph.

6.5.5 Lemma. Let G = (V, E) be a graph without loops or multiple edges. For a
positive integer n, let chrG(n) be the number of ways to color the vertices of G using
a set of at most n distinct colors so that no two vertices spanning an edge are colored
with the same color. Then

1. For k = 1, . . . , |V | there exist integer ak(G) such that

(−1)|V |−kak(G) ≥ 0 for k = 1, . . . , |V |

and

chrG(n) =
|V |∑

k=1

ak(G)nk for all positive integer n.

2. For k = 1, . . . , |V | there exist integer bk(G) such that

bk(G) ≥ 0 for k = 1, . . . , |V |
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and

chrG(n) =
|V |∑

k=1

bk(G)

(
n

k

)
for all positive integer n.

Proof. To prove Part (1), we proceed by induction on the number |E | of edges of G.
If |E | = 0, that is, if G consists of |V | isolated vertices, then chrG(n) = n|V | and
the result follows. Suppose now that |E | > 0 and let e ∈ E be an edge of G. Let
G − e be the graph with set V of vertices and set E \ {e} of edges, so that G − e
is obtained from G by deleting the edge e. Let G/e be the graph obtained from G
by contracting the edge e. We obtain the set V ′ of vertices of G/e by replacing the
endpoints u, v of e in V by a single new vertexw and we obtain the set E ′ of edges of
G/e by removing e from E and replacing all edges in E with one endpoint in {u, v}
by the edges with the corresponding endpoint at w (should multiple edges arise, we
replace them by a single edge), see Fig. 6.14.

It is not hard to see that

chrG(n) = chrG−e(n) − chrG/e(n) (6.5.5.1)

Since the graph G − e has |V | vertices, the graph G/e has |V | − 1 vertex and both
G − e and G/e contain fewer than |E | edges, the proof follows by induction from
(6.5.5.1).

To prove Part (2), we define bk(G) as the number of ways to color the vertices of
G using exactly k colors so that no two neighbors are colored with the same color.
Clearly bk(G) ≥ 0. To color the graph using at most n colors, we choose a subset
of k colors in

(n
k

)
ways and then color the graph in bk(G) ways using all chosen

colors. �

The polynomial chrG is called the chromatic polynomial of the graph G. We can
formally define

chrG(z) =
|V |∑

k=1

ak(G)zk =
|V |∑

k=1

bk(G)

(
z

k

)

for any complex z ∈ C, where

Fig. 6.14 A graph G, its
edge e and graphs G − e and
G/e

G/e

G

e

G−e
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Fig. 6.15 Graphs G and
G(S) for
S = {1, 2, 2, 2, 3, 3}

G(S)

1 2

3 4

1 2

3 3
2

2
G

(
z

k

)
= z(z − 1) · · · (z − k + 1)

k! .

Next, we connect the independence and chromatic polynomials of graphs. Given
a graphG = (V, E) and a multiset S of copies of vertices ofG (that is, some vertices
ofG can havemultiple copies in S and some can have no copies), we define the graph
G(S) with set S of vertices as follows: an edge of G(S) connects two vertices u and
v of S if and only if u and v are copies of the same vertex of G or copies of vertices
connected by an edge in G, see Fig. 6.15.

If for a multiset S and activities zv at the vertices of G, we define the monomial

zS =
∏

v∈S
zv,

where each vertex in S is accounted for with its multiplicity. Our goal is to obtain a
power series expansion of ln indG(z), where z = (zv : v ∈ V ) is a vector of activities
at the vertices of G sufficiently close to 0, so that

|1 − indG(z)| < 1.

In this case, we choose the branch of ln indG(z) that is 0 when zv = 0 for all v ∈ V .

6.5.6 Lemma. Let G = (V, E) be a graph and let δ > 0 be a sufficiently small real
number such that

|1 − indG(z)| < 1 provided |zv| ≤ δ for all v ∈ V .

Then

ln indG(z) =
∑

S={v1,...,v1...,vr ,...,vr }

1

μ1! · · · μr !a1(G(S))zS,

where the sum is taken over multisets S of vertices of G, μi is the multiplicity of vi
in S and

a1(G(S)) = d

dz
chrG(S)(z)

∣∣∣
z=0

is the first coefficient of the chromatic polynomial of G(S). Moreover, the series
converges absolutely and uniformly on the polydisc |zv| ≤ δ for v ∈ V .



222 6 The Independence Polynomial

Proof. Let us fix some x ∈ C and consider a function

z �−→ (1 + z)x = ex ln(1+z) for z ∈ C such that |z| < 1,

where we choose the branch of ln(1 + z) that is 0 for z = 0. We have the Taylor
series expansion

(1 + z)x = 1 +
∞∑

k=1

(
x

k

)
zk provided |z| < 1. (6.5.6.1)

Moreover, the series converges absolutely and uniformly on compact sets inside the
polydisc |z| < 1 and |x | ≤ 1.

From (6.5.6.1), we get

(
indG(z)

)x = 1 +
∞∑

k=1

(
x

k

)
⎛

⎜⎜⎝
∑

S⊂V,|S|>0
S independent

zS

⎞

⎟⎟⎠

k

. (6.5.6.2)

Furthermore, we write

⎛

⎜⎜⎝
∑

S⊂V,|S|>0
S independent

zS

⎞

⎟⎟⎠

k

=
∑

S1,...,Sk⊂V
|S1|,...,|Sk |>0

S1,...,Sk are independent

zS1 · · · zSk ,

where the sum is taken over all ordered k-tuples of not necessarily distinct non-empty
independent sets S1, . . . Sk ofG. Given such a k-tuple S1, . . . , Sk of independent sets,
let S = S1 � . . . � Sk be the disjoint union of copies of S1, . . . , Sk and let G(S) be
the corresponding graph with set S of vertices. Then G(S) can be colored using
exactly k colors, so that no two vertices spanning an edge are colored with the same
color (we call this a proper k-coloring). Conversely, given a multiset S of possibly
multiple copies of vertices of G, each proper k-coloring of G(S) corresponds to a
representation S = S1 � . . . � Sk , where S1, . . . , Sk are non-empty independent sets
in G, as follows: if a copy of a vertex v of G in S is colored with the i-th color
then we include v in Si . If S consists of copies of r distinct vertices v1, . . . , vr with
respective multiplicities μ1, . . . ,μr then exactly μ1! · · · μr ! of proper k-colorings of
G(S) correspond to the same ordered k-tuple S1, . . . , Sk of non-empty independent
sets of G. From (6.5.6.2), we can write

(
indG(z)

)x = 1 +
∑

S={v1,...,v1,...,vr ,...,vr }

zS

μ1! · · · μr !
|S|∑

k=1

(
x

k

)
bk(G(S)),
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where the sum is taken over all non-emptymultisets S of vertices ofGwhile bk(G(S))

is the number of proper k-colorings of G(S) and μ1, . . . ,μr are the multiplicities of
vertices in S. From Part (2) of Lemma 6.5.5, we obtain

(
indG(z)

)x = 1 +
∑

S={v1,...,v1...,vr ,...,vr }

zS

μ1! · · ·μr ! chrG(S)(x) (6.5.6.3)

and the series converges absolutely and uniformly on the polydisc |zv| ≤ δ and
|x | ≤ 1, say. On the other hand, for a > 0 we can write

ln a = d

dz
ez ln a

∣∣∣
z=0.

Computing the derivative of (6.5.6.3) at x = 0, we obtain

ln indG(z) =
∑

S={v1,...,v1,...,vr ,...,vr }

1

μ1! · · · μr !a1(G(S))zS,

where a1(G(S)) is the first coefficient of the chromatic polynomial of G(S). �

Now we are ready to prove Theorem 6.5.4.

6.5.7 Proof of Theorem 6.5.4. For sufficiently small δ > 0 we have

|1 − g(ζ)| < 1 provided |ζ| ≤ δ

and hence by Lemma 6.5.6, we have a univariate power series expansion

ln g(ζ) =
∑

S={v1,...,v1...,vr ,...,vr }

1

μ1! · · · μr !a1(G(S))ζ |S|xS. (6.5.7.1)

It follows then that the distance ρ0 from 0 to the nearest root of g(ζ) is the radius of
convergence of (6.5.7.1), see also Lemma 2.2.1. Since x1, . . . , xn ≥ 0, we have

xS ≥ 0 for all S.

By Part (1) of Lemma 6.5.5, we have

(−1)|S|a1(G(S)) ≤ 0 for all S.

Therefore, the maximum absolute value of the series (6.5.7.1) on any disc |ζ| ≤ ρ
where it converges is attained at ζ = −ρ and equal to the sum

∑

S={v1,...,v1...,vr ,...,vr }

1

μ1! · · · μr ! |a1(G(S))| ρ|S|xS (6.5.7.2)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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of non-negative real numbers. In other words, (6.5.7.1) converges in the disc |ζ| ≤ ρ
if and only the series of non-negative real numbers (6.5.7.2) converges. Hence the
radius ρ0 of convergence of (6.5.7.1) is the smallest ρ > 0 where (6.5.7.2) diverges
and −ρ0 is necessarily a root of g(ζ). �

6.6 On the Local Nature of Independent Sets

Let us compare the correlation decay approach of Sects. 6.3 and 6.4 and the
Taylor polynomial interpolationmethod of Sect. 6.1.5. The correlation decaymethod
is based on the observation that for subcritical activities zv , the independence polyno-
mial can be approximated based on the local structure of the graph in a neighborhood
of each vertex. The Taylor polynomial interpolation method, again for sufficiently
small activities, relies on the information about independent sets of a small (loga-
rithmic) size. Such sets can be scattered all over the graph, so it may appear that we
rely on some global structural properties of the graph. Here we show that this is an
illusion, as the Taylor polynomial interpolation can also be done based on the local
information only. Namely, we show that the sum of weights

∑

S⊂V
S is independent

|S|=k

∏

v∈S
zv

of independent k-subsets in a graph G = (V, E; z) can be computed entirely from
the data contained in the family of (k − 1)-neighborhoods of the vertices of the
graph. Besides, we show that if the maximum degree of a vertex of the graph is
bounded above in advance, then the interpolation in Sect. 6.1.5 can be done in genuine
polynomial and not just in quasi-polynomial time. Our exposition is loosely based
on [PR16].

6.6.1 DefinitionsA graph with multiplicities is an undirected graph H = (U, R;μ)

with set U of vertices, set R of edges, without loops or multiple edges, and with
positive integers μ(u), called multiplicities, assigned to its vertices u ∈ U . We say
that two such graphs H1 = (U1, R1;μ1) and H2 = (U2, R2;μ2) are isomorphic if
there is a bijection φ : U1 −→ U2, called an isomorphism, such that {φ(u),φ(v)} is
an edge of H2 if and only if {u, v} is an edge of H1 and such that the multiplicity of
φ(u) in H2 is equal to the multiplicity of u in H1.

Let G = (V, E) be a graph and let H = (U, R;μ) be a graph with multiplicities.
A map ψ : U −→ V is called an embedding if φ is an injection and {φ(u),φ(v)}
is an edge of G if and only if {u, v} is an edge of H (multiplicities of vertices of
H play no role here). Given a graph G = (V, E; z) with set V of vertices, set E of
edges and complex activities zv at the vertices of G and a graph H = (U, R;μ) with
multiplicities, we define a partition function
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iH (G) =
∑

ψ: U−→V
is embedding

∏

u∈U

(
zψ(u)

)μ(u)
.

In particular, if Fk is a graph with k vertices, no edges and multiplicity 1 of each
vertex, then

iFk (G) = k!
∑

S⊂V
S is independent

|S|=k

∏

v∈S
zv, (6.6.1.1)

since every independent k-set of G can be obtained as the image of Fk in exactly k!
ways. Note that iFk (G) is what we need to reconstruct the independence polynomial
of G, since

indG(z) = 1 +
|V |∑

k=1

1

k! iFk (G).

6.6.2 Decomposition into connected graphs. Suppose now that the graph H =
(U, R;μ) is connected. Then iH (G) collects only the local information regarding
G = (V, E). Indeed, let u be an arbitrary vertex of H . Once we know the image
ψ(u) ∈ V under the embedding ψ : U −→ V , we know that for every w ∈ H
the image ψ(w) is connected to ψ(u) by a path of m edges in G if and only if w is
connected to u in H by a path of m edges. Hence the image of H lies entirely in the
(k − 1)-neighborhood of a vertex of G for k = |U |.

The crucial observation is that for any graph H with multiplicities, the value of
iH (G) can be expressed in terms of iH ′(G) for connected graphs H ′ with multi-
plicities, such that each H ′ has at most as many vertices as H has and the sum of
multiplicities of the vertices of each H ′ is at most the sum of multiplicities of the
vertices of H . Indeed, assuming that H is not connected, let us represent it as a
vertex-disjoint union H = H1 ∪ H2 such that there are no edges of H connecting a
vertex of H1 with a vertex of H2. Expanding the product iH1(G) · iH2(G), we observe
that we collect all the terms of iH (G), but also some extra terms, so that

iH (G) = iH1(G) · iH2(G) −
∑

H ′
iH ′(G), (6.6.2.1)

where H ′ is a graph with multiplicities obtained from H1 and H2 by at least one of
the following sequence of two operations (a) and (b):

(a) we identify some vertices of H1 with some vertices of H2 so that if u1 is
identified with u2 then the new vertex u of H ′ is assigned the multiplicity of μ(u1)+
μ(u2); and

(b) we connect some, unchanged on step (a), vertices of H1 with some, unchanged
on step (a), vertices of H2 by edges.

Whenever we create a multiple edge, we replace it by a single edge. We observe
that the number of connected components in each H ′ so obtained is smaller than the
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Fig. 6.16 A disconnected
graph with multiplicities F2
and connected graphs with
multiplicities H1, H2a and
H2b
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Fig. 6.17 A disconnected
graph with multiplicities F3
and connected graphs with
multiplicities H1, H2a , H2b,
H3a , H3b, H3c and H3d
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number of connected components of H . Iterating this procedure, we express iH (G)

entirely in terms of iH ′(G) with connected H ′.
For example, for the graphs with multiplicities pictured on Fig. 6.16, we have

iF2(G) = iH1(G) · iH1(G) − iH2a (G) − iH2b(G).

Amore tedious computation shows that for the graphs with multiplicities pictured
on Fig. 6.17, we have

iF3(G) =iH1(G) · iH1(G) · iH1(G) − 3iH2a (G)iH1(G) − 3iH2b(G)iH1(G)

+ 2iH3a (G) + 6iH3b(G) + 3iH3c(G) + 2iH3d (G).
(6.6.2.2)

6.6.3 The case of a bounded degree. Suppose now that the maximum degree
�(G) of a vertex of G = (V, E) is bounded above in advance. Then the procedure
of computing (6.6.1.1) can be done in polynomial time |V |O(1), as long as k =
O(ln |V |). The algorithm proceeds as follows.

First, we create a list of connected graphs H = (U, R;μ) with multiplicities
such that there is an embedding ψ : U −→ V and the sum of weights at the
vertices of H does not exceed k. Since H is connected, we can always order the
vertices u1, . . . , um , m ≤ k, of H in such a way that every vertex ui for i ≥ 2 has a
neighbor among the preceding vertices. Once the image ψ(u1) is chosen (in at most
|V | ways) then for each vertex ui there are at most �(G) choices of ψ(ui ), given
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that the images u1, . . . , ui−1 are already chosen. This creates a list H of at most
|V |(�(G))k−1 = |V |O(1) graphs H . Note that if H has m vertices then there are( k−1
m−1

)
ways to assign positive integer weights to the vertices of H so that the sum of

weights is k, which is |V |O(1) as long as k = O(ln |V |).
For each graph H from the listH, we compute iH (G) in |V |O(1) time.
Next, we create a list Ĥ consisting of the graphs with multiplicities H that are

represented as a union of a connected graph from H and some isolated vertices and
such that the sum of multiplicities at the vertices of H does not exceed k. Given a
graph H ∈ Ĥ \ H, we write H = H1 ∪ H2, where H1 ∈ H and H2 consists of the
isolated vertices and apply the algorithm of Sect. 6.6.2. Note that all graphs H ′ in
(6.6.2.1) with iH ′(G) �= 0 (we only need to collect those) also belong to Ĥ and have
fewer isolated vertices than H has. When applying (6.6.2.1), we should account
for isomorphic graphs H ′ (this is how we get integer coefficients in the formula
(6.6.2.2)). However, testing the isomorphism of two graphs H ′

1, H
′
2 ∈ Ĥ reduces to

testing the isomorphism of their connected components H1, H2 ∈ H, which can be
done in |V |O(1) time as above: once we picked the image of a vertex of H1 under
a prospective isomorphism φ, we have at most �(G) choices for the image of each
next vertex. Thus we recursively compute iH (G) for all H ∈ Ĥ in the order of the
increasing number of isolated vertices, so that in the end we compute (6.6.1.1).



Chapter 7
The Graph Homomorphism Partition
Function

Known in statistical physics as the partition function of a multi-spin system, this is
one of the most general forms of a partition function. It covers permanents, hafnians,
independent sets, graph colorings and some more exotic objects such as the Hamil-
tonian permanent. We apply the Taylor polynomial interpolation to find a domain
where the partition function can be efficiently approximated. This leads to “softer”
(doable) versions of “hard” (impossible) problems of combinatorial enumeration: for
example, instead of counting all independent sets of a given cardinality in a graph,
we compute the total weight of all subsets of vertices of a given cardinality, where
the weight of each subset is exponentially small in the number of edges of the graph
it spans. We discuss one of the oldest and most famous models in statistical physics,
the Isingmodel for magnetization, which connects various topics: perfect matchings,
graph homomorphisms, cuts in graphs and phase transitions of various kinds. The
Lee–Yang Theorem asserts that the zeros of the partition function of cuts lie on the
unit circle, which is interpreted as the absence of phase transition in the presence of
a magnetic field.

7.1 The Graph Homomorphism Partition Function

7.1.1 Definition. Let G = (V, E) be an undirected graph with set V of vertices, set
E of edges, without multiple edges or loops, and let A = (ai j

)
be a k × k symmetric

real or complex matrix. We define the graph homomorphism partition function by

homG(A) =
∑

φ:V−→{1,...,k}

∏

{u,v}∈E
aφ(u)φ(v). (7.1.1.1)

The sum is taken over all maps φ of the set V of vertices into the set {1, . . . , k} of
indices of the matrix entries and the product is taken over all edges of the graph G.

© Springer International Publishing AG 2016
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230 7 The Graph Homomorphism Partition Function

If A is the adjacency matrix of a graph H with set U of k vertices then homG(A)

counts graph homomorphisms, that is, maps φ : V −→ U such that {φ(u),φ(v)} is
an edge of H whenever {u, v} is an edge of G.

Choosing the matrix A in a special way, we obtain various quantities of interest.

7.1.2 Example: independent sets. Let us choose k = 2 and

A =
(
0 1
1 1

)
.

Each map φ : V −→ {1, 2} defines a set of vertices Sφ = φ−1(1) ⊂ V and the
contribution of φ in (7.1.1.1) is 1 if S is an independent set in G and 0 otherwise.
Hence homG(A) counts independent sets in G.

7.1.3 Example: colorings. Let us define

ai j =
{
1 if i �= j

0 if i = j.

We interpret every map φ : V −→ {1, . . . , k} as a coloring of the vertices of G into
one of the k colors. Then the contribution ofφ in (7.1.1.1) is 1 if the coloring is proper,
that is, the endpoints of every edge are colored differently, and the contribution of φ
is 0 otherwise. Hence homG(A) counts the proper colorings of G with k colors.

For more examples, see Sect. 5.3 of [Lo12].
Recall that by �(G) we denote the largest degree of a vertex of G.

7.1.4 Theorem. For a positive integer �, let

δ� = sin
α

2
cos

α�

2

for some α = α� such that

0 < α <
2π

3�
,

so that we can choose δ3 = 0.18, δ4 = 0.13 and δ� = �(1/�). Then for any graph
G with �(G) ≤ �, we have

homG(Z) �= 0

for any k × k complex symmetric matrix Z = (zi j
)
such that

∣∣1 − zi j
∣∣ ≤ δ� for all 1 ≤ i, j ≤ k.

A version of Theorem 7.1.4 was first proved in [BS14]. We present a simpler
proof achieving better constants.
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As before, see Sect. 3.6, Theorem 4.1.5, Sects. 4.4, 5.5 and 6.1.5, we obtain that
homG(A) is easily computable if the entries ai j satisfy a slightly stronger inequality.

7.1.5 Theorem. Let us fix a constant 0 < δ < δ�, where δ� is the constant in
Theorem 7.1.4. Then there exists a γ = γ (δ�/δ) > 0 and for any 0 < ε < 1, for
any graph G = (V, E) such that �(G) ≤ � and any k there exists a polynomial
p = pG,k,δ,ε in the entries of k × k symmetric matrix A = (ai j

)
such that

deg p ≤ γ (ln |E | − ln ε)

and
|ln homG(A) − p(A)| ≤ ε

provided ∣∣1 − ai j
∣∣ ≤ δ for all 1 ≤ i, j ≤ k.

Moreover, given δ, G, ε > 0 and k, the polynomial p can be constructed in
(k|E |)O(ln |E |−ln ε) time, where the implied constant in the “O” notation depends on
the ratio δ�/δ alone. The proof is very similar to that of Theorem 3.6.2, we sketch it
below.

Let J = Jk be the k × k matrix filled with 1s. We define a univariate polynomial
g = gG,A by

g(z) = homG (J + z (A − J )) ,

so that g(0) = homG(J ) = k |V | and g(1) = homG(A). We note that

ds

dzs
g(z)

∣∣∣
z=0

= ds

dzs
∑

φ:V−→{1,...,k}

∏

{u,v}∈E

(
1 + z

(
aφ(u)φ(v) − 1

)) ∣∣∣
z=0

=
∑

φ:V−→{1,...,k}

∑

{u1,v1},...,{us ,vs }∈E

(
aφ(u1)φ(v1) − 1

) · · · (aφ(us )φ(vs ) − 1
)
,

where the inner sum is taken over all ordered s-tuples I of distinct edges of G. Let
V (I ) be the set of distinct vertices among u1, v1, . . . , us, vs . Then we can further
write

ds

dzs
g(z)

∣∣∣
z=0

=
∑

I=({u1,v1},...,{us ,vs }){u1,v1},...,{us ,vs }∈E

k |V |−|V (I )|

×
∑

φ:V (I )−→{1,...,k}

(
aφ(u1)φ(v1) − 1

) · · · (aφ(us )φ(vs ) − 1
)
.

Here the factor of k|V |−|V (I )| accounts for the number of ways to extend a map
φ : V (I ) −→ {1, . . . , k} to the whole set V ⊃ V (I ) of vertices. It follows now that
g(s)(0) is a polynomial of degree s in the entries ai j computable in (|E |k)O(s) time.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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We define f (z) = ln g(z) in a neighborhood of z = 0 and the proof proceeds as in
Sect. 3.6.7.

Patel and Regts show [PR16] that if �(G) is fixed in advance, then the value of
p(A) can be computed in polynomial time (k|E |/ε)O(1), where the implied constant
depends on the ratio δ�/δ only.

Using Theorem 7.1.5, we obtain the following relaxed versions of hard counting
problems in Examples 7.1.2 and 7.1.3.

7.1.6 Example: sets weighted by independence. In the context of Example 7.1.2,
let us define A by

A =
(
1 − δ 1 + δ
1 + δ 1 + δ

)
,

where δ is the constant of Theorem 7.1.5. Then

(1 + δ)−|E | homG(A) =
∑

S⊂V

w(S)

where w(S) = (1 + δ)−e(S) (1 − δ)e(S)

(7.1.6.1)

and e(S) is the number of edges inG with both endpoints in S. In particular,w(S) = 1
if S is independent and

exp
{−2δe(S) − δ3e(S)

} ≤ w(S) ≤ exp {−2δe(S)} .

Hence (7.1.6.1) is the sum over all subsets of vertices of G, where each subset S is
counted with weight 1 if S is independent and is counted with a weight exponentially
small in the number of edges that vertices of S span, if S is not independent.

As follows by Theorem 7.1.5, we can compute the sum (7.1.6.1) in quasi-
polynomial time (genuinely polynomial time, if �(G) is fixed in advance [PR16]).

7.1.7 Colorings weighted by properness. In the context of Example 7.1.3, let us
define

ai j =
{
1 + δ if i �= j

1 − δ if i = j,

where δ > 0 is the constant in Theorem 7.1.5. Then

(1 + δ)−|E | homG(A) =
∑

φ:V−→{1,...,k}
w(φ)

where w(φ) = (1 + δ)−e(φ) (1 − δ)e(φ)

(7.1.7.1)

and e(φ) is the number of edges ofG whose both endpoints are colored into the same
color by the coloring φ. Thus we have w(φ) = 1 if φ is a proper coloring and

exp
{−2δe(φ) − δ3e(φ)

} ≤ w(φ) ≤ exp {−2δe(φ) } .

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Hence (7.1.7.1) represents the sum over all colorings φ of G, where φ is counted
with weight 1 if φ is proper and is counted with a weight exponentially small in the
number of edges that are not properly colored, if φ is not proper.

Theorem 7.1.5 implies that we can compute the sum (7.1.7.1) in quasi-polynomial
time.

To prove Theorem 7.1.4, we first introduce a multi-affine version of homG .

7.1.8 Edge-colored graph homomorphisms. Let G = (V, E) be a graph as above

and let Z =
(
zuv
i j

)
be a |E | × k(k+1)

2 complex matrix with entries indexed by edges

{u, v} ∈ E and unordered pairs 1 ≤ i, j ≤ k. We write zuv
i j instead of z{u,v}

{i, j} assuming
that

zuv
i j = zuv

j i = zvu
ji = zvu

i j .

Equivalently, we can think that a k × k symmetric matrix is attached to every edge
of G. We introduce the partition function

HomG(Z) =
∑

φ:V−→{1,...,k}

∏

{u,v}∈E
zuv
φ(u)φ(v),

which we call the partition function of edge-colored homomorphisms. If zuv
i j = zi j

(that is, the same symmetric matrix is attached to each edge of G), we are in the
situation of Definition 7.1.1 and HomG(Z) = homG(Z). The advantage of working
with HomG(Z) as opposed to homG(Z) is that HomG(Z) is a multi-affine function,
that is, the degree of HomG(Z) in each variable zuv

i j does not exceed 1.

We will prove that in fact

HomG(Z) �= 0 provided
∣∣1 − zuv

i j

∣∣ ≤ δ�

for all {u, v} ∈ E and all 1 ≤ i, j ≤ k,

where δ� is the constant of Theorem 7.1.4.

7.1.9 The recursion. For a sequenceW = (v1, . . . , vr ) of distinct vertices of G and
a sequence L = (l1, . . . , lr ) of not necessarily distinct indices 1 ≤ l1, . . . , lr ≤ k,
we define

HomW
L (Z) =

∑

φ:V−→{1,...,k}
φ(v1)=l1,...,φ(vr )=lr

∏

{u,v}∈E
zuv
φ(u)φ(v)

(we suppress the graph G in the notation). In words: we restrict the sum defining
HomG to the maps φ that map prescribed vertices to prescribed indices. We denote
by |W | and by |L| the number of vertices in W and the number of indices in L
respectively. If W is a sequence of distinct vertices and L is a sequence of not
necessarily distinct indices such that |W | = |L|, for a vertex w in W we denote by
l(w) the corresponding index in L , so l(vi ) = li in the above definition. We denote
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by (W, u) the sequence W appended by a vertex u, different from all vertices in
W and by (L , l) the sequence of indices L appended by an index l, not necessarily
different from the indices in L . Then, for any vertex u not in the sequence W , we
have

HomW
L (Z) =

k∑

l=1

Hom(W,u)

(L ,l) (Z). (7.1.9.1)

For a 0 < δ < 1 we define the polydisc U(δ) = U (δ,G) consisting of all

|E | × k(k+1)
2 matrices Z =

(
zuv
i j

)
such that

∣∣1 − zuv
i j

∣∣ ≤ δ for all {u, v} ∈ E and 1 ≤ i, j ≤ k.

We will use the following straightforward observation: suppose that W contains
two vertices u and v such that {u, v} ∈ E with corresponding indices l and m in L ,
so that W = (W ′, u, v) and L = (L ′, l,m). Let A, B ∈ U(δ) be two matrices that
differ only in the entries zuv

i j for 1 ≤ i, j ≤ k. Then

HomW
L (A) = auv

lm

buv
lm

HomW
L (B).

In particular, if HomW
L (A) �= 0 and HomW

L (B) �= 0 then the angle between non-zero
complex numbers HomW

L (A) and HomW
L (B) does not exceed 2 arcsin δ, see Fig. 3.7.

7.1.10 Proof of Theorem 7.1.4. Let us denote δ� just by δ and let

0 < α <
2π

3�

be a number such that

δ = sin
α

2
cos

α�

2
.

We prove by the descending induction on r = |V |, . . . , 1 the following statements:

Statement 1.r . Let W be a sequence of distinct vertices and let L be a sequence
of not necessarily distinct indices such that |W | = |L| = r . Then HomW

L (Z) �= 0
for all Z ∈ U (δ).

Statement 2.r . LetW be a sequence of distinct vertices such that |W | = r . Suppose
that W = (W ′, u) and let L ′ be a sequence of not necessarily distinct indices such
that |W ′| = |L ′| = r − 1. Let 1 ≤ l,m ≤ k be indices. Then for any Z ∈ U (δ) the
angle between complex numbers Hom(W ′,u)

(L ′,l) (Z) �= 0 and Hom(W ′,u)

(L ′,m) (Z) �= 0 does
not exceed α�.
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Statement 3.r . Let W be a sequence of distinct vertices and let L be a sequence
of not necessarily distinct indices such that |W | = |L| = r and suppose that W =
(W ′, u) and L = (L ′, l). Let v be a vertex not from W and let A, B ∈ U (δ) be
two matrices that differ only in the coordinates zuv

l j for j = 1, . . . , k. Then the angle
between HomW

L (A) �= 0 and HomW
L (B) �= 0 does not exceed α.

Suppose that r = |V | so that W is a sequence of all vertices V of G. If L is a
sequence of indices such that |L| = |V | then

HomW
L (Z) =

∏

{u,v}∈E
zu v
l(u) l(v) �= 0

and Statement 1.r follows. Writing W = (W ′, u), we have

Hom(W ′,u)

(L ′,l) (Z) =
⎛

⎝
∏

v: {u,v}∈E

zu v
l l(v)

zu v
m l(v)

⎞

⎠Hom(W ′,u)

(L ′,m) (Z)

and hence the angle between Hom(W ′,u)

(L ′,l) (Z) �= 0 and Hom(W ′,u)

(L ′,m) (Z) �= 0 does not
exceed

2� arcsin δ ≤ α�

andStatement 2.r follows. Statement 3.r is vacuous since there are no vertices outside
of W .

Suppose that 1 ≤ r < |V | and that Statements 1.(r + 1), 2.(r + 1) and 3.(r + 1)
hold.

LetW be a sequence of distinct vertices and let L be a sequence of not necessarily
distinct indices such that |W | = |L| = r . Let us choose a vertex v not in W . Then
by (7.1.9.1),

HomW
L (Z) =

k∑

j=1

Hom(W,v)

(L , j) (Z) (7.1.10.1)

From Statement 1.(r + 1) we have Hom(W,v)

(L , j) (Z) �= 0 for all j = 1, . . . , k and from

Statement 2.(r + 1) the angle between any two complex numbers Hom(W,v)

(L ,i) (Z) �= 0

and Hom(W,v)

(L , j) (Z) �= 0 does not exceed α� < 2π/3. Therefore, by Lemma 3.6.4,
we have

HomW
L (Z) �= 0

and Statement 1.r follows.
Let W and L with |W | = |L| = r be sequences as above and suppose that

W = (W ′, u) and L = (L ′, l). Let v be a vertex not in W and let A, B ∈ U(δ) be
the matrices that differ only in the coordinates zuv

l j for j = 1, . . . , k. Let us define a
matrix C ∈ U(δ) such that

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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cuv
l j = 1 for j = 1, . . . , k

and C agrees with A and B in all other entries. From Statement 1.(r + 1) we have

Hom(W,v)

(L , j) (C) �= 0 for j = 1, . . . , k

and from Statement 2.(r +1) the angle between any two numbers Hom(W,v)

(L ,i) (C) �= 0

and Hom(W,v)

(L , j) (C) �= 0 does not exceed α� < 2π/3. We rewrite (7.1.10.1) as

HomW
L (A) =

k∑

j=1

auv
l j Hom

(W ′,u,v)

(L ′,l, j) (C) and HomW
L (B) =

k∑

j=1

buv
l j Hom

(W ′,u,v)

(L ′,l, j) (C).

Applying Lemma 3.6.4 again, we conclude that the angle between HomW
L (A) �= 0

and HomW
L (B) �= 0 does not exceed

2 arcsin
δ

cos α�
2

= α

and Statement 3.r holds.
Let W with |W | = r be a sequence as above and suppose that W = (W ′, u). Let

L ′ be a sequence of indices such that |L ′| = r − 1. Given A ∈ U(δ) and two indices
1 ≤ l,m ≤ k, let us define a matrix B by

buv
l j = auv

mj for all v such that {u, v} ∈ E and all j = 1, . . . , k

and keeping all other entries of B the same as in A. Then

Hom(W ′,u)

(L ′,l) (B) = Hom(W ′,u)

(L ′,m) (A).

Let d0 be the number of neighbors of u in the sequence W ′ and let d1 be the num-
ber of neighbors of u not in the sequence W ′. Then, from Statement 1.r we have
Hom(W ′,u)

(L ′,l) (A) �= 0 and Hom(W ′,u)

(L ′,m) (A) �= 0 while from Statement 3.r the angle

between Hom(W ′,u)

(L ′,l) (A) and Hom(W ′,u)

(L ′,m) (A) = Hom(W ′,u)

(L ′,l) (B) does not exceed

2d0 arcsin δ + d1α ≤ d0α + d1α = α�,

which proves Statement 2.r .
This concludes the induction and hence the proof of Statements 1.1 and 2.1. For

any vertex v of V , we have

HomG(Z) =
k∑

j=1

Homv
j (Z)
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Fig. 7.1 A graph and a cut
of 8 edges associated with
the set S of 3 black dots

and the proof of the theorem follows by Statement 1.1, Statement 1.2 and Lemma
3.6.4. �

7.1.11 Cuts and limits of approximability. Let G = (V, E) be a graph and let
S ⊂ V be a set of vertices. The cut associated with S is the set of all edges of G with
one endpoint in S and the other not in S. We denote by cutG(S) the number of edges
in the cut. For example, for the graph G and set S in Fig. 7.1, we have cutG(S) = 8.

Let
μ(G) = max

S⊂V
cutG(S)

be the largest number of edges in a cut of a graph G. Berman and Karpinski proved
[BK99] that there is an absolute constant β > 1 such that it is an NP-hard problem
to approximate μ(G) within a factor β > 1 for a given graph satisfying �(G) ≤ 3.
Clearly, the problem remains NP-hard if we further restrict it to connected graphs,
in which case μ(G) ≥ |V | − 1.

Let k = 2, let us choose 0 < ε < 1 and let

Aε =
(

ε 1
1 ε

)
.

Then
ε−|E |homG (Aε) =

∑

S⊂V

ε− cutG (S).

Since the number of terms in the above sum is 2|V |, we obtain

ln homG (Aε)

ln(1/ε)
+ |E | − |V | ln 2

ln(1/ε)
≤ μ(G) ≤ ln homG (Aε)

ln(1/ε)
+ |E |.

Assuming now that G is a connected graph with �(G) ≤ 3, we conclude that for
any given δ > 0, by choosing a sufficiently small ε = ε(δ) > 0, we approximate
μ(G) within a relative error δ by

|E | + ln homG(Aε)

ln(1/ε)
.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Hence for some ε0 > 0 approximating homG(Aε0) is an NP-hard problem. This can
be contrasted with Theorem 3.7.1, where approximability holds for matrices with
positive entries arbitrarily close to 0.

For hardness results on exact computation of homG , see [BG05] and [C+13], for
hardness of approximate computation, see [GJ12] and [GJ15].

For applications of the correlation decay approach to approximating HomG , see
[LY13].

Closely related edge-coloring models, also known as vertex models, holant prob-
lems or tensor networks were studied in [Re15] and [PR16]. There we consider all
possible colorings φ of the edges of G = (V, E) into k colors, at each vertex v of G
a complex number z(v,φ) is determined by the multiset of the numbers of edges of
each color that have v as an endpoint, and the partition function computes

∑

φ

∏

v∈V
z(v,φ).

It is shown that the partition function is never zero provided

|1 − z(v,φ)| ≤ 0.35

�(G) + 1
for all v ∈ V and all φ,

which leads to a quasi-polynomial [Re15] and polynomial [PR16] in the case of
a bounded degree �(G) algorithms for approximating the partition function in the
corresponding domains.

7.2 Sharpening in the Case of a Positive Real Matrix

In this section, we sharpen the approximation bounds in Theorem 7.1.5, assuming
that the matrix A is positive real.

7.2.1 Theorem. Let

δ3 = tan
π

9
≈ 0.36 and δ� = tan

π

4 (� − 1)
for integer � ≥ 4.

so that δ4 ≈ 0.27, δ5 ≈ 0.20, etc.
Let us fix

0 ≤ δ < δ�.

Then there exists a constant γ = γ (δ�/δ) > 0 and for every connected graph
G = (V, E), for every positive integer k and every 0 < ε < 1 there is a polynomial
p = pG,k,δ,ε in the entries of a k × k symmetric matrix A such that

deg p ≤ γ (ln |E | − ln ε)

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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and
|ln homG(A) − p(A)| ≤ ε

for any k × k real symmetric matrix A = (ai j
)
such that

∣∣1 − ai j
∣∣ ≤ δ for all 1 ≤ i, j ≤ k

provided �(G) ≤ �.

As in Sect. 7.1, given δ,G, ε > 0 and k, the polynomial p can be constructed in
(k|E |)O(ln |E |−ln ε) time, where the implied constant in the “O” notation depends on
the ratio δ�/δ alone. If � is fixed in advance, the value of p(A) can be computed
in polynomial time (k|E |/ε)O(1), where the implied constant in the “O” notation
depends on the ratio δ�/δ alone, cf. [PR16].

As in Sects. 3.7 and 4.4, we deduce Theorem 7.2.1 by bounding the complex roots
of homG away from the positive real axis. As in Sect. 7.1, it is more convenient to
work with the multi-affine extension HomG , see Sect. 7.1.8. We deduce Theorem
7.2.1 from the following result.

7.2.2 Theorem. For � ≥ 3, let δ� be the constant of Theorem 7.2.1 and let us
choose

0 ≤ δ < δ�.

Let

τ =(1 − δ) sin

(
π

18
− 1

2
arctan δ

)
> 0 if � = 3 and

τ =(1 − δ) sin

(
π

8 (� − 1)
− 1

2
arctan δ

)
> 0 for � ≥ 4.

Then for any connected graph G such that �(G) ≤ �, we have

HomG(Z) �= 0

for any k × k complex symmetric matrix Z = (zi j
)
such that

∣∣1 − � zi j
∣∣ ≤ δ and

∣∣� zi j
∣∣ ≤ τ for all 1 ≤ i, j ≤ k.

For the rest of the section, we prove Theorem 7.2.2. Theorem 7.2.1 follows then
as in Sects. 3.7 and 4.4.

As in Sect. 7.1.9, we define restricted functionals HomW
L (Z). For 0 ≤ δ < 1 and

0 < τ < 1−δ, we define a domain U(δ, τ ) = U(δ, τ ,G) in the space of matrices Z :

U(δ, τ ) =
{
Z = (zuv

i j

) : ∣∣1 − � zuv
i j

∣∣ ≤ δ,
∣∣� zuv

i j

∣∣ ≤ τ

for all {u, v} ∈ E and all 1 ≤ i, j ≤ n
}
.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
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Wewill use the following observation. LetW be a sequence of distinct vertices,which
includes some two vertices u and v such that {u, v} is an edge of G and let L be a
sequence of not necessarily distinct indices such that |W | = |L|. Let A, B ∈ U(δ, τ )

be two matrices that differ only in the entries zuv
i j for 1 ≤ i, j ≤ k. Then

HomW
L (B) = bu v

l(u)l(v)

au v
l(u)l(v)

HomW
L (A),

where l(u) and l(v) are the indices in L corresponding to u and v inW . In particular,
if HomW

L (A) and HomW
L (B) �= 0 then the angle between two numbers is at most

2 arctan
τ

1 − δ
.

7.2.3 Proof of Theorem7.2.2. Let

α = π

9
+ arctan δ if � = 3 and

α = π

4(� − 1)
+ arctan δ if � ≥ 4.

We introduce the following statements.

Statement 1.r . LetW be a sequence of distinct vertices such that the graph induced
on W is connected and let L be a sequence of not necessarily distinct indices such
that |W | = |L| = r . Then

HomW
L (Z) �= 0 for all Z ∈ U (δ, τ ) .

Statement 2.r . LetW be a sequence of distinct vertices such that the graph induced
onW is connected and |W | = r . Suppose thatW = (W ′, u) and let L ′ be a sequence
of not necessarily distinct indices such that |L ′| = r − 1. Then for any two indices
1 ≤ l,m ≤ k and any Z ∈ U (δ, τ ) the angle between complex numbers

Hom(W ′,u)

(L ′,l) (Z) �= 0 and Hom(W ′,u)

(L ′,m) (Z) �= 0

does not exceed π/2.

Statement 3.r . LetW be a sequence of distinct vertices such that the graph induced
on W is connected and let L be a sequence of not necessarily distinct indices such
that |W | = |L| = r . Suppose that W = (W ′, u) and L = (L ′, l) and let v be a
neighbor of u not in the sequenceW . Let A, B ∈ U (δ, τ ) be two matrices that differ
only in the entries zuv

l j where {u, v} ∈ E and j = 1, . . . , k. Then the angle between

HomW
L (A) �= 0 and HomW

L (B) �= 0

does not exceed α.



7.2 Sharpening in the Case of a Positive Real Matrix 241

First, we claim that Statements 1.r , 2.r and 3.r hold for r = |V |. Indeed, suppose
that r = |V |, so that W is a sequence consisting of all vertices of the graph. Then

HomW
L (Z) =

∏

{u,v}∈E
zu v
l(u)l(v) �= 0

and Statement 1.r follows. Writing W = (W ′, u), we have

Hom(W ′,u)

(L ′,l) (Z) =
∏

v: {u,v}∈E

zu v
l l(v)

zu v
m l(v)

Hom(W ′,u)

(L ′,m) (Z)

and hence the angle between Hom(W ′,u)

(L ′,l) (Z) �= 0 and Hom(W ′,u)

(L ′,m) (Z) �= 0 does not
exceed

2� arctan
τ

1 − δ
,

which does not exceed π

3
<

π

2
if � = 3

and does not exceed
π�

4(� − 1)
<

π

2
if � ≥ 4.

Hence Statement 2.r follows. Statement 3.r is vacuous since there are no vertices
outside of W .

Next, we claim that Statements 1.(r+1), 2.(r+1) and 3.(r+1) imply Statements
1.r and 3.r for all 1 ≤ r < |V |.

To deduce Statement 1.r , let us choose a sequence W of distinct vertices and a
sequence L of not necessarily distinct indices such that the graph induced on W is
connected |W | = |L| = r . SinceW �= V there is a vertex v not inW with a neighbor
in W , so that the graph induced on (W, v) is connected. Then by (7.1.9.1) we have

HomW
L (Z) =

k∑

j=1

Hom(W,v)

(L , j) (Z). (7.2.3.1)

By Statement 1.(r + 1) we have Hom(W,v)

(L , j) (Z) �= 0 for all Z ∈ U (δ, τ ) and by
Statement 2.(r + 1) the angle between any two numbers

Hom(W,v)

(L ,i) (Z) �= 0 Hom(W,v)

(L , j) (Z) �= 0

does not exceed π/2. By Lemma 3.6.4 we have HomW
L (Z) �= 0 and hence Statement

1.r follows.
To deduce Statement 3.r , let W and L be a sequence as above, |W | = |L| = r

and suppose that W = (W ′, u) and L = (L ′, l). Suppose that v is a neighbor of u

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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which is not in W and assume that A, B ∈ U (δ, τ ) are two matrices that differ in
the entries zuv

l j for j = 1, . . . , k only. Let C ∈ U (δ, τ ) be a matrix such that

cuv
l j = 1 for j = 1, . . . , k

and all other entries coincide with those in A and B. By Statement 1.(r +1) we have
Hom(W,v)

(L , j) (C) �= 0 for j = 1, . . . , k and by Statement 2.(r + 1) the angle between

any two complex numbers Hom(W,v)

(L ,i) (C) �= 0 and Hom(W,v)

(L , j) (C) �= 0 does not exceed
π/2. Applying (7.2.3.1), we can write

HomW
L (A) =

k∑

j=1

auv
l j Hom

(W ′,u,v)

(L ′,l, j) (C) and HomW
L (B) =

k∑

j=1

buv
l j Hom

(W ′,u,v)

(L ′,l, j) (C)

and by Lemma 3.7.3 the angle between

HomW
L (A) �= 0 and HomW

L (B) �= 0

does not exceed
2 arctan δ + 2 arcsin

τ

1 − δ
,

which is equal to
π

9
+ arctan δ = α if � = 3

and is equal to
π

4(� − 1)
+ arctan δ = α if � ≥ 4.

Hence Statement 3.r follows.
Finally, we claim that Statements 1.(r+1), 2.(r+1) and 3.(r+1) imply Statement

2.r for 2 ≤ r < |V |. Let W be a sequence of distinct vertices such that the graph
induced on W is connected, |W | = r and W = (W ′, u) and let L ′ be a sequence of
not necessarily distinct indices such that |L ′| = r − 1. Let 1 ≤ l,m ≤ k be any two
indices. Given a matrix A ∈ U (δ, τ ), we define a matrix B ∈ U (δ, τ ) by

buv
l j = auv

mj for all v such that {u, v} ∈ E and all j = 1, . . . , k (7.2.3.2)

and letting all other entries of B equal to the corresponding entries of A. Then

Hom(W ′,u)

(L ′,l) (B) = Hom(W ′,u)

(L ,m) (A).

Let d0 ≥ 1 (we use that r ≥ 2) be the number of neighbors v of u in the sequenceW ′
and let d1 ≤ � − 1 be the number of neighbors v of u not in W ′. Then by Statement
1.r we have

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Hom(W ′,u)

(L ′,l) (A) �= 0 and Hom(W ′,u)

(L ′,m) (A) �= 0

while by Statement 3.r the angle between non-zero complex numbers

Hom(W ′,u)

(L ′,l) (A) and Hom(W ′,u)

(L ,m) (A) = Hom(W ′,u)

(L ′,l) (B)

does not exceed
2d0 arctan

τ

1 − δ
+ d1α. (7.2.3.3)

If � = 3 then (7.2.3.3) does not exceed

d0π

9
+ d1π

9
+ (d1 − d0) arctan δ. (7.2.3.4)

If d1 ≥ d0 then (7.2.3.4) does not exceed

2d1π

9
≤ 4π

9
<

π

2

and if d1 < d0 then (7.2.3.4) does not exceed

d0π

9
+ d1π

9
≤ π

3
<

π

2
.

If � ≥ 4 then (7.2.3.3) does not exceed

d0π

4(� − 1)
+ d1π

4(� − 1)
+ (d1 − d0) arctan δ. (7.2.3.5)

If d1 ≥ d0 then (7.2.3.5) does not exceed

2d1π

4(� − 1)
≤ π

2

and if d1 < d0 then (7.2.3.5) does not exceed

π�

4(� − 1)
<

π

2
.

Hence Statement 2.r holds.
This proves Statements 1.1, 3.1 and 2.2. Let us choose a vertex u of the graph and

two indices 1 ≤ l,m ≤ k. Given a matrix A ∈ U (δ, τ ), let us define a matrix
B by (7.2.3.2). By Statement 1.1 we have Homu

l (A) �= 0 and Homu
l (B) �= 0

and by Statement 3.1 the angle between non-zero complex numbers Homu
l (A) and

Homu
l (B) = Homu

m(A) does not exceed



244 7 The Graph Homomorphism Partition Function

3α <
2π

3
if � = 3

and does not exceed

α� <
π�

2 (� − 1)
≤ 2π

3
if � ≥ 4.

By (7.1.9.1), we have

HomG(Z) =
k∑

l=1

Homu
l (Z)

and by Lemma 3.6.4, we have HomG(Z) �= 0 for all Z ∈ U (δ, τ ). �

7.3 Graph Homomorphisms with Multiplicities

Following [BS16], we consider a refinement of the graph homomorphism partition
function.

7.3.1 Definition. Let G = (V, E) be an undirected graph with set V of vertices, set
E of edges, without loops and multiple edges, and let �(G) be the largest degree
of a vertex of G. We assume that �(G) ≥ 1. Let m = (m1, . . . ,mk) be a vector of
positive integers such that

m1 + · · · + mk = |V |.

For a k × k symmetric complex matrix A = (ai j
)
we define the partition function of

graph homomorphisms with multiplicities m by

homG,m(A) =
∑

φ:V−→{1,...,k}
|φ−1(i)|=mi for i=1,...,k

∏

{u,v}∈E
aφ(u)φ(v). (7.3.1.1)

Here the sum is taken over all maps φ : V −→ {1, . . . , k} such that to every
i = 1, . . . , k precisely mi vertices are mapped. We observe that homG,m(A) is a
polynomial in the entries ai j of A and deg homG,m = |E |.

In [BS16], the following result is obtained.

7.3.2 Theorem. There is an absolute constant δ0 > 0 (one can choose δ0 = 0.108)
such that for every graph G = (V, E) with the largest degree �(G) ≥ 1 of a
vertex and every positive integer vector m = (m1, . . . ,mk) of multiplicities such
that m1 + . . . + mk = |V | we have

homG,m(A) �= 0,

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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provided A = (ai j
)
is a k × k symmetric complex matrix satisfying

|1 − ai j | ≤ δ0

�(G)
for all 1 ≤ i, j ≤ k.

As in Sect. 7.1, Theorem 7.3.2 implies the following corollary.

7.3.3 Theorem. Let us fix some 0 < δ < δ0, where δ0 is the constant in Theorem
7.3.2. Then there exists γ = γ(δ0/δ) > 0 and for any 0 < ε < 1, any graph
G = (V, E), any positive integer k-vector m = (m1, . . . ,mk) there is a polynomial
p = pG,k,m,δ,ε in the entries of a k × k symmetric complex matrix A such that

deg p ≤ γ(ln |E | − ln ε)

and ∣∣ln homG,m(A) − p(A)
∣∣ ≤ ε

provided

|1 − ai j | ≤ δ

�(G)
for all i, j.

As in Sect. 7.1, given G, m and ε, the polynomial p of Theorem 7.3.3 can be
computed efficiently, in quasi-polynomial (|E |k)O(ln |E |−ln ε) time. Given G, A and
m, we define a univariate polynomial

g(z) = homG,m (J + z(A − J )) ,

where J = Jk is the k × k matrix filled by 1s, so that

g(0) = homG,m(J ) = |V |
m1! · · ·mk ! and g(1) = homG,m(A).

For an ordered set I = ({u1, v1}, . . . , {us, vs}) of distinct edges of G, let V (I ) be
the set of vertices {u1, v1, . . . , us, vs}. Arguing as in Sect. 7.1,

ds

dzs
g(z)

∣∣∣
z=0

=
∑

I=({u1,v1},...,{us ,vs })

∑

φ:V (I )−→{1,...,k}|φ−1(i)|≤mi for i=1,...,k

|V \ V (I )|!(
m1 − φ−1(1)

)! · · · (mk − φ−1(k)
)!

× (aφ(u1)φ(v1) − 1
) · · · (aφ(us )φ(vs ) − 1

)
.

Here the outer sum is taken over all ordered collections I of s edges of G, the inner
sum is taken over all maps φ : V (I ) −→ {1, . . . , k} of the endpoints of the edges
from I into the set {1, . . . , k} such that the inverse image of every i ∈ {1, . . . , k}
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consists of at most mi points from V (I ). The multinomial coefficient

|V \ V (I )|!(
m1 − φ−1(1)

)! · · · (mk − φ−1(k)
)!

accounts for the number of ways to extend φ to the whole set V of vertices of G
in such a way that the inverse image of every i ∈ {1, . . . , k} consists of exactly mi

points.
It follows that g(s)(0) is a polynomial of degree s in the entries of the matrix A

computable in (k|E |)O(s) time. We define f (z) = ln g(z) and proceed as in Sect. 7.1
and in Sect. 3.6.7 before that.

We obtain a quasi-polynomial algorithm to approximate homG,m(A) within a
given relative error ε, provided the matrix A = (

ai j
)
satisfies |1 − ai j | ≤ δ for all

i, j and some fixed 0 < δ < δ0. Patel and Regts show [PR16] that the algorithm can
be made genuinely polynomial provided �(G) is fixed in advance.

The functional homG,m(A) specializes to some combinatorial quantities of inter-
est.

7.3.4 Hafnian. Suppose that G consists of n pairwise disjoint edges, so that |V | =
2n and �(G) = 1. Let k = |V | = 2n and let m = (1, . . . , 1). Then

homG,m(A) = 2nn! haf A, (7.3.4.1)

see Sect. 4.1.1. Indeed, every map φ : V −→ {1, . . . , k} in (7.3.1.1) is necessarily
a bijection and the corresponding term is the product of weights ai1 j1 · · · ain jn in a
perfect matching in the complete graph with k = 2n vertices. Since 2nn! different
maps φ result in the same perfect matching (we can switch the vertices of each edge
and also permute the edges), we obtain (7.3.4.1).

Theorem 4.1.5 is a particular case of Theorem 7.3.2 up to the value of δ0, which
is better in Theorem 4.1.5.

More generally, suppose that k ≥ 2n, that m = (1, . . . , 1) and that G consists of
n pairwise disjoint edges and k − 2n isolated points. Then

homG,m(A) = (k − 2n)!2nn! hafn A,

where hafn A enumerates matchings of size n in the complete graph with weights
ai j on the edges, see Sect. 5.1.1.

7.3.5 Hamiltonian permanent. Suppose that G is a cycle with n vertices, so that
|V | = n and �(G) = 2. Let k = |V | = n and let m = (1, . . . , 1). Then

homG,m(A) = n ham A, (7.3.5.1)

where ham A enumerates Hamiltonian cycles in the complete graph with n vertices
and weights ai j on the edges, see Sect. 3.8. The factor n in (7.3.5.1) accounts for

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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n distinct functions φ that differ by a cyclic shift of vertices of G and produce the
same Hamiltonian cycle. It follows from Theorem 7.3.2 that ham A �= 0 provided
A = (ai j

)
is a complex symmetricmatrix satisfying |1−ai j | ≤ δ0/2 for all i, j where

δ0 is the constant in Theorem7.3.2. Consequently, ham A can be approximatedwithin
relative error ε in quasi-polynomial time provided |1 − ai j | ≤ δ/2, where δ < δ0 is
fixed in advance.

7.3.6 Enumerating independent sets. Let k = 2, let m = (m1,m2) and let us
choose

A =
(
0 1
1 1

)
.

A map φ : V −→ {1, 2} contributes 1 to homG,m(A) in (7.3.1.1) if φ−1(1) ⊂ V
is an independent set and contributes 0 otherwise. Consequently, homG,m(A) is the
number of independent sets inG of cardinalitym1. Detecting an independent set of a
given size in a graph is a notoriously hard problem. For example, for any 0 < ε < 1
fixed in advance, it is an NP-hard problem to approximate the largest cardinality of
an independent set in G = (V, E) within a factor of |V |1−ε [Hå99, Zu07].

Let us choose 0 < δ < δ0 as in Theorem 7.3.3 and let us define

Â =
(
1 − δ

�(G)
1 + δ

�(G)

1 + δ
�(G)

1 + δ
�(G)

)
.

NowhomG,m( Â) can be approximated in quasi-polynomial time. For a subset S ⊂ V ,
let e(S) be the number of edges of G spanned by the vertices of S. Then

(
1 + δ

�(G)

)−|E |
homG,m( Â) =

∑

S⊂V|S|=m1

w(S) where

w(S) =
(
1 + δ

�(G)

)−e(S) (
1 − δ

�(G)

)e(S)

.

(7.3.6.1)

In particular,

w(S) ≤ exp

{
−2δ

e(S)

�(G)

}
and w(S) = 1 if S is independent.

Thus the sum (7.3.6.1) accounts for all subsets S ⊂ V of m1 vertices, where inde-
pendent subsets are counted with weight 1, and all other subsets are counted with
weight exponentially small in the number of edges they span. Computing (7.3.6.1)
allows us to distinguish graphs that are sufficiently far from having an independent
set of size m1 (for example, when every subset in of m1 vertices spans at least ε|E |
edges for some ε > 0) from graphs that have many independent sets of size m1 (for
example, when the probability that a randomly chosen m1-subset is independent is
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at least 2e−2δε|E |/�(G)). Note that in the latter case, if G is not very far from regular,
so that |E |/�(G)| ∼ |V |, the probability to hit such an independent set at random
is exponentially small in |V |.
7.3.7 A multi-affine version of homG,m(A). We introduce an extension of

homG,m(A). Let Z =
(
zuv
i j

)
be a |E | × k(k+1)

2 matrix (tensor) indexed by edges

{u, v} ∈ E of the graph G and unordered pairs {i, j} of not necessarily distinct
indices 1 ≤ i, j ≤ k. We write zuv

i j instead of z{u,v}
{i, j} assuming that

zuv
i j = zvu

i j = zvu
ji = zuv

j i .

We define

HomG,m(Z) =
∑

φ:V−→{1,...,k}
|φ−1(i)|=mi for i=1,...,k

∏

{u,v}∈E
zuv
φ(u)φ(v). (7.3.7.1)

If A = (ai j
)
is k × k symmetric matrix and zuv

i j = ai j for all {u, v} ∈ E , we clearly
have homG,m(A) = HomG,m(Z). The advantage of working with HomG,m(Z) is
that it is multi-affine, that is, the degree of every variable in HomG,m(Z) does not

exceed 1. We will prove that HomG,m(Z) �= 0 for complex Z =
(
zuv
i j

)
provided

∣∣1 − zuv
i j

∣∣ ≤ δ0

�(G)
for all {u, v} ∈ E and all 1 ≤ i, j ≤ k,

where δ0 > 0 is an absolute constant (one can choose δ0 = 0.108).

Given δ > 0, we define U(δ) ⊂ C
|E | × C

k(k+1)/2,

U(δ) = {Z = (zuv
i j

) : ∣∣1 − zuv
i j

∣∣ ≤ δ
}

(7.3.7.2)

(we suppress dependence on G in the notation). Hence our goal is to prove that

HomG,m(Z) �= 0 for all Z ∈ U(δ) where δ = δ0

�(G)
.

7.3.8 Recursion. We need a version of the recurrence formula (7.1.9.1). Let
W = (v1, . . . , vr ) be an ordered sequence of vertices of G. A sequence W is called
admissible if all vertices v1, . . . , vr are distinct. Let L = (i1, . . . , ir ) be a sequence
of indices 1 ≤ i j ≤ k. The multiplicity mi (L) of i in L is the number of occurrences
of a given 1 ≤ i ≤ k in L:

mi (L) = ∣∣ j : i j = i
∣∣ .

We call a sequence L admissible if mi (L) ≤ mi for i = 1, . . . , k. For admissible
sequences W = (v1, . . . , vr ) of vertices and L = (i1, . . . , ir ) of indices such that
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|W | = |L|, we define

HomW
L (Z) =

∑

φ:V−→{1,...,k}
|φ−1(i)|=mi for i=1,...,k
φ(v j )=i j for j=1,...,r

∏

{u,v}∈E
zuv
φ(u)φ(v).

Hence HomW
L (Z) is obtained by restricting the sum (7.3.1.1) to the maps φ that map

the vertices v j into i j for j = 1, . . . , r . If W = ∅ and L = ∅ then HomW
L (Z) =

HomG,m(Z).

Let W be an admissible sequence of vertices, let L be an admissible sequence of
indices such that |W | = |L|.

Let v ∈ V be a vertex such that the sequence (W, v) obtained by appending W
by v is admissible (that is, v is not in W ). Then

HomW
L (Z) =

∑

i=1,...,k
(L ,i) is admissible

Hom(W,v)

(L ,i) (Z). (7.3.8.1)

where (L , i) denotes the sequence L appended by i .
Let 1 ≤ i ≤ k be an index such that the sequence (L , i) is admissible. Then

mi (L) < mi and

HomW
L (Z) = 1

mi − mi (L)

∑

v∈V
(W,v) is admissible

Hom(W,v)

(L ,i) (Z). (7.3.8.2)

We note that swapping the values on any two vertices u, v ∈ V does not change
the multiplicities of the values of φ.

To proceed with the induction, we need a simple geometric lemma which says
that the sum of vectors rotates by a small angle if each vector is perturbed slightly
and the vectors point roughly in the same direction.

7.3.9 Lemma. Let a1, . . . , an and b1, . . . , bn be complex numbers such that a1, . . . ,
an are non-zero and ∣∣∣∣

b j

a j
− 1

∣∣∣∣ ≤ ε for j = 1, . . . , n

and some 0 < ε < 1. Let

a =
n∑

j=1

a j and b =
n∑

j=1

b j

and suppose that
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|a| ≥ τ

n∑

j=1

|a j |

for some 1 ≥ τ > ε. Then a �= 0, b �= 0 and the angle between a and b does not
exceed

arcsin
ε

τ
.

Proof. Clearly a �= 0. Writing

b j = (1 + ε j )a j where |ε j | ≤ ε for j = 1, . . . , n,

we obtain

b =
n∑

j=1

(1 + ε j )a j = a +
n∑

j=1

ε j a j where

∣∣∣∣∣∣

n∑

j=1

ε j a j

∣∣∣∣∣∣
≤ ε

n∑

j=1

|a j | ≤ ε

τ
|a|.

Hence ∣∣∣∣
b

a
− 1

∣∣∣∣ ≤ ε

τ

and ∣∣∣∣arg
b

a

∣∣∣∣ ≤ arcsin
ε

τ
,

cf. Fig. 3.7. The proof now follows. �

Building on Lemma 7.3.9, we supply the first ingredient of our induction argu-
ment.

7.3.10 Lemma. Let us fix an admissible sequence W of vertices, an admissible
sequence L of indices such that 0 ≤ |W | = |L| ≤ |V | − 2, a complex tensor Z, a
real ε > 0 and a real 0 ≤ α < 2π/3 such that ε < cos(α/2) and let

ω = arcsin
ε

cos(α/2)
.

Suppose that for any two vertices u, v ∈ V and for any two indices 1 ≤ i, j ≤ k such
that the sequences (W, u, v) and (L , i, j) are admissible, we have Hom(W,u,v)

(L ,i, j) (Z)

�= 0, Hom(W,u,v)

(L , j,i) (Z) �= 0 and

∣∣∣∣∣
Hom(W,u,v)

(L , j,i) (Z)

Hom(W,u,v)

(L ,i, j) (Z)
− 1

∣∣∣∣∣ ≤ ε.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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(1) Let us fix two vertices v, u ∈ V such that the sequence (W, u, v) is admissible
and an index i such that the sequence (L , i) is admissible. Suppose that for
any two indices j1 and j2 such that the sequences (L , i, j1) and (L , i, j2) are
admissible, the angle between two non-zero complex numbers Hom(W,u,v)

(L ,i, j1)
(Z)

andHom(W,u,v)

(L ,i, j2)
(Z) does not exceed α. ThenHom(W,u)

(L ,i) (Z) �= 0,Hom(W,v)

(L ,i) (Z) �=
0 and the angle between the complex numbers does not exceed ω.

(2) Let us fix two indices i and j , possibly equal, such that the sequence (L , i, j) is
admissible and a vertex u such that the sequence (W, u) is admissible. Suppose
that for any two vertices v1 and v2 such that the sequences (W, u, v1) and
(W, u, v2) are admissible, the angle between two non-zero complex numbers
Hom(W,u,v1)

(L ,i, j) (Z) and Hom(W,u,v2)

(L ,i, j) (Z) does not exceed α. Then Hom(W,u)

(L ,i) (Z) �=
0, Hom(W,u)

(L , j) (Z) �= 0 and the angle between the complex numbers does not
exceed ω.

Proof. To prove Part (1), using (7.3.8.1), we write

Hom(W,u)

(L ,i) (Z) =
∑

j=1,...,k
(L ,i, j) is admissible

Hom(W,u,v)

(L ,i, j) (Z) and

Hom(W,v)

(L ,i) (Z) =
∑

j=1,...,k
(L ,i, j) is admissible

Hom(W,u,v)

(L , j,i) (Z).

For j such that (L , i, j) is admissible, let us denote

a j =Hom(W,u,v)

(L ,i, j) (Z), b j = Hom(W,u,v)

(L , j,i) (Z),

a =
∑

j

a j and b =
∑

j

b j .

By Lemma 3.6.3, we have

|a| ≥ τ
∑

j

|a j | for τ = cos
α

2
.

Since
a = Hom(W,u)

(L ,i) (Z) and b = Hom(W,v)

(L ,i) (Z),

the result follows by Lemma 7.3.9.
To prove Part (2), using (7.3.8.2), we write

Hom(W,u)

(L ,i) (Z) = 1

m j − m j (L , i)

∑

v∈V
(W,u,v) is admissible

Hom(W,u,v)

(L ,i, j) (Z) and

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Hom(W,v)

(L , j) (Z) = 1

mi − mi (L , j)

∑

u∈V
(W,u,v) is admissible

Hom(W,u,v)

(L , j,i) (Z).

For v such that (W, u, v) is admissible, let us denote

av =Hom(W,u,v)

(L ,i, j) (Z), bv = Hom(W,u,v)

(L , j,i) (Z),

a =
∑

v

av and b =
∑

v

bv.

By Lemma 3.6.3, we have

|a| ≥ τ
∑

v

|av| for τ = cos
α

2
.

By Lemma 7.3.9, the angle between non-zero complex numbers a and b does not
exceed ω. Since

Hom(W,u)

(L ,i) (Z) = 1

m j − m j (L , i)
a and Hom(W,v)

(L , j) (Z) = 1

mi − mi (L , j)
b,

the proof follows. �
7.3.11 Finding a fixed point. The gist of Lemma 7.3.10 is as follows. Suppose that
the value of HomW

L (Z) does not change much if we permute any two indices in L ,
or, equivalently, any two vertices in W . We would like to know how the argument
of the complex number HomW

L (Z) changes if we change one vertex in W or one
index in L . Let r = |W | = |L| be the length of the sequences. In Lemma 7.3.10 we
show that if HomW

L (Z) does not rotate much when we change one index in L then
HomW ′

L ′ (Z) does not rotate much if we change one vertex inW ′ for shorter sequences
|W ′| = |L ′| = r − 1 and if HomW

L (Z) does not rotate much when we change one
vertex in W then HomW ′

L ′ (Z) does not rotate much if we change one index in L ′ for
shorter sequences |W ′| = |L ′| = r − 1.

We would like to find a fixed point of the conditions of Lemma 7.3.10 for which
α = ω. That is, we want to find an ε > 0 for which the equation

α = arcsin
ε

cos(α/2)

has a solution 0 ≤ α < 2π/3. It is clear that for all sufficiently small ε > 0 such a
solution exists. In fact, any

0 < ε ≤ max
0≤α<2π/3

(sinα)
(
cos

α

2

)
= 4

3
√
3

(7.3.11.1)

will do.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Next, we link the property that HomW
L (Z) doesn’t changemuch if any two vertices

in W or any two indices in L are permuted with partial derivatives. We recall the
definition (7.3.7.2) of the polydisc U(δ).

7.3.12 Lemma. Let us fix an integer 2 ≤ r ≤ |V | and real τ > 0 and 0 < δ < 1.
Suppose that for any admissible sequences W of vertices and L of indices such that
|W | = |L| = r and for any Z ∈ U(δ) we have HomW

L (Z) �= 0 and the following
condition holds: if W = (W ′, v) and L = (L ′, i), then

∣∣HomW
L (Z)

∣∣ ≥ τ

�(G)

∑

w: {w,v}∈E
l: 1≤l≤k

∣∣zvw
il

∣∣
∣∣∣∣

∂

∂zvw
il

HomW
L (Z)

∣∣∣∣ ,

for any Z ∈ U(δ).
Then for any admissible W and L such that |W | = |L| = r and for any Z ∈ U(δ),

the following condition is satisfied: if W = (W ′, u, v) and L = (L ′, i, j) then
∣∣∣∣∣
Hom(W ′,u,v)

(L ′, j,i) (Z)

Hom(W ′,u,v)

(L ′,i, j) (Z)
− 1

∣∣∣∣∣ ≤ eξ − 1 where ξ = 4δ�(G)

(1 − δ)τ
.

Proof. Let us choose admissible W and L such that |W | = |L| = r and suppose
that W = (W ′, u, v) and L = (L ′, j, i). Without loss of generality, we assume that
i �= j . Since HomL

W (Z) �= 0 for all Z ∈ U(δ), we choose a continuous branch of
ln HomW

L (Z), so that ln HomW
L (Z) is real when Z is the matrix of 1s. Then

∂

∂zvw
il

ln HomW
L (Z) =

(
∂

∂zvw
il

HomW
L (Z)

)
/HomW

L (Z)

and using that the coordinates zxyab of any Z ∈ U(δ) satisfy
∣∣zxyab

∣∣ ≥ 1 − δ, we obtain

∑

w: {w,v}∈E
l: 1≤l≤k

∣∣∣∣
∂

∂zvw
il

ln HomW
L (Z)

∣∣∣∣ ≤ �(G)

(1 − δ)τ
and

∑

w: {w,u}∈E
l: 1≤l≤k

∣∣∣∣∣
∂

∂zuw
jl

ln HomW
L (Z)

∣∣∣∣∣ ≤ �(G)

(1 − δ)τ
.

(7.3.12.1)

Given a matrix A ∈ U(δ), we define a matrix B ∈ U(δ) by

buw
jl = auw

il for all w �= v such that {u, w} ∈ E and all l = 1, . . . , k

bvw
il = avw

jl for all w �= u such that {v,w} ∈ E and all l = 1, . . . , k,

while making all other entries of B equal to the corresponding entries of A. Then
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Hom(W ′,u,v)

(L ′, j,i) (B) = Hom(W ′,u,v)

(L ′,i, j) (A)

and from (7.3.12.1), we conclude

∣∣∣ln Hom(W ′,u,v)

(L ′, j,i) (A) − ln Hom(W ′,u,v)

(L ′,i, j) (A)

∣∣∣

=
∣∣∣ln Hom(W ′,u,v)

(L ′, j,i) (A) − ln Hom(W ′,u,v)

(L ′,i, j) (B)

∣∣∣

≤ max
Z∈U(δ)

⎛

⎜⎜⎝
∑

w: {u,w}∈E
l: 1≤l≤k

∣∣∣∣∣
∂

∂zuw
jl

ln HomW
L (Z)

∣∣∣∣∣+
∑

w: {v,w}∈E
l: 1≤l≤k

∣∣∣∣
∂

∂zvw
il

ln HomW
L (Z)

∣∣∣∣

⎞

⎟⎟⎠

×
⎛

⎝max
w∈W
1≤l≤k

∣∣auw
jl − buw

jl

∣∣ ,
∣∣auw

il − bvw
il

∣∣

⎞

⎠ ≤ 2�(G)

(1 − δ)τ
× (2δ) = 4δ�(G)

(1 − δ)τ
= ξ.

Denoting

ζ = Hom(W ′,u,v)

(L ′, j,i) (Z)

Hom(W ′,u,v)

(L ′,i, j) (Z)
,

we conclude that | ln ζ| ≤ ξ. Denoting s = ln ζ, we conclude

|ζ − 1| = ∣∣es − 1
∣∣ =

∣∣∣∣∣

∞∑

n=1

sn

n!

∣∣∣∣∣ ≤
∞∑

n=1

|s|n
n! = eξ − 1.

�

7.3.13 Tuning up ξ. We would like to have

eξ − 1 ≤ ε

for some ε satisfying (7.3.11.1), see Sect. 7.3.11, so we choose

ξ = ln (1 + ε) .

Our next (and last) lemma relates the parameter τ in Lemma 7.3.12 to the angles
between various complex numbers HomW

L (Z).

7.3.14 Lemma. Let 0 ≤ α < 2π/3 be a real number, let W be an admissible
sequence of vertices and let L be an admissible sequence of indices such that 1 ≤
|W | = |L| ≤ |V | − 1. Suppose that for every Z ∈ U(δ), for every w such that
(W, w) is admissible and for every 1 ≤ l, j ≤ k such that (L , l) and (L , j) are
admissible, we have Hom(W,w)

(L ,l) (Z) �= 0, Hom(W,w)

(L , j) (Z) �= 0 and the angle between
the two complex numbers does not exceed α.
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Suppose that W = (W ′, v) and L = (L ′, i). Then

∣∣HomW
L (Z)

∣∣ ≥ τ

�(G)

∑

w: {w,v}∈E
j : 1≤ j≤k

∣∣zvw
i j

∣∣
∣∣∣∣∣

∂

∂zvw
i j

HomW
L (Z)

∣∣∣∣∣ for τ = cos
α

2
.

Proof. Let w be a vertex such that {v,w} ∈ E . If w is an element of W ′ then

zvw
i j

∂

∂zvw
i j

HomW
L (Z) =

{
HomW

L (Z) if the element of L ′ corresponding to w is j

0 otherwise

(here we use that HomW
L (Z) is a multi-affine function of Z ).

Ifw �= v is not an element ofW ′ then (W, w) is an admissible sequence of vertices
and

zvw
i j

∂

∂zvw
i j

HomW
L (Z) =

{
Hom(W,w)

(L , j) (Z) if (L , j) is admissible

0 otherwise.

By (7.3.8.1), if w �= v is not in W ′ then

HomW
L (Z) =

∑

j : 1≤ j≤k
(L , j) is admissible

Hom(W,w)

(L , j) (Z)

and hence by Lemma 3.6.3,

∣∣HomW
L (Z)

∣∣ ≥ τ
∑

j : 1≤ j≤k
(L , j) is admissible

∣∣∣Hom(W,w)

(L , j) (Z)

∣∣∣ .

Denoting by d0 the number of vertices w such that {w, v} ∈ E and w is an element
of W ′ and by d1 the number of vertices w such that {w, v} ∈ E and w is not an
element of W ′, we obtain

∑

w: {w,v}∈E
j : 1≤ j≤k

∣∣zvw
i j

∣∣
∣∣∣∣∣

∂

∂zvw
i j

HomW
L (Z)

∣∣∣∣∣ = d0
∣∣HomW

L (Z)
∣∣

+
∑

w: {w,v}∈E,
w is not in W ′
j : 1≤ j≤k,

(L , j) is admissible

∣∣∣Hom(W,w)

(L , j) (Z)

∣∣∣

≤ d0
∣∣HomW

L (Z)
∣∣+ d1τ

−1
∣∣HomW

L (Z)
∣∣ ≤ �(G)

τ

∣∣HomW
L (Z)

∣∣

and the proof follows. �

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Now we are ready to prove Theorem 7.3.2.

7.3.15 Proof of Theorem7.3.2. First we define some constants. For some 0 < α <

2π/3, to be specified later, we choose

ε = (sinα)
(
cos

α

2

)
so that α = arcsin

ε

cos(α/2)
,

see Sect. 7.3.11. Let

ξ = ln(1 + ε) so that eξ − 1 = ε,

see Sect. 7.3.13. and let
τ = cos

α

2
.

see Lemma 7.3.14. We define

δ0 = ξτ

4 + ξτ

and let

δ = δ0

�(G)
,

so that
4δ�(G)

(1 − δ)τ
≤ ξ,

see Lemma 7.3.12. As our goal is to maximize δ0, we choose α to maximize

ξτ =
(
cos

α

2

)
ln
(
1 + (sinα)

(
cos

α

2

))
.

Numerical computations show that it is reasonable to choose

α = 1

so that
ε ≈ 0.74, ξ ≈ 0.55, τ ≈ 0.88

and
δ0 > 0.108.

Our goal is to show that

HomG,m(Z) �= 0 for all Z ∈ U(δ).
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We prove by descending induction for r = |V |, |V | − 1, . . . , 2 the following State-
ments 1.r–5.r .

Statement 1.r . Let W be an admissible sequence of vertices and let L be an
admissible sequence of indices such that |W | = |L| = r . Then HomW

L (Z) �= 0.

Statement 2.r . Let W be an admissible sequence of vertices and let L be an
admissible sequence of indices such that |W | = |L| = r . If W = (W ′, v) and
L = (L ′, i) then

∣∣HomW
L (Z)

∣∣ ≥ τ

�(G)

∑

w: {w,v}∈E
l: 1≤l≤k

∣∣zvw
il

∣∣
∣∣∣∣

∂

∂zvw
il

HomW
L (Z)

∣∣∣∣ .

Statement 3.r . Let W be an admissible sequence of vertices and let L be an
admissible sequence of indices such that |W | = |L| = r . If W = (W ′, u, v) and
L = (L ′, i, j) then ∣∣∣∣∣

Hom(W ′,u,v)

(L ′, j,i) (Z)

Hom(W ′,u,v)

(L ′,i, j) (Z)
− 1

∣∣∣∣∣ ≤ ε.

Statement 4.r . Let W be an admissible sequence of vertices such that |W | = r .
Suppose thatW = (W ′, w) and let L ′ be an admissible sequence of indices such that
|L ′| = r − 1. Let i and j be indices such that the sequences (L ′, i) and (L ′, j) are
admissible. Then Hom(W ′,w)

(L ′,i) (Z) �= 0, Hom(W ′,w)

(L ′, j) (Z) �= 0 and the angle between the
complex numbers does not exceed α.

Statement 5.r . Let L be an admissible sequence of vertices such that |L| = r .
Suppose that L = (L ′, i) and let W ′ be an admissible sequence of vertices such that
|W ′| = r − 1. Let u and v be vertices such that the sequences (W, u) and (W, v) are
admissible. Then Hom(W ′,u)

(L ′,i) (Z) �= 0, Hom(W ′,v)

(L ′,i) (Z) �= 0 and the angle between the
complex numbers does not exceed α.

Suppose that r = |V | and let W = (v1, . . . , vr ) and L = (i1, . . . , ir ). Then

HomW
L (Z) =

∏

1≤ j<l≤r :
{v j ,vl }∈E

z
v jvl
i j il

,

and hence Statement 1.r holds. Furthermore, if deg vr is the degree of vr , we get

∑

w: {w,vr }∈E
l: 1≤l≤k

∣∣zvrw
ir l

∣∣
∣∣∣∣∣

∂

∂zvrw
ir l

HomW
L (Z)

∣∣∣∣∣ = (deg vr )
∣∣HomW

L (Z)
∣∣
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and Statement 2.r follows as well. Lemma 7.3.12 implies that Statement 3.r holds.
Statements 4.r and 5.r hold since if L ′ is an admissible sequence of indices such
that |L ′| = |V | − 1 then there is a unique index i such that the sequence (L ′, i) is
admissible and if W ′ is an admissible sequence of vertices such that |W ′| = |V | − 1
then there is a unique vertex w such that the sequence (W ′, w) is admissible.

From formula (7.3.8.1) and Lemma 3.6.3, we get the implication:

Statement 1. r and Statement 4.r =⇒ Statement 1.(r − 1).

From Lemma 7.3.14, we get the implication

Statement 4.r =⇒ Statement 2.(r − 1).

From Lemma 7.3.12, we get the implication

Statement 1.(r − 1) and Statement 2.(r − 1) =⇒ Statement 3.(r − 1).

From Part 1 of Lemma 7.3.10, we get the implication

Statement 3.r and Statement 4.r =⇒ Statement 5.(r − 1).

From Part 2 of Lemma 7.3.10, we get the implication

Statement 3.r and Statement 5.r =⇒ Statement 4.(r − 1).

This proves Statements 1.2–5.2. Applying again Part 2 of Lemma 7.3.10, we get
the implication

Statement 3.2 and Statement 5.2 =⇒ Statement 4.1.

Then from formula (7.3.8.1) and Lemma 3.6.3, we get the implication

Statement 4.1 =⇒ Statement 1.0,

which completes the proof. �

7.4 The Lee–Yang Circle Theorem and the Ising Model

Our goal is to prove the following remarkable theorem of Lee and Yang [LY52].

7.4.1 Theorem. Let A = (
ai j
)
be an n × n complex Hermitian matrix (thus we

have ai j = a ji for all i, j ) such that |ai j | ≤ 1 for all 1 ≤ i, j ≤ n. Let us define a
univariate polynomial

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 7.2 The cut created by
a set S of vertices and the
directed edges contributing
to the weight of the cut

S

CutA(z) =
∑

S⊂{1,...,n}
z|S|∏

i∈S
j /∈S

ai j .

Then every root z0 of CutA satisfies |z0| = 1.

The polynomial CutA(z) enumerates all cuts in the complete directed graph G
with set {1, . . . , n} of vertices and weight ai j on the edge i → j , cf. Sect. 7.1.11.
Every subset S ⊂ {1, . . . , n} of vertices, including S = ∅, creates a cut. The weight
of the cut is the product of weights of all directed edges of G that originate in S and
end outside of S (for S = ∅ and for S = {1, . . . , n} the weight of the cut is 1), see
Fig. 7.2, while the monomial z|S| accounts for the cardinality of the set S.

We note that the weights of the cuts corresponding to a set S and to its complement
are complex conjugates of each other and hence

zn CutA

(
1

z

)
= CutA(z).

As follows from Lemma 2.2.1, see also Sect. 3.6, Theorem 4.1.5, Theorem 4.4.2,
Sect. 6.1.5, Theorems 7.1.5 and 7.2.3, for any 0 < δ < 1, fixed in advance and any
0 < ε < 1 there is a polynomial p = pn,δ,ε in z and the entries ai j of an n × n
Hermitian matrix A = (ai j

)
such that deg p = O (ln n − ln ε) and

|ln CutA(z) − p(A, z)| ≤ ε

provided |ai j | ≤ 1 for all i, j and |z| ≤ δ. As before, the approximating polynomial
p can be computed in nO(ln n−ln ε) time.

Our proof follows [Hi97], see also [Ru71] and [As70].

7.4.2 Lemma. Let a be a complex number such that |a| ≤ 1 and let z1 and z2 be
complex numbers such that |z1|, |z2| < 1. Then

1 + az1 + az2 + z1z2 �= 0.

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_6
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Proof. If |a| = 1 then aa = 1 and

1 + az1 + az2 + z1z2 = (1 + az1) (1 + az2)

and the proof follows. Hence we may assume that |a| < 1. Solving the equation

1 + az1 + az2 + z1z2 = 0

for z2, we obtain

z2 = −1 + az1
a + z1

. (7.4.2.1)

For any z such that |z| = 1, we have

|1 + az| = |1 + az| and |a + z| = |a + z||z| = |az + 1|,

from which it follows that the transformation

z �−→ −1 + az

a + z

maps the unit circle |z| = 1 onto itself and the disc |z| < 1 onto its complement
|z| > 1 (we use that |a| < 1). Therefore, if z2 satisfies (7.4.2.1) with some |z1| < 1,
we must have |z2| > 1 and the proof follows. �

7.4.3 Proof of Theorem7.4.1. Let us consider an n-variate polynomial

pA (z1, . . . , zn) =
∑

S⊂{1,...,n}
zS
∏

i∈S
j /∈S

ai j , where zS =
∏

i∈S
zi . (7.4.3.1)

For 1 ≤ i < j ≤ n, let us define

pi j (z1, . . . , zn) =
∑

S⊂{1,...,n}
i /∈S, j /∈S

zS +
∑

S⊂{1,...,n}
i∈S, j∈S

zS + ai j
∑

S⊂{1,...,n}
i∈S, j /∈S

zS + a ji

∑

S⊂{1,...,n}
i /∈S, j∈S

zS

= (1 + ai j zi + a ji z j + zi z j
)

⎛

⎜⎜⎝
∑

S⊂{1,...,n}
i /∈S, j /∈S

zS

⎞

⎟⎟⎠

= (1 + ai j zi + a ji z j + zi z j
) ∏

k∈{1,...,n}\{i, j}
(1 + zk) .

From Lemma 7.4.2 it follows that

pi j (z1, . . . , zn) �= 0 provided |z1|, . . . , |zn| < 1.
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Therefore, for any real 0 < ρ < 1, the polynomial

(z1, . . . , zn) �−→ pi j (ρz1, . . . , ρzn)

is D-stable, see Sect. 2.5. On the other hand, pA is the Schur (Hadamard) product of
the polynomials pi j over all pairs 1 ≤ i < j ≤ n. Therefore, by Theorem 2.5.1, for
any real 0 < ρ < 1, the polynomial

∑

S⊂{1,...,n}
zSρ|S|n(n−1)/2

∏

i∈S
j /∈S

ai j

is D-stable. Taking the limit as ρ −→ 1, by Hurwitz’s Theorem, cf. the proof of
Lemma 2.4.2, we conclude that

pA (z1, . . . , zn) �= 0 provided |z1|, . . . , |zn| < 1.

Therefore,
CutA(z) = pA (z, . . . , z) �= 0 provided |z| < 1.

Since

zn CutA

(
1

z

)
= CutA(z),

we conclude that
CutA(z) �= 0 provided |z| > 1

and the proof follows. �

As follows from our proof, we have

pA (z1, . . . , zn) =
∑

S⊂{1,...,n}
zS
∏

i∈S
j /∈S

ai j �= 0

provided
|zi | < 1 for i = 1, . . . , n.

Consequently, for any 0 < δ < 1, fixed in advance, there is an algorithm which,
given a Hermitian matrix A = (

ai j
)
such that |ai j | ≤ 1 for all i and j , complex

z1, . . . , zn such that |zi | ≤ δ for i = 1, . . . , n and a real 0 < ε < 1 approximates
pA (z1, . . . , zn) within a relative error of ε in nO(ln n−ln ε) time. For a Markov Chain
Monte Carlo based algorithm, see [JS93].

7.4.4 The Ising model. One of the oldest and most famous models in statistical
physics, the Ising model, seeks to explain the phase transition in magnetization. It
is described as follows: let G = (V, E) be an undirected graph without loops or

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Fig. 7.3 The graph of a
rectangular region of Z2

multiple edges. Typically, G is a graph of a rectangular region of the 2-dimensional
integer grid Z2 or a cubical region of the 3-dimensional grid Z

3, see Fig. 7.3.

We think of the vertices of G, which we number 1, 2, . . . , |V |, as of atoms. Suppose
that some real numbers bi j for {i, j} ∈ E are attached to the edges of G, which
characterize interactions between neighboring atoms and that real numbers ci for
i = 1, . . . , N are attached to the vertices of G, which characterize the external
magnetic field. An assignment σ : V −→ {−1, 1} of signs to the vertices of G is
called a configuration and the signs themselves are interpreted as spins of the atoms.
The energy of the configuration σ is defined as

H(σ) = −
∑

{i, j}∈E
bi jσ(i)σ( j) −

∑

i∈V
ciσ(i).

The partition function of the Ising model is just the sum over all 2|V | configurations:

Z(G, t) =
∑

σ:V→{−1,1}
e−γH(σ)/t

=
∑

σ:V−→{−1,1}
exp

⎧
⎨

⎩γt−1

⎛

⎝
∑

{i, j}∈E
bi jσ(i)σ( j) +

∑

i∈V
ciσ(i)

⎞

⎠

⎫
⎬

⎭ ,

(7.4.4.1)

where t > 0 is a parameter interpreted as the temperature and γ > 0 is an absolute
constant. The partition function defines a probability distribution on the set of all 2|V |
configurations:

Pr(σ) = e−γH(σ)/t

Z(G, t)
for σ : V −→ {−1, 1}. (7.4.4.2)

Some observations are in order. As the temperature t −→ +∞ grows, the dis-
tribution approaches the uniform distribution on the set of all configurations. As the
temperature t −→ 0+ falls to 0, the distribution concentrates on the configurations
with the lowest energy. Suppose that ci = 0 for all i , so that there is no external
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Fig. 7.4 The most likely
configurations in the
ferromagnetic case a and b
and in the anti-ferromagnetic
case c and d. Black dots
denote spins +1 while white
dots denote spins −1

(a)

(b)

(c)

(d)

magnetic field. If all bi j > 0 then the configurations where the spins of neighboring
atoms coincide have lower energy and hence higher probability. This is called the
ferromagnetic case. If all bi j < 0 then the configurations where the spins of neigh-
boring atoms are opposite have lower energy and hence higher probability. This is
called the anti-ferromagnetic case, see Fig. 7.4.

One can observe now that by a change of variables, Z(G, t) is transformed into
the partition function of Theorem 7.4.1, more precisely into (7.4.3.1). Namely, we
write

Z(G, t) = exp

⎧
⎨

⎩γt−1

⎛

⎝
∑

{i, j}∈E
bi j +

∑

i∈V
ci

⎞

⎠

⎫
⎬

⎭

×
∑

σ: V→{−1,1}
exp

⎧
⎪⎪⎨

⎪⎪⎩
−2γt−1

⎛

⎜⎜⎝
∑

{i, j}∈E :
σ(i)�=σ( j)

bi j +
∑

i∈V :
σ(i)=−1

ci

⎞

⎟⎟⎠

⎫
⎪⎪⎬

⎪⎪⎭
.

A configuration σ : V −→ {−1, 1} is uniquely determined by the subset S ⊂ V of
vertices where σ(i) = 1. Hence letting

ai j = exp
{−2γt−1bi j

}
and zi = exp

{−2γt−1ci
}
,

we can further write
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Z(G, t) = exp

⎧
⎨

⎩γt−1

⎛

⎝
∑

{i, j}∈E
bi j +

∑

i∈V
ci

⎞

⎠

⎫
⎬

⎭
∑

S⊂V

zS
∏

i∈S
j /∈S

ai j ,

where we agree that ai j = 1 if {i, j} /∈ E (equivalently, we agree that bi j = 0 if
{i, j} /∈ E) and

zS =
∏

i∈S
zi .

Hence up to a simple factor, Z(G, t) is indeed transformed into the partition func-
tion (7.4.3.1) of cuts. Moreover, the case of |ai j | ≤ 1 treated by Theorem 7.4.1
corresponds to the ferromagnetic case of bi j ≥ 0. Theorem 7.4.1 thus says that in
the ferromagnetic case the roots of c �−→ Z(G, t; c), as a function of the constant
magnetic field ci = c interpreted as a complex variable, are purely imaginary, that
is, satisfy � c = 0.

There are two related, thoughnot identical, notions of a phase transition in the Ising
model. Both are asymptotic, as the graph grows in some regular way (for example,
when the square region inZ2 or the cubical region inZ3 gets larger, see Fig. 7.3). The
first notion has to do with complex zeros of the partition function Z(G, t) defined
by (7.4.4.1). Various quantities that have physical interpretation can be expressed in
terms of the “free energy per atom”

1

|V | ln Z(G, t),

see [Ci87] and references therein. If for a sequenceGn = (Vn, En) of growing graphs
a complex zero of the function t �−→ Z(Gn, t) approaches the positive real axis, it
means that the “thermodynamic limit”

lim
n−→∞

1

|Vn| ln Z(Gn, t)

hits a singularity at some temperature tc, and hence those physical quantities hit a
singularity (discontinuity or loss of smoothness) as well, which is an indication of a
phase transition (such as the loss of the magnetization or gas becoming liquid, etc.)
occurring at the temperature tc, see [YL52]. Hence Theorem 7.4.1 implies that as
long as the magnetic field remains constant and non-zero, there is no phase transition
in the ferromagnetic case, as all the zeros of t �−→ Z(Gn, t) stay away from the
positive real axis even as the graph Gn grows. If the external magnetic field is zero,
Onsager [On44] demonstrated that there is indeed a phase transition at a particular
temperature in the case of a growing rectangular region of the 2-dimensional grid
as on Fig. 7.3, in the ferromagnetic case with constant interactions bi j > 0, see also
Chap.10 of [Ai07] for the computation of the partition function in that case.

The second notion of the phase transition has to do with the correlation decay
phenomenon, as in Sects. 5.2, 6.3 and 6.4. Suppose that there is no external magnetic

http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_6
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field, so that ci = 0 for all i ∈ V . Let us consider the probability distribution on the
set of configurations σ defined by (7.4.4.2). We choose a particular vertex i in G and
consider the conditional probability that σ(i) = 1, given that the spins of the vertices
far away from i are also equal to 1. For example, i is the central vertex on Fig. 7.3,
the spins are fixed to 1 on the boundary of the square and the size of the square is
allowed to grow. We say that the phase transition occurs at a particular temperature
tc if for higher temperatures t > tc the probability that σ(i) = 1 asymptotically
does not depend on the boundary conditions (no long range interactions), while for
lower temperatures t < tc the probability that σ(i) = 1 asymptotically depends on
the boundary conditions (long range interactions appear). In 1936, Peierls found a
relatively simple argument, which allows one to show that this kind of the phase
transition indeed occurs for a variety of graphs, in particular for grids in Z

d with
d ≥ 2, see [Ci87] for an exposition and references.

7.4.5 Reduction to matchings. Fisher [Fi66] showed that computing the partition
function Z(G, t) defined by (7.4.4.1) in the case of zero magnetic field (that is, then
ci = 0 for all i ∈ V ) can be reduced to counting weighted perfect matchings in some
auxiliary graph Ĝ, that is, to computing an appropriate hafnian, see Sect. 4.1. More-
over, if G is a planar graph, the graph Ĝ is also planar, so one can use Pfaffians to
compute Z(G, t), see Sect. 4.3. Heilmann and Lieb [HL72] modified Fisher’s argu-
ment to account for a non-zero magnetic field and showed that in general computing
Z(G, t) reduces to computing the matching polynomial of a graph, see Chap.5.
Below we follow [Fi66].

To simplify the notation, we write (7.4.4.1) in the absence of the magnetic field
simply as

Z(G) =
∑

σ:V→{−1,1}

∏

{i, j}∈E
exp
{
bi jσ(i)σ( j)

}
,

where bi j are some real weights on the edges of E . Since the product σ(i)σ( j)
takes only two values, +1 and −1, we can interpolate exp

{
bi jσ(i)σ( j)

}
by an affine

function in σ(i)σ( j) and write

Z(G) =
∑

σ:V→{−1,1}

∏

{i, j}∈E

(
fi j + gi jσ(i)σ( j)

)

where fi j = ebi j + e−bi j

2
> 0 and gi j = ebi j − e−bi j

2
.

Next, we factor out fi j and write

Z(G) =
⎛

⎝
∏

{i, j}∈E
fi j

⎞

⎠ Z0(G) where

Z0(G) =
∑

σ:V→{−1,1}

∏

{i, j}∈E

(
1 + hi jσ(i)σ( j)

)
and hi j = ebi j − e−bi j

ebi j + e−bi j
.

(7.4.5.1)

http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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We note that the signs of hi j and bi j coincide. We will be computing Z0(G).
Let us expand the product in the definition of Z0(G).Weobtain variousmonomials

of the type
hi1 j1 · · · his jsσ(i1)σ( j1) · · · σ(is)σ( js). (7.4.5.2)

The monomials that survive summing over all σ : V −→ {−1, 1} correspond to the
collections T of distinct edges {i1, j1}, . . . , {is, js} that cover every vertex i of V an
even, possibly zero, number of times. We call such collections Eulerian. Hence we
can write

Z0(G) = 2|V | ∑

T⊂E
T is Eulerian

∏

{i, j}∈T
hi j . (7.4.5.3)

Next,webegin tomodifyG. First,we construct an intermediate graph G̃ = (Ṽ , Ẽ)

with weights on edges such that Z0(G) = Z0(G̃) and the degree of every vertex on
G̃ does not exceed 3. We do it step by step, each time replacing a vertex of degree
d > 3 by d clones, connected in a circular order as on Fig. 7.5.

The edges of the obtained graph are of the two kinds: the inherited edges, con-
necting clones of the vertex to other vertices (thick lines on Fig. 7.5) and circular
edges, connecting clones of the vertex ofG within themselves (thin lines on Fig. 7.5).
The weights h̃i j on the inherited edges are copied from those on the corresponding
edges of G, while for any circular edge {i, j} we let h̃i j = 1. Whenever σ(i) �= σ( j)
for some two clones of a vertex in G, we also have σ(i) �= σ( j) for two neighboring
clones and hence by (7.4.5.1) the contribution of the corresponding configuration σ
to the partition function is just 0. Repeating this process, we obtain a graph G̃ with
vertices of degree 1, 2 and 3 and such that Z0(G) = Z0(G̃). Note that if G is planar
then G̃ is also planar.

Hence without loss of generality, we may assume the degree of every vertex of
G is 1, 2 or 3. We still denote weights on the edges of G by hi j and without loss
of generality we assume that hi j > 0. Next, we construct a weighted graph Ĝ such
that Z0(G) is expressed as the partition function enumerating perfect matchings in
Ĝ, see Sect. 4.1.

We keep vertices of degree 1 intact. If hi j is the weight on the unique edge incident
to such a vertex, we assign weight wi j = 1/hi j to the unique inherited edge in Ĝ

Fig. 7.5 Replacing a vertex
of degree 6 by 6 vertices of
degree 3

1

hi

hij

j 1 1
1
1 1
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Fig. 7.6 Constructing Ĝ
from G
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hi

ij 1/h hi

h
i 1/hijj
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j

h ji

j

1 1

1

incident to the vertex, see Fig. 7.6. Every vertex of G of degree 2 we replace by two
clones, connected by an auxiliary edge of weight 1 in Ĝ (thin line on Fig. 7.6) and
connected to other vertices by two inherited edges (thick lines on Fig. 7.6). If an
edge incident in G to such a vertex has weight hi j , we assign weight wi j = 1/hi j
to the corresponding inherited edge in Ĝ. Every vertex G of degree 3 we replace by
three clones connected by auxiliary edges of weight 1 each (thin lines on Fig. 7.6)
and connected to other vertices by three inherited edges (thick lines on Fig. 7.6). If
an edge incident in G to such a vertex has weight hi j , we assign weight wi j = 1/hi j
to the corresponding inherited edge in Ĝ.

Given an Eulerian collection T of edges in G, we construct a perfect matching
in Ĝ as follows: we include an inherited edge into the perfect matching if and only
if the corresponding edge of G is not included in T . We then include auxiliary
edges to complete the matching (the choice is unique). One can observe that the
correspondence is a bijection between Eulerian collections in G (which are just
collections of vertex-disjoint cycles) and perfect matchings in Ĝ. One can deduce
from (7.4.5.3) that

Z0(G) = 2|V |
⎛

⎝
∏

{i, j}∈E
hi j

⎞

⎠ haf(Ĝ),

where haf(Ĝ) is the sum of weights of the perfect matchings in Ĝ and where the
weight of a perfect matching is the product of weights of its edges, see Sect. 4.1.

We note that if G is a planar graph then Ĝ is also planar.

http://dx.doi.org/10.1007/978-3-319-51829-9_4


Chapter 8
Partition Functions of Integer Flows

We consider yet another extension of the permanent, and some of the methods and
results of Chap. 3 (capacity of polynomials, connections to H-stable polynomials,
the van derWaerden and Bregman–Minc bounds) are used. Geometrically, with each
integer point of a polyhedron in Rn , we associate a monomial in n real variables and
the partition function is just the sum of monomials over the integer points in the
polyhedron. When the variables are non-negative, we prove a general upper bound
for the partition function in terms of the solution to a convex optimization problem
(entropymaximization) on the polyhedron. Although for general polyhedra there can
be no matching lower bound, such a bound indeed exists in the case of polyhedra of
feasible flows in a graph. This allows us to understandwhat a “typical” random integer
point in a flow polyhedron looks like. Based on this understanding and with intuition
supplied by the Local Central Limit Theorem, we present a heuristic “Gaussian”
formula for the partition function of a general polyhedron. Its validity has indeed
been proven in some particular cases, though not in this book.

8.1 The Partition Function of 0-1 Flows

8.1.1 Definitions. Let us choose positive integer vectors R = (r1, . . . , rm) and C =
(c1, . . . , cn) such that

r1 + . . . + rm = c1 + . . . + cn = N (8.1.1.1)

and let �0(R, C) be the set of all m × n matrices with row sums R, column sums
C and 0-1 entries:
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�0(R, C) =
{

D = (di j
) :

n∑

j=1

di j = ri for i = 1, . . . , m

n∑

i=1

di j = c j for j = 1, . . . , n and

di j ∈ {0, 1} for all i, j
}
.

The vectors R and C are called margins of a matrix from�0(R, C). The Gale–Ryser
Theorem, see for example, Sect. 6.2 of [BR91], provides a convenient necessary and
sufficient condition for �0(R, C) to be non-empty: assuming that

m ≥ c1 ≥ c2 ≥ . . . ≥ cn > 0

and that
n ≥ ri > 0 for i = 1, . . . , m,

there is a 0-1 matrix with row sums R and column sums C if and only if the balance
condition (8.1.1.1) holds and

m∑

i=1

min {ri , k} ≥
k∑

j=1

c j for k = 1, . . . , n. (8.1.1.2)

In the extreme case when �0(R, C) consists of a single matrix, that matrix has 1s
arranged in a staircase pattern:

⎛

⎜⎜⎝

1 1 1 1 1
1 1 1 0 0
1 1 1 0 0
1 1 0 0 0

⎞

⎟⎟⎠ .

Thus in the above matrix we have m = 5, n = 4, R = (5, 3, 3, 2), C = (4, 4, 3, 1, 1)
and (8.1.1.2) are equalities.

Assume that �0(R, C) is indeed non-empty. Given a non-negative m × n matrix
W = (wi j

)
of weights, we define the partition function of 0-1 flows by

Fl0(R, C; W ) =
∑

D∈�0(R,C)

D=(di j )

∏

i, j

w
di j

i j

and we agree that 00 = 1 so that Fl0(R, C; W ) remains a continuous function of W
when wi j −→ 0+.

In particular, if m = n and R = C = (1, . . . , 1) then Fl0(R, C; W ) = per W , see
Sect. 3.1.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 8.1 A bipartite graph
and a feasible 0-1 flow (thick
edges) with supplies
(1, 2, 1, 2) and demands
(1, 1, 2, 1, 1)
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8.1.2 The flow interpretation.When the matrix W of weights is itself a 0-1 matrix,
the partition function Fl0(R, C; W ) is naturally interpreted as the number of feasi-
ble flows in the network. Namely, we consider a bipartite graph G with m + n
vertices numbered 1L , 2L , . . . , mL and 1R, 2R, . . . , n R and edges (i L , j R)when-
ever wi j = 1. We assign to each vertex i L the supply ri and to each vertex j R the
demand c j . A feasible 0-1 flow is a subset F of edges of G such that every vertex
i L is incident to ri edges from F and each vertex j R is incident to c j edges from F .
For example, the feasible 0-1 flow on Fig. 8.1 corresponds to m = 4, n = 5,

W =

⎛

⎜⎜⎝

1 1 0 1 0
1 0 1 0 0
0 1 1 0 1
0 0 0 1 1

⎞

⎟⎟⎠

and R = (1, 2, 1, 2), C = (1, 1, 2, 1, 1).
The following estimate of Fl0(R, C; W ) in terms of the capacity of a certain

polynomial, see Sect. 2.4, was obtained by Gurvits [Gu15].

8.1.3 Theorem. Given a non-negative m × n matrix W = (
wi j
)

of weights, we
define a polynomial pW in m + n variables by

pW (x1, . . . , xm; y1, . . . , yn) =
∏

1≤i≤m
1≤ j≤n

(
xi + wi j y j

)
.

Given margins R = (r1, . . . , rm) and C = (c1, . . . , cn), let

α(R, C; W ) = inf
x1 ,...,xm >0
y1 ,...,yn>0

pW (x1, . . . , xm; y1, . . . , yn)

xn−r1
1 · · · xn−rm

m yc1
1 · · · ycn

n
.

Then

(
m∏

i=1

rri
i (n − ri )

n−ri n!
ri !(n − ri )!nn

)⎛

⎝
n∏

j=1

c
c j

j (m − c j )
m−c j m!

c j !(m − c j )!mm

⎞

⎠α(R, C; W )

≤ Fl0(R, C; W ) ≤ α(R, C; W ).

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Proof. First, we claim that Fl0(R, C; W ) is the coefficient of the monomial

xn−r1
1 · · · xn−rm

m yc1
1 · · · ycn

n

in the monomial expansion of pW . Indeed, let us write the monomial expansion of
pW by expanding the product of mn factors

(
xi + wi j y j

)
. With each monomial of

pW , we associate an m × n matrix D = (di j
)
of 0s and 1s as follows. We let di j = 1

if from the factor
(
xi + wi j y j

)
we pick up the term wi j y j and we let di j = 0 if we

pick up xi . We obtain the monomial xn−r1
1 · · · xn−rm

m yc1
1 . . . ycn

n precisely when the row
sums of D are r1, . . . , rm and the column sums of D are c1, . . . , cn .

Next, we observe that pW isH-stable, see Sect. 2.4, provided W = (wi j
)
is a non-

negative real matrix. Indeed, if x1, . . . , xm and y1, . . . , ym are complex variables such
that � x1, . . . ,� xm > 0 and � y1, . . . ,� yn > 0 then � (xi + wi j y j

)
> 0 for all i, j

and hence pW (x1, . . . , xm; y1, . . . , yn) �= 0.
Finally, we note that the degree of xi in pW does not exceed n for i = 1, . . . , m,

while the degree of y j in pW does not exceed m for j = 1, . . . , n. The result now
follows from Theorem 2.4.7. �

Some remarks are in order. Suppose that W is a 0-1 matrix, so that Fl0(R, C; W )

enumerates 0-1flows. Inmany asymptotic regimes, the quantityα(R, C; W ) captures
at least the logarithmic order of Fl0(R, C; W ). For example, if m, n, ri and c j grow
roughly proportionately, so that ln Fl0(R, C; W ) grows roughly linearly with mn, it
follows from Stirling’s formula

x ! = √
2πx

( x

e

)x (
1 + O

(
x−1
))

as x −→ +∞,

that α(R, C; W ) approximates Fl0(R, C; W ) within a factor of eO(m+n), that is,
α(R, C; W ) captures the logarithmic order of Fl0(R, C; W ). If m = n and ri =
c j = 1 for all i, j then Fl0(R, C; W ) = per W and α(R, C; W ) approximates
Fl0(R, C; W ) within a factor of

(
1 − 1

n

)2n(n−1)

≈ e−2(n−1),

and hence even in some sparse regimes α(R, C; W ) captures the logarithmic order
of Fl0(R, C; W ). If W is sparse matrix, the bounds can be improved further, see
[Gu15], since the bounds in Theorem 2.4.7 can be made sharper by a more careful
application of Theorem 2.4.3.

In [B10b], a weaker bound for the approximation of Fl0(R, C; W ) byα(R, C; W )

was obtained. Based on that bound, it was shown that a “typical” matrix D = (di j
)

of 0s and 1s, with row sums R and column sums C , concentrates about a particular
“maximum entropy” matrix � = (θi j

)
that maximizes the strictly concave function

∑

i j

(
xi j ln

1

xi j
+ (1 − xi j

)
ln

1

1 − xi j

)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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on the polytope of m × n matrices X = (xi j
)
with row sums R, column sums C and

entries between 0 and 1. We discuss the connection is Sect. 8.5.1.
If W = (1)m × n is the matrix filled by 1s, then Fl0(R, C; W ) is just the number

of all 0-1 matrices with row sums R and column sums C . There is an extensive
literature on approximate and asymptotic formulas for Fl0(R, C; W ), see [G+06,
C+08, BH13, IM16] and references therein.

Since Fl0(R, C; W ) can be represented as the coefficient of a monomial in a
product of mn linear forms, it follows from Sect. 3.2.1 that Fl0(R, C; W ) can be
represented as the permanent of an (mn)×(mn)matrix. For example, form = n = 3,
R = (3, 2, 1) and C = (2, 2, 2), formula (3.2.1.2) gives

Fl0(R, C; W ) = 1

0!1!2!2!2!2!per

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 w11 w11 0 0 0 0
0 0 0 0 0 w12 w12 0 0
0 0 0 0 0 0 0 w13 w13

1 0 0 w21 w21 0 0 0 0
1 0 0 0 0 w22 w22 0 0
1 0 0 0 0 0 0 w23 w23

0 1 1 w31 w31 0 0 0 0
0 1 1 0 0 w32 w32 0 0
0 1 1 0 0 0 0 w33 w33

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

which simplifies to

Fl0(R, C; W ) =w11w31w12w22w13w23 + w11w21w12w32w13w23

+ w11w21w12w22w13w33.

As Jerrum, Sinclair and Vigoda remark in [J+04], their randomized polynomial time
algorithm for approximating the permanent of a non-negative real matrix can be
applied to approximate Fl0(R, C; W ) in polynomial time.

8.2 The Partition Function of Integer Flows

8.2.1 Definitions. Let us choose positive integer vectors R = (r1, . . . , rm) and C =
(c1, . . . , cn) such that

r1 + . . . + rm = c1 + . . . + cn = N (8.2.1.1)

and let �+(R, C) be the set of all m × n non-negative integer matrices with row
sums R and column sums C :

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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�+(R, C) =
{

D = (di j
) :

n∑

j=1

di j = ri for i = 1, . . . , m,

n∑

i=1

di j = c j for j = 1, . . . , n,

di j ∈ Z and di j ≥ 0 for all i, j
}
.

The vectors R and C are called margins of a matrix from �+(R, C). It is not hard
to show that for positive integer vectors R and C the set �+(R, C) is non-empty if
and only if the balance condition (8.2.1.1) is satisfied. Assuming that �+(R, C) is
non-empty, for an m × n non-negative matrix W = (wi j

)
of weights, we define the

partition function of integer flows by

Fl+(R, C; W ) =
∑

D∈�+(R,C)

D=(di j)

∏

i j

w
di j

i j .

As in Sect. 8.1, we agree that 00 = 1, so that Fl+(R, C; W ) remains a continuous
function of W when wi j −→ 0+.

8.2.2 The flow interpretation. Suppose that wi j ∈ {0, 1} for all i, j . Then
Fl+(R, C; W ) is interpreted as the number of integer feasible flows in a network.
As in Sect. 8.1.2, we consider a bipartite graph G with m + n vertices numbered
1L , . . . , mL and 1R, . . . , n R and edges (i L , j R) whenever wi j = 1. We assign to
each vertex i L the supply ri and to each vertex j R the demand c j . A feasible integer
flow is an assignment of non-negative integer numbers to the edges of G so that for
every vertex i L the sum of the assigned numbers on the incident edges is ri while
for every vertex j R the sum of the assigned numbers on the incident edges is c j .

More generally, suppose that G is a directed graph without loops or multiple
edges. Suppose that to every vertex v of G an integer a(v) is assigned, which can be
positive (“demand”), negative (“supply”) or 0 (“transit”). A feasible integer flow is
an assignment of non-negative integers x(e) to every edge e of G so that for every v

the balance condition inflow − outflow = a(v) is satisfied, see Fig. 8.2:

∑

e:e=u→v

x(e) −
∑

e:e=v→u

x(e) = a(v) for all v.

Given that the set of feasible integer flows is non-empty, it is finite, if and only if
the graph contains no directed cycles of the type v1 → v2 → . . . → vn → v1. If
there are no directed cycles, one can construct a bipartite graph Ĝ and a bijection
between the set of feasible integer flows in G and the set of feasible integer flows in
Ĝ as follows. With every vertex v of G we associate two vertices vL and vR of Ĝ,
connected by a directed edge vL → vR. For every edge v → u of G, we introduce
the edge vL → u R of Ĝ. For every vertex v of G, we choose a positive integer z(v)
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Fig. 8.2 A graph with 4
vertices and a feasible flow,
corresponding to
demands/supplies written
inside each vertex
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Fig. 8.3 The feasible integer
flow in a bipartite graph with
z(v) = 20 for all v,
corresponding to the feasible
integer flow on Fig. 8.2
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which is at least as large as a possible outflow from v. We let the supply in vL equal
to z(v) and demand in vR equal to z(v) + a(v), where a(v) is the demand/supply in
v. To construct the bijection, if x(e) for e = v → u is a flow in G, we introduce the
flow x(e) on the edge vL → u R in Ĝ and for every vertex v of G, we introduce the
flow of z(v)− outflow of v on the edge vL −→ vR, see Fig. 8.3.

Hence the number of integer feasible flows in an arbitrary directed graph without
directed cycles can be encoded as Fl+(R, C; W ) for appropriate R, C and W .

In fact, we can also incorporate upper bounds on the size of flow on edges, that is,
enumerate integer feasible flows x(e) in G with additional constraints x(e) ≤ c(e),
where c(e) are given positive integers (frequently referred to as capacities of edges).
For that, for every edge v → u, we introduce two auxiliary vertices w+ and w−,
replace the edge v → u by the three edges v → w+, w− → w+ and w− → u,
and let a(w+) = c(v → u) and a(w−) = −c(v → u). Then a flow on x(e) on
the edge v → u in G satisfying x(e) ≤ c(e), corresponds to the flow x(e) on the
edge v → w+, flow c(e) − x(e) on the edge w− → w+ and flow x(e) on the edge
w− → u, see Fig. 8.4.

In particular, we can express the number Fl0(R, C; W ) of feasible 0-1 flows, see
Sect. 8.1, as the number Fl+(R′, C ′, W ′) of feasible integer flows. One particular case
resulting in the Kostant partition function of type A is of interest to representation
theory, see [BV09]. There we are interested in the number of feasible integer flows
in a graph with vertices numbered 1, . . . , n and edges i → j for j > i , see also
Fig. 8.2 for an example.
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Fig. 8.4 Enforcing the
condition x(e) ≤ c

x(e)
c −c

c−x(e)

x(e)

x(e)

We will use a representation of Fl+(R, C; W ) as the permanent of a structured
randommatrix. Recall that a random variableω is standard exponential if the density
of ω is {

e−t if t > 0

0 if t ≤ 0.

Recall that

Eωk =
∫ +∞

0
t ke−t dt = k!

for non-negative integer k.
The following result was obtained in [Ba07].

8.2.3 Lemma. Let � = (ωi j
)

be the m × n matrix of independent standard expo-
nential random variables ωi j . Given positive integer vectors R = (r1, . . . , rm) and
C = (c1, . . . , cn) such that

r1 + . . . + rm = c1 + . . . + cn = N

and an m × n matrix W = (wi j
)

of weights, let us construct a random N × N matrix
A(�) = AR,C;W (�) as follows: the rows of A(�) are split into m blocks, with the
i-th block containing ri rows, the columns of A are split into n blocks, with the j th
block containing c j columns and the entries in the (i, j)-th block are all equal to
wi jωi j , see Fig.8.5.

Then

Fl+(R, C; W ) = E per A(�)

r1! · · · rm !c1! · · · cn! .

Proof. Let us pick one entry from every row and every column of A(�) and let di j

be the number of entries picked from the (i, j)-th block. Clearly, D = (
di j
)
is an

m × n non-negative integer matrix with row sums R and column sums C and the
expectation of the product of the picked entries is
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Fig. 8.5 The structure of the
matrix A(�)

j{
{

i
r

jc

wijωi

E
∏

i, j

(
wi jωi j

)di j =
∏

i, j

di j !wdi j

i j . (8.2.3.1)

Let us now compute how many times we obtain a given non-negative integer matrix
D = (di j

)
with row sums R and column sums C . For that, for i = 1, . . . , m, we split

the i-th block of ri rows into n sub-blocks with di1, . . . , din rows in

m∏

i=1

ri !
di1! · · · din!

ways, for j = 1, . . . , n, we split the j-th block of c j columns into m sub-blocks with
d1 j , . . . , dmj columns in

n∏

j=1

c j !
d1 j ! · · · dmj !

ways and then for each i and j such that di j > 0 we choose one entry in every row of
the j-th sub-block of the i-th block of rows and every column of the i-th sub-block
of the j-th block of columns altogether in

n∏

i, j

di j !

ways, see Fig. 8.6.

Fig. 8.6 Subdividing rows
and columns further into
sub-blocks
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1id
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Hence we obtain (8.2.3.1) in

(
m∏

i=1

ri !
)⎛

⎝
n∏

j=1

c j !
⎞

⎠

⎛

⎝
∏

i j

di j !
⎞

⎠
−1

ways total and

E per A(�) =
(

m∏

i=1

ri !
)⎛

⎝
n∏

j=1

c j !
⎞

⎠Fl+(R, C; W ),

which completes the proof. �

8.3 Approximate Log-Concavity

For a non-negative integer vector R = (r1, . . . , rm), we denote

|R| =
m∑

i=1

ri and γ(R) =
m∏

i=1

ri !
rri

i

.

Our goal is to prove the following result from [Ba07].

8.3.1 Theorem. Let W be an m × n non-negative real matrix, let R1, . . . , Rk be
non-negative integer m-vectors and let C1, . . . , Ck be non-negative integer n-vectors
such that |Ri | = |Ci | = N for all i . Suppose further that α1, . . . ,αk ≥ 0 are reals
such that α1 + . . . + αk = 1 and such that

R =
k∑

i=1

αi Ri and C =
k∑

i=1

αi Ci

are positive integer vectors.
Then

N N

N ! γ(R)γ(C)Fl+(R, C; W ) ≥
k∏

i=1

(
Fl+(Ri , Ci ; W )max {γ(Ri ), γ(Ci )}

)αi

.

Theorem 8.3.1 implies an approximate log-concavity of the numbers
Fl+(R, C; W ).

8.3.2 Corollary. Let W be an m × n non-negative real matrix, let R1, . . . , Rk be
non-negative integer m-vectors and let C1, . . . , Ck be non-negative integer n-vectors
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such that |Ri | = |Ci | = N for all i . Suppose further that α1, . . . ,αk ≥ 0 are reals
such that α1 + . . . + αk = 1 and such that

R =
k∑

i=1

αi Ri and C =
k∑

i=1

αi Ci

are positive integer vectors. Assuming that R = (r1, . . . , rm) and C = (c1, . . . , cn),
we have

N N

N ! min

⎧
⎨

⎩

m∏

i=1

ri !
rri

i

,

n∏

j=1

c j !
c

c j

j

⎫
⎬

⎭Fl+(R, C; W ) ≥
k∏

i=1

(Fl+ (Ri , Ci ; W ))αi .

From Stirling’s formula,

N N

N ! = eN

√
2πN

(1 + O(1/N )) ,
ri !
rri

i

= e−ri
√
2πri (1 + O(1/ri ))

and
c j !
c

c j

j

=e−c j
√
2πc j

(
1 + O(1/c j )

)
,

it follows that

N N

N ! min

⎧
⎨

⎩

m∏

i=1

ri !
rri

i

,

n∏

j=1

c j !
c

c j

j

⎫
⎬

⎭ = min
{
2O(m)√r1 · · · rm, 2O(n)√c1 · · · cn

}
.

There seem to be neither a counter-example nor a proof of a hypothetical stronger
inequality, which claims genuine log-concavity of Fl+(R, C; W ):

Fl+(R, C; W )
?≥

k∏

i=1

(
Fl+ (Ri , Ci , ; W )

)αi

.

The proof of Theorem 8.3.1 uses the permanental representation of Fl+(R, C; W )

of Lemma 8.2.3, matrix scaling (see Sect. 3.5), the van der Waerden (Sect. 3.3) and
Bregman–Minc (Sect. 3.4) inequalities.

For an m × n positive real matrix B = (
bi j
)
, we define a function gB : Rm ⊕

R
n −→ R by

gB(x, y) =
∑

1≤i≤m
1≤ j≤n

bi j e
ξi +η j for x = (ξ1, . . . , ξm) and y = (η1, . . . , ηn) .

Let 〈·, ·〉 denote the standard inner product in Euclidean space. For R ∈ R
m and

C ∈ R
n , we define a subspace LR,C ⊂ R

m ⊕ R
n by

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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LR,C = {(x, y) ∈ R
m ⊕ R

n : 〈R, x〉 = 〈C, y〉 = 0
}
.

We further define a function fR,C of B by

fR,C(B) = inf
(x,y)∈LR,C

gB(x, y) ≥ 0,

see Theorem 3.5.8.

8.3.3 Lemma. Let R = (r1, . . . , rm) be a positive integer m-vector and let C =
(c1, . . . , cn) be a positive integer n-vector such that |R| = |C | = N. Let W = (wi j

)

be an m × n positive matrix. For an m × n matrix � = (ωi j
)

of independent standard
exponential random variables, let us define the m × n matrix B = B(�) = (

bi j
)

by bi j = wi jωi j for all i, j . Then

N !
N N

(
m∏

i=1

rri
i

ri !

)⎛

⎝
n∏

j=1

c
c j

j

c j !

⎞

⎠ 1

N N
E f N

R,C(B) ≤ Fl+(R, C; W )

≤ min

⎧
⎨

⎩

m∏

i=1

rri
i

ri ! ,
n∏

j=1

c
c j

j

c j !

⎫
⎬

⎭
1

N N
E f N

R,C(B).

Proof. With probability 1, the matrix B is positive. Using Theorem 3.5.8, we scale
B to a matrix with row sums r1, . . . , rm and column sums c1, . . . , cn . That is, we
compute a positive m × n matrix L = L(�), L = (li j

)
with row sums R and column

sumsC and positive λi = λi (�) for i = 1, . . . , m andμ j = μ j (�) for j = 1, . . . , n,
such that

bi j = li jλiμ j for all i, j.

By Theorem 3.5.8, we can choose

λi = e−ξi

√
fR,C(B)

N
and μ j = e−η j

√
fR,C(B)

N
,

where x∗ = (ξ1, . . . , ξm) and y∗ = (μ1, . . . ,μn) is the minimum point of gR,C(B)

on LR,C . It follows that

(
m∏

i=1

λri
i

)⎛

⎝
n∏

j=1

μ
c j

j

⎞

⎠ = f N
R,C(B)

N N
exp

{
−

m∑

i=1

riξi

}
exp

⎧
⎨

⎩−
n∑

j=1

c jη j

⎫
⎬

⎭

= f N
R,C(B)

N N
. (8.3.3.1)

Let A(�) be the N × N matrix constructed in Lemma 8.2.3. Let us divide the entries
in the (i, j)-th block of A(�) by λiμ j ri c j and let D = D(�) be the N × N matrix

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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we obtain. Then

per A =
(

m∏

i=1

(riλi )
ri

)⎛

⎝
n∏

j=1

(c jμ j )
c j

⎞

⎠ per D

=
(

m∏

i=1

rri
i

)⎛

⎝
n∏

j=1

c
c j

j

⎞

⎠ f N
r,c(B)

N N
per D (8.3.3.2)

by (8.3.3.1). It is not hard to see that the matrix D is doubly stochastic, and hence
by the van der Waerden bound, see Theorem 3.3.2, we have

per D ≥ N !
N N

.

On the other hand, the entries of the (i, j)-th block of D can be written as li j/ri c j

and hence do not exceed min{1/ri , 1/c j }. Therefore, by the Bregman–Minc bound,
see Corollary 3.4.5, we have

per D ≤ min

⎧
⎨

⎩

m∏

i=1

ri !
rri

i

,

n∏

j=1

c j !
c

c j

j

.

⎫
⎬

⎭

Hence from (8.3.3.2),

min

⎧
⎨

⎩

n∏

i=1

ri !
n∏

j=1

c
c j

j ,

n∏

j=1

c j !
m∏

i=1

rri
i

⎫
⎬

⎭
f N

R,C (B)

N N
≥ per A

≥
(

m∏

i=1

rri
i

)⎛

⎝
n∏

j=1

c
c j

j

⎞

⎠ N !
N N

f N
R,C(B)

N N
.

The proof now follows from Lemma 8.2.3. �

Next, we establish some convex properties of fR,C (B). We define ud ∈ R
d by

ud = (1, . . . , 1) (the d-vector of all 1s) and note that

gB
(
x + αum, y + βun

) = eα+βgB(x, y) for all α,β ∈ R.

8.3.4 Lemma. Let R1, . . . , Rk be m-vectors and let C1, . . . , Ck be n-vectors such
that

〈Ri , um〉 = 〈Ci , un〉 = 1 for i = 1, . . . , k.

http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Let B1, . . . , Bk be positive real m × n matrices and let α1, . . . ,αk ≥ 0 be real such
that α1 + . . . + αk = 1. Let

R =
k∑

i=1

αi Ri , C =
k∑

i=1

αi Ci and B =
k∑

i=1

αi Bi .

Then

fR,C(B) ≥
k∏

i=1

(
fRi ,Ci (Bi )

)αi
.

Proof. Let us choose a point (x, y) ∈ LR,C , so that

〈R, x〉 = 〈C, y〉 = 0. (8.3.4.1)

We define

xi = x − 〈Ri , x〉um and yi = y − 〈Ci , y〉un for i = 1, . . . , k.

Hence

〈Ri , xi 〉 = 〈Ri , x〉 − 〈Ri , x〉〈Ri , um〉 = 0 and

〈Ci , yi 〉 = 〈Ci , y〉 − 〈Ci , y〉〈Ci , un〉 = 0,

so that
(xi , yi ) ∈ LRi ,Ci . (8.3.4.2)

Then

gB(x, y) =
k∑

i=1

αigBi (x, y) ≥
k∏

i=1

(
gBi (x, y)

)αi (8.3.4.3)

and

gBi (x, y) = gBi

(
xi + 〈Ri , x〉um , yi + 〈Ci , y〉un

) = e〈Ri ,x〉e〈Ci ,y〉gBi (xi , yi ). (8.3.4.4)

Since by (8.3.4.1)

k∏

i=1

(
e〈Ri ,x〉)αi = exp

{〈
k∑

i=1

αi Ri , x

〉}
= exp {〈R, x〉} = 1 and

k∏

i=1

(
e〈Ci ,y〉)αi = exp

{〈
k∑

i=1

αi Ci , y

〉}
= exp {〈C, y〉} = 1,

combining (8.3.4.2)–(8.3.4.4) we obtain
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gB(x, y) ≥
k∏

i=1

(
gBi (xi , yi )

)αi ≥
k∏

i=1

(
fRi ,Ci (Bi )

)αi
.

Sine the point (x, y) ∈ LR,C was chosen arbitrarily, the proof follows. �

8.3.5 Proof of Theorem8.3.1. By continuity, it suffices to prove Theorem 8.3.1
assuming, additionally, that matrix W = (wi j

)
is positive.

Given an m × n matrix� of independent standard exponential random variables,
let us construct a random matrix B = B(�) as in Lemma 8.3.3. By Lemma 8.3.3,
we have

N N

N ! γ(R)γ(C)Fl+(R, C; W ) ≥ 1

N N
E f N

R,C (B) and

max {γ(Ri ), γ(Ci )}Fl+(Ri , Ci ; W ) ≤ 1

N N
E f N

Ri ,Ci
(B) for i = 1, . . . , k.

If �1, . . . , �k are different realizations of � and

�0 =
k∑

i=1

αi�i ,

then for the corresponding matrices Bi = B(�i ) for i = 0, 1, . . . , k, we have

B0 =
k∑

i=1

αi Bi

and by Lemma 8.3.4,

f N
R,C(B0) ≥

k∏

i=1

(
f N

Ri ,Ci
(Bi )

)αi
.

Note that we can apply Lemma 8.3.4 since |Ri | = |Ci | = N for all i , so that

fRi ,Ci = fRi /N ,Ci /N and fR,C = fR/N ,C/N

and the sum of the coordinates of vectors Ri/N , Ci/N , R/N and C/N are
equal to 1.

Since the density of the random matrix � = (ωi j
)
is

{∏
i j e−ti j if ti j > 0 for all i, j

0 otherwise,

applying the Prékopa–Leindler inequality of Sect. 2.1.6, we conclude that

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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E f N
R,C(B) ≥

k∏

i=1

(
E f N

Ri ,Ci
(B)
)αi

,

which completes the proof. �

8.3.6 Proof of Corollary8.3.2. Using that the function

x �−→ ln
�(x + 1)

x x
for x ≥ 1

is concave, we conclude that

γ(R) ≥
k∏

i=1

γαi (Ri ) and γ(C) ≥
k∏

i=1

γαi (Ci )

and the proof follows from Theorem 8.3.1. �

8.4 Bounds for the Partition Function

Corollary 8.3.2 allows us to estimate the partition function Fl+(R, C; W ) in terms
of the capacity of a certain polynomial.

8.4.1 Complete symmetric polynomial. The complete symmetric polynomial
hN (z1, . . . , zd) of degree N in d variables z1, . . . , zd is the sum of all

(N+d−1
d−1

)
mono-

mials in z1, . . . , zd of the total degree N . It can be defined recursively as hN (z1) = zN
1

and

hN (z1, . . . , zd) =
N∑

m=0

zm
d hN−d (z1, . . . , zd−1) ,

which also provides a fast way to compute hN at any given z1, . . . , zd .

8.4.2 Theorem. Let R = (r1, . . . , rm) be a positive integer m-vector and let C =
(c1, . . . , cn) be a positive integer n-vector such that

r1 + . . . + rm = c1 + . . . + cn = N .

Let W = (
wi j
)

be a non-negative real m × n matrix of weights. Let us define a
polynomial p = pR,C;W in m + n real variables x1, . . . , xm; y1, . . . , yn by

p (x1, . . . , xm; y1, . . . , yn) = hN (zi j ) for zi j = wi j xi y j ,

where hN (zi j ) is the complete symmetric polynomial of degree N in mn variables
zi j where 1 ≤ i ≤ m and 1 ≤ j ≤ n. Let
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α+(R, C; W ) = inf
x1,...,xm>0
y1,...,yn>0

p (x1, . . . , xm; y1, . . . , yn)

xr1
1 · · · xrm

m yc1
1 · · · ycn

n
.

Then

(
N + m − 1

m − 1

)−1(N + n − 1

n − 1

)−1 N !
N N

max

⎧
⎨

⎩

m∏

i=1

rri
i

ri ! ,
n∏

j=1

c
c j

j

c j !

⎫
⎬

⎭α+(R, C)

≤ Fl+(R, C; W ) ≤ α+(R, C; W ).

Proof. Expanding p into the sum of monomials, we get

p (x1, . . . , xm; y1, . . . , yn) =
∑

A=(a1,...,am )

B=(b1,...,bn)

Fl+(A, B; W )xa1
1 · · · xam

m yb1
1 · · · ybn

n

where the sum is taken over all pairs non-negative integer m-vectors (a1, . . . , am)

and n-vectors (b1, . . . , bn) such that a1 + . . . + am = b1 + . . . + bn = N . Hence the
upper bound is immediate. As the total number of monomials is

(N+m−1
m−1

)(N+n−1
n−1

)
,

the lower bound follows from Corollary 8.3.2 and (2.1.5.3). �

Theorem 8.4.2 shows that α+(R, C; W ) approximates Fl+(R, C; W ) within a
factor of N O(m+n) (the implicit constant in the “O” notation is absolute). In many
interesting asymptotic regimes, α+(R, C; W ) captures the logarithmic asymptotics
of Fl+(R, C; W ). A similar, though less explicit, bound

β+(R, C; W )

N O(m+n)
≤ Fl+(R, C; W ) ≤ β+(R, C; W )

where

β+(R, C; W ) = inf
x1,...,xm>0
y1,...,yn>0

wi j xi y j <1 for all i, j

(
m∏

i=1

x−ri
i

)⎛

⎝
n∏

j=1

y
−c j

j

⎞

⎠
∏

i, j

1

1 − wi j xi y j

was obtained in [Ba09]. Based on it, it was shown in [B10a] that a “typical” ran-
dom non-negative integer matrix D = (di j

)
with row sums R and column sums C

concentrates about a particular “maximum entropy” matrix matrix � = (
θi j
)
that

maximizes the strictly concave function

∑

i j

((
xi j + 1

)
ln
(
xi j + 1

)− xi j ln xi j

)

http://dx.doi.org/10.1007/978-3-319-51829-9_2
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on the polytope of non-negative realmatrices X = (xi j
)
with row sums R and column

sums C . We discuss the connection in Sect. 8.5.2.
If W = (1)m × n is the matrix filled with 1s, then Fl+(R, C; W ) is just the number

of non-negative integer matrices with row sums R and column sums C . There is an
extensive literature on asymptotic and approximate formulas for the number of such
matrices, see [DG95, GM08, CM10, BH12, IM16] and references therein.

8.5 Concluding Remarks: Partition Functions for Integer
Points in Polyhedra

The partition functions Fl0(R, C; W ) and Fl+(R, C; W ) can be considered as special
cases of more general partition functions for 0-1, respectively integer, points in
polyhedra.

8.5.1 Partition function of 0-1 points. Let A = (
ai j
)
be an integer r × n matrix

of rank r , let b = (b1, . . . , br ) be an integer r -vector, and let w = (w1, . . . , wn) be
a positive real vector of weights. We consider the set X0(A, B) of the 0-1 vectors x
that lie in the affine subspace defined by the system Ax = b:

X0(A, b) =
{

x = (x1, . . . , xn) :
n∑

j=1

ai j x j = bi for i = 1, . . . , r and

x j ∈ {0, 1} for j = 1, . . . , n
}
.

We define a weighted sum (partition function) over X0(A, b)

S0(A, b;w) =
∑

x∈X0(A,b)

x=(x1,...,xn)

w
x1
1 · · ·wxn

n .

It is not very hard to come upwith an upper bound similar to the boundα0 of Sect. 8.1:

S0(A, b;w) ≤ inf
t1,...,tr >0

t−b1
1 · · · t−br

r

n∏

j=1

(
1 + w j t

a1 j

1 · · · t
ar j
r
)
. (8.5.1.1)

In general, there is no non-trivial lower bound for S0(A, b;w) since there is no guar-
antee that the setX0(A, b) of 0-1 vectors satisfying a given system of linear equations
is non-empty. There is, however, a dual reformulation of (8.5.1.1) which leads to
sharper upper bounds and, sometimes, to good approximations of S0(A, b;w).

Let P0(A, b) be the polyhedron that is the intersection of the cube [0, 1]n with the
affine subspace defined by the system Ax = b,
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P0(A, b) =
{

x = (x1, . . . , xn) :
n∑

j=1

ai j x j = bi for i = 1, . . . , r and

0 ≤ x j ≤ 1 for j = 1, . . . , n
}
.

Suppose that P0(A, b) has a non-empty relative interior, that is, contains a point
x = (x1, . . . , xn) such that 0 < x j < 1 for j = 1, . . . , n. Let us consider a strictly
concave function

Hw

(
x1, . . . , x j

) =
n∑

j=1

(
x j ln

1

x j
+ (1 − x j ) ln

1

1 − x j
+ x j lnw j

)

where 0 ≤ x j ≤ 1 for j = 1, . . . , n.

It is not hard to show that Hw attains its maximum on P0(a, b) at a unique point
(ξ1, . . . , ξn) in the relative interior of P , cf. the proof of Theorem 3.5.2 and see
[BH10] for detail, and we claim that

S0(A, b;w) ≤ exp {Hw (ξ1, . . . , ξn)} (8.5.1.2)

and, moreover, that the bounds of (8.5.1.1) and (8.5.1.2) are identical.
Indeed, the Lagrange multiplier optimality condition implies that for some real

λ1, . . . ,λr , we have

ln

(
1 − ξ j

ξ j

)
+ lnw j = −

r∑

i=1

λi ai j for j = 1, . . . , n, (8.5.1.3)

that is,
ξ j = w j

w j + exp
{−∑r

i=1 λi ai j
} for j = 1, . . . , n. (8.5.1.4)

Since (ξ1, . . . , ξn) ∈ P(A, b), we also have

n∑

j=1

ai jw j

w j + exp
{−∑r

i=1 λi ai j
} = bi for i = 1, . . . , r. (8.5.1.5)

Equations (8.5.1.5) imply that (λ1, . . . ,λr ) is the (necessarily unique) critical point
of the strictly concave function

(s1, . . . , sr ) �−→
n∑

j=1

ln

(
1 + w j exp

{
r∑

i=1

ai j si

})
−

r∑

i=1

bi si ,

http://dx.doi.org/10.1007/978-3-319-51829-9_3
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and, consequently, t∗
i = eλi for i = 1, . . . , r is the point where the infimum in

(8.5.1.1) attained. Hence the bound in the right hand side of (8.5.1.1) is

exp

{
−

r∑

i=1

λi bi

}
n∏

j=1

(
1 + w j exp

{
r∑

i=1

ai jλ j

})
, (8.5.1.6)

while from (8.5.1.3) and (8.5.1.4), we get

n∑

j=1

(
ξ j ln

1

ξ j
+ (1 − ξ j

)
ln

1

1 − ξ j
+ ξ j lnw j

)

=
n∑

j=1

ξ j

(
ln

1 − ξ j

ξ j
+ w j

)
−

n∑

j=1

ln
(
1 − ξ j

)

= −
n∑

j=1

r∑

i=1

ξ jλi ai j +
n∑

j=1

ln

(
1 + w j exp

{
r∑

i=1

λi ai j

})

= −
r∑

i=1

λi bi +
n∑

j=1

ln

(
1 + w j exp

{
r∑

i=1

λi ai j

})

and hence the bounds (8.5.1.1) and (8.5.1.2) indeed coincide.
The advantage of (8.5.1.2) is that it admits a useful probabilistic interpretation.

Let X = (X1, . . . , Xn) be an n-vector of independent Bernoulli random variables
such that

Pr
(
X j = 1

) = ξ j and Pr
(
X j = 0

) = 1 − ξ j for j = 1, . . . , n.

Then from (8.5.1.3) and (8.5.1.4), we conclude that for any vector x ∈ X0(A, b),
x = (x1, . . . , xn), we have

Pr (X = x) =
n∏

j=1

ξ
x j

j

(
1 − ξ j

)1−x j =
n∏

j=1

(
ξ j

1 − ξ j

)x j n∏

j=1

(
1 − ξ j

)

= exp

⎧
⎨

⎩

n∑

j=1

r∑

i=1

λi x j ai j +
n∑

j=1

x j lnw j

⎫
⎬

⎭

n∏

j=1

1

1 + w j exp
{∑r

i=1 λi ai j
}

=
⎛

⎝
n∏

j=1

w
x j

j

⎞

⎠ exp

{
r∑

i=1

λi bi

}⎛

⎝
n∏

j=1

1

1 + w j exp
{∑r

i=1 λi ai j
}

⎞

⎠ .

We note that the probability that the random vector X hits a particular point x ∈
X0(A, b) is proportional to the contributionw

x1
1 · · · wxn

n of that point x to the partition
function S0(A, b;w). We obtain the following identity for the partition function:
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S0(A, b;w) =Pr (X ∈ X0(A, b))

× exp

{
−

r∑

i=1

λi bi

}
n∏

j=1

(
1 + w j exp

{
r∑

i=1

λi ai j

})
(8.5.1.7)

=Pr (X ∈ X0(A, b)) exp {Hw (ξ1, . . . , ξn)} .

Comparing (8.5.1.6) and (8.5.1.7), we conclude that the upper bound (8.5.1.1)–
(8.5.1.2) is just a consequence of the trivial bound

Pr (X ∈ X0(A, b)) ≤ 1. (8.5.1.8)

One can try to improve the bound (8.5.1.1)–(8.5.1.2) by trying to strengthen (8.5.1.8).
Thus we want to estimate the probability that a vector X = (X1, . . . , Xn) of
independent Bernoulli random variables satisfies the system of linear equations∑n

j=1 ai j X j = bi for i = 1, . . . , r . In [Sh10], Shapiro used anti-concentration
inequalities to sharpen (8.5.1.8). In particular, one obtains

Pr (X ∈ X0(A, b)) ≤ min
j1,..., jr

max
{
ξ j1 , 1 − ξ j1

} · · ·max
{
ξ jr , 1 − ξ jr

}
,

where the minimum of the products is taken over all collections of r linearly inde-
pendent columns of the matrix A. This results in an improvement, often substantial,
of the bound (8.5.1.1)–(8.5.1.2):

S0(A, b;w) ≤ exp {Hw (ξ1, . . . , ξn)}
× min

j1,..., jr
max

{
ξ j1 , 1 − ξ j1

} · · ·max
{
ξ jr , 1 − ξ jr

}
.

Another useful observation is that

E

⎛

⎝
n∑

j=1

ai j X j

⎞

⎠ =
n∑

j=1

ai jξ j = bi for i = 1, . . . , r.

Therefore, onemay try to adapt the local Central Limit Theorem approach to estimate
Pr (X ∈ X0(A)) in (8.5.1.7). It is not hard to compute the r × r covariance matrix
Q = (qi j

)
of random variables

∑n
j=1 a1 j X j , . . . ,

∑n
j=1 ar j X j :

qi j =
n∑

k=1

aika jk
(
ξk − ξ2k

)

and the local Central Limit Theorem, when applicable, would imply that

Pr (X ∈ X0(A, b)) ≈ det�

(2π)r/2
√
det Q

,
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where det� is the determinant of the lattice � ⊂ Z
r generated by the columns

of the matrix A. This approach was used in [BH13] to obtain asymptotically exact
formulas for the number of graphs with a given degree sequence and for the number
0-1 integer matrices with prescribed row and column sums, and in [BH10], [Be14]
for the number of 0-1 and non-negative integer d-dimensional arrays with prescribed
sums over (d − 1)-dimensional “slices”.

Suppose that the set X0(A, b) is not empty and let us consider it as a finite prob-
ability space, where Pr (x) is proportional to w

x1
1 · · · wxn

n for x = (x1, . . . , xn). If
there is a lower bound for S0(A, b;w), complementing the upper bound (8.5.1.1)
and (8.5.1.2) as in Theorem 8.1.3 for the partition function of 0-1 flows, one can
deduce that a random point x ∈ X0(A, b) in many respects behaves as a vector
X = (X1, . . . , Xn) of independent Bernoulli random variables. Indeed, it follows
from (8.5.1.7) that Pr (X ∈ X0(A, b)) is not too small, and hence various averaging
statistics on X and x ∈ X0(A, b) are sufficiently close. This observation was used in
[B10b, BH13, C+11].

8.5.2 Partition functions of non-negative integer points. As in Sect. 8.5.1, let
A = (

ai j
)
be an integer r × n matrix of rank r , let b = (b1, . . . , br ) be an integer

r -vector, and letw = (w1, . . . , wn) be a positive real vector of weights. We consider
the set X+(A, B) of non-negative vectors x that lie in the affine subspace defined by
the system Ax = b:

X+(A, b) =
{

x = (x1, . . . , xn) :
n∑

j=1

ai j x j = bi for i = 1, . . . , r and

x j ∈ Z and x j ≥ 0 for j = 1, . . . , n
}
.

To avoid convergence issues, we assume that X+(A, b) is finite and consider a
weighted sum (partition function) over X+(A, b):

S+(A, b;w) =
∑

x∈X+(A,b)

x=(x1,...,xn)

w
x1
1 · · · wxn

n .

The estimates for S+(A, b;w) are similar to those for S0(A, b;w) in Sect. 8.5.1.
Below, we briefly sketch them, see also [BH10]. We get an upper bound

S+(A, b;w) ≤ inf
t1,...,tr >0

w j t
a1 j
1 ···tar j

r <1
for j=1,...,n

t−b1
1 · · · t−br

r

n∏

j=1

1

1 − w j t
a1 j

1 · · · t
ar j
r

. (8.5.2.1)

The dual form of (8.5.2.1) is as follows. Let P+(A, b) be the polyhedron that is the
intersection of the non-negative orthant Rn+ with the affine subspace defined by the
system Ax = b,
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P+(A, b) =
{

x = (x1, . . . , xn) :
n∑

j=1

ai j x j = bi for i = 1, . . . , r and

x j ≥ 0 for j = 1, . . . , n
}
.

Suppose that P+(A, b) is bounded and has a non-empty relative interior, that is,
contains a point x = (x1, . . . , xn) such that x j > 0 for j = 1, . . . , n. Let us consider
a strictly concave function

Gw

(
x1, . . . , x j

) =
n∑

j=1

(
(x j + 1) ln(x j + 1) − x j ln x j + x j lnw j

)

where x j ≥ 0 for j = 1, . . . , n.

Then Gw attains its maximum on P+(a, b) at a unique point (ξ1, . . . , ξn) in the
relative interior of P , see [BH10] for detail, and

S+(A, b;w) ≤ exp {Gw (ξ1, . . . , ξn)} . (8.5.2.2)

Moreover, the bounds of (8.5.2.1) and (8.5.2.2) are identical.
The probabilistic interpretation of the bound (8.5.2.1)–(8.5.2.2) is as follows. Let

X = (X1, . . . , Xn) be an n-vector of independent geometric random variables such
that

Pr
(
X j = k

) = 1

1 + ξ j

(
ξ j

1 + ξ j

)k

for k = 0, 1, . . . and j = 1, . . . , n,

so that E X j = ξ j . Then

S+(A, b;w) = Pr (X ∈ X+(A, b)) Gw (ξ1, . . . , ξn) (8.5.2.3)

and (8.5.2.1), (8.5.2.2) can be written as

Pr (X ∈ X+(A, b)) ≤ 1.

In [Sh10], using anti-concentration inequalities, Shapiro obtained a stronger bound

Pr (X ∈ X+(A, b)) ≤ min
j1,..., jr

1(
1 + ξ j1

) · · · (1 + ξ jr

) ,

where the minimum is taken over all collections { j1, . . . , jr } of r linearly indepen-
dent columns of A. The r × r covariance matrix Q = (

qi j
)
of random variables∑n

j=1 a1 j X j , . . . ,
∑n

j=1 ar j X j is computed as
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qi j =
n∑

k=1

aika jk
(
ξk + ξ2k

)

and the local Central Limit Theorem, when holds, implies that

Pr (X ∈ X+(A, b)) ≈ det�

(2π)r/2
√
det Q

,

where� ⊂ Z
r is the lattice generated by the columns of A. In [BH12], this approach

applied to obtain asymptotically exact formulas for the number of non-negative
integer matrices with prescribed row and column sums.

Suppose that the set X+(A, b) is not empty and let us consider it as a finite
probability space, wherePr (x) is proportional tow

x1
1 · · ·wxn

n for x = (x1, . . . , xn). If
there is a lower bound for S+(A, b;w), complementing the upper bound (8.5.2.1) and
(8.5.2.2) as in Sect. 8.4 for the partition function of integer flows, one can deduce that a
random point x ∈ X+(A, b) in many respects behaves as a vector X = (X1, . . . , Xn)

of independent geometric random variables. Indeed, it follows from (8.5.2.3) that
Pr (X ∈ X0(A, b)) is not too small, and hence various averaging statistics on X and
x ∈ X0(A, b) are sufficiently close. This observation was used in [B10a].



References

[AA13] S. Aaronson and A. Arkhipov, The computational complexity of linear optics, Theory of
Computing 9 (2013), 143–252.

[Ai07] M. Aigner, A Course in Enumeration, Graduate Texts in Mathematics, 238, Springer,
Berlin, 2007.

[Al38] A.D. Alexandrov, On the theory of mixed volumes of convex bodies. IV. Mixed discrimi-
nants and mixed volumes (Russian), Matematicheskii Sbornik (Novaya Seriya) 3 (1938),
227–251.

[AF08] N. Alon and S. Friedland, The maximum number of perfect matchings in graphs with a
given degree sequence, Electronic Journal of Combinatorics 15 (2008), no. 1, Note 13, 2
pp.

[AL06] A. Amit and N. Linial, Random lifts of graphs: edge expansion, Combinatorics, Proba-
bility and Computing 15 (2006), no. 3, 317–332.

[AB09] S. Arora and B. Barak, Computational Complexity. A Modern Approach, Cambridge
University Press, Cambridge, 2009.

[As70] T. Asano, Theorems on the partition functions of the Heisenberg ferromagnets, Journal
of the Physical Society of Japan 29 (1970), 350–359.

[BV09] W. Baldoni and M. Vergne, Kostant partitions functions and flow polytopes, Transforma-
tion Groups 13 (2008), no. 3–4, 447–469.

[BG08] A. Bandyopadhyay andD.Gamarnik,Counting without sampling: asymptotics of the log-
partition function for certain statistical physicsmodels, RandomStructures&Algorithms
33 (2008), no. 4, 452–479.

[Ba89] R.B. Bapat, Mixed discriminants of positive semidefinite matrices, Linear Algebra and
its Applications 126 (1989), 107–124.

[BR97] R.B. Bapat and T.E.S. Raghavan, Nonnegative Matrices and Applications, Encyclopedia
of Mathematics and its Applications, 64 Cambridge University Press, Cambridge, 1997.

[Ba96] A. Barvinok, Two algorithmic results for the traveling salesman problem, Mathematics
of Operations Research 21 (1996), no. 1, 65–84.

[Ba99] A. Barvinok, Polynomial time algorithms to approximate permanents and mixed discrim-
inants within a simply exponential factor, Random Structures & Algorithms 14 (1999),
no. 1, 29–61.

[Ba07] A. Barvinok, Brunn-Minkowski inequalities for contingency tables and integer flows,
Advances in Mathematics 211 (2007), 105–122.

[Ba09] A. Barvinok, Asymptotic estimates for the number of contingency tables, integer flows,
and volumes of transportation polytopes, International Mathematics Research Notices.
IMRN 2009 (2009) no. 2, 348–385.

© Springer International Publishing AG 2016
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9

293



294 References

[B10a] A. Barvinok, What does a random contingency table look like?, Combinatorics, Proba-
bility and Computing 19 (2010), no. 4, 517–539.

[B10b] A. Barvinok, On the number of matrices and a random matrix with prescribed row and
column sums and 0-1 entries, Advances in Mathematics 224 (2010), no. 1, 316–339.

[Ba15] A. Barvinok, On testing Hamiltonicity of graphs, Discrete Mathematics 338 (2015), no.
1, 53–58.

[B16a] A. Barvinok,Concentration of the mixed discriminant of well-conditioned matrices, Lin-
ear Algebra and its Applications 493 (2016), 120–133.

[B16b] A. Barvinok, Computing the permanent of (some) complex matrices, Foundations of
Computational Mathematics 16 (2016), no. 2, 329–342.

[B16+] A. Barvinok, Approximating permanents and hafnians, preprint arXiv:1601.07518
(2016); Discrete Analysis 2017:2.

[BH10] A. Barvinok and J.A. Hartigan,Maximum entropy Gaussian approximations for the num-
ber of integer points and volumes of polytopes, Advances in Applied Mathematics 45
(2010), no. 2, 252–289.

[BH12] A. Barvinok and J.A. Hartigan, An asymptotic formula for the number of non-negative
integer matrices with prescribed row and column sums, Transactions of the American
Mathematical Society 364 (2012), no. 8, 4323–4368.

[BH13] A. Barvinok and J.A. Hartigan, The number of graphs and a random graph with a given
degree sequence, Random Structures & Algorithms 42 (2013), no. 3, 301–348.

[BS11] A. Barvinok and A. Samorodnitsky, Computing the partition function for perfect match-
ings in a hypergraph, Combinatorics, Probability and Computing 20 (2011) no. 6, 815–
835.

[BS14] A.Barvinok and P. Soberón,Computing the partition function for graph homomorphisms,
preprint arXiv:1406.1771, to apear in Combinatorica, first online doi:10.1007/s00493-
016-3357-2 (2014).

[BS16] A. Barvinok and P. Soberón,Computing the partition function for graph homomorphisms
with multiplicities, Journal of Combinatorial Theory, Series A 137 (2016), 1–26.

[Ba82] R.J. Baxter, Exactly Solved Models in Statistical Mechanics (1982), Academic Press,
Inc. [Harcourt Brace Jovanovich, Publishers], London.

[B+07] M. Bayati, D. Gamarnik, D. Katz, C. Nair and P. Tetali, Simple deterministic approxi-
mation algorithms for counting matchings, STOC’07 – Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 122–127.

[Be14] D. Benson-Putnins, Counting integer points in multi-index transportation polytopes,
preprint arXiv:1402.4715 (2014).

[BK99] P. Berman and M. Karpinski, On some tighter inapproximability results (extended
abstract), Automata, languages and programming (Prague, 1999), Lecture Notes in Com-
puter Science, 1644, Springer, Berlin, 1999, pp. 200–209.

[BB09] J. Borcea and P. Brändén, The Lee-Yang and Pólya-Schur programs. II. Theory of stable
polynomials and applications, Communications on Pure and Applied Mathematics 62
(2009), no. 12, 1595–1631.

[Bo06] C. Borgs, Absence of zeros for the chromatic polynomial on bounded degree graphs,
Combinatorics, Probability and Computing 15 (2006), no. 1–2, 63–74.

[B+11] P. Brändén, J. Haglund, M. Visontai, and D.G. Wagner, Proof of the monotone column
permanent conjecture, Notions of positivity and the geometry of polynomials, Trends in
Mathematics, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 63–78.

[Br73] L.M. Bregman, Certain properties of nonnegative matrices and their permanents
(Russian), Doklady Akademii Nauk SSSR 211 (1973), 27–30.

[BR91] R.A.Brualdi andH.J.Ryser,CombinatorialMatrix Theory, Encyclopedia ofMathematics
and its Applications, 39, Cambridge University Press, Cambridge, 1991.

[Bu15] B. Bukh, personal communication (2015).
[BG05] A. Bulatov and M. Grohe, The complexity of partition functions, Theoretical Computer

Science 348 (2005), no. 2–3, 148–186.

http://arxiv.org/abs/1601.07518
http://arxiv.org/abs/1406.1771
http://arxiv.org/abs/1402.4715


References 295

[B+97] P. Bürgisser, M. Clausen and M.A. Shokrollahi, Algebraic Complexity Theory. With
the collaboration of Thomas Lickteig, Grundlehren der Mathematischen Wissenschaften
[Fundamental Principles of Mathematical Sciences], 315, Springer-Verlag, Berlin, 1997.

[C+13] J.-Y. Cai, X. C., Xi and P. Lu, Graph homomorphisms with complex values: a dichotomy
theorem, SIAM Journal on Computing 42 (2013), no. 3, 924–1029.

[C+08] E.R. Canfield, C. Greenhill andB.D.McKay,Asymptotic enumeration of dense 0-1matri-
ces with specified line sums, Journal of Combinatorial Theory. Series A 115 (2008), no.
1, 32–66.

[CM10] E.R. Canfield and B.D. McKay, Asymptotic enumeration of integer matrices with large
equal row and column sums, Combinatorica 30 (2010), no. 6, 655–680.

[C+11] S. Chatterjee, P. Diaconis and A. Sly, Random graphs with a given degree sequence, The
Annals of Applied Probability 21 (2011), no. 4, 1400–1435.

[CS07] M. Chudnovsky and P. Seymour, The roots of the independence polynomial of a clawfree
graph, Journal of Combinatorial Theory. Series B 97 (2007), no. 3, 350–357.

[CP16] D. Cifuentes and P.A. Parrilo, An efficient tree decomposition method for permanents and
mixed discriminants, Linear Algebra and its Applications 493 (2016), 45–81.

[Ci87] B.A. Cipra, An Introduction to the Ising Model, American Mathematical Monthly 94
(1987), no. 10, 937–959.

[CV09] K. Costello and V. Vu,Concentration of random determinants and permanent estimators,
SIAM Journal on Discrete Mathematics 23 (2009) no. 3, 1356–1371.

[Cs14] P. Csikvári, Lower matching conjecture, and a new proof of Schrijver’s and Gurvits’s the-
orems, preprint arXiv:1406.0766, to appear in the Journal of the European Mathematical
Society (2014).

[CF16] P. Csikvári and P.E. Frenkel, Benjamini - Schramm continuity of root moments of graph
polynomials, European Journal of Combinatorics 52, Part B (2016), 302–320.

[CK09] B. Cuckler and J. Kahn, Entropy bounds for perfect matchings and Hamiltonian cycles,
Combinatorica 29 (2009), no. 3, 327–335.

[D+15] E. Davies, M. Jenssen, W. Perkins and B. Roberts, Independent sets, matchings, and
occupancy fractions, preprint arXiv:1508.04675 (2015).

[DG95] P. Diaconis and A. Gangolli, Rectangular arrays with fixed margins, Discrete Probability
and Algorithms (Minneapolis, MN, 1993), The IMA Volumes in Mathematics and its
Applications, 72, Springer, New York, 1995, pp. 15–41.

[Do96] R.L. Dobrushin, Perturbation methods of the theory of Gibbsian fields, Lectures on prob-
ability theory and statistics (Saint-Flour, 1994), Lecture Notes inMathematics, vol. 1648,
Springer, Berlin, 1996, pp. 1–66.

[DS87] R.L. Dobrushin and S.B. Shlosman, Completely analytical interactions: constructive
description, Journal of Statistical Physics 46 (1987), no. 5–6, 983–1014.

[DG87] S.J. Dow and P.M. Gibson, An upper bound for the permanent of a 3-dimensional (0,1)-
matrix, Proceedings of the American Mathematical Society 99 (1987), no. 1, 29–34.
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