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Chapter 1
Introduction

What this book is about. What is a partition function?

The answer depends on who you ask. You get one (multi)set of answers if you ask
physicists, and another (multi)set if you ask mathematicians (we allow multisets, in
case we want to account for the popularity of each answer). In this book, we adopt
a combinatorial view of partition functions. Given a family F of subsets of the set

{1, ..., n}, we define the partition function of F as a polynomial in n real or complex
variables xi, ..., x,,
pr ) =D [ T (1.1)
SeF ieS

Under typical circumstances, it is unrealistic to try to write p as a sum of monomials
explicitly, for at least one of the following two reasons:

(1) the family F is very large

or

(2) we are not really sure how large F is and it will take us a while to go over all
subsets S of {1, ..., n} and check whether S € F.

Typically, however, we will have no trouble checking if any particular subset S
belongs to F. A good example is provided by the family H of all Hamiltonian cycles
in a given graph G (undirected, without loops or multiple edges) with n edges: we
say that a collection S of edges forms a Hamiltonian cycle in G if the set of edges
in S is connected and every vertex of G belongs to exactly two edges from S, see
Fig.1.1.

A graph with m vertices may contain as many as @ different Hamiltonian
cycles and it is believed (known, if P # NP) that it is computationally hard to find
at least one for a graph G supplied by a clever adversary.

© Springer International Publishing AG 2016 1
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2 1 Introduction

Fig. 1.1 A graph with 7
vertices, 12 edges and a
Hamiltonian cycle (thick
lines)

Sometimes we allow F to be a family of multisets, in which case we replace

Hi
[« — [Tl

ieS ieS

in formula (1.1), where p; is the multiplicity of i in S.

Sometimes we know pr perfectly well even if we are unable to write it explicitly
as a sum of monomials due to the lack of time. For example, if F = 21" is the
set of all subsets, we have

paen (rsnx) = > [ =0 +x) (1.2)
i=1

Sci{l,...n} ieS

in (1.2). Our experience teaches us, however, that the cases like (1.2) are quite rare.
For some mysterious reasons they all seem to reduce eventually to some determinant
enumerating perfect matchings in a planar graph, see [Ba82],[Va08] and Chap. 10
of [Ai07] for examples and recall that a perfect matching in a graph is a collection
of edges that contains every vertex of the graph exactly once (see Fig.4.1) and that
the graph is planar if it can be drawn in the plane so that no two edges can possibly
intersect in a point other than their common vertex (see Fig.4.8).

Although in Sect. 4.3 of the book we describe the classical Kasteleyn’s construc-
tion expressing the partition function of perfect matchings in a planar graph as a
determinant (more precisely, as a Pfaffian), the focus of the book is different. Since
the efficient exact computation of p in most interesting situations is believed to be
impossible (unless the computational complexity hierarchy collapses, that is, unless
P = #P), we are interested in situations when pr can be efficiently approximated.
By efficiently approximated we understand that we can compute pr approximately
forall x = (xy, ..., x,) in some sufficiently interesting domain, but not only. We also
approximate pr by some “nice function”, whose behavior we understand reasonably
well. We concentrate mostly on the following three approaches.


http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
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Scaling. It may happen that there is a sufficiently rich group of transformations,
for example of the type x; —> \;x; for some J;, which change the value of the
polynomial pz (xi, ..., x,) in some obvious way and such that after factoring that
group out, we are left with a function that varies little. This is the case for the
permanent (Sect.3.5), hafnian (Sect.4.2) and their higher-dimensional extensions
(Sects.4.4 and 4.5). A closely related approach expresses pr as the coefficient of
a monomial y{" ---yy" in some explicit polynomial P (yi,...,yy) and obtains
an estimate of pr via solution of a convex optimization problem of minimizing
vy ™ P (yi, .., yn) foryy, ..., yy > 0. We apply this approach to estimate
partition functions of flows (Chap. 8).

Correlation decay. We choose a variable (or a small set of variables), say x,,
and define pr, as the sum of the monomials of pr containing x,. It may happen
that there is some metric on the set {x{, ..., x,} of variables such that the ratio
pr, (x1,...,%,) /pF (X1, ..., x,) does not depend much on the variables x; that are
sufficiently far away from x, in that metric. This allows us to fix values of those
remote variables to our convenience and quickly approximate the ratio. We then
recover pr by iterating this procedure and telescoping. As a result, we approximate
In pr (x1, ..., x,) by a sum of functions, each of which depends on a small number
of coordinates. We apply this method to the matching polynomial (Sect.5.2) and to
the independence polynomial of a graph (Sects. 6.3 and 6.4).

Interpolation. Suppose that the polynomial pr has no zeros in a domain
Q C C". It turns out that In p# is well approximated in a slightly smaller domain
Q' C Q by alow degree Taylor polynomial, sometimes after a change of coordinates
(Sect.2.2). We demonstrate this approach for the permanent (Sects. 3.6 and 3.7) and
hafnian (Sect. 4.1), their higher-dimensional extensions (Sect.4.4), for the matching
polynomial (Sect.5.1) and the independence polynomial of a graph (Sect. 6.1), and
for the graph homomorphism partition function (Chap. 7). In our opinion, this is the
most general approach.

The correlation decay approach appears to be closely related to a probabilis-
tic approach, known as the Markov Chain Monte Carlo method. Assuming that

x; >0,...,x, >0, we consider the family J as a finite probability space, with
Pr(S)=(Hx,~)/p;c(x1,...,xn) for S e F. (1.3)
ieS

Suppose that we can sample a random set S € F in accordance with the probability
distribution (1.3). Then we can measure the frequency of how often a random §
contains a particular element of the ground set, say n, and hence we can estimate
theratio pz, (x1,...,x,) /pF (x1, ..., x,), which is also the goal of the correlation
decay method. To sample a random S € F, we perform a random walk on F by
starting with some particular S and, at each step, trying to modify S +— S by a
random move of the type S:= (S\ I)U J for some small sets I, J C {1,...,n}
performed with probability proportional to


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
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http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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http://dx.doi.org/10.1007/978-3-319-51829-9_5
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Pr (S) _
PI‘(S) = H)Cj (Hxi 1).

jeJ iel

It stands to reason that if the ratios of the type pz, (x1,...,x,) /pr (X1, ..., X,)
depend effectively only on a small set of variables, then we can expect the resulting
walk to mix rapidly, that is, we should hit more or less random § after performing a
moderate number of moves.

The Markov Chain Monte Carlo method resulted in a number of remarkable
successes, most notably in a randomized polynomial time approximation algorithm
for the permanent of a non-negative matrix [J+04]. However, we do not discuss it
in this book. First, there are excellent books such as [Je03] describing the method
in detail and second, we are interested in analytic properties of partition functions
that make them amenable to computation (approximation). Granted, the fact that
randomized algorithms are often very efficient must be telling us something important
about analytic properties of the functions they approximate, but at the moment we
hesitate to say what exactly.

Why this is interesting. Why do we care to approximate pz in (1.1)?

For one thing, it gives us some information about complicated combinatorial
families. As an example, let us consider the family H of all Hamiltonian cycles
in a complete graph K,, (undirected, without loops or multiple edges) with m ver-
tices 1, ..., m. Hence to every edge (i, j) of K,, we assign a variable x;;, to every
Hamiltonian cycle in K, we assign a monomial that is the product of the variables x;;
on the edges of the cycle, and we define py; by summing up all monomials attached
to the Hamiltonian cycles in K,,. If we let x;; = 1 for all edges (i, j) then the value
of py¢ is just the number of Hamiltonian cycles in K,,, which is (m — 1)!/2. If we
assign x;; = 1 for some edges of K, and x;; = 0 for all other edges of K,,, then the
value of ps; is the number of Hamiltonian cycles in the graph G consisting of the
edges selected by the condition x;; = 1 (generally, it is computationally hard even
to tell py; from 0).

Looking at the problem of counting Hamiltonian cycles through the prism of
the partition function py, allows us to interpolate between a trivial problem (count-
ing Hamiltonian cycles in the complete graph) and an impossible one (counting
Hamiltonian cycles in an arbitrary graph) and find some middle ground. Given a
graph G with vertices 1, ..., m, let us fix a small € > 0 (think e = 107'°) and let us
define

[ 1 if (i, j) is an edge of G

Xij = .

€ otherwise.
In this case, ps; still enumerates Hamiltonian cycles in the complete graph K, but
it does so deliberately. It counts every Hamiltonian cycle in G with weight 1, while
every Hamiltonian cycle in K, that contains r non-edges of G is counted with weight
€ . In Sect. 3.8, we show that it is quite easy to approximate ps, within a factor of
mPnm where the implicit constant in the “O” notation depends on . This gives us


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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some idea about Hamiltonian cycles in G: for example, we can separate graphs G
with many Hamiltonian cycles (the value of py is large) from graphs G that do not
acquire a single Hamiltonian cycle unless sufficiently many new edges are added to
G (the value of pyy is small).

Two particular topics discussed in this book are

(1) connections between the computational complexity of partition functions and
their complex zeros

and

(2) connections between computational complexity and “phase transition” in
physics.

In statistical physics, one deals with the probability space F defined by (1.3)
(sets S € F are called “configurations”), where x; = %/ for some constants Gi >0
and a real parameter ¢, interpreted as temperature. As the ground set {1, ..., n}
and the set F of configurations grow in some regular way, one can consider two
related, though not identical notions of phase transition. The first notion has to do
with a complex zero of pr, as a function of ¢, approaching the positive real axis
at some “critical temperature” 7. > 0. This implies the loss of smoothness or even
continuity for various physically meaningful quantities, expressed in terms of In p
and its derivatives [YL52]. The second notion of phase transition has to do with
the appearance or disappearance of “long-range correlations”. Typically, at a high
temperature ¢ (that is, when x; are close to 1), there is no long-range correlation:
the probability that S contains a given element i of the ground set is not affected by
whether S contains another element j, far away from i in some natural metric. As the
temperature ¢ falls (and hence x; grow), such a dependence may appear. These two
notions of phase transition are related though apparently not identical, see [DS87]
and [Ci87], we discuss this when we talk about the Ising model in Sect.7.4 .

The correlation decay approach emphasizing (2) was introduced by Bandyopad-
hyay and Gamarnik [BGO8] and independently by Weitz [We06] and is generally
well-known in the computational community, while (1) is relatively less articulated
but appears to be no less interesting. Curiously, while the first type of phase tran-
sition is associated with complex zeros of the partition function approaching the
positive real axis, as far as our ability to approximate is concerned, a priori this
does not represent an insurmountable obstacle. What hinders our ability to compute
are the complex zeros “blocking” the reference point in the vicinity of which pr
looks easy, such as the point x;; = 1 for the partition function ps; of Hamiltonian
cycles, see also our discussion in Sect.2.2. The ways of statistical physics and those
of computational complexity diverge at this point, which is probably explained by
the fact that the temperature in the physical world is necessarily a real number, while
for computational purposes we can manipulate with a complex temperature just as
easily.

We stick to the language of combinatorics but the objects and phenomena dis-
cussed in this book have also their names in physics. Thus the “matching polynomial”
of Chap. 5 corresponds to the “monomer-dimer model”, the “graph homomorphism
partition function” in Chap. 7 corresponds to a “spin system”, while the cut partition


http://dx.doi.org/10.1007/978-3-319-51829-9_7
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_7

6 1 Introduction

function of Sect.7.4 corresponds to a “ferromagnetic spin system”. Some of our
results, such as in Sects. 3.6, 3.7, 3.8, 4.2, 4.4, 7.1 and 7.2 correspond to the “mean
field theory” approach, while some others, such as in Chaps.5 and 6 correspond
to the “hard core” model. For still others, such as in Sects.3.4, 3.5 and Chap. 8,
we were unable to think of an appropriate physics name (though “renormalization”
may work for those in Sects.3.4 an 3.5). We talk about physical implications of
results in Sect. 7.4 while discussing the Ising model, which connects several direc-
tions explored this book: zeros of partition functions, phase transition, correlation
decay, graph homomorphisms and enumeration of perfect matchings.

Finally, this book may be interesting because it contains an exposition of quite
recent breakthroughs (available before, to the best of our knowledge, only as
preprints, journal or conference proceedings papers). These include the Gurvits
approach connecting certain combinatorial quantities with stable polynomials
(Sects. 3.3 and 8.1), Csikvari and Lelarge approach to the Bethe-approximation of
the permanent (Sects. 5.3 and 5.4) and Weitz correlation decay method for the inde-
pendence polynomial (Sect. 6.4).

Prerequisites, contents, notation, and assorted remarks. We use some concepts of
combinatorics, but only very basic, such as graphs and hypergraphs. All other terms,
also very basic, such as matchings, perfect matchings and colorings are explained in
the text. We also employ some computational complexity concepts. As we are inter-
ested in establishing that some functions can be efficiently computed (approximated),
and not in proving that some functions are hard to approximate, we use only some
very basic complexity concepts, such as polynomial time algorithm, etc. The book
[PS98] will supply more than enough prerequisites in combinatorics and computa-
tional complexity (but see also more recent and comprehensive [AB09] and [Go08]).
We also require modest amounts of linear algebra, real and complex analysis. This
book should be accessible to an advanced undergraduate.

In Chap. 2, we develop our toolbox. First, we discuss various topics in convexity:
convex and concave functions, entropy and Bethe-entropy, Gauss-Lucas theorem on
the zeros of the derivative of a complex polynomial, the capacity of real polynomials
and the Prékopa-Leindler inequality. Then we present one of our main tools, inter-
polation, which allows us to approximate the logarithm of a multivariate polynomial
p by a low degree polynomial in a domain, given that there are no complex zeros
of p in a slightly larger domain. We discuss interlacing polynomials, H-stable poly-
nomials (polynomials with no roots in the open upper half-plane of C) and D-stable
polynomials (polynomials with no roots in the closed unit disc in C).

Then we begin our study of partition functions in earnest.

In Chap. 3, we start slowly with the permanent, as it is very easy to define and it has
a surprisingly rich structure. All this makes the permanent a very natural candidate
to try our toolbox on.

In Chap. 4, we consider extensions of the permanent to non-bipartite graphs (hafni-
ans) and hypergraphs (multi-dimensional permanents). We also consider the mixed
discriminant, which is a generalization of the permanent and of the determinant
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simultaneously. We observe that some properties of the permanent can be extended
to those more general objects, while some other cannot.

In Chap.5, we consider the matching polynomial of a graph, a relative of the
permanent and hafnian. Here we introduce the correlation decay method, which, as
Bayati, Gamarnik, Katz, Nair and Tetali showed [B+07], looks particularly elegant
and simple in the case of the matching polynomial. It turns out to be very useful too
and provides some additional insight into the permanent.

In Chap.6, we discuss the independence polynomial of a graph. We prove
Dobrushin’s bound on the complex roots and also present the correlation decay
approach at its most technical. We discuss an open question due to Sokal [SO1b],
which, if answered affirmatively, would allow us to bridge the gap between different
degrees of approximability afforded by the interpolation and by correlation decay
approaches.

In Chap.7, we present combinatorial partition functions at their most general.
Here we rely entirely on our interpolation technique, although some of the results
can be obtained by the correlation decay approach [LY 13]. We also prove the Circle
Theorem of Lee and Yang and discuss the Ising model in some detail.

In Chap. 8, we consider partition functions associated with multisets. We study the
partition functions of 0-1 and non-negative integer flows, which present yet another
extension of permanents. Permanents also supply our main technical tool.

Sections, theorems, lemmas, and formulas are numbered separately inside each
chapter. Figures are numbered consecutively in each chapter. For example, Fig.4.3
is the third figure in Chap. 4.

We use N to denote the real part of acomplex number and 3 to denote the imaginary
part of a complex number, so that %z = a and Iz = b for z = a + ib. We denote
by | X| the cardinality of a finite set X.

Finally, the product of complex numbers from an empty set is always 1.

Acknowledgements Iam grateful to David Gamarnik, Leonid Gurvits, Gil Kalai, Guus Regts, Alex
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Chapter 2
Preliminaries

We assemble our toolbox from real and complex analysis. The main topics are
inequalities inspired by convexity, polynomials with no roots in a particular domain
and relations between convexity and restrictions on the location of the roots. We
discuss the entropy of partitions, the Bethe-entropy, the Prékopa—Leindler inequality
for integrals and the capacity of polynomials with non-negative real coefficients as a
way to estimate a particular coefficient of a multivariate polynomial by solving a con-
vex optimization problem. We discuss polynomials with real roots, polynomials with
no roots in the open upper half-plane (H-stable polynomials) and polynomials with
no roots in the closed unit disc (D-stable polynomials). We prove the Gauss—Lucas
Theorem for the location of the roots of the derivative of a polynomial, the Gurvits
Theorem on the capacity of H-stable polynomials and establish log-concavity of the
coefficients of real-rooted polynomials. We introduce the Taylor polynomial inter-
polation method, which allows us to obtain computationally efficient low-degree
approximations of a polynomial in a complex domain, provided the polynomial has
no zeros in a slightly larger domain.

2.1 Convexity

2.1.1 Convex functions. In what follows, some convex/concave functions will play
an important role. A set A C R is called convex provided

ax+ (1 —a)ye A forall x,ye A andall 0 <a <1.

It follows then that

ZaixieA provided x; € A, a; >0 for i=1,...,n

i=1
n

and E o = 1.
i=1

© Springer International Publishing AG 2016 9
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9_2
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Fig. 2.1 The graph of a
convex function

Let A C R? be a convex set. A function f : A — R is called convex provided

f(ax+(1—a)y) < af(x)+(1—a)f(y) forall x,ye A andall 0 <a <1,
see Fig.2.1

The function f is called strictly convex if the above inequality is strict whenever
x # yand 0 < a < 1. It is easy to show that if f is convex then

f(Za,-x,-) < Zaif(x,-) provided x; € A, a; >0 for i=1,...,n
i=1

i=1
and Zn:ai =1.
i=1
A function f : A — R is called concave provided
f(ax+(l—a)y) > af(x)+(1—a)f(y) forall x,ye A andall 0 <a <1,
see Fig.2.2.

The function f is called strictly concave if the above inequality is strict whenever
x #yand 0 < o < 1. Itis easy to show that if f is concave then

f(Za,-x,-) > Zaif(xi) provided x; € A, ;>0 for i=1,...,n
i=1

i=l
and iai =1.
i=1

Here are some functions whose convexity/concavity we will repeatedly use.
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Fig. 2.2 The graph of a
concave function

Fig. 2.3 The graph of In x

2.1.1.1 Logarithm. As is well known, the function
f(x)=Inx for x>0

is strictly concave, see Fig.2.3.
In particular,

i=1 i=1

and Zn:ozi =1.
i=1

Exponentiating, we obtain the arithmetic-geometric mean inequality:

ln(Zaixi) > Za,-lnx,- provided x;,a; >0 for i=1,...

N
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Fig. 2.4 The graph of x Inx

n n
E opxp > Hxi“" provided x;,; >0 for i=1,...,n
i1 i=1

and Zn:ai =1.
i=1

2.1.1.2 The function f(x) = x Inx. Itis easy to check that the function
f(x)=xInx for x>0

is strictly convex, see Fig. 2.4, and, consequently, the function
1
h(x) =xIn— for x >0
X

is strictly concave.
2.1.1.3 Exponential substitution. Let p(xy, ..., x,) be a polynomial with non-
negative real coefficients. Then the function f : R” — R defined by

f(tl,...,tn)zlnp(e",...,e’”)

is convex. Indeed, it suffices to check that the restriction & of f onto every line in
R"™ is convex. Such a restriction /& looks as

h(t) =In (Z a,-e“) ,
i=1

where A\, ..., \, arereal and oy, . . ., , are positive real. It suffices then to check
that 1" (¢t) > O for all ¢+ € R. Denoting
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m
g() = > e,
i=1

we obtain

g'(t) and h,/(t)zg”(t)g(t)—g’(t)g/(t)

W) =
® g(t) g% (1)

where

m m
g//(t)g(t) - g,(t)g/(t) = Z A?Oéiaje()\'+)\'f)t — Z )\,-)\jaiaje()"'+Af)’
i j=1 i,j=1
=004 2 et
{i.j}
i#]
2 AN
ZZ (/\l — )\j) oziaje(’\’+A")’ > 0.
{i.J}

i#]j

2.1.2 Entropy. Let us consider the simplex A, C R" consisting of all vectors
x=(¢,...,&)suchthat §; > Ofori = 1,...,nand & + ... + &, = 1. For
x € A, we define the entropy H by

H(x) = Zfilné where x = (&1, ..., &)
i=1 !

and the corresponding term is 0 if £ = 0. It follows from Sect.2.1.1.2 that H is
strictly concave. Therefore H attains its minimum value on A, at an extreme point
of A,, that is, where §; = 1 for some i and {; = 0 for all j # i. In particular,

H((x) >0 forall x € A,.

Clearly, H is a symmetric function of £, ..., &,, so the value of H depends on
the multiset {1, ..., &,} but not on the order of &;s.

By the concavity and symmetry of H, the largest value of H on A, is attained
when& =...=¢, =1/n,s0

H(x) <Inn forall x € A,. (2.1.2.1)
A multiset of non-negative numbers summing up to 1 is naturally interpreted as

a probability distribution. Let 2 be a probability space and let = {F1, ..., F,} be
its partition into finitely many pairwise disjoint events Fi, ..., F,, so that


http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Q= U Fi and F;NF; =0 for i #j.
F,eF

We define the entropy of the partition F by

" 1
H(]—"):H({PrE}):Zpiln; where p; = Pr (F)).

i=1 !
In particular, by (2.1.2.1),

H(F) < Inn provided F consists of not more than n events. (2.1.2.2)

We say that a finite partition G refines a partition F if every event in the partition
g lies in some event in the partition F, see Fig. 2.5, in which case we write 7 < G.
We often call events of a coarser partition blocks.

Given a pair of partitions 7 < G, we define the conditional entropy of G with
respect to F as follows:

Pr(G) Pr(F
H@GIF)= > Pr(F)| > —Pi:EF; In P: EG;
FeF Geg

GCF

@if Pr (F) = 0 for some F, the corresponding term in the sum is 0). In words:
each event F of the partition F such that Pr (F) > 0 we consider as a probability
space endowed with the conditional probability measure, compute the entropy of the
partition of F by events of G and average that entropy over all events F € F.

For w € , let us denote by F(w) the event of F containing w, considered as
a probability space as before, and let F(w) be the partition of F'(w) induced by G.
Assuming that €2 is finite, we can write

H(G|F) = ZPr (W) H (F(w)). (2.1.2.3)

weR

It is not hard to check that

Fig. 2.5 A partition and its
refinement
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H(G) = H(F) + H(G|F).

Moreover, if | < F, < ... < F,, iterating the above identity, we get

m—1

H(F) = HF) + Y H(Fil F) (2.1.2.4)

i=1
see, for example, [Kh57].

2.1.3 Bethe-entropy. Let A, C R” be, as above, the simplex of all n-vectors
x=(&,...,&)suchthatl; > O0fori =1,...,nand & +...4+&, = 1. We assume
that n > 2 and for x € A,,, we define

n

1
gu>=§§(&mgg+a—£»ma—fn) for x=(&.....6).

. i
i=1

We call this function the Bethe-entropy. We claim that g(x) is a non-negative concave
function on A,,. We follow [Gull], see also [Vo13].

Let |
o) = 51115 + 1 =& In(1 =9,
see Fig.2.6.
‘We have
§(6) = o=
E1—-¢’

from which ¢ is concave for 0 < £ < 1/2. Since ¢(0) = ¢(1/2) = 1, it follows that
$(€) =0for0<¢ <1/2.

Fig. 2.6 The graph of ¢(x) 0.147,

-0.147-



16 2 Preliminaries

Hence g(x) > 0if & < 1/2fori = 1,..., n. Otherwise, there is at most one
value of &;, say &,, such that £, > 1/2. Therefore, the minimum of the concave
function Zf;ll (&) on the simplex defined by the equation & +...+&,_; = 1 —¢,
and inequalities §; > O fori = 1,...,n — 1 is attained at an extreme point, where
all but one &;, say &;, are equal to O and &; = 1 — &,,. Therefore,

gx) > ¢(§n)+¢(l _gn) =0,

and hence g(x) is indeed non-negative on A,,.
To prove that g(x) is concave, it suffices to prove that the restriction of g onto the

relative interior of A, is concave, so we assume that &, ..., &, > 0. Computing the
Hessian of g at x = (1, ..., &,), we obtain the n x n diagonal matrix
26, —1 26, — 1
D:diag( 3 e, 5 )
&1 —¢&) &1 — &)

Our goal is to prove that the restriction of the quadratic form with matrix D onto the
tangent space to x € A, is negative semi-definite, that is

n

26 -1 ) "
————a; < 0 provided a; = 0. (2.1.3.1)
; &(1—&) P ;

It < 1/2foralli =1, ..., nthen (2.1.3.1) obviously holds. Otherwise, there is at
most one coordinate &;, say, &,, such that &, > 1/2. If a;, = 0 then (2.1.3.1) holds,
so we can assume that «,, # 0. Scaling, if necessary, we can further assume that
a, = —1.
Let us denote
_ 2 — 1
G —&)

The maximum value of the negative definite quadratic form

Bi

for i=1,...,n—1.

n—1
(ar+ ...+ a,_1) —> Zﬁia?

i=1
on the affine subspace defined by the equation
alt+...+a, =1

is attained at

A n—1 1 -1
oj=— for i=1,...,n—1 and A= —
; (>5)
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1
- | 51 (1 - 51
=(53) -(EE)
Consequently,

o 261 &(1—
Z&(l—g) e g,,(l—g) (Z 2% 1 )

n—1
provided » a; =1 and a,=—1. (2.13.2)

i=1

and hence is equal to

On the other hand, the function

(1 —¢)
.
26— 1

1
for 0 < -
or _§<2

is concave, as we have

& il-9 2
de? 26 —1 (26 —1)3

1
<0 provided 0 <¢ < >

Consequently, the minimum value of the concave function

(1=
(513"'75}171) Zgz(f _1

on the simplex

£1+~'-+§n71=1_€n and 51,~-.,§n7120

is attained at an extreme point, where all but one &; are equal to 0 and the remaining
value of &; is 1 — &,. Then from (2.1.3.2) we conclude that

n 261 _ 1 2 an _ 1 1 - 2611
2. of =
i—1 fi(l - fz) fn(l - gn fn(l - fn
n—1

provided Zai =1 and o, =-—1,

i=1

and (2.1.3.1) follows, establishing the concavity of g.
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Fig. 2.7 The roots of f
(black dots) and the roots of
f' (white dots)

2.1.4 Gauss-Lucas Theorem. Let f : C — C be a non-constant polynomial.
The Gauss—Lucas Theorem states that the roots of f”(z) lie in the convex hull of the
roots of f, see Fig.2.7.

Indeed, without loss of generality, we assume that f is monic. Let vy, ..., 7y, be
the roots of f, counted with multiplicities, so

n

f@=]]c=.

k=1

Let (3 be a root of f’, so

n n

0=r@) =2 [[(B—7m andhence > []B—m) =0.
k=1 m+#k k=1 m+#k

If 3 = ~y; for some j, the result follows instantly. Otherwise, multiplying the last

equation by H (B — vm), we obtain

m=1
n
D B=w][]IB=ml=0.
k=1 m#k
Denoting
Hm;ék |ﬁ - ’Ym|2
Qp = s
Iy Hm;ék 18 = Yl?
we write 3 as a convex combination of i, ..., Vu:

m m
ﬁ:Zak'yk where Zkal and o >0 for k=1,...,m.
k=1 k=1

2.1.5 Capacity. Let

p(Xt, ..., x) = Z anx" where x" =x|"...x/" (2.1.5.1)

meM
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be a polynomial with non-negative real coefficients a,, > 0 for m € M. Following
Gurvits [Gu08, Gul5], given a non-negative integer vector r = (o1, ..., py), W€
define the capacity of p by

. P (X1, .0y Xp)
caj = inf —7—%.
Pr(P) Xpeon %, >0 xfl .. xrll)n
As follows from Sect.2.1.1.3, the substitution x; = ¢ fori = 1, ..., n expresses

the capacity in terms of the infimum of a convex function on R":

1

Incap, (p) = tinft Inp(e",....e") = pity — ... — puly. (2.1.5.2)

----- n

This makes the capacity efficiently computable, see, for example, [Ne04], provided
the value of the polynomial p is efficiently computable for any given xy, ..., x,.

It follows from (2.1.5.2) that the function r —— In cap, (p), being the point-wise
minimum of a family of affine functions, is concave, meaning that if my, ..., m; are
non-negative integer vectors and

k k
r= E a;m; where E aj=1 and o; >0 for i=1,...,k
i=1 i=1

is also a non-negative integer vector, then

k
Incap,.p > z a; Incap,, p.
i=1

We get an immediate upper bound on the coefficients of p in terms of the capacity:
a, < cap,(p) forall m e M.

We obtain a complementary lower bound if we assume that the function m — Ina,,
is (approximately) concave. More precisely, we prove the following statement:
Let0 < B < I bearealandletr € M be anindex in (2.1.5.1) such that whenever

k
r= Eaim,- where m; e M, «; >0 for i=1,...,k
i=1
m

and Zai =1,
i=1

we have

k
a;
a, > 6Hami.
i=1
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Then

a, > %cap,(p), (2.1.5.3)

where |M| is the number of monomials in the expansion (2.1.5.1).
Without loss of generality, we assume that a,, > 0 for allm € M. Let us consider

a lifting
M — R m— (m, Ina,).

Let us choose an arbitrary v > Ina, — In 3 and let us consider a closed ray
R={(r,a): a>~}.

Then R does not intersect the convex hull of the points (m,Ina,) form € M \
{r}. Therefore, there is a linear function separating R from the set (m, Ina,,) for
m € M \ {r}. Hence writing r = (pi, ..., pn), we conclude that there are real
t1, ..., ty; tyy1 such that

n n
Int100+ Zpili > typlna, + Zﬂili

i=1 i=1

forall me M\{r}, m=(uy,...,n,) andall a>~.

Moreover, we can choose ?1, ..., t,; t,+1 sufficiently generic, so that 7,1 # 0, in
which case we must necessarily have #,,; > 0 and which we can further scale to
th+1 = 1, see Fig.2.8.

Hence we conclude that

7+Zpiti > lnam+2uit,~ forall me M\ {r}, m=(u,..., ).

i=1 i=1

Since v > Ina, — In 8 was chosen arbitrarily, we conclude further that

lnar—l—Zpiti > lnam+ln6+2u,¢i forall m e M\{r}, m= (ui,..., ).
i=1 i=1
Letting x; = €' fori =1, ..., n, we get
ayx}" x> Bay,x("--oxt forall me M\ {r}, m=(u1,..., ),
from which

Bp (x1,...,xy) < [Mla,x{"---x"

and (2.1.5.3) follows.
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Fig. 2.8 An index m, its
lifting, a ray R and an affine
hyperplane separating R
from the liftings of indices m

2.1.6 Prékopa-Leindler inequality. We will need the following useful inequal-
ity. Let f, fi,..., fx : R* — R, be non-negative integrable functions and let
ai, ..., a > 0bereals such that o1 4 ... + a; = 1. Suppose further, that

k k
f(z a,-xi) > Hfiai (x;) forall xi,...,x € R".
i=1

i=1

Then
k

f(x)dx > H( . £i(x) dx)ai.

R i—1

We adapt the proof of Sect.2.2 of [Le01].

We proceed by induction on the dimension z of the ambient space. The main work
is done in dimension 1. For n = 1, by continuity we may assume that fi, ..., f; are
strictly positive and continuous. Scaling, if necessary, we may assume further that

+o00
fix)dx =1 for i=1,... k.

—00

Let us define .
F,-(t):/ fikx)dx for i=1,... k.
—00

Hence F;(¢) is an increasing function F; : R — (0, 1) and let u; : (0, 1) —> R be
its inverse. Thus u; (¢) is also strictly increasing and F;(u;(t)) =t fori = 1,..., k.
‘We note that F; and hence u; are differentiable and that

fiwi@)u;(t)=1 for i =1,...,k. (2.1.6.1)
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Let us define

k
u(t) = > ouu;(t) for te(0,1).

i=1

Making a substitution x = u(t), we get

+00 1 k k
Swdi= / fton'e dr = [ f(Za,-uia))(Za,»u;(r)) i
- 0 i=1 i=1

By the condition of the theorem,

k k
f(z aiuxr)) > [ @y,
i=1

i=1

while by the arithmetic-geometric mean inequality,

k
D u(n) = H (0)"
i=l

=~

Summarizing,
+o00

1 k
f)dx = /0 (H(f(ui(t))uﬁ(t))”’) dr =1
i=1

by (2.1.6.1) and the proof for n = 1 follows.
Suppose that n > 1. We represent R” = R"~! @ R, x = (y, t), and define

—00

g(t):/Ril f(y,t)dy and g,»(t):/Rilf,‘(y,t)dy for i=1,...,k.

Let us choose arbitrary real #,...,# and let t = «aqt; + ... + agt;. We define
functions &, hy, ..., hy : R — R by

h(y) = f(y,t) and h;(y) = fi(y,t;) for i=1,... k.

Then

k k k k k
h(zam) = f(zai)’i» Zaili) > []ro it =]]r" o0
i=1 i=1 i=1

i=1 i=1

and hence by the induction hypothesis
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k a; k
g9(1) = / h(t) dt > ( / hi(y) dy) =[lg"@.

i=

Applying Fubini’s Theorem and the inequality in the 1-dimensional case, we get

+00 k +o0 «; k ;
[rwas=[ "swar = TI([ awar) =T]([ swax)
% i=1 T i=1 !

which completes the induction.

2.2 Polynomial Approximations

We start with a simple lemma.

2.2.1 Lemma. Let g(z) be a complex polynomial of degree d and let us suppose that

9(2) #0 forall |z| <f,

where 3 > 1 is a real number. Let us choose a branch of

f(@) =Ing(z) for |z] <1
and consider its Taylor polynomial

P = O+ (d—kﬂz)( ) =
! = \dz*" =) k!

Then
d

()] < m forall |z| <1.

|f(z) — DPn

In particular, assuming that 3 > 1 is fixed in advance, to achieve
Lf(D) = pa(D] < €

for some € > 0, it suffices to choose

d
n:O(ln—),
€

where the implicit constant in the “O” notation depends only on /3.
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Proof of Lemma 2.2.1. Let oy, . . ., ag be the roots of g(z), so we can write

d
9(2) =g(0)H(l — i) where ¢(0) #0 and |o;| >3 for i=1,...,d.
i= &

1

Hence

d
f(@)=Ing(z) = f(0) + Zln (1 - ai) for |z] <1,

i=1 !

and expanding the logarithm, we obtain

nok
z z
ln(l_a_,-):_g @‘ng,n for |z] <1

k=1
where ~ L
|§in|= Z . =< ; forall |z|] <1.
’ o kaf (n+1Dp"(B-1)

Therefore,

d n Zk

fR=FO) =D > = +mn, for |z =1

i=1 k=1 ko

where

d

KR TGy

To complete the proof, it suffices to notice that

O

2.2.2 Computing derivatives of f(z) = Ing(z). Let f(z) = Ing(z) as in Lemma
2.2.1, where we assume that g(0) # 0 and hence a branch of f(z) can be chosen in
a sufficiently small neighborhood of z = 0. Then

g'(2)
9(2)

fl(z) = and hence ¢'(z) = f'(2)9(2).

Differentiating the product k — 1 times, we obtain

d* Uk =1\ [ dF di
@g(z)‘zzo = jz(;( j ) (dZT_Jf(Z)‘tO) (d—zjg(z)’zzo) . (2.2.2.1)
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Combining the Eq. (2.2.2.1) fork = 1, ..., n, we obtain a triangular system of linear
equations in f® (0)

g'(0) =g(0) f'(0)
q"(0) =¢'(0) £'(0) + g(0) £ (0)
g (0) =g"(0) f'(0) +24'(0) £ (0) + g(0) fP(0)

with coefficients g(0) # 0 on the diagonal, from which we can compute the deriv-
atives f(k)(O) fork = 1,...,n from g(0) and g®(0) fork = 1,...,n in O?)
time.

Lemma 2.2.1 allows us to approximate In g(1) by a small (logarithmic) degree
Taylor polynomial of In g(z) computed at z = 0, provided there are no roots of g(z)
in the disc Dg = {z : |z|] < (3} in the complex plane for some radius 5 > 1. We will
need to construct a similar approximation under a weaker assumption that g(z) # 0
in a thin strip aligned with the positive real axis, that is, g(z) 7# 0 provided

- <Nz <1+ and |3z <0

for some & > 0. We achieve this by constructing a polynomial ¢ = ¢5 : C — C
such that

#0)=0, ¢(1)=1 and
-6 < NPz) < 146, |S¢(z)| < & provided |z] <[

for some 5 = 3(6) > 1, see Fig.2.9.

We then consider a composition #(z) = g(¢(z)). Hence h(z) is a polynomial
of degh = (degg)(deg ¢) that does not have zeros in the disc Ds and such that
h(0) = ¢g(0) and h(1) = g(1). Using Lemma 2.2.1, we approximate In g(1) by the
Taylor polynomial of In/(z) of degree n = O (Indeg g + Indeg ¢) computed at
z = 0. As follows from Sect.2.2.2, to compute the Taylor polynomial of degree n
of Inh(z) at z = 0, it suffices to compute the Taylor polynomial of A(z) of degree
n at z = 0. On the other hand, to compute the Taylor polynomial of 4(z) of degree

Fig. 2.9 A polynomial ¢
mapping the disc of radius

£ > 1 into a neighborhood
of [0, 1] C C while mapping
OtoOand 1 to1



http://dx.doi.org/10.1007/978-3-319-51829-9_2

26 2 Preliminaries

n at z = 0 it suffices to compute the Taylor polynomial p, of degree n of g(z) at O,
compute the truncation ¢, of ¢ by discarding all monomials of degree higher than n
and then compute the composition p, (¢,(z)) and discard all monomials of degree
higher than n (recall that ¢(0) = 0 so that the smallest degree of a monomial in ¢(z)
is 1).

The following lemma provides an explicit construction of ¢.

2.2.3 Lemma. For0 < p < 1, let us define

1 1-— 4
a=a(p)=1—e7, 5=5(P)=e—_l > 1,
I—e v
(1))
N=Np)=|(1+-)e" | = 14 o=0() =3 — and
4 m=1
1Y m
6(2) =¢p(z)=gz(a2) ~
m=1

Then ¢(z) is a polynomial of degree N such that $(0) = 0, ¢(1) = 1,
—p < NdR) < 1+2p and |36()| < 2p provided |z| < 5.

Proof. Clearly, ¢(z) is a polynomial of degree N such that #(0) = 0 and ¢(1) = 1.
It remains to prove that ¢ maps the disc |z| < [ into the strip —p < Nz < 1 4 2p,
I3z < 2p.

We consider the function

for |z| < 1.

1
F/}(Z) = pln 1

Since {
N——m > 0 if |z <1,
11—z

the function F,(z) is well-defined by the choice of a branch of the logarithm, which
we choose so that
F,(0) =plnl=0.
Then for |z| < 1 we have
~ mp ,
IS F,(2)| < 5 and MF,(z) = —pln2 (2.2.3.1)

In addition,

F)=1 and NF,(z) < 1+p provided |z <1—e'"7. (2232)
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Let .,
Zm
Pi(d) =D =
m=1 m
Then
1 o 7" |Z|n+1
In —P,(2)| = —| < ———— provided |z| < 1.
— ~he m:ZnHm n+D0—1z) * &

Therefore, for |z| < (3, we have

N+
|F)(az) — pPy(az)| SPL

1 1
<P (1 —e_l_%)NJr et
T N+1
P P
“N¥+1 S 15 (2.2.3.3)

A

Combining (2.2.3.1)—(2.2.3.3), we conclude that for |z| < § we have
IS pPy(az)] < 1.64p and —0.76p < RpPy(az) < 1+ 1.07p. (2.2.3.4)

Substituting z = 1 in (2.2.3.3) and using (2.2.3.2), we conclude that

11— pPy()| < %. (22.35)

Since
Py(az)  pPy(az)

Py(@)  pPy(a)’

P(z) =

combining (2.2.3.4) and (2.2.3.5) and noting that p Py () is real, we obtain
ISo(z)] < 2p and —p < NP(z) < 1+2p provided |z]| <f.

O

The construction of Lemma 2.2.3 suggests a general principle:

Suppose we have a polynomial g(z) of degree n such that the k-th derivative
g®(0) can be computed in n°® time. We want to approximate g(1). If we can find
a sufficiently wide “sleeve” containing 0 and 1 and avoiding the roots of g(z), such
as the one on Fig.2.10a, we can approximate g(1) within relative error 0 < ¢ < 1
in n0""=19) time. For that, we construct a polynomial ¢(z) such that ¢(0) = 0,
¢(1) = 1 and ¢ maps the disc {z : |z| < [} for some sufficiently large 5 > 1 into
the sleeve where g(z) # 0. We then apply Lemma 2.2.1 to g(¢(z)). If the zeros of
g surround O as on Fig.2.10b, the sleeve connecting 0 and 1 and avoiding the roots
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Fig. 2..10 a ’Fhere isa (a) (b)
sufficiently wide sleeve

connecting 0 and 1 and e o o

avoiding the zeros of g, b the °

zeros of g surround 0 ° ° L b 1
precluding the existence of a ° e o0e o
wide sleeve connecting 0 : e, °

and 1

of g(z) will have to be too thin, making the radius 3 of the disc too close to 1 and
hence making any computational gain impossible.

2.3 Polynomials with Real Roots

We start with a definition.

2.3.1 Definition. Let f be a real polynomial of degree n with n distinct real roots
Q) < ... < a,. We say that a real polynomial g of degree n — 1 interlaces f if g
has n — 1 real roots 3; < ... < (3,_; such that

Oé]<ﬂ1<0¢2<62<O(3<...<04n_]<ﬁn_]<()én,

see Fig.2.11.
For example, if the roots of f are all real and distinct then f’ interlaces f.

2.3.2 Theorem.

(1) Let f and g, ..., gn be real polynomials such that gy interlaces f for k =
1, ..., m. Suppose further that the highest degree terms of g1, . .., gm have the
same sign. Let Ay, ..., Ay, be non-negative reals, not all 0 and let

m
9= M-
k=1

Then the polynomial g interlaces f;

(2) Let f and g be real polynomials such that g interlaces f and suppose that the
highest terms of f and g have the same sign. Then for any A € R the polynomial
f interlaces the polynomial h(x) = (x — \) f(x) — g(x).

Fig. 2.11 A polynomial g

interlacing a polynomial f \f /7<.\ ///
{&/




2.3 Polynomials with Real Roots 29

Proof. Leta; < ... < a, be the roots of f, sodeg f = n.

To prove Part (1), we note that since each g; interlaces f, it changes it sign exactly
once inside every interval [oy, o] fori = 1,...,n — 1, see Fig.2.11. Since the
coefficients of degree n — 1 of all polynomials g; have the same sign, inside each
interval [y, a;41] all the polynomials g change the sign in the same way (that is,
all positive at a; and negative at a;; or all negative at a; and positive at a;p). It
follows that g changes its sign inside each interval [¢y;, o;41] and hence interlaces f.

To Prove Part (2), without loss of generality we assume that the highest terms of f
and g are positive. Since g interlaces f, the polynomial g changes its sign inside each
interval [a;, ay;y1] fori = 1, ..., n — 1 and hence the polynomial / also changes its
sign inside each interval. Thus each interval («;, o;11) contains at least one root of
h, which accounts for the total of n — 1 roots.

Let B,-1 € (an—1, ) be the largest root of g. Since g(x) does not change its sign
for all x > (3,_1, we must have g (c;,) > 0 and hence A(c;,) < 0. On the other hand,
since the highest term of /1 (x) is positive, we must have & (x) > 0 for all sufficiently
large x and hence there is a root, say, 7,.1 of A(x) satisfying v,4+1 > .

Similarly, let 5 € (ay, a;) be the smallest root of g. Since g(x) does not change
its sign for all x < [, we must have have g(a;) > 0 if n is odd (and hence
degg =n — liseven)and g(a;) < 0if n is even (and hence deg g = n — 1 is odd).
Therefore, h(a;) < 0 if n is odd and h(«) > 0 if n is even. On the other hand,
since the highest term of % (x) is positive, for all sufficiently small x we must have
h(x) > 0if nis odd (and hence degh = n + 1 is even) and h(x) < 0 if n is even
(and hence degh = (n + 1) is odd). This proves that there is a root, say, ~y; of h(x)
satisfying y; < «;. Since the total number of roots of & cannot exceed n + 1, we
conclude that every interval («;, oyy) fori = 1,...,n — 1 contains exactly one
root, say v;+; of 7 and hence f interlaces A. (Il

The coefficients of a polynomial with real roots satisfy some interesting inequal-
ities.

2.3.3 Theorem. Suppose that the roots of a real polynomial

px) = Z ajxj
j=0

are real. Then

1 1
ajz_aj_laj+1(1+—,)(1+ ) for j=1,...,n—1.
J n—j

Equivalently, for
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we have
bi = bj_ibjy for j=1,....n—1

Proof. Repeatedly applying Rolle’s Theorem, we conclude that the roots of the
polynomial

di=! . k!
q(x) = dx—;P(X) = z m

j—1
k=j—1

akxkfjJrl

are also real. Hence the roots of the polynomial

, 1 - k!
E— ey —) = E : e n—k
re)=x q(x)_ (k—j+1)!akx

fe=j—1

are also real. Applying Rolle’s Theorem again, we conclude that the roots of the
quadratic polynomial

n—j—1

S =y (0)

_(m—j+ DG = Dlaj—,
2

( + DI — j = Dlajy,

xz—l—j!(n—j)!ajx—i— 5

are real. Therefore,
(jln = Play)® = (= j+ Dl —j— DIG — DIG + Dlajya4
and the proof follows. (]
When the coefficients a; are non-negative, we conclude that
a2

2 .
J > aj_1aj4] for j=1,...,n—1,

which means that the sequence ag, ay, . .., a, is log-concave (that is, the sequence
¢; = Inaj is concave), see [St89].

2.3.4 Estimating the largest absolute value of a root of a polynomial. Let f(7)
be a monic polynomial with real roots ay, ..., a,, so

fO = bt =] -a,
i=0 i=1

where by = 1.
Let
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be the power sums of roots. Knowing the k + 1 highest coefficients by, ..., by of
f allows us to compute py, ..., pr using Newton’s identities:

p1=—by, pr=—bpi—2by, p3=—bipy—bip —3b3
and, more generally,

k-1
pr = —kb; — Zbipk—i-
i—1

On the other hand, since a; are real, we have

1

.....

In particular, by choosing k = O (In(n/€)), we can approximate max,;—; ., |a;|
within a relative error € by (pa) /.

2.4 [H-Stable Polynomials

2.4.1 Definition. Let f(zj, ..., z,) be a complex polynomial. Given a set 2 C C,
we say that f is Q-stable provided

f(z1,...,2,) #0 whenever zi,...,z, € Q.

If
Q:{z: ?sz>0}

is the open upper half-plane, we call f H-stable. In other words, f is H-stable if
f(z1,...,z4) #0 whenever Jzy,...,3z, > 0.

We note that if f(z) is an H-stable univariate polynomial with real coefficients
then all roots of f are necessarily real, since complex roots of f come in pairs of
complex conjugate.

The following lemma summarizes some properties of H-stable polynomials that
are of critical importance for us. We follow [Wall].

2.4.2 Lemma.

(1) Let f,, :m =1, ..., be a sequence of polynomials in n complex variables and
let f be a polynomial such that
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uniformly on compact subsets of C". If all f,, are H-stable then either f is

H-stable or f is identically 0;
(2) Let f(z1,...,2z,) be a H-stable polynomial where n > 1. Then the polynomial

9@1, ) = [ 2n-1,0)

is either H-stable or identically O.

(3) Let f(z1,-..,2n) be a H-stable polynomial and let us define
0
921,y 20) = P fzi, oo za).
Zl’l

Then either g is H-stable or g is identically O.

Proof. Part (1) follows by the (multivariate) Hurwitz Theorem which asserts that if
© C C"is a connected open set, functions f;, are analytic on €2 and have no zeros in
@, and f,, — f uniformly on compact subsets of €2 then f either has no zeros in
or is identically zero in Q (the multivariate Hurwitz Theorem immediately follows
from a more standard univariate version by restricting the functions f,, and f onto
a complex line in C" identified with C), see, for example, [KrO1].

To prove Part (2), we define a sequence of polynomials

gn(@ts i) = f (21 2o im Y

Then g,, are H-stable for all positive integer m and g,, —> ¢ uniformly on compact
subsets of C"~!. The proof now follows by Part (1).

To prove Part (3), without loss of generality we may assume that the degree of f
in z, is d > 1, so we can write

d
fGra) =D a2, (24.2.1)
k=0
where hi(zy, ..., 2,—1) are polynomials for k = 0, 1,...,d and hy; # 0. Let us
consider a sequence of polynomials
Fuzis ooz =m A f(zi, ..., Zpo1, mzy) for m=1,2,....

Then the polynomials f,, are H-stable and f,, — z%h4(z1, ..., Z,—1) uniformly on
compact subsets of C". By Part (1), the polynomial z,‘fhd (z1, ..., Zyn—1) is H-stable
and hence the polynomial h,4(z1, ..., z,—1) is H-stable. Hence

ha(z1, ..., 2a—1) #0 provided 3Jz; >0,...,3z,-1 > 0. (2.4.2.2)
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Let us fix some zy, ..., z,—1 such that Jz; > 0,...,3z,_; > 0 and consider a
univariate polynomial

p@) = f(z1,...,24-1,2) for z€C.

By (2.4.2.1) and (2.4.2.2), we have deg p = d. Since f is H-stable, all the d roots
(counting multiplicity) z of p satisfy Iz < 0. By the Gauss-Lucas Theorem, see
Sect. 2.1.4, the roots of p’ lie in the convex hull of the set of roots of p. In particular,
p'(z) # 0if Iz > 0, that is,

9z, ...y Zu—1,2) #0 provided Jz; >0,...,3z,-1>0,3z>0

and ¢ is H-stable. (I

Our goal is to prove the following result of Gurvits [Gu08] which bounds coef-
ficients of an H-stable polynomial p with non-negative real coefficients in terms of
its capacity, see Sect.2.1.5.

2.4.3 Theorem. Let p (xy,...,x,) be an H-stable polynomial with non-negative
real coefficients and such that deg p < n. Let us define polynomials p,, py—1, - - -, Po
by

0
Pn=p and pp= ———Piy1 for k=n-—1,...,0,
OXp41 0

X1=

so that py, is a polynomial in xy, ..., x; and deg p; < k.

Suppose further that the degree of xj in py does not exceed an integer dj for
k=n,..., 1

Then

where we agree that

di — 1\
(" ) =1 if de=0 or dy=1.
di

The proof of Theorem 2.4.3 proceeds by induction on the number n variables with
the following lemma playing the crucial role.

2.4.4 Lemma. Let R(t) be a univariate polynomial non-negative real coefficients
and real roots. Suppose that deg R < d for some non-negative integer d. Then

d—1
R(0) > (dd;l) inf@ if d>1

t>0
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and

RO = inf 2O i+ 4
()_}EOT yd=

x—1
h(x) _ ()C ; 1)

is a decreasing function of x > 1. Indeed, for

Proof. We note that

fx)=Inhx)=x—-1DIn(x—1)—(x —1)Inx

we have
x—1

1
fl(x)=In + - <0 for x> 1.
X
Therefore, without loss of generality, we may assume that deg R = d.
If d < 1then R(t) = rog + ryt for some rg, r; > 0 so that

. . R@) ,
inf == =r = R(0). (2.4.4.1)
1>

where the infimum is attained as t —> +o0.
Suppose thatd > 2. If R(0) = O then R(¢) =rit + ...+ rqt? for some ry, . ..,
rq > 0 and we still have (2.4.4.1) where the infimum is attained as t —> 0+.

Hence we may assume that R(0) > 0, in which case, scaling R if necessary, we
may additionally assume that R(0) = 1. Then we can write

d
R(t):H(l—é),

i=1

where aj, ..., ay are the roots of R. Since the coefficients of R are non-negative
and theconvex hull of the set roots a1, ..., oy are real, we necessarily have o <
-1

0,..., a4 <0.Denoting a; = —a; *, we obtain

d
R(t) = H(l + a;t) where ai,...,a; > 0.

i=1

Then
RO)=a +...+a;>0

and applying the arithmetic-geometric mean inequality, see Sect.2.1.1.1, we get
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d d d
t R'(0
R() < (1 + E izzl a,‘) = (1 + %Z‘) for t >0,

so that J
R(t R'(0
inf L < infg(r) where ¢g(f) =1"" (1 + Lt) .
>0 t >0 d

Since d > 2 we have g(t) —> +00 as t —> 400 and hence the infimum of g(¢) is
attained at a critical point . Solving the equation ¢'(¢) = 0, we get

P d
~ (d—DR(0)
and i
R(t d B
inf 2O poy (-9
t>0 f d—1
as desired. O

2.4.5 Proof of Theorem 2.4.3. From Parts (3) and (2) of Lemma 2.4.2, each poly-
nomial py is either H-stable or identically 0. We claim that

di — 1 - g ey
Pr—1 (-xlv"'9xk—l) > ( L ) inf M

dk x>0 Xk
forall xy,...,xi—; >0 (2.4.5.1)
and k =n,n — 1, ..., 1 with the standard agreement that
di — 1!
( £ ) =1 if dg=1 or d,=0.
dr

If py is identically O then py_; is identically O and (2.4.5.1) holds. Hence we
assume that p; is H-stable.
If k = 1 then p;(x) = ax; + b for some a, b > 0 so that

. . D1(x)
po=a = inf ——.
x1>0 X1
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If k > 2, for any fixed x; > 0, ..., xx—; > 0, we define a univariate polynomial
R(t)szl ..... x,(,l(t)=Pk(x17--~»xk—17t)~
We claim that all the roots of R are necessarily real. Indeed, R has real coefficients
and if it had a pair of complex conjugate roots o + (i for some 3 > 0 then for all
sufficiently small € > O the univariate polynomial

R(t) = pe (x1 +ie, ... . xp_1 + i€ 1)

would have had a root & + i B for some B > 0, which would have contradicted the
H-stability of p. Applying Lemma 2.4.4, we obtain

inf —=
t>0

R = (E) R
- d

k
which proves (2.4.5.1) and hence completes the proof of the theorem. (I

2.4.6 Corollary. Let p be a polynomial as in Theorem 2.4.3. Then

o" ! ce Xp
P p (X, .. Xn)
Oxy -+ 0x, nt x>0 Xy Xy,
Proof. In Theorem 2.4.3, we can choose dy = kfork =n,n—1,...,1. Then
li[ k=" m-Dn-2---1 nl
k - nn—1 - nn'

k=2
(]

In [Gul5], Gurvits noticed that Theorem 2.4.3 leads to a bound on an arbitrary
coefficient of a homogeneous H-stable polynomial in terms of the capacity, see
Sect.2.1.5.

2.4.7 Theorem. Let
p(X1, .. -yxn) = Z amxm

meM

be an H-stable homogeneous polynomial with non-negative coefficients. Suppose
further that the degree of p in x; does not exceed dy fork =1, ..., n.
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Then for a non-negative integer vectorr = (pi, ..., pp) suchthat py+...4+p, =
deg p and pr < dy fork =1,...,n, we have

no di—pe
P e — p) ™™ di!
ar = I I £ | 1 7di cap, p.
il Pkl (de — p)ldy

Proof. Without loss of generality we assume that py, ..., p, > 0 since otherwise we
consider the polynomial p obtained from p by fixing x; = 0 whenever p; = 0. By
Part (2) of Lemma 2.4.2, the polynomial p is either H-stable or identically zero (in
which case the statement of the theorem trivially holds true). We define a polynomial
q in d variables yi1, ..., Yip,, -+ Yuls -+ - Ynp, DY

Vi + oo Vi
q(...,ykl,...,yk,,k,...)=p(...,Tm,...).

It is easy to see that g is an H-stable of degree d and that

g - p_Z"
Oyir - Oyip, -+ Oy, (_; Pi!

a, =

(2.47.1)

The degree of g in every variable y;; does not exceed dy, while the degree of the
polynomial

0lq
Oyk1 -+ - OYj lyi=..=yi=0
in yi(j+1) does not exceed dy, — j for j =1, ..., px. Therefore, by Theorem 2.4.3,
adq n Pk ( dk . ] )dkj
> . A—
ayll -~'ay1p1 "’8ynpn - ]!:[1/1:[1 dk —]+ 1
« inf q(yll,---,}hpl,-~~,yn1,~--,ynp,,). (2472)
y”,...,y|/,l>0 y” ...ylm ...ynl "'yn[),,
B
We further simplify
n. Pk . di—j n _
dy — = di\(d, — )%=k
HH(d - Jl) et (2.4.7.3)
k=1 j=1 k—J+ i (di — pr)ld;
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Finally, we claim that

2 Preliminaries

inf q(y117-~~1y1p17’~-3y1111~-~aynpn) - Caprp
Yilsess Yipy >0 Vit Yipy = Ynl = Ynp,
St S =0
- inf M (2.4.7.4)
X1,eesXpy>0 X R
Indeed, given yii, ..., Yip,, Yals - - -5 Ynp, > 0, let us define
1 Pk
Xp = _Zyki for k=1,...,n.
e
By the arithmetic-geometric mean inequality, we have
Pk
x> H Vki
i=1
and hence we obtain (2.4.7.4).
Combining (2.4.7.1)-(2.4.7.4), we get the desired result. U

2.5 D-Stable Polynomials

Let
D={zeC: |z <

1}

be the closed unit disc. We are interested in D-stable polynomials, thatis, polynomials
p(z1,...,2zy) suchthat p (zy,...,z,) # Oprovided |z;| < 1 fori =1,...,n.
We start with multi-affine polynomials, that is sums of square-free monomials.

Foraset S C {l,...,n},let

ieS
denote the monomial in the complex variables z;,
Our first result is as follows.
2.5.1 Theorem. Let
f@unm)= D asz’ and g(z,

Sc{l,...n}

ceesln (We agree that ZQ = 1)

...,Zn)z Z szS

Sc{l,...n}
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be two D-stable polynomials. Then the polynomial h = f x g defined by

h(zi,...,z0) = Z cszS where cs = agbg

is also D-stable.

The polynomial & = f % g is called sometimes the Schur product and sometimes
the Hadamard product of f and g. We follow [Hi97], see also [Ru71]. The proof is
based on the Asano contractions [As70].

2.5.2 Lemma. Suppose that the bivariate polynomial
p(z1,22) =a+bzi +cz2 +daize
is D-stable. Then the univariate polynomial
q(z) =a+dz

is also D-stable.

Proof. Since p is D-stable, we have a # 0. Seeking a contradiction, suppose that g (z)
isnotD-stable. Thend # 0 and for the unique root w of ¢ we have |w| = |a|/|d| < 1,
so that |d| > |a|.
Without loss of generality, we assume that |b| > |c|. Let us fix a z, such that
|z2] = 1 and
|b+dz| = |b| +|d] > la] + |c|.

Then the set
K={b+dn)zi: |zl < 1}

is a disc centered at O and of radius |b| + |d| > |a| + |c|. Since
la + cza| < lal+|cl,

the translation K + (a + czp) of the disc K by a vector a + cz, whose length does
not exceed the radius of K must contain 0, see Fig.2.12.

Therefore, for some z; such that |z;| < 1, we have a + cz, + bz + dzz1 = 0,
which is a contradiction. Hence |d| < |a| and ¢ is D-stable. O

2.5.3 Proof of Theorem 2.5.1. We proceed by induction on the number n of vari-
ables. If n = 1, then f(2) = a + bz, g(z) = ¢ + dz and h(z) = ac + bdz. Since
f is D-stable, we have a # 0 and |b| < |a|. Since g is D-stable, we have ¢ # 0
and |d| < |c|. Therefore, ac # 0 and |bd| < l|ac|, from which it follows that % is
D-stable.
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Fig. 2.12 The disc K and its
translation

Suppose that n > 2. We can write

(as + zuasupmy) 2°

f(Z],...,Zn): Z aSzS

Il
M

g(z1,...,20) = z bsz® (bs + anSU{n}) z5.

Il
M

Let us fix any two z, w € ID. Then the (n — 1)-variate polynomials

Z (as + zasupm) z° and Z (bs + whbsupm) 2°

Sc{l,...n—1}
in n — 1 variables zy, ..., z,-; is also D-stable. This means that for any fixed
21y .-+ 2Zn—1 € D the bivariate polynomial

p(z, w) = Z ashsz® +z Z asumbsz®

Sc{l,...n—1} Sc{l,...n—1}
+w z aSbSu{n}Zs +zw Z aSU{n}bSU{n}ZS
Sc{l,...n—1} Sc(l,...n—1}
is D-stable. Lemma 2.5.2 then implies that for any fixed z;, ..., z,—1 € D the uni-

variate polynomial

q(zp) = Z asbsz® + z, Z asupmbsumz®
scil,...n—1} scil,..n—1}
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is D-stable. Therefore, for any zy, ..., z, € D, we have that

hi.oz) = D, ashst®+z, D, asumbsumz’ #0,

as required. ]

Ruelle [Ru71] generalized Lemma 2.5.2 as follows: let A, B C C be closed sets
suchthat0 ¢ Aand 0 ¢ B and let p (21, 22) = a + bz; + ¢z + dz1 22 be a bivariate
polynomial such that

p(1,220)=0 = z1 €A or z; € B.
Then for the univariate polynomial ¢g(z) = a + dz we have
q(z2) =0 = z=—z1zp forsome z; € A and z; € B.

The corresponding generalizations of Theorem 2.5.1 can be found in [Ru71] and
[Hi97].

Our next goal is to prove the following theorem of Szegd for univariate D-stable
polynomials.

2.5.4 Theorem. Let

n

f() = Zak (Z)zk and ¢(z) = gbk (Z)zk

k=0
be D-stable polynomials. Then the polynomial h = f * g defined by

n

h(z):ch(Z)zk where ¢ = arby for k=0,1,...,n
k=0

is also D-stable.

The polynomial & = f * g is called the Schur product of f and g.
Fork =0,...,n,let

a@. oz = D %

1<ij<..<iy<n

be the k-th elementary symmetric polynomial in zi, ..., z,, where we agree that
eo (21, ..., 2y) = 1. Wededuce Theorem 2.5.4 from Theorem 2.5.1 and the following
result of Szegd connecting multivariate and univariate D-stable polynomials.

2.5.5 Theorem. Let .
n
f@ =) a (k)z"

k=0



42 2 Preliminaries

be a univariate D-stable polynomial. Then the n-variate polynomial

n
F(zi,...,z,) = Zakek (2155 20)
k=0

is also D-stable.

We follow Chapter IV of [Ma66] with some modifications. We start with a lemma
known as Laguerre’s Theorem.

2.5.6 Lemma. Let p(z) be a polynomial and let n be a positive integer. For 3 € C,
we define the polynomial

q(z) =np) + (B —2)p' ).

(1) Ifdegp <nthendegq <n—1;
(2) Suppose that deg p < n, that p is D-stable and that |3| < 1. Then q is also
D-stable.

Proof. Ifdegp <n — 1thendegqg < degp <n — 1.If deg p = n with the highest
term a,z" then deg p < n — 1 since the coefficient of z" in ¢(z) is na, — na, =0,
which completes the proof of Part (1).

By continuity, it suffices to prove Part (2) assuming that deg p = n. Furthermore,
without loss of generality, we assume that p is monic. Let o, ..., a;, be the (not
necessarily distinct) roots of p, each listed with its multiplicity, so that

p@)=G@—o) - (z—ay) and |oj|>1 for j=1,...,n.
Suppose that ¢ is a root of g(z). Without loss of generality, we assume that ¢ # «;
fori =1,...,n. Then

np(Q)+ (B —-Qp() =0

and since p(¢) # 0, we have ¢ # (8 and

1 1) 1w 1
BN _N_ - 2.5.6.1
¢—=B8 np n;c—ai ( )

Suppose that |(| < 1. The transformation

1
72— —— for z€eC\D

is a bijection between C \ D and a set S C C that is either an open disc (if |[{] < 1)
or an open halfplane (if || = 1). In either case, S is convex. Moreover,
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1
C—a

Since S is convex, by (2.5.6.1), we have

eS for i=1,...,n.

! eSS
¢—=p

which implies that 5 € C \ D, a contradiction. (]

The following lemma gives a closed form description of the polynomials obtained
by a repeated application of the transformation of Lemma 2.5.6.

2.5.7 Lemma. Let

HR) =@ = a (Z)zk
k=0

be a polynomial and let 3y, ..., 3, be a sequence of complex numbers. We define
polynomials f, ..., f, by

[i@=m—j+1fi@+ (0 —2) fi@) for j=1,....n
Then

Jn =n!zak€k(51,~--,ﬂ)
=0

Proof. By the repeated application of Part (1) of Lemma 2.5.6, we have deg f; <

n—j forj =0,...,n,so that f,, is a constant. We prove by induction on Jj that
f()—Ej( ) ( )lkf() (2.5.7.1)
. = e (B —z,...,8; — P . 25.7.
jZ : 0( ])' k \P1 Z ji Z & Z

Clearly, (2.5.7.1) holds for j = 0. Assuming that (2.5.7.1) holds for j, we obtain

f1@ = =) [+ (Bis1 —2) fi @)

—k)! d*
_(n—J)Z J;' —z,...,ﬂj—z)ﬁf(z)

d <~ (n—k)! d*
(g Ly .).ek(ﬁl—z,...,ﬁj—z)ﬁf(z)-
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Using that for £ > 0 we have

d J /\
Eek(ﬁl—&--., ; ( z)
—(—k+Deer (B —z,..., 8 —2)

we obtain that the coefficient of .

d
ﬁf(Z)

in fi41(2) is

(n —k)!
mek(ﬂl—z,...,@_z)
(n—)(—k+1)(ﬁ —z) (81 — 8 2)
(n— ! i1 —2)e—1 (B —zo ..., z
(n—k+1)!
+n(nfj)!(ﬁj+l—2)ekfl(ﬁl_Z,...,ﬁj_z)
— k)
:#ek(ﬁl ﬁj—z)

(n —k)!
+m(ﬂj+l_Z)ek—l(ﬁl—z,,_,’ﬂj_z)
—k)!

:%@(ﬁl—z,...,ﬁjﬂ_z)

and the proof of (2.5.7.1) follows.
Since deg f, = 0 so that f,(z) does not depend on z, from (2.5.7.1) we obtain

n

fn :fn(o) = Z(” - k)!ek (61» BRI ﬁn)ak (Z)k‘

k=0

=n! Zakek B, ..., Bn)

as required. (]
2.5.8 Proof of Theorem 2.5.5. Let us choose arbitrary 3y, ..., 3, € D and let us
construct the polynomials f; for j = 1,...,n as in Lemma 2.5.7. By the repeated

application of Lemma 2.5.6, we conclude that f,, is D-stable, thatis, f,, # 0. However,
by Lemma 2.5.7 we have

fn :l’l!F(ﬁl,...,ﬁn)

and hence F (1, ..., 8,) # 0, which completes the proof. [l
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2.5.9 Proof of Theorem 2.5.4. From Theorem 2.5.5 we conclude that the polyno-
mials

n
F(zi,...,20) =Zakek(11,...,zn) and
k=0

G@ireza) =D bee (21, 2n)
k=0

are D-stable. Since the polynomials F' and G are multi-affine, by Theorem 2.5.1 the
polynomial

n
H(zisooiz0) = D cker (@1, 20)
k=0

is also D-stable. Then for any z € D we have
h(z)=H(z,...,2) #0
and hence 4 is D-stable. (]
We will use the following simple corollary of Theorem 2.5.4.
2.5.10 Corollary. Let
n n
f@ =2 a and g(z) = b
k=0 k=0

be two polynomials such that f(z) # 0 whenever |z| < X and g(z) # 0 whenever
|z| < pfor some N\, > 0. Leth = f xg,

n
b
h(z):chzk where ck:ak—k for k=0,...,n.

k=0 (Z)
Then h(z) # 0 whenever |z| < Ap.

Proof. The polynomials f(z) = f(Az) and g = g(uz) are D-stable. Therefore,
by Theorem 2.5.4, the polynomial h(z) = h(Auz) is D-stable. The proof now
follows. O

For extensions and generalizations of Theorems 2.5.1 and 2.5.4, see [BB09].



Chapter 3
Permanents

Introduced in 1812 by Binet and Cauchy, permanents are of interest to combina-
torics, as they enumerate perfect matchings in bipartite graphs, to physics as they
compute certain integrals and to computer science as they occupy a special place in
the computational complexity hierarchy. This is our first example of a partition func-
tion and we demonstrate in detail how various approaches work. Connections with
H-stable polynomials lead, in particular, to an elegant proof of the van der Waerden
lower bound for the permanent of a doubly stochastic matrix. Combining it with the
Bregman - Minc upper bound, we show that permanents of doubly stochastic matrices
are strongly concentrated. Via matrix scaling, this leads to an efficient approximation
of the permanent of non-negative matrices by a function with many convenient prop-
erties: it is easily computable, log-concave and generally amenable to analysis. As
an application of the interpolation method, we show how to approximate permanents
of a reasonably wide class of complex matrices and also obtain approximations of
logarithms of permanents of positive matrices by low degree polynomials.

3.1 Permanents

3.1.1 Permanent.Let A = (a;;) be an n x n real or complex matrix. The permanent

of A is defined as
perA= > []aiw. (3.1.1.1)

ogeS, i=1
where S, is the symmetric group of all n! permutations of the set {1, ..., n}.

One can see that the permanent does not change when the rows or columns of
the matrix are permuted and that per A is linear in each row and each column of A.
Moreover, if n > 1, then denoting by A the (n — 1) x (n — 1) matrix obtained from
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A by crossing out the first row and the j-th column, we obtain the row expansion

per A= > aj;perA;. (3.1.1.2)

j=1

3.1.2 Permanents and perfect matchings. If A is a real matrix and a;; € {0, 1}
for all i, j then per A has a combinatorial interpretation as the number of perfect
matchings in a bipartite graph G with biadjacency matrix A. Namely, the vertices of
GarelL,2L...,nLand IR,2R, ..., nR (“L” is for “left” and “R” is for “right”),
whereas the edges of G are all unordered pairs {i L, j R} for which a;; = 1. A perfect
matching in a graph G is a collection of edges which contain every vertex of G
exactly once, see Fig.3.1.

In this case, per A is the number of perfect matchings in G, since every perfect
matching in G corresponds to a unique permutation o such that a;,;, = 1 for all

i =1,...,n. For example, Fig.3.1 pictures a graph encoded by the matrix
1100
1001
A= 0011 (3.1.2.1)
0100

and a perfect matching corresponding to the permutation

1234
o= (1 43 2) (3.1.2.2)
Fig. 3.1 A bipartite graph
and a perfect matching (thick 1L IR
edges) 2L 2R
3L 3R
4L 4R

Fig. 3.2 A graph and a cycle
cover (thick edges)
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3.1.3 Permanents and cycle covers. A different interpretation of the permanent of
a 0-1 matrix A arises if we interpret A as the adjacency matrix of a directed graph
G. In this case, the vertices of G are 1, ..., n whereas the edges of G are all ordered
pairs (i, j) such that a;; = 1 (in particular, we allow loops). A cycle cover of G is a
collection of edges which contain every vertex of G exactly once as the beginning
point of an edge and exactly once as an endpoint of an edge, see Fig.3.2.

In this case, per A is the number of cycle covers of G, since every cycle cover of
G corresponds to a unique permutation o such that a;,;) = 1 foralli =1,...,n.
For example, Fig.3.2 pictures a graph encoded by the matrix (3.1.2.1) and a cycle
cover corresponding to the permutation (3.1.2.2).

Interpretations of Sects. 3.1.2 and 3.1.3 explain why permanents are of interest to
combinatorics, see [LP09] for more.

3.1.4 Permanents as integrals. Let 1, be the Gaussian probability measure on the
complex vector space C" with density

| E——
—e I where 2P = |z 4 Lzl for z= (a2
™

The measure yi, is normalized in such a way that
Elzi*=1 for i=1,....,n and EzZ; =0 for i # j.

Let fi,..., fu; 91, -+, gn : C* —> C be linear forms and let us define an n x n
matrix A = (aij) by

ai; =E figi= [ fi(2g;(@) dp, forall i, j.
C}X

Then
E (fi- - f,g1-gn) =perA. (3.1.4.1)

Formula (3.1.4.1) is known as (a version of) Wick’s formula, see for example, [Zv97]
and [Gu04]. To prove it, we note that both sides of (3.1.4.1) are linear in each
fi and antilinear in each g;. Namely, denoting the left hand side of (3.1.4.1) by
L(fi,--., fus91,--.,9n) and the right hand side by R (fi, ..., fu: 915 ---5 Gn), W€

observe that
L(fl»-~'sfi71sa1‘fi/+a2f‘j”s .fiJrls'-'vf;‘L;g]v"'»gn)
:all‘(fl?-~"ﬁ—l’f;'/’ﬁ+lv"-yfn;gls-"’gn)
+a2L(f]7"‘7ﬁ—17f;'//5ﬁ+l""7fn;g]7"'5gn)

and

R(fi, oo, fictoanfi+aof!, fistsooos fus G1s s Gn)
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:alR(fh--'sfi*hf;'/aﬁ+]7-~-9fn;gly-'-1gn)
+O{2R(f1""7ﬁ717f;.//1 ﬁJrl""?fn;gl?"')gl’[)

as well as

L(f],...,fn;gl,...,g,-_l,oz]g;—i—aggl{’,giH ...,gn)
=L (fi. s fai Gt Gie1s Gis Git1s - - Gn)
+@L (fis-os fas 91 G0 G Gkl - s Gn)
and
R(fl,...,fn;gl,...,g,-_l,algf+a2g;/,gi+1,...,gn)
=R (fioo s fas G Gim1 G0 Gitts <<+ Gn)
+ @R (fio ooy i Gl Gim1s G it s - ) -

Hence it suffices to check (3.1.4.1) when each f; and g; is a coordinate function.
Suppose therefore that

(f1a~--7fn): Zlv-"szls"~7zna~'-vzn and
— ——
m times my, times
(glv-~'1gn)= Zlv"'»zls'-~aznv~--vzn ’
S—— S——
k1 times k, times

where my, ..., m, and ki, ..., k, are non-negative integers such that
m+...+m, =k +...+k, =n.

If we have m; # k; for some i then the left hand side of (3.1.4.1) is O since
Ez;"g =0 provided m; #k;.

On the other hand, the right hand side of (3.1.4.1) is also 0. Indeed, without loss of
generality, we may assume that m; > k;. The matrix A contains an m; x (n — k;)
block of Os and if m; > k; each of the n! terms of (3.1.1.1) contains and least one
entry from that block and hence is 0. Thus it remains to prove (3.1.4.1) in the case
whenm; = k; foralli =1, ..., n. Since

EzZ"Z" =m;),
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Fig. 3.3 The structure of
matrix A 1 O

we conclude that the left hand side of (3.1.4.1) is m!---m,!. The matrix A in this

case consists of the diagonal blocks filled by 1s of sizes m, ..., m,, see Fig.3.3,

and hence the right hand side of (3.1.4.1) is also m!- - - m,,!. ]
One immediate corollary of (3.1.4.1) is that

per A > 0 provided A is Hermitian positive semidefinite. (3.1.4.2)

Indeed, any such A = (a;;) can be written as

a;; =E (fif;) forall i,j

and some linear forms fi, ..., f,, in which case by (3.1.4.1) we have

per A=E (fi- fufi---fu) =E (AP 1fal?) = 0.

The identity of Sect.3.1.4 has some relevance to statistics of bosons in quantum
physics, see, for example, [AA13] and [Kal6].

3.1.5 Permanents in computational complexity. Permanents occupy a special
place in the theory of computational complexity. Valiant [Va79] proved that com-
puting permanents of O—1 matrices exactly (that is, counting perfect matchings in
bipartite graphs exactly) is an example of a #P-complete problem, that is, counting
perfect matchings in bipartite graphs in polynomial time exactly would lead to a
polynomial time counting of the number of acceptable computations of a general
non-deterministic polynomial time Turing machine, see also [AB09] and [Go08].
This is especially striking since finding whether there exists a perfect matching in
a given bipartite graph is a famous problem solvable in polynomial time, see for
example, [LP09]. Exact computation of permanents of 0—1 matrices leads by inter-
polation to exact computation of permanents of matrices with 0 and £1 entries and
those turn out to be sufficient to encode rather involved computations. In the alge-
braic complexity theory, permanents stand out as universal polynomials, see Part 5
of [B+97].

Permanents also stand out as an example of the problem where randomized algo-
rithms so far substantially outperform deterministic algorithms. The Monte Carlo
Markov Chain algorithm of Jerrum, Sinclair and Vigoda [J+04] approximates per-
manents of non-negative matrices in polynomial time and none of the deterministic
algorithms could achieve that so far, see also Sects. 3.7 and 3.9 below.
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3.2 Permanents of Non-negative Matrices
and [H-Stable Polynomials

3.2.1 Permanents and products of linear forms. Let A = (a;;) be an n x n matrix
and let zy, ..., z, be complex variables. The following simple formula has many
important consequences:

an n n
A= ——— iizi |- 3.2.1.1
per 8zl~-aan Za,zl ( )

i=1 \ j=1

In other words, per A is the coefficient of z; - - - z, in the product (3.2.1.1) of linear
forms.

‘We note that if A = (ai j) is a non-negative real matrix with non-zero rows, then
the polynomial

f @i z0) =H Zaijzj

i=1 \ j=1

is H-stable, see Sect.2.4, since

n
J Zaijzj >0 provided 3z; >0 for j=1,...,n.

j=1
More generally, let ay, ..., a, be the columns of A, so that A = [ay,...,a,].
Given a non-negative integer vectorm = (my, ..., m,) suchthatm;+...4+m, = n,
let
Ap=lay,...,a,,....,ak,....05, ..., Gy, ..., 4,
~——— ——— ———
m times my, times mpy times
be the n x n matrix with columns consisting of m; copies of a; fork = 1, ..., n.
Then
an n n
_— a;iz; | =perA 3.2.1.2)
g 11 (S aves ) =per,

i=1 \ j=1

(if my = 0 for some k then the corresponding partial derivative is missing and so are
the copies of a; in A,,). Indeed, the left hand side of (3.2.1.2) is the coefficient of
Z}"" -z in the product of linear forms

n
ﬁ(zl,...,zn)=zaijzj,
j=1
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multiplied by m!- - -m,!. Hence the left hand side of (3.2.1.2) can be written as

fl P fnZ’]nl .. .Z:ln” d#,n’
Cnr

for the Gaussian measure u, of Sect.3.1.4, and (3.2.1.2) follows by (3.1.4.1).

3.2.2 Alexandrov - Fenchel inequalities. One immediate application of (3.2.1.1)
and (3.2.1.2) is an inequality for permanents of non-negative matrices, which is a
particular case of the Alexandrov - Fenchel inequality for mixed volumes of convex
bodies, see, for example, [Sa93].

Let [aj,...,a,] denote the n x n matrix with non-negative real columns
ai, ..., a,. Then

perz[al,...,an] > vperla;, ai,as, ..., a,)perlay, ar, a3, ...,a,]. (3.2.2.1)

By continuity, it suffices to prove (3.2.2.1) assuming that the coordinates of ay, . . ., a,
are strictly positive. Let a;; > 0 be the i-th coordinate of a;. Then, from Sect.3.2.1,
the polynomial

n n

f(m,...,zn)=H Zﬂiﬂj

i=1 \ j=1

is H-stable. Let

n—2
9(z1,22) = ———— f = uzi +2vz12, + wzs.
0z3 -+ 0z,
Using (3.2.1.2) we observe that
1 1
u=3 perlai,ai,as,...,a,], v= Eper[al, ...,a,] and
1
w =§ per[a27 aza a37 ) an]-

By the repeated application of Part (3) of Lemma 2.4.2, the quadratic polynomial g is
H-stable, which implies that v> > uw and we get (3.2.2.1). Indeed, if v> < uw then
the univariate polynomial # — u + 2vt +wt? has a pair of complex conjugate roots
a=fi forsome 3 > 0. Then, forany e > 0,the pointz; = 14+i€,z, = (a+5i)(1+ie€)
is a root of ¢(z1, z2) and if € > 0 is sufficiently small, we have Iz, = ae + 3 > 0,
which contradicts the H-stability of g.

The connection of (3.2.2.1) to the Alexandrov - Fenchel inequality for mixed
volumes is as follows. Let K1, ..., K, C R" be convex bodies and let A, ..., \, be
positive real numbers. We consider a combination A\ K| + ...+ A, K, where

AK ={\x: x € K}
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is the dilation/contraction by a factor of A and “+” stands for the Minkowski sum of
convex bodies:
A+B={x+y: xeA,ye B}

As is known, the volume vol (A K| + ... 4+ A, K},) is a homogeneous polynomial in
A, ..., A\, and its coefficient

an
V(Ki,...,K,) = ——vol (M K1+ ... + MK,
(K ) DY (MK )
is called the mixed volume of K, ..., K,. The Alexandrov - Fenchel inequality
asserts that
V2(Ky,...,Ky) > V(Ki,Ki, Kz, ..., K.)V(K2, K», K5, ..., K,). (3.2.2.2)

We obtain (3.2.2.1), if we choose K ; to be the parallelepiped, thatis the direct product
of axis-parallel intervals:

K; =10, aj;]1 x ... x [0, ayl.

In this case \{ K| + ... 4+ A\, K, is the parallelepiped

n n
0, E alj)\j X ... X 0, E anj)\j ,
j=1 j=1

cf. Fig.3.4,
so that

Fig. 3.4 Parallelepipeds K1,
K> and their Minkowski sum
K1+ K>

K.+K
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vol (A Ky 4+ MKa) = [T D i

i=1 \ j=1

and
V(Ki,...,K,) =perA where A= (a;),

We note that for general convex bodies K1, ..., K, the polynomial vol(\; K| +
...+ M\ K,,) does not have to be H-stable, cf. [Kh84].

3.3 The van der Waerden Inequality and Its Extensions

3.3.1 Doubly stochastic matrices. A real n x n matrix A = (a;;) is called doubly
stochastic if

n n
Za,‘jzl for i:l,...,n, Zaij:l for j:l’.”’n
J=1 i=1

and
ajj >0 forall i, j.

In words: a matrix is doubly stochastic if it is non-negative real with all row and
column sums equal 1.

Clearly, permutation matrices (matrices, containing in each row and column
exactly one non-zero entry equal to 1) are doubly stochastic, as well as the matrix

1
_JVH
n

where J, is the n x n matrix of all 1s.
The main goal of this section is to prove the following result, known as the
van der Waerden conjecture.

3.3.2 Theorem. Let A be an n x n doubly stochastic matrix. Then
!

n!
perA = —.
n

1
Moreover, the equality is attained if and only if A = —J,.
n

Theorem 3.3.2 was first proved by Falikman [Fa81] and Egorychev [Eg81] (earlier
Friedland [Fr79] proved a slightly weaker bound per A > e™"). Our exposition
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follows Gurvits’ paper [Gu08] with some simplifications introduced in [Wal1] and
[LS10]. We use the notion of capacity, see Sect.2.1.5, Theorem 2.4.3 and Corollary
2.4.6.

333 Lemma. Let A = (a,- j) be an n x n doubly stochastic matrix and let

n n
P(xl,--.,xn)=l_[ Zaijxj

i=1 \ j=1

Then
inf p(xl,—,xn) -1
X{yeens x,>0 X1 Xp
Proof. Clearly, p(1,...,1) = 1 and hence the infimum does not exceed 1. On the

other hand, using the arithmetic-geometric mean inequality, see Sect.2.1.1.1, we
conclude that for xy, ..., x, > 0 we get

(o) = T (1T) = T1(1T) =TT 65 =TT

i=1 \ j=1 i=1 \ j=I j=1 j=1

and hence the infimum is at least 1. (]
To prove the van der Waerden inequality, we use H-stability, see Sect.3.2.

3.3.4 Proof of Theorem 3.3.2. As in Sect.3.2.1, we define a polynomial p = py
in n variables xq, ..., x,:

n n
p(xlv~--sxn):H ZCI,’/’XJ‘

i=1 \ j=I

As we discussed in Sect. 3.2.1, the polynomial p is H-stable and hence by Corollary
2.4.6, we have
d"p n . p(x1,...,xp)

[ 3.3.4.1
axl...axn o xg, x, >0 X1 Xp ( )

By (3.2.1.1), the left hand side of (3.3.4.1) is per A, while by Lemma 3.3.3, the
infimum in the right hand side of (3.3.4.1) is 1.

In the uniqueness proof, we follow [LS10]. Suppose now that A is a doubly
stochastic matrix such that per A = n!/n". Then inequality (3.3.4.1) is, in fact,
equation. Analyzing the proof of Theorem 2.4.3 in Sect.2.4.5, we conclude that for

n n—1
= E aan E aijxji |,

=0 k=1 iii#k \ j=1

Q(Xh...,xn—l)—axn H Zauxj
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we must have

n—1
inf qo‘"""“”:(” 1) . (3.3.4.2)

Xpyees X1 >0 X1 Xp—1 n

Applying the arithmetic-geometric mean inequality, see Sect.2.1.1.1, we conclude
that for all x; > 0, ..., x,—; > 0, we get

n n—1 Ghn n n—1 hn
q(x1, ...y Xp—1) ZHH E ajjXx; =HH E ajjX;
k=1ii#k \ j=1 i=1kki \ j=1

1—(1,‘,1
n n—

1
(S

i=1 \ j=I
Using the arithmetic-geometric mean inequality again, we conclude that for all x; >
0,...,x,-1 > 0, we have

1—a;
n—1 "

n ai‘
g o) [T 0 =am 3=
j=1 n

i=l1

n—1

n
>[T{a—am' ]«

i=1 j=1

n n—1
Z(H (1- am)“’m) [
j=1

i=1

Therefore,
inf M > H(l — )

Xy Xn—1>0 0 X1 ... X1 i1

By (3.3.4.2), we must have

[0 - < (”‘1)"_1 (3.34.3)
m p— n . ST

i=1

Now, since the function t — ¢ Int is strictly convex for r > 0, see Sect.2.1.1.2, we
conclude that

n n

| < fH+...+t, H+...+1,
— E tilnt; > In
n

i=1
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for all 1, ..., 1, with equality if and only if #;, = ... = ¢,. Applying it with t; =
1 —aj,, we get

I « n—1_ n—1
- E (I—ai)In(l —ay) > In
n 4 n
i=1
with equality if and only if @;, = 1/n fori = 1, ..., n. In other words,

n n—1
1_[ (1 - ai11)17ai” > (n — 1)
i=1 n

withequality ifand only ifa;, = 1/nfori =1, ..., n. Comparing this with (3.3.4.3),
we conclude that if per A = n!/n, we must have a;, = 1/n fori =1, ..., n. Since
the matrix obtained from a doubly stochastic matrix by a permutation of columns
remains doubly stochastic with the same permanent, we conclude that a;; = 1/n for
all i and j as desired. O

3.3.5 Sharpening. Suppose that A is a doubly stochastic matrix and that, addi-
tionally, the j-th column of A contains not more than k; non-zero entries for some
1 <kj<nandj=1,...,n Using Theorem 2.4.3, we obtain

o "ok —1\M!
A=——p > / 3.3.5.1
per 8x1--~8xnp_11_[1( 3 ) ( )

or, even sharply,

mln{], } —1 min{j,k;}—
, 3352
o= () 6332

where the corresponding factor is 1 if min{j, k;} = 1. Inequalities (3.3.5.1) and
(3.3.5.2) are also due to Gurvits [GuO8]. In the case when all k; = 3 for all j, the
inequality (3.3.5.2) was obtained by Voorhoeve [Vo79] and in the case when all k;
are equal, the inequality (3.3.5.1) was obtained by Schrijver [Sc98]. In the case of
all k; equal, we will give a different proof of (3.3.5.1) in the particular case when
the non-zero entries of A are 1/k in Theorem 5.3.6, where we also show, following
Csikvari [Cs14], that asymptotically, as n grows, the bound is logarithmically exact.

3.4 The Bregman—-Minc Inequality and Its Corollaries

The following inequality was conjectured by Minc, cf. [Mi78], and proved by
Bregman [Br73]. We follow the approach of Radhakrishnan [Ra97], only using the
language of partitions instead that of random variables.
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3.4.1 Theorem. Let A = (a;;) be ann x n matrix such that a;; € {0, 1} for all i, j.
Let
ri = Zaij
j=1
be the number of 1s in the ith row of A. Then

perA < H(r,-!)l/’i.

i=1
Let us define
QZ{O'G Sn D Aig() =1 for i = 1,...,n}.

Hence
per A = |Q2].

Without loss of generality, we assume that 2 # @, in which case we consider €2 as
a probability space with uniform measure.
We start with a probabilistic argument.

3.4.2 Lemma. Let us fix a permutation o € Q and an index 1 < i < n. Let us
choose a permutation T € S, uniformly at random, find k such that (k) = i and
cross out from A the columns indexed by o(7(1)),...,0(r(k — 1)). Let x be the
number of 1s remaining in the ith row of A after the columns are crossed out. Then

1
Prix=a)=— for a=1,...,1;.
ri

Proof. Let J be the set of indices of columns where the ith row of A contains 1 and
let I = o~'(J). Theni € I and x is the number of indices in 7~ (I) that are greater
than or equal to k = 7! (i). Since 7 € S, is chosen uniformly at random, 77! (i) is
equally probable to be the largest, second largest, etc. element of 7! (I). ([

3.4.3 Proof of Theorem 3.4.1
For a permutation 7 € S, we construct a family of partitions

fT,OjfT,lﬁ"'ifT,n
of 2 as follows. We let 7. o = {2}. The partition JF; ; consists of the events
Fi={oeQ: a(r(1)) =i} for i=1,...,n

(note that not more than r(;) of the events F; are non-empty). Generally, the partition
F k consists of the events
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F = {O’ eQ:o(t()=1i,...,0(1k)) = ik}
fordistinct 1 <i,...,iy <n
(again, some of the events can be empty). In particular, the non-empty events in F ,

are singletons. From (2.1.2.4), using that H({2}) = 0 and H ({F; ,}) = In ||, we
obtain

Q| =" H(Fril Fri-).

k=1

Averaging over all 7 € S,,, we obtain

1 n
In|Q| = — DD HF k| Fri) (3.43.1)

" res, k=1

For a permutation o € , let F; 4_;(o) be the block of F; ;_; that contains 0. We
consider F; ;_;(0) as a probability space with conditional probability measure and
let F; x—1(o) be the partition of that space by the events of F- ;. Then

H(Fr il Fric1) = D Pr(o)H(Fri1(0)),
geQ

cf. (2.1.2.3), and by (3.4.3.1) we have

In|Q| =% D D D Pr(0)H(Frii(0)

" reS, k=1 0eQ

:ZPr (0')% Z ZH(fr.k—l(G))-

geQ " res, k=1

(3.4.32)

We fix an arbitrary o € Q and consider the sum

1 n
- > D H(Friai(0). (3.4.3.3)

" reS, k=1

Recall that F; ;_; (o) is the partition of the probability space €2 consisting of all
permutations 7 € €2 such that 7(7(1)) = o(7(1)), ..., 7(r(k — 1)) = o(r(k — 1))
into the events defined by the choice of 7(7(k)). We rearrange (3.4.3.3) in accordance
with the value of i = 7(k):

% Z Z H(Fr1(0)) = Z % z H(F: 1)-1(0)) (3.4.3.4)
i=1

tres, k=1 ' res,
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and consider each term 1
- > H(Frrri-1(0) (3.4.3.5)

" res,

separately.

Now, the partition F -1¢)—1(c) looks as follows. We fixedoc € Qand1 <i < n.
For the permutation 7, we find k such that 7(k) = i, consider the probability space of
all permutations 7 € Qsuchthatw(7(1)) = o(7(1)), ..., w(r(k—1)) = o(7(k—1))
endowed with uniform probability measure and partition it according to the value of
m(i). By (2.1.2.2),

H (.7:7—77——1(,'),1(0')) < Ina provided F. ;-1(;—1(0) contains a events.

By Lemma 3.4.2, the value of (3.4.3.5) does not exceed

1 < 1
—>Ina=—In(r").
ri a=1 ri

Then by (3.4.3.4), the value of (3.4.3.3) does not exceed

n

> rl In(r;)).

i=1 !

By (3.4.3.2), we get

n

1
Q| < > —In(r),
r

i=1 1
and the proof follows. O

3.4.4 Remark. Let J, be the r x r matrix filled with 1s. If A is a block-diagonal
matrix with blocks J,,, ..., J,,, then

m
per A = H ril,
i=1

from which it follows that the bound of Theorem 3.4.1 is sharp.
Theorem 3.4.1 allows us to bound permanents of stochastic matrices.

3.4.5 Corollary. Suppose that A = (a,- j) is an n X n stochastic matrix, that is,
a;j > 0 foralli, j and
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n

>ay=1 forall i=1,....n. (3.4.5.1)
j=1
Suppose that
1
dij = forall i, j (3.4.5.2)
and some positive integers by, ..., b,. Then

L (b;)V/hi
perA < H%

i=1

Proof. Let us fix all but the i-th row of an n x n matrix A and allow the ith row
vary. Then per A is a linear function in the i-th row @; = (a;, ..., ai). Let us
consider the polytope P; of all n-vectors a; = (a;1, ..., a;,) such that all entries
a;; are non-negative and the conditions (3.4.5.1) and (3.4.5.2) are met. By linearity,
the maximum value of per A on P; is attained at a vertex of P;, in which case we
necessarily have a;; € {0, 1/b;;} for j = 1,...,n. Indeed, if 0 < a;;, < 1/b; for
some j; then there is another j, # j; such that 0 < a;;, < 1/b; (recall that b; is an
integer). In that case, we can write @; = (a} + a?) /2, where a/ is obtained from g;
by the perturbation a;;, := a;j, + €, a;j, := a;j, — € and a? is obtained from a; by the
perturbation a;, = a;;, — €, a;j, ‘= a;j, + € for a sufficiently small ¢ > 0, which
implies that a; is not a vertex of P;.

Hence we conclude that the maximum of per A on the set of n X n non-negative
matrices A = (a;;) satisfying (3.4.5.1) and (3.4.5.2) is attained when a;; € {0, 1/b;;}
for all i, j. Let B be the matrix obtained from such a matrix A by multiplying the
i-th row by b;. Then

n 1 n
per B = (H b—)perA and perB < H(bi!)l/b’
i=1 i=1

by Theorem 3.4.1. (]

The author learned Corollary 3.4.5 and its proof from A. Samorodnitsky [Sa01],
see also [So03] for a somewhat more general statement with b; not required to be
integer.

3.4.6 Concentration of the permanent of doubly stochastic matrices. The
van der Waerden bound (Theorem 3.3.2) together with the Bregman - Minc bound
(Corollary 3.4.5) implies that per A does not vary much if A is a doubly stochastic
matrix with small entries. Indeed, suppose that A is an n x n doubly stochastic matrix.

Then, by Theorem 3.3.2,
!
per A > L > e ",
n

Let us fix an o > 1 and suppose that, additionally,
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ajj < % for all i, j.
Let
b= LEJ
a 9
so that 1
ajj < 5 for all i, j
and by Corollary 3.4.5,
1/b\"
perA < ((b!;/ ) = e "'n%@,

Hence if the entries of an n x n doubly stochastic matrix are within a constant factor
of each other, the permanent of the matrix varies within a polynomial in n factor.

In fact,

n

H alj l s < perA < 2" H (1 —aij)l_aij (3.4.6.1)

i,j=1

for any n x n doubly stochastic matrix A (if a;; = 1 the corresponding factor is 1),
where the lower bound is due to Schrijver [Sc98] and the upper bound was recently
established by Gurvits and Samorodnitsky [GS14], who also conjectured that the
upper bound holds with 2" replaced by 2"/2.

The following useful inequality was conjectured by Vontobel [Vo13] and deduced
by Gurvits [Gul1] from the lower bound in (3.4.6.1)

Let A = (a;;) be an n x n positive real matrix and let B = (b;;) be ann x n
doubly stochastic matrix.Then

InperA > Zbuln + Z —bi_,-).

i,j=1 i,j=1

We prove the inequality in Theorem 5.4.2 following the approach of Lelarge [Lel5].
Note that if A is doubly stochastic, by choosing B = A we recover the lower bound
in (3.4.6.1).
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3.5 Matrix Scaling

Results of Sects. 3.3 and 3.4 provide us with some rather useful estimates of perma-
nents of doubly stochastic matrices. It turns out that computing the permanent of any
positive real matrix can be easily reduced to computing the permanent of a doubly
stochastic matrix.

3.5.1 Matrix scaling. Let A = (a,- j) be an n x n matrix. We say that A is obtained
by scaling from an n X n matrix B = (bij) if

dij =)\iujb,-j for all l,]

and some numbers Ay, ..., Ay, [, - - -5 o
‘We note that in this case

perA:(H/\i) [# | perB. (3.5.1.1)
i=1 j=1

3.5.2 Theorem. For anyn X n matrix A = (ai j) such that
ajj >0 forall i, j,

there exists a unique n x n doubly stochastic matrix B = (bi j) and positive \y, ..., A\,
and iy, . .., W, such that

a;j = \iptjbij forall i, j. (3.5.2.1)

The numbers \; and |i; are unique up to a rescaling

Ai > NiT, pj > ,ujq-_l

for some T > 0.

Proof. Without loss of generality, we may assume thatn > 2. Let 2, be the polytope
of all n x n doubly stochastic matrices X = (x;;) and let us consider a function
f R, — R defined by
n
Xis
FOX) = a2t
o aij
i,j=1
Then f is a strictly convex function, cf. Sect.2.1.1.2, and hence it attains its unique
minimum, say B = (b,-j), on 2,.
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First, we establish that b;; > 0 for all i, j. Indeed,

8if(X) =2 4, (3.5.2.2)
)C[j Cl,‘j

If x;; = 0 we consider the right derivative and conclude that it is equal to —oo, while
for any x;; > O the derivative is finite. Let %J,, € 2, be the matrix with all entries
equalto 1/n andlet B(t) = (1 —¢t)B + t%Jn, so that B(0) = B and B(1) = ﬁ]n. If
b;j = 0 for some i, j then for all sufficiently small t > 0 we have

f(B) < f(B),

which contradicts the definition of B as the minimum point of f.

Thus B is a positive matrix and therefore lies in the relative interior of €2,,. It
follows from (3.5.2.2) by the Lagrange multiplier conditions that there are numbers
ai,...,auand Gy, ..., B, such that

bi;
ln—jzai+ﬂj for all i, j.
a,-j

Letting
AN=e ™ and p; = e_@j,
we obtain (3.5.2.1).

On the other hand, if a doubly stochastic matrix B = (bij) satisfies (3.5.2.1)
then necessarily b;; > O for all i, j and B is a critical point of f on €,. Since f is
strictly convex, B must be the unique minimum point of f on €2, which proves the
uniqueness of B.

From (3.5.2.1) and the uniqueness of B, we obtain the uniqueness of \; and y;
up to a rescaling. (I

Scaling can be obtained by solving a different optimization problem.

353 Lemma. Let A = (a,- j) be an n x n positive matrix. Let us define a function
ga :R"@®R" — R by

n

gA(X,)’)= ZaijeXieri where x = (x1,...,x,) and }’=(}’1,---,y;l)
i j=1

and let L C R" & R" be the subspace defined by the equations

n n
Z)Ci = Zy] =0.
i=1 j=1
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Then g attains its minimum on L at some point (x*, y*) where x* = (&1, ..., &,) and
ye=(0n,....,m). Let

x*’ * x*’ *
)\i=€75i /gA(n )’) and ’uj:e—n,- [gA(n }’)

foralli, j and let us define an n x n matrix B = (bij) by
bij =X "u'ay; forall i j.
Then B is a doubly stochastic matrix.

Proof. First, we claim that the minimum of g4 on L is indeed attained at some point.
Let
0 =mina;; > 0.
ij
Since for all (x, y) € £, we have x; > 0 and y; > 0 for some i and j, we have
g4(0,0) ga(0,0)
n 5 n—————

roy;>1 5

ga(x,y) > ga(0,0) if x; >1
for some #, j. On the other hand, if for some (x, y) € £ we have x; < —t for some
t > 0 then x; > t/n for some j and, similarly, if y; < —t for some ¢ > 0 then
v; > t/n for some j. Therefore, the minimum of g4 on £ is attained on the compact

subset
o 9a 0,0
1)

x| forall i, .

yj| < nl

At the minimum point, the gradient of g, (x, y) is orthogonal to £, so for some «
and 3 we have

n
E ajet =a for i=1,...,n
Jj=1

and (3.5.3.1)

n
Zaijef"““ =8 for j=1,...,n.
i=1

Summing the first set of equations overi = 1, ..., n and the second set of equations
over j = 1,...,n, we conclude that

n

E aijef"“” =na =ng,

ij=1
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SO
1

a=L0=—ga(x* y)
n
and the proof follows from (3.5.3.1). U

3.5.4 Remark. Theorem 3.5.2 was proved by Sinkhorn [Si64], who used a different
approach. He showed that, given a positive matrix A, the repeated row and column
scaling (first, scale all rows to row sum 1, then scale all columns to column sum 1,
then again rows, then again columns, etc.) converges to the desired doubly stochastic
matrix B. An approach to scaling via a solution of an appropriate optimization
problem (similar to our Lemma 3.5.3) was used in [MOG68] and several other papers
since then.

Clearly, not every non-negative matrix can be scaled to doubly stochastic (for
example, the matrix of all zeros cannot). Some non-negative matrices can be scaled
arbitrarily close to doubly stochastic, but cannot be scaled exactly, for example the

matrix
10
A= (1),

Indeed, multiplying the first column by € > 0 and the first row by ¢!, we obtain the

matrix
10
o= (1)

with row and column sums arbitrarily close to 1, but never exactly 1. It is shown
in [L+00] that a non-negative matrix A can be scaled arbitrarily close to a doubly
stochastic matrix if and only if per A > 0 and that it can be scaled exactly to a doubly
stochastic matrix, if, in addition, whenever for aset I C {1, ..., n} of rows and for
aset J C {1,...,n} of columns such that |/| + |J| = n we have ¢;; = O fori € I
and j € J, we must also have a;; = O forall i ¢ I and j ¢ J. The conditions for
approximate and exact scaling can be efficiently (in polynomial time) verified. Also
[L+00] contains the fastest known algorithm for matrix scaling.

As is observed in [L+00], formula (3.5.1.1) together with the inequality

n!
— < perB <1
n

for the permanent of a doubly stochastic matrix B allows one to estimate the perma-
nent of any n x n non-negative matrix A within a multiplicative factor of roughly "
and the inequality (3.4.6.1) improves the factor further to 2" (and, conjecturally, to
2"/2). Computationally, matrix scaling is very efficient and in view of Sect. 3.4.6 it is
natural to ask for which matrices A their doubly stochastic scaling B will not have
large entries, so that a better upper bound on per B can be used.
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3.5.5 Definition. Let A = (a;;) be an n x n positive matrix. For a > 1 we say that
A is a-conditioned if

ajj, < aajj, forany 1<1i,j,j»<n

and
ajj < aa;,; forany 1 <iy, i, j<n.

In words: an n x n positive matrix is a-conditioned if the ratio of any two entries of
A in the same row and the ratio of any two entries of A in the same column do not
exceed o.

3.5.6 Lemma. Let A be an n x n matrix which is a-conditioned for some o > 1.
Let B = (b,- j) be the doubly stochastic matrix obtained from A by scaling. Then B

is o*-conditioned. In particular;
o2
bijj < — forall i,j.
n
Proof. Let A = (a;;) andlet \y, ..., A, and i1, ..., p, be positive real such that
b,‘j = )\iujaij for all i, J
Then 5
, o )
Jin _ Ba G iy forall 1< gy, o < (3.5.6.1)
bi.iz Hj, dij, Hj,
Since

D bij =D by =1,
i=1 i=1

we conclude that

i 1
Bi > — forall ji, jb.
Hj @
On the other hand, since
i 1
G > 2 forall ji,
a,-h «
from (3.5.6.1) we conclude that
b;; 1
> — forall ji, jo. (3.5.6.2)

bijz [0}
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Similarly, we prove that

forall iy,1i,

and hence B is a2-conditioned.

Since
> by=1 forall i=1,...n,
j=1
we have 1
bjj > — forevery i andsome j
n
and the proof follows by (3.5.6.2). ]

Lemma 3.5.6 together the observation of Sect.3.4.6 and formula (3.5.1.1) allows
us, given an n X n positive matrix A whose entries are within a constant factor of
each other, to compute per A by scaling within a polynomial in n factor.

Although the scaling factors Ay, ..., A\, and py, .. ., i, are not uniquely defined
by the matrix, Theorem 3.5.2 implies that their product A - - - A, i - - - 1, is a function
of the matrix. It has some interesting convex properties.

3.5.7 Lemma. Forann X n positive matrix A = (ai j), let us define a number f(A)
as follows: Let B = (b,-j) be a doubly stochastic matrix and let \y, ..., \, and
s -, by be positive numbers such that

aj; = )\iujbij for all i, ]
Let

f(A) = (H Ai) [1w
i=1 j=1

Then f is well-defined and satisfies the following properties:

(1) Function f is homogeneous of degree n:
f(aA) =a" f(A) forall a>0

and all positive n X n matrices A;
(2) Function f is monotone:

f(C) = f(A)

for any positive n X n matrices A = (a,- j) and C = (c,- j) such that

cij < aij forall i, j;
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(3) Function f'/" is concave:
FU AL+ Ay = arf(AD + oo f"(A)
for any positive n x n matrices Ay and A, and any oy, o, > 0 such that

a)+ap =1,

Proof. Theorem 3.5.2 implies that f is well-defined and Part (1) is straightforward.
As in Lemma 3.5.3, let us define

n
galx,y) = Z a;je"

ij=1

and let £ C R" @ R”" be the subspace defined by the equations x; + ... +x, =0
and y; + ...+ y, = 0. Then, by Lemma 3.5.3,

1
fA) =— xn;m gu(x,y).

Since gc(x, y) < ga(x, y) forall (x, y) € £ provided ¢;; < a;; foralli, j, the proof
of Part (2) follows.
We have

1/n 1
fA) = —(mgn ga(x,y)

and hence for A = a1 A| + a2 A, we have
1/n 1 . 1 .
f77(A) == min ga(x,y)=— min ajga, (x,y)+ax9A2(x,y)
n (x,y)el n (x,y)el

]
>— min_gg, (x, y)+— min__ga,(x,y) = a1 f/(AD +aa f1"(A),
n (x,y)el (x,y)el

which completes the proof of Part (3). (I
It is not hard to see that the function f of Lemma 3.5.7 is the capacity

p('xlv'-~v-xn)
Xlyeens X, >0 X1 Xp

of the polynomial

n n
p(X1, -y Xp) = H Zaijxj ;

i=1 \ j=I

cf. Sect.2.1.5 and Lemma 3.3.3.
We state the scaling theorem in the most general form (we will use it later in
Chap. 8).
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3.5.8 Theorem. Let r = (ry,...,ry) and ¢ = (cy,...,cy) be positive integer
vectors such that

m n

Z ri = Z Cj = N.

i=1 j=1

Then for any positive m X n matrix A = (a[ j) there exists an m X n positive matrix
B = (b,-j) with row sums ry, ..., Iy and column sums ci, ..., ¢, and positive real
Ay eves Apand py, ..., py, such that

ajj = )\iﬂjbij forall l,J

Moreover, givenr, ¢ and A, the matrix B is unique and can be found as the minimum
point of the function
)C,'j
f = E Xij In —
Cl,'j

1<i<m
1<j=n

on the polytope 2, . of non-negative m x n matrices with row sums r and column
sums c. The numbers \; and (i; are unique up to a rescaling

Ai > NT, pj > ,ujT_l

for some T > 0 and can be found as follows:
Let us define g4 : R" @ R* — R by

galx,y) = Z aijexiﬂ'.z for x =(x1,....,xn) and y=1,...,Yn)

1<i<m
I<j=n

and let L, . C R™ @ R" be the subspace defined by the equations

m n
Zr,»x,:o and chyj=0.
i=1 j=1

Then the minimum of ga on L, is attained at some point x* = (&1, ...,&y) and
y =, ..., n) and we may let

)\[ :e_& gA(x » Y ) Clnd /lj :e—nj gA(x » Y )
V N v N

foralli, j. (I

The proof is very similar to those of Theorem 3.5.2 and Lemma 3.5.3 and therefore
omitted.
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3.6 Permanents of Complex Matrices

In this section, we take a look at the permanents of matrices with complex entries.
Such permanents are of interest in physics, see, for example, [AA13] and [Kal6].
First, we prove that the permanents of matrices sufficiently close to the n x n matrix
J,, of all 1s is not 0.

3.6.1 Theorem. There exists an absolute constant 6o > 0 (one can choose 6y = 0.5)
such that for any n X n matrix A = (ai j) with complex entries satisfying

|1—a,",~} < §g forall i,j

we have

per A # 0.

Geometrically, the £*° distance from the matrix J,, to the hypersurface per Z = 0
in the space C"*" of n x n complex matrices is bounded below by a positive constant,
independent on n. Later, in Theorem 5.5.3, we prove that per A # 0 if the £ distance
of every row and column of an n X n complex matrix A to the vector of all 1s does
not exceed yn for some absolute constant v > 0 (one can choose v = 0.0696).

In view of Theorem 3.6.1, we can choose a branch of Inper A for all matrices
A= (aij) satisfying ‘1 — a,»j| < J¢ such that In per J, is a real number, where J,, is
the n x n matrix of all 1s.

3.6.2 Theorem. Let us fix some 0 < & < &y, where 0 is the constant in Theorem
3.6.1. Then there exists v = v(0) > 0 and for any € > 0 and positive integer n there
exists a polynomial p = p, s in the entries of an n X n complex matrix A = (a; J-)
satisfying

degp < v(Inn —Ine)

and
lInper A — p(A)] < €

provided
|1—a,-_,~} < forall i,j.

As we will see, the polynomial p(A) can be efficiently computed. The gist of
Theorem 3.6.2 is that In per A can be efficiently approximated by a low-degree poly-
nomial in the vicinity of the matrix J, of all 1s, and, in particular, per A can be
approximated there within a relative error of € in quasi-polynomial n© =" time,

Theorems 3.6.1 and 3.6.2 were first proved in [B16b] with a worse constant
0o = 0.195. Following [B16+], we give a much simplified proof achieving a better
constant.

First we prove Theorem 3.6.1 and then deduce Theorem 3.6.2 from it. We identify
C = R? and measure angles between complex numbers as vectors in the plane.
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3.6.3Lemma. Letu,...,u, € R?be non-zero vectors and suppose that the angle
between any two vectors u; and u; does not exceed o for some 0 < o < 27/3. Let
u=uy+...+u, Then

n

ul = (cos ) D luil

i=1

Proof. First, we note that O cannot lie in the convex hull of the vectors uy, ..., u,,
since otherwise by the Carathéodory Theorem it would have lied in the convex hull
of some three vectors u;, u;, u; and then the angle between some two of these three
vectors would have been at least 27/3, see Fig.3.5.

Hence the vectors uy, . .., u, lie in an angle measuring at most .. Let us consider
the orthogonal projections of uy, ..., u, onto the bisector of the angle, see Fig.3.6.

Then the length of the projection of u; is at least |u;| cos(a/2) and the length of
the projection of u is at least (Ju;| + ... + |u,|) cos(a/2). Since the length of u is at
least as large as the length of its orthogonal projection, the result follows. [

In [B16b] a weaker bound with \/cos « instead of cos(a/2) is used (assuming
that & < 7/2). The current enhancement is due to Bukh [Bul5].

3.6.4 Lemma. Let uy,...,u, € C be non-zero complex numbers, such that the
angle between any two vectors u; and u j does not exceed « for some 0 < o < 27/3
andletQ < § < cos(a/2) be areal number. Letay, ..., a, andby, ..., b, be complex
numbers such that

Fig. 3.5 If the origin lies in
the convex hull of the vectors
then the angle between some
two vectors is at least 27 /3

Fig. 3.6 Projecting vectors
onto the bisector of the angle




74

3 Permanents
}l—ai,“ < 4 and ll—bj} <9 for j=1,...,n.
Let

U=Za‘,~uj and w:ijuj.
j=1 j=1
Then v # 0, w # 0 and the angle between v and w does not exceed

2 arcsin

cos(ar/2)
Proof. Letu =u; + ...+ u,. Then, by Lemma 3.6.3, u # 0 and

a n
lu| > cos (E) >yl

j=1
By the triangle inequality, we have

j=1

—ul < > |[1—a;|lujl <6 |ujl.
j=1
Therefore, the angle between v = (v — u) + u and u does not exceed

D lv—u
0:arcsm| |

1)
arcsin ————,
u| cos(a/2)
see Fig.3.7.

Similarly, the angle between w and u does not exceed 6 and hence the angle
between v and w does not exceed 26.

O
3.6.5 Proof of Theorem 3.6.1. Let us choose

60 =05 and a= z.

Fig. 3.7 The angle between

a and a + b does not exceed ’
arcsin \l%‘l provided |b| < |a|
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We denote by U, the closed polydisc U, C C"*" consisting of the n x n complex
matrices A = (ai j) such that

|1—Clij| < Jy forall i,]J.

We prove by induction on n the following statement.

For every matrix Z € U, we have per Z # 0 and, moreover, if A, B € U, are two
matrices that differ in one row (one column) only, then the angle between non-zero
complex numbers per A and per B does not exceed a.

If n = 1 then any a € U is necessarily non-zero, since 6y < 1. Moreover, the
angle between any two a, b € U, does not exceed 2 arcsin 69 = 7/3 < «, cf. Fig.3.7.

Suppose that n > 2 and assume that the above statement holds for matrices
from U,_;. Let A, B € U, be two matrices that differ in one row or in one column
only. Without loss of generality, we assume that the matrix B is obtained from A
by replacing the entries a;; in the first row by some complex numbers b, ;, where
Jj =1,...,n. Using the row expansion (3.1.1.2), we obtain

per A = ZaljperAj and per B = ZbljperAj,

j=1 j=1

where Aj is the (n — 1) x (n — 1) matrix obtained from A by crossing out the first
row and the j-th column. We have A; € U/,_; and, moreover, up to a permutation
of columns, any two matrices A, and A, differ in at most one column. Therefore,
by the induction hypothesis per A; # 0 for j = 1, ..., n and the angle between any
two non-zero complex numbers per A, and per A, does not exceed c.

We apply Lemma 3.6.4 with u; = perA;, a; = ay; and b; = by; for j =
1,...,n.Since dy < cos(a/2), by Lemma 3.6.4 we have per A #~ 0 and per B # 0
and the angle between per A and per B does not exceed

1
= 2arcsin — =

0.5 z
cos(m/4) V22

2 arcsin = 2 arcsin = q,

0
cos(a/2)
which completes the proof. ]

The value of §y = 0.5 is the largest value of § for which the equation

« = 2arcsin ———
cos(a/2)

has a solution «. Indeed, the above equation can be written as

(sin %) (cos %) =4, thatis, sina = 20.
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3.6.6 The optimal value of §y. What is the optimal value of §j in Theorem 3.6.1?
To be more precise, since it is not even clear whether the optimal value J, exists,
what is the supremum of all possible values of §y in Theorem 3.6.1? Since

L4i 1oi
per(&i é) =0
z 2

we must have

3
5o < ‘/7_ ~ 0.7071067810.

Moreover, Bukh [Bul5] showed that for

1+ 1—1
a= ti and b= !

2 2

we have
a b a b a b
b a b a ...b a
per i =0
a b a b ...a b
b a b a ...b a
n=2 mod 4

and hence there is no hope that the value of §, might improve as n grows.
Now we deduce Theorem 3.6.2 from 3.6.1.

3.6.7 Proof of Theorem 3.6.2.Let A = (a,- j) be an n x n complex matrix satisfying
la;; — 1] < 0 forall i, j and let J = J, be the n x n matrix of all 1s. We define a
univariate polynomial

g(z) = per(J + z(A — J,))

with deg g < n. Let

By Theorem 3.6.1,
g(z) #0 provided |z| < f.

Let
f(@)=1Ing(z) for |z|] <1,

where we choose the branch of the logarithm that is real for z = 0. We note that by
Theorem 3.6.1 the function f is well defined and we have

f(O)=Inn! and f(1) =InperA.
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We consider the Taylor polynomial of f atz = 0:
m Zk dk

(@) = £(0 @) 3.6.7.1

Pn(@) = f( >+;k! @, (3.6.7.1)

By Lemma 2.2.1, we have

n

|pm(1) _lnperAl = |pm(A) - f(1)| = (m + 1)ﬂm(ﬁ_ 1)

In particular, to approximate In per A within an additive error of € > 0, we can choose
m < ~y(Inn —Ine) in (3.6.7.1) for some v = (d) > 0.

It remains to show that p,, (1) is a polynomial of degree m in the matrix entries
a;; of A. Our first observation is that the k-th derivative g (0) is a polynomial of
degree k in the entries of the matrix A, which can be computed in 7°® time. Indeed,

dk dk n
ﬁg(Z)L:o =T ST+ 2 (aioe — 1)) L:o

oes, i=1
= Z Z (ailff(il) - 1) e (aika(ik) - ]) ’
0€Sy (i1,..s0k)
where the last sum is taken over all ordered k-subsets (i1, ..., i;) of indices I <1i; <
n. Since there are (n — k)! permutations o € S, that map a given ordered k-subset
(i1, ..., i) into a given ordered k-subset (ji, ..., jr), we can write
PO ==k D (an = 1) (@ — 1), (3.6.7.2)
(i1semri)
tseens Ji)
where the last sum is taken over all pairs of ordered k-subsets (iy, ..., i) and
(J1, .-+, jx) of indices between 1 and n. As follows from Sect.2.2.2, the deriva-
tives f ®(0) fork = 1, ..., m can be found in O(m?) time as linear combinations
of the derivatives g(") (0) for k = 1, ..., m with coefficients depending on k only,
which completes the proof. (]

Kontorovich and Wu [KW16] implemented the algorithm of Sect.3.6.7 for com-
puting the polynomial p(A) and performed numerical experiments. Computing
g®(0) reduces to computing the sum of permanents of k x k submatrices of A — J,,
and Kontorovich and Wu used for that purpose an efficient algorithm of [FG06]. It
turned out that for n x n matrices A = (aij) satisfying |1 — a;;| <0.5andn < 20
(so that the exact value of per A can be computed for comparison), polynomials p
of degree 3 already provide reasonable approximations (they approximate In per A
within an about 1% error). On the other hand, polynomials p of degree 3 can be
easily computed for 100 x 100 matrices.


http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Let A be an n x n complex matrix such that per A # 0 and suppose that the
£>°-distance from A to the complex hypersurface per Z = 0 is at least dy for some
0o > 0. It follows from the proof of Sect.3.6.7 that for any 0 < d < ¢y there is a
constant v = () > 0 and for any 0 < € < 1 there is a polynomial p = p4 s, in
the entries of an n x n matrix B = (b;;) such that deg p < y(Inn — In¢) and

llnperB —pA,(;,E(B)‘ < € provided ‘aij —bij‘ <¢§ forall i, .

Of course, depending on A, the polynomial p might be hard to compute (it is easy
when A = J,, the matrix of all 1s).

3.6.8 Remark. Iftheentries of ann xn real matrix A = (ai j) are (weakly) decreasing
down each column, that s, if a;; > a1); foralli, j then the roots of the polynomial

p(z) = per (J,, + zA) are real. Moreover, the n-variate polynomial
P @iy zn) =per (L D(zys ..oy 20) + A)

where D (zi, ..., 2,) is the diagonal matrix having z;, ..., z, on the diagonal, is
H-stable [B+11].

A different approach to approximation of permanents by Taylor polynomial
expansions around J, is described in [Mc14].

3.7 Approximating Permanents of Positive Matrices

As follows from Sect. 3.5, for any o > 1, fixed in advance, the permanent of an
a-conditioned n x n positive matrix A can be approximated in polynomial time
within an n°©" factor. Understanding permanents of complex matrices allows us to
approximate permanents of such matrices better: we show that we can approximate
the permanent within arbitrarily small relative error in quasi-polynomial time. More
precisely, we prove the following result.

3.7.1 Theorem. For any 0 < § < 1, there exists v = v(0) > 0 such that for any
positive integer n and any real 0 < € < 1 there exists a polynomial p = p, 5. with
deg p < v(Inn —Ine) in the entries a;; of an n x n real matrix A = (a;;) such that

nper A — p(A)| < e

provided
|1—a,-j} < forall i,j.

We show that the polynomial p, ;. can be computed in pOUnn—Ine me where the
implicit constant in the “O” notation depends on § alone.
We deduce Theorem 3.7.1 from the following result.
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3.7.2 Theorem. Letusfixareal0 <6 < 1 andle
LT
7= (1—4§)sin (Z — arctan 6) > 0.

Let Z = (z,-j) be an n x n complex matrix such that
|1—f)iz,<j| < 0 and |Szij| <71 forall 1<i,j<n.

Then
per Z # 0.

We note that

1 —6)?
(1—5)sin<%—arctan5) > % forall 0<d<1

and so
(1 — 5)2
T=———T—"

2

satisfies the condition of Theorem 3.7.2.

We prove Theorem 3.7.2 first and then deduce Theorem 3.7.1 from it.

As in Sect. 3.6, we identify C = R? and measure angles between non-zero com-
plex numbers as between non-zero vectors in the plane. We start with a simple
geometric lemma.

3.7.3 Lemma. Letuy,...,u, € Cbenon-zerocomplex numbers such that the angle
between any two u;, u; does not exceed /2.

(1) Let
n n
v=2ai,~uj and w:Zﬁjuj
j=1 im1
where o, . .., o, are non-negative real and (3, . . ., 3, are real such that
18| < a; for j=1,...,n.
Then
lwl < |vl;
(2) Let

n n
v = E aju; and w = E Bju;j
=1 j=1

where ay, ..., q, and By, ..., 3, are real such that
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‘l—aj’ < 6 and ’l—ﬁj’ <4 for j=1,...,n

and some 0 < § < 1. Then v # 0, w # 0 and the angle between v and w does

not exceed
2 arctan §.
(3) Let
n n
V= Zajuj and w = Zﬁjuj
=1 j=1
where

1 —%a;| <6, 1-Rp;)| <6 and

|Saj| < T, |Sﬁj| <7 for j=1,...,n

and some 0 < § < land0 <7 <1 —6. Thenv # 0, w # 0 and the angle
between v and w does not exceed

2 arctan § + 2 arcsin

-

1—46

Proof. We consider the standard inner product in R? = C, so
(a,b) = Rab.

Hence
(ui,u;) > 0 forall i, j.

We have
wi*= > BBtuu) < 3 aiatuug) = P

1<i,j<n I<i,j<n

and the proof of Part (1) follows.
To prove Part (2), let

u:Z(%ﬁj)uj and x=2(aj+ﬂj)uj,
j=1 j=1

sothat v =u 4+ x and w = u — x, see Fig.3.8. Clearly, |u| > 0.
Now, if [l —a| <dand |1 — (] < dforsome0 < < 1 and o > 3 we have

146
1-6

=<

and hence a(l —40) < B +0)

IR
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Fig. 3.8 Given |u| and |x]|,

the angle between v = u + x X X X —x
and w = u — x is the largest
when u is orthogonal to x
w
\%

<

and
a-f _,_a-f-da+h) _al-0-p0+s _

a+ g N a+ g a+f -

Therefore for all « and 3 such that |1 —«| <dand |1 — 3] < forsome0 <§ < 1
we have

la — B <5
a+ 6
Therefore, by Part (1),
[x] < Olul.
The angle between v and w is
(v, w)
arccos s
[v||w]
where
(v, w) = |ul” — |x]*.
We have
> + [w]* = 2[ul* + 2|x|?
and hence

2 2
ollw] = |ul” + [x]

with equality attained when |v|? = |w|?> = |u|? + |x|?, that is, when x is orthogonal
to u. Therefore, the angle between v and w does not exceed

lul> — |x]?

arccos —————
lu]? + |x|?

with equality attained when x is orthogonal to u and the angle is
x|
2 arctan ﬂ < 2arctan ¢,
u

see Fig.3.8. The proof of Part (2) now follows.
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In Part (3), let

n n

V=2 (Rog)uy v =2 (Nap)u w'= (N6
=1 = =i
n

and w” :Z (38;)uj.

j=1

By Part (2), the angle between non-zero vectors v” and w’ does not exceed 2 arctan 6.
By Part (1), we have

' <

T T
! d //< /.
] and 'l s |

Hence v = v'+iv” # 0and w = w’' +iw” # 0 and the angle between v and v" and
the angle between w and w’ do not exceed

arcsin

.

1-6

see Fig.3.7. The proof of Part (3) now follows. (I
Now we are ready to prove Theorem 3.7.2.

3.7.4 Proof of Theorem 3.7.2. For a positive integer n, let U, = U, (J, 7) be the
set of n x n complex matrices Z = (z;;) such that

|[1-9z;| <6 and |3z < 7 forall i, j.

We prove by induction on # a stronger statement:

For any Z € U, we have per Z # 0 and, moreover, if A, B € U, are two matrices
that differ in one row (or in one column) only, then the angle between the non-zero
complex numbers per A and per B does not exceed 7/2.

Since 7 < 1 — §, the statement holds for n = 1. Assuming that the statement
holds for matrices in U, _1, let us consider two matrices A, B € U, that differ in one
row or in one column only. Without loss of generality, we assume that B is obtained
from A by replacing the entries a;; in the first row with complex numbers by; for
j=1,...,n.Let A; bethe (n — 1) x (n — 1) matrix obtained from A by crossing
out the first row and the j-th column. Applying the row expansion (3.1.1.2), we get

per A = Za‘f perA; and perB = Zbl_,- perA;.
j=1 j=1

We have A; € U, forall j =1, ..., n, and, moreover any two matrices A; and
A}, differ, up to a permutation of columns, in one column only. Therefore, by the
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induction hypothesis, we have per A; # 0 for j = 1, ..., n and the angle between
any two non-zero complex numbers A ; and A ;, does not exceed 7/2. Applying Part
(3) of Lemma 3.7.3 with

uj=perA;, aj=ay; and B, =by; for j=1,...,n,

we conclude that per A # 0, per B # 0 and the angle between per A and per B does
not exceed

2 arctan & + 2 arcsin —— =
arctan arcsin = —.
-5 2

O

3.7.5 Proof of Theorem 3.7.1. Let A = (a;;) be an n x n real matrix such that
|1 —a;| <6 forall i,j,
let J, = J be the n x n matrix filled with 1 s and let us define a univariate polynomial
r(z) =per(J +z(A—J)) for ze€C.

Hence
r(0)=perJ =n!, r(l)=perA and degr <n.

First, we observe that as long as —a < %z < 1+ « for some « > 0, the real part
of each entry of the matrix J + z(A — J) lies in the interval

[1-0(1+a), 1+ +a)]

Similarly, as long as |3 z| < p for some p > 0, the imaginary part of each entry of
the matrix J 4 z(A — J) does not exceed pd in the absolute value. Let us choose an
o = a(d) > 0such that 5’ = 6(1 + o) < 1 and choose

!

]

p=p() = sin (% — arctan 6’) > 0.
It follows from Theorem 3.7.2 that
r(z) #0 provided —a < Rz < 1+« and [Jz] < p. (3.75.1)

Let ¢(z) = ¢s5(z) be the univariate polynomial constructed in Lemma 2.2.3, such
that
?0) =0, ¢(1)=1

and
—a < NP < 1+a and [S6(2)] < p


http://dx.doi.org/10.1007/978-3-319-51829-9_2
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provided
|z] < B forsome (3= () > 1.

The degree of ¢(z) is bounded by a constant depending on J alone.
Let us define

9(z) =r(9(2)).

Then g(z) is a univariate polynomial and deg g = (degr)(deg ¢) = O(n) where the
implicit constant in the “O” notation depends only on 4. We have

g(0) =r0)=n!, g()=r()=perA
and from (3.7.5.1) it follows that
g(z) #0 provided |z| < S.
Let us choose a branch of f(z) = In g(z) in the disc |z| < I so that
f(©) =Inn! and f(1) =Inper A

and let p,, be the Taylor polynomial of degree m of f(z) computed at z = 0, so

m d
P = SO+ (d @ )
By Lemma 2.2.1, we have

d
M) < c£9
m+ DB —1)

|f(1) — Pm

Hence one can choose m < v(lnn —In e) for some constant v = (§) > 0 such
that
[Inper A — p,(1)| < €.

It remains to show that

f® (0)

pu(1) = £(0) + Z

is a polynomial of degree at most m in the entries ¢;; of the matrix A that can be
computed in 9™ time.

As follows from Sect. 2.2.2, the derivatives f ®(0) fork = 1, ..., m can be found
in O(m?) time as linear combinations of the derivatives g®(0) fork = 1,...,m
with coefficients depending on k only.


http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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For a univariate polynomial g(z) and a positive integer m, let gp,,;(z) be the
truncated polynomial obtained from ¢ by erasing all monomials of degree higher
than m.

Since ¢(0) = 0, the constant term of ¢(z) is 0 and to compute g,,)(z), we com-
pute the truncated polynomials ¢y,1(2), r,1(z) and then truncate the composition
rim](¢pn1(2)) by discarding all terms of degree higher than m. As in Sect.3.6.7, we
observe that the k-th derivative »®(0) is a polynomial of degree k in the entries of
the matrix A, which can be computed in n°® time. Hence ¢ (0) and thus f®(0)
are polynomials of degree at most k in the entries g;; of the matrix A = (a,- j). The
proof now follows.

3.8 Permanents of a-Conditioned Matrices
and Permutations with Few Cycles

Let A = (a;;) be an n x n positive matrix which is a-conditioned for some o > 1,
cf. Definition3.5.5. Let us fix o and let n grow. It turns out that the bulk of the
permanent of A is carried by permutations with a small (logarithmic) number of
cycles. We interpret permanents as sums over cycle covers, see Sect. 3.1.3.

The following result was proved in [Bal5].

3.8.1 Theorem. Let c(0) denote the number of cycles of a permutation o € S,. For
an «-conditioned n X n matrix A = (a,j), we have

Z H Aigiy = % per A.

g€eSs,: i=1
c(0)<3a? Inn+6

Given a positive matrix A = (a[ j), we consider the symmetric group S, as a
probability space, where

Pr (o) = (per A)_l (H aig(i)) for o€ S,.
i=1

3.8.2 Lemma. Let us define random variables
Li: 8 — R fori=1,...,n,

where l;(0) is the length of the cycle of permutation o that contains i. Assuming that
A is a-conditioned, we have

2

PI‘(O’GS,,ZI[(O’):m)f for i=1,....n

n—m

andm=1,...,n—1.
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Fig. 3.9 Merging two cycles
r
1

Proof. Without loss of generality, we assume that i = 1. Let X C S, be the set of
permutations o € S, such that /;(c) = m. We construct a set Y C S, as follows.
Each permutation o € X contributes n — m permutations into Y: we write the cycle
of o containing 1 as

l=ji—=> jp— ... ju— 1, (3.8.2.1)

pick an element r of the n — m elements not in the cycle, write the cycle of o
containing r as
r= jm+l g jm+2 ... jm+k — T (3822)

and produce a permutation 7 € Y by merging the two cycles together:
l=ji—=>jp—=> .c.= ju =T = jmsl = Jui2 = - = Jjmk = 1, (3.8.2.3)

see Fig.3.9.
Since A is a-conditioned, we have

Pr (o) < o’Pr (7). (3.8.2.4)

Next, we observe that each permutation 7 € Y is obtained from a unique permutation
o € X. To reconstruct o from 7, we find the cycle of ¢ containing 1, write it as in
(3.8.2.3) and cut into the cycles (3.8.2.1) and (3.8.2.2), see Fig.3.10

Using (3.8.2.4), we conclude that

a? a?

Pr(Y) <

n—m n—m

Pr(X) <

O

3.8.3 Proof of Theorem 3.8.1. Let /; be the random variables of Lemma 3.8.2.
Using Lemma 3.8.2, we estimate
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Fig. 3.10 Cutting a cycle
into two

1 r
i
1
21
—Pr : 1 (o) =m)
m=1 m
- Z lPr(o: li(0) =m) + Z iPr (0: li(0) =m)
m ! m !
l<m<n/3 n/3<m=<n
3a? 1 3
< > — = > Pr(o: Li(o)=m)
1<m=<n/3 n/3<m=<n
3a’Inn n E
- 2n n

Next, we note that

(o) =D 170,
i=1

since the sum of /;~ : (o) for all i in a cycle of o is 1. Therefore,

Ec(o) = ZE I7(0) < 307 l“"+3.

Applying the Markov inequality, we conclude that

Pr(c: c(0) > 3a’lnn+6) <

’

N =

and the proof follows. (]

As is shown in [Bal5], one immediate corollary of Theorem 3.8.1 is that on
a-conditioned matrices, the permanent of A and the Hamiltonian permanent of A,
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ham A = Z ll[ai(,(i)

oeS,: i=1
c(o)=1

differ by a factor of p 0’ Inn) (permutations consisting of a single cycle are called
Hamiltonian cycles). Similarly to the proof of Lemma 3.8.2, the result is obtained by
patching a permutation with O (a2 In n) cycles into a single cycle. Consequently, for
« fixed in advance, using the scaling algorithm of Sect. 3.5, we obtain a polynomial
time algorithm for computing ham A within a factor of n0©@ "™ As is discussed
in [Bal5], this allows one to distinguish in polynomial time directed graphs on n
vertices that contain many Hamiltonian cycles (at least €"(n — 1)! for some fixed
€ > 0) from graphs that are sufficiently far from having a Hamiltonian cycle (need at
least en new edges added to acquire one). The algorithm is obtained by approximating
per A and hence ham A for a “soft” version A = (a,- j) of the adjacency matrix of the
graph,
1 ifi — jis anedge
Hi = 0 otherwise

for a sufficiently small § = (¢) > 0.

Vishnoi [Vil2] used the van der Waerden bound for the permanent (see Sect. 3.3)
to prove the existence of long cycles (and of an efficient algorithm to find such cycles)
in regular graphs.

3.9 Concluding Remarks

3.9.1 Permanents and determinants. It is tempting to compare the permanent
n
ogeS, i=1
with the syntactically similar determinant
n
det A = Z (sgno) H Qi)
og€eS, i=1

and try exploit the similarity. Godsil and Gutman [GG78] suggested the following
construction.

Suppose that A = (a,- j) is an n X n non-negative real matrix. Let §;; be real-valued
independent random variables such that

E¢; =0 and var§; =1 forall i,j=1,...,n
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and let us define a random n x n matrix B = (b;;) by

bij :Eij‘/aij forall l,] = 1,...,}’1.

It is not hard to show that
E (det B)? = per A

and one can ask how well det” B is likely to approximate per A, see also Chap. 8 of
[LP09]. Since det? B is non-negative, the Markov inequality implies that det® B is
unlikely to overestimate per A by a lot (for example, the probability that det> B >
10 per A does not exceed 1/10). However, it may happen that det? B grossly under-
estimates per A. For example, if n = 2m and A is a block-diagonal matrix consisting

of m blocks J, = (} }) then per A = 2™ If we choose ¢;; to be random signs, so

that | |
P = 1) = — d P ii :—1 = —
r(G =1 =5 and Pr(g=-1 =

then det B = 0 with probability 1 — 27", This effect can be mitigated if &;; are
continuous random variables. In [Ba99] it is shown that if §;; are standard Gaussian
with density
1 €7x2/2
V2T
then with probability approaching 1 as n grows, we have
(det B)? > (0.28)" per A 3.9.1.1)

(the worst-case scenario is when A = I,,, the n x n identity matrix). It is also shown
that if §;; are complex Gaussian with density

I
—e
T

2

for z € C,

in which case E |det B|> = per A then with probability approaching 1 as n grows,
we have
|det BI> > (0.56)" per A (3.9.1.2)

(again, the worst case scenario is when A = I,,).
Finally, let us choose &;; to be quarternionic Gaussian with density

4 —inp
—e for heH
Vs

(so that E ||> = 1, here H denotes the skew field of quaternions and not the upper
half-plane of C as elsewhere in the book). Then B is an n x n quaternionic matrix
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which we write as
B=R+iS+jT+kU,

where R, S, T and U are n x n real matrices. Let B¢ denote the 2n x 2n complex

matrix
p._( R+iS T+iU
C=\-T+iU R-iS)"

It is show in [Ba99] that det B¢ is a non-negative real number such that E det B¢ =
per A and that
det Bc > (0.76)" per A (3.9.1.3)

with probability approaching 1 as n grows (again, the worst-case scenario is when
A=1,).

The idea behind the inequalities of (3.9.1.1)—(3.9.1.3) is roughly as follows. We
note that det B is linear in every row of B. We consider det B as a function of n inde-
pendent Gaussian n-vectors x; = (&1, . . ., &,). Inthereal case (det B)%isa quadratic
form in each x;, once the values of the remaining vectors Xy, ..., X;—1, Xj41, - - - X
are fixed. In the complex case, | det B|?> is a Hermitian form in each x;, once the
values of the remaining vectors xi, ..., Xi—1, Xj+1, - . . , X, are fixed. In the quater-
nionic case, det B¢ is a quaternionic Hermitian form in each x;, once the values of
the remaining vectors Xy, ..., Xj_1, Xj+1, - - - , X, are fixed.

We deduce (3.9.1.1) from the following: if g : R" — R is a positive semidefinite
quadratic form on the space R" equipped with the standard Gaussian measure and
such that Eq = 1 then

Elng > —In2 —~, (3.9.1.4)

where v &~ 0.5772156649 is the Euler constant and the bound (3.9.1.4) is attained if
q is a form of rank 1, for example,

q(xl,...,xn)le2 where (x1,...,x,) € R".

Since every positive semidefinite quadratic form is a convex combination of positive
semidefinite forms of rank 1, by Jensen’s inequality the minimum in (3.9.1.4) is
indeed attained on forms of rank 1. The constant in (3.9.1.1) is e~ "2=7 ~ 0.28.
We deduce (3.9.1.2) from the following: if ¢ : C" — R is a positive semidefinite
Hermitian form on the space C" equipped with the standard Gaussian measure and
such that Eq = 1 then
Elng > —~, 3.9.1.5)

and the bound in (3.9.1.5) is attained if g is a form of rank 1, for example,

q @1,y 20) = |z1|* where (z1,...,2,) € C".
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Similarly to the real case, since every positive semidefinite Hermitian form is a
convex combination of positive semidefinite Hermitian forms of rank 1, by Jensen’s
inequality the minimum in (3.9.1.5) is indeed attained on forms of rank 1. We get a
better bound than in the real case, because a complex Hermitian form of rank 1 can
be viewed as a real quadratic form of rank 2. The constant in (3.9.1.2) ise™” & 0.56.
We deduce (3.9.1.3) from the following: if ¢ : H" — Ris a positive semidefinite
Hermitian form on the space H" equipped with the standard Gaussian measure and

such that Eq = 1 then
Elng > 1—~v—1n2 (3.9.1.6)

and the bound in (3.9.1.6) is attained if g is a form of rank 1, for example,
g (hy, ..., hy) = |hi)* where (hy,..., h,) € H".

The constant in (3.9.1.3) is ¢! 772 & 0.76.

For various special classes of matrices, a subexponential approximation factor is
achieved by (real) Gaussian [F+04], [RZ16] and some non-Gaussian [CV(09] random
variables &;;.

3.9.2 Algorithms for computing permanents. For a general n X n real or complex
matrix A, the most efficient method known of computing per A exactly, is, apparently,
Ryser’s method and its modifications, see Chap. 7 of [Mi78], which achieves O (n?2")
complexity. Essentially, it uses the formula

) n

n
mp(xl,...,xn) where p(xl,...,xn):H Za[jxj ,

i=1 \ j=1

per A =

and computes the derivative as

an
xnp(xl,...,x,,)z > ). (3.9.2.1)

Oxy -+ 0. 1c{l,....n)

where x; is the 0-1 vector with Os in positions / and 1s elsewhere (as is easy
to see, formula (3.9.2.1) holds for any homogeneous polynomial p of degree n in
X1, ..., Xy). The exact computation of the permanent is a #P-hard problem already
for 0—1 matrices [Va79], which makes a polynomial time algorithm rather unlikely.
Efficient (polynomial time) algorithms for computing permanents exactly are known
for some rather restricted classes of matrices, for example, for matrices of a small
(fixed in advance) rank [Ba96] and for O—1 matrices with small (fixed in advance)
permanents [GK87].

Given an n X n matrix A = (a,- j), let G(A) be the bipartite graph with 2n vertices
1p,...np and lg, ..., ng, where vertices iy, and jg are connected by an edge if
and only if a;; # 0, see Sect.3.1.2. Cifuentes and Parillo found a polynomial time
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algorithm to compute per A exactly provided the treewidth of G(A) is bounded by
a constant, fixed in advance [CP16]. The algorithm is applicable to matrices over
any commutative ring. One can obtain graphs G (A) of a small treewidth provided A
is sufficiently sparse, that is, contains relatively few non-zeros. This is the case, for
example, if A has a band structure, that is, a;; = 0 provided |i — j| > w for some w,
fixed in advance.

The greatest success in approximation algorithms is achieved by Jerrum,
Sinclair and Vigoda [J+04] who constructed a Markov Chain Monte Carlo based
fully polynomial time randomized approximation scheme for computing permanents
of non-negative matrices. A scaling based deterministic polynomial time algorithm
approximating permanents of n X n non-negative matrices within a factor of ¢” is con-
structed in [L+00], see also Remark 3.5.4. The approximation factor was improved
to 2" [GS14] and it is conjectured that the same algorithm actually achieves a 2"/?
approximation factor, cf. (3.4.6.1). Using the “correlation decay” idea from statis-
tical physics, Gamarnik and Katz obtained a (1 4 €)" approximation factor for any
€ > 0, fixed in advance, when A is a 0—1 matrix of a constant degree expander graph
[GK10].

Less is known about approximation algorithms for not necessarily non-negative
matrices (but see Sects. 3.6, 5.5 and also [Mc14]). Gurvits [Gu05] presented a ran-
domized algorithm, which, given an n x n complex matrix A approximates per A in
O (n?/€?) time within an additive error of €||A||", where || A|| is the operator norm of
A, see also [AA13] for an exposition. The idea of the algorithm is to use the formula

n n

perAzExl-"an Za,-_,-xj s

i=1 \ j=1

where x; = +£1 are independent Bernoulli random variables and replace the expec-
tation by the sample average.


http://dx.doi.org/10.1007/978-3-319-51829-9_5

Chapter 4
Hafnians and Multidimensional Permanents

We explore certain extensions of the permanent: hafnians enumerate perfect
matchings in general graphs and multidimensional permanents enumerate perfect
matchings in hypergraphs. With the notable exception of the mixed discriminant,
which can be thought of as a “permanent-determinant” of a 3-dimensional array, these
extensions no longer have connections to H-stable polynomials, which is a major
disadvantage. However, other methods we tried on permanents generally continue to
work. Using scaling, we establish a decomposition of hafnians and multidimensional
permanents into the product of an easy to handle “scaling part” and hard to handle
“d-stochastic part”. We prove that the d-stochastic part is still concentrated, though
weaker than in the case of the permanent. Taylor polynomial interpolation works for
hafnians just as well as for permanents, while for multidimensional permanents it
produces efficient approximations in non-trivial real and complex domains. The van
der Waerden lower bound for mixed discriminants works just as well as for perma-
nents, while for the Bregman - Minc bound, we only manage to obtain a somewhat
weaker version.

4.1 Hafnians

4.1.1 Definition. Let n = 2m be a positive even integer and let A = (a;;) be an
n X n symmetric real or complex matrix. The hafnian of A is defined as

haf A = > iy -+ iy i (4.1.1.1)

(i1 ia, e fiom—1,02m}

where the sum is taken over all (2m)!/2"m! unordered partitions of the set
{1, ..., n} into unordered pairs (the name was introduced by physicist Eduardo R.
Caianiello to mark his fruitful research stay in Copenhagen, or “Hafnia” in Latin).

© Springer International Publishing AG 2016 93
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Note that the diagonal entries of A are not involved at all. Equivalently,

1 m
haf A = o Z Hag(zifl)g(zl'), (4]12)
oges, i=1
where S, is the symmetric group of all n! permutations of the set {1, . .., n}. Although

one can define the hafnian of any (not necessarily symmetric) matrix by (4.1.1.2),
this does not lead to any more generality, since for a skew-symmetric matrix A the
expression (4.1.1.2) is identically 0, and, moreover, for a general A the value of
(4.1.1.2) is equal to its value on the symmetric part (A + AT)/2 of A.

The permanent of any m x m matrix is expressed as the hafnian of a (2m) x (2m)
symmetric matrix:

per B =haf A where A:(O B).

BT 0
Indeed, any permutation o € §,, corresponds to the partition 7 of {1, ..., 2m} into
pairs {i, o (i) +m} fori = 1, ..., m and the contributions of ¢ to per B via (3.1.1.1)

and of 7 to haf A via (4.1.1.1) coincide. Moreover, any partition 7 with a non-zero
contribution to haf A corresponds to a unique permutation o € S,,.
We note a recursive formula

haf A =" ahaf A}, (4.1.1.3)
j=2

where A is the (n — 2) x (n — 2) symmetric matrix obtained from A by crossing
out the first and the j-th row and the first and the j-th column.

4.1.2 Hafnians and perfect matchings. If A = (a,- j) is a real symmetric matrix
and a;; € {0, 1} for all i, j then haf A has a combinatorial interpretation as the
number of perfect matchings in the graph G with adjacency matrix A, cf. Sect.3.1.2.
That is, if G = (V, E) is an (undirected, without loops or multiple edges) graph
with set V = {1, ..., n} of vertices and set £ C (‘2/) of edges, the adjacency matrix
A= (a,-j) is defined by
1 if{i,j}eE
ajj = .
! 0 otherwise.

Assuming thatn = 2m is even, we conclude haf A is the number of perfect matchings
of G.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.1 A graphanda 1

perfect matching (thick
2 3

For example, Fig.4.1 pictures a graph with adjacency matrix

011000
101110
110101
011011
010101
001110

and a perfect matching of G.

4.1.3 Hafnians as integrals. Let 7, be the standard Gaussian probability measure
on R? with density

1
(2m)d/2

e WI2 where ||x|| =xi+...+x7 for x = (x;,...,%).

In particular,
Ex} =1 and Ex;x; =0 provided i # ;.

Let fi,..., fn: R?Y —> R be linear forms. Clearly,
Efi---f, =0 if n isodd.

If n = 2m is even, the expectation of the product is expressed as a hafnian. Namely,
let A = (a;;) be the (necessarily symmetric) n x n matrix defined by

aij =E fif; = /Rd fix) fi(x) dvya(x).

Then
E fi--- f, = haf A. 4.1.3.1)
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Formula (4.1.3.1) is known as Wick’s formula, see [Zv97]. It can be proved as follows.

Let us denote the left hand side of (4.1.3.1) by L (fi, ..., f,) and the right hand side
of (4.1.3.1) by R (f1, ..., fn). For real parameters r = (t1, ..., t,), let us define

fi=tufi+...+t.fn.

Since L (fi,..., fp) and R (f1, ..., f,) are degree n symmetric multilinear func-
tions of fi, ..., fu, we have
L(fieoos fi) = O L (fievo f) and
yees Jn) == sy an
‘ nlon---on, '
R(frvos fi) =L R (fros )
1y -5 Jn _n!atl...atn fs ey Jt)-
Therefore, it suffices to prove (4.1.3.1) assuming that f; = ... = f,. By therotational
invariance of the measure ., it further suffices to prove (4.1.3.1) when f; = ... = f,

is the coordinate function, say, x;. In that case, the matrix A is filled by 1 s and hence
the right hand side is equal to

2m)!

2mm!’

The left hand side is

1 +oo > 2 too dr
/ xlzm dvyg(x) =—/ xMe™¥ 2 dx = —/ Q)"e™! —
Rd V2T J -0 V21 Jo 2t
Lo [t 2 ()
L NG 2
m 1 3 1 1
= 3) ()2 G)

~ 3 2m —1)!
=Cm = D@m=3)- = o — 42

_Cem-D!  2m)!
Sl =1 2mm)’

which completes the proof of (4.1.3.1).
One corollary of (4.1.3.1) is that if A is an n X n symmetric positive semidefinite

matrix then
AA
haft B > 0 for BZ(AA)'

Indeed, A = (a;;) can be written as

ajj=E fif; forall i,j
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and some linear forms f1, ..., f, : R” — R, in which case

haf B=E f--- f2 > 0.

n =

The following useful inequality relates hafnians and permanents of non-negative
matrices.

4.1.4 Theorem. Let A be an n X n non-negative symmetric matrix, where n is even.

Then
hat A < ./per A.

Proof. We follow [AF08]. Let n = 2m and let us consider (haf A)? as a polynomial
in the entries a;; of the matrix A.
From the definition (4.1.1.1), we can write

2
(haf A)" = Z Qiviy = Qigyy 1ig A1 o * " Aot jom> (4.1.4.1)
1.J

where the sum is taken over all ordered pairs (/, J) of unordered partitions of

the set {1, ..., 2m} into unordered pairs I = {{il, i}, .. {iom—1, izm}} and J =
{{jl, J2bs oo Uam—t, jzm}} (we allow I = J and count such pairs once). For given
I and J, the union of all pairs in / and J can be viewed as a graph with set {1, ..., n}

of vertices and possibly multiple edges such that each vertex belongs to exactly two
edges, counting multiplicities, see Fig.4.2. Such a graph is a union of disjoint cycles,
each cycle consisting of an even number of edges (counting multiplicities). On the
other hand, let I" be a graph which is a union of disjoint cycles, each consisting of an
even number of edges, possibly including cycles with two edges, and containing all
n vertices. Let c-,(I") be the number of cycles of I' with more than 2 edges. Then I

Fig. 4.2 Two matchings and o——0
their union

*——O

|
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can be represented as a union of two perfect matchings in exactly 2°->() ways and
hence (4.1.4.1) can be written as

(haf A)? = Z 26-2() H aij. (4.1.4.2)
r: {i.j}er
each cycle has even length

To obtain the monomial expansion of per A, we interpret A as the adjacency matrix
of a complete directed graph on n vertices, which includes loops i — i and edges in
both directions i — j and j — i fori # j, see Sect.3.1.3. Then

per A= > [] a. (4.1.4.3)
T (,j)el

where the sum is taken over all directed cycle covers I of the complete graph. Since
A is symmetric, the contributions of any two I'} and I'; that differ just by orientations
on their cycles are the same and therefore (4.1.4.3) can be written as

per A=Y 20 [T ay, (4.1.4.4)
r {i,j1er

where the sum is taken over all graphs I" that are disjoint union of undirected cycles
and contain all vertices {1, ..., n} and where c.,(I") is the number of cycles in I"
consisting of more than 2 edges. Comparing (4.1.4.2) and (4.1.4.4), we conclude that

per A > (haf A)>.

O

The results of Sects.3.6 and 3.7 almost verbatim transfer from permanents to
hafnians.

4.1.5 Theorem. There exists an absolute constant 6o > 0 (one can choose 6y = 0.5)
such that for any even integer n and for any n X n symmetric matrix A = (ai j) with
complex entries satisfying

Il—a,-j| < & forall i #j

we have
haf A # 0.

Forany 0 < § < 0 there exists v = () > 0 and for any 0 < € < 1 and positive
even integer n there exists a polynomial p = py, 5 in the entries of an n x n complex

symmetric matrix A = (a,-j) satisfying

degp < ~v(Inn —Ine)


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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and such that
[Inhat A — p(A)| < €

provided
|1 —ay| < 6 forall i#j.

Proof. The proof closely follows those of Theorems 3.6.1 and 3.6.2. First, we show
by induction on m that if A = (a;;) and B = (b;;) are two symmetric (2m) x (2m)
complex matrices satisfying

1—a;| <05 and |l—b;| < 05 forall i#j

and such that the entries of A and B coincide except possibly in the i-th row and
i-th column for some unique i then hat A ## 0, haf B # 0 and the angle between
non-zero complex numbers haf A and haf B does not exceed /2.

This clearly holds for m = 1. Assuming that m > 1, without loss of generality we
assume that B is obtained from A by replacing the entries a;; = a;j; by by; = bj,
for j =2,...,2m. Using (4.1.1.3), we write

2m 2m
haf A="aj;jhaf A; and haf B =) b;;haf A;,
j=2 j=2

where A is the (2m —2) x (2m — 2) matrix obtained from A by crossing out the first
and the j-th row and the first and the j-th column. We note that, up to a simultaneous
permutation of rows and columns, any two matrices A; and A}, differ in at most
the i-th row and i-th column for some unique i, so by the induction hypothesis
haf A; #0forall j =2,...,2m and the angle between any two non-zero complex
numbers haf A; and haf A;, does not exceed 7/2. Applying Lemma 3.6.4 with
uj =haf Aj,a; =a;and b; = by}, as in Sect.3.6.5, we conclude that haf A # 0,
haf B # 0 and the angle between haf A and haf B does not exceed /2.

Next, we construct the polynomial p. Let J = J, be the n x n matrix filled with
1s and let n = 2m. We define the polynomial

g(z) =haf (J +z(A = J))

of degree at most m, so that

2m)!
g =haf 7 = ™' and g(1) = haf A.
2Mmm!
Moreover, for 8 = §y/6 > 1, we have g(z) # 0 whenever |z| < (. We choose a
branch of f(z) = In g(z) for |z] < 1 such that f(0) is real and use Lemma 2.2.1 to
claim that for some & < y(Inn — In €) the Taylor polynomial

A O
s! ¢

k
p(@) = O+
s=1


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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approximates f(z) for |z| < 1 within an additive error . We need to show that
pr(1) is a polynomial of degree at most k in the entries of A. To finish the proof as
in Sect.3.6.7, it suffices to show that ¢*’(0) is a polynomial in the entries of A of
degree at most s.

Indeed,
ey
dZSg ¢ z=0
dS
== 2 Ozl =)z, =)
{i]sjl}a---s{imajm} i

where the sum is taken over all unordered partitions of the set {1, ..., n} into m
unordered pairs {i, ji}, ..., {im, jm}. Therefore,

g9 (0) = M Z (ailjl — 1) . (aimujm - 1) ,

m — s)2m=>s
( ) i, Jidseolis, st

where the sum i of s pairwise disjoint unordered pairs {iy, ji}, ..., {is, js}- O

We observe that for a fixed § < &y, the polynomial p(A) in Theorem 4.1.5 can be
computed in n0M""19) time,

4.1.6 Theorem. Letusfixareal 0 <6 < 1 and let
i
7= (1—=4¢)sin (Z — arctan 5) > 0.

For an even n, let Z = (z;;) be an n x n symmetric complex matrix such that
1—Nzy| <6 and |Sz;| < 7 forall i,j.

Then
haf Z # 0.

As in Sect.3.7, we deduce from Theorem 4.1.6 the following result.

4.1.7 Theorem. For any 0 < § < 1 there exists v = v(5) > 0 such that for any

positive even integer n and any real 0 < € < 1 there exists a polynomial p = py s .

in the entries of an n x n symmetric matrix A such that deg p < v(Inn — Ine€) and
Inhaf A — p(A)| < €

provided A = (ai j) is a real symmetric matrix satisfying

|1—a,-j| <04 forall 1i,j.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.3 A connected
3-regular graph with no
perfect matchings

Similarly, for any > 0, fixed in advance, the polynomial p can be computed in
nO(ln n—Ine) time.

The proofs of Theorems 4.1.6 and 4.1.7 closely follow the proofs of Sect. 3.7 with
necessary adjustments as in the proof of Theorem 4.1.5, see also [B16+].

The main difficulty of dealing with hafnians compared to dealing with permanents
is that there appears to be no parallel theory relating hafnians to stable polynomials,
cf. Sects. 3.2-3.3, but see also Sect. 6 of [FG06] for an attempt to extend the theory
to hafnians. Consequently, there is no analogue of the van der Waerden inequality
(Theorem 3.3.2) for hafnians. As the following simple example shows, the hafnian
of a symmetric doubly stochastic matrix can be equal to 0. Indeed, if G is a graph
that is a disjoint union of an even number of triangles, and A is the adjacency matrix
of G then B = (1/2)A is a symmetric doubly stochastic matrix and haf B = 0.

Figure 4.3 demonstrates a more complicated example of a 3-regular graph without
perfect matchings.

If A is the adjacency matrix of the graph on Fig.4.3, then B = (1/3)A is a
symmetric doubly stochastic matrix and haf B = 0. On the other hand, the number
of perfect matchings in a bridgeless 3-regular graph is exponentially large in the
number of vertices [E+11].

4.2 Concentration of Hafnians of a-Conditioned Doubly
Stochastic Matrices

Although there is no hafnian analogue of the van der Waerden inequality, some of
the corollaries of that inequality can be extended to hafnians, in particular, concen-
tration of hafnians of doubly stochastic matrices with relatively uniform entries, see
Sect.3.4.6. We start with a definition.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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4.2.1 Definition. Let A = (a;;) be a symmetric matrix with zero diagonal and
positive off-diagonal entries. For o > 1, we say that A is a-conditioned if

ajj, = odaij, forall i % Jis Jo2-
The goal of this section is to prove the following result.

4.2.2 Theorem. Foranya > 1, thereisa~y = (o) > Osuchthatif Aisa2m x2m
symmetric doubly stochastic a-conditioned matrix with zero diagonal, we have

mTe™ < haf A < mle™™.
We follow [BS11]. First, we need to adapt the technique of matrix scaling, see
Sect. 3.5, to hafnians.

4.2.3 Scaling. Let A = (a,- j) be an n x n symmetric matrix with zero diagonal. We
say that A is obtained by scaling from an n x n symmetric matrix B = (bi j) if

aij = Al)\]blj for all l,]

and some \j, ..., \,. If n is even, then the hafnians of A and B are defined and

haf A = (H)\i)haf B.
i=1

Note that compared to scaling of general matrices, we get just n scaling factors \;,
instead of 2n factors ); and p; in the case of the permanent.

The following result is a more or less straightforward extension of Theorem 3.5.2
and Lemma 3.5.3.

4.2.4 Theorem. Let A = (a,- j) be an n x n symmetric matrix with zero diagonal
and positive off-diagonal entries. Then there exists a unique n X n symmetric doubly
stochastic matrix B = (b,-_,-) and unique positive \, ..., A\, such that

bij = )\i)\jaij forall l,]

The matrix B can be found as the minimum point of the convex function

X,’j

X) = XijIln —

FO= 2 xy p

1<i#j<n

on the polyhedron of n x n symmetric doubly stochastic matrices X with zero diag-
onal, in which case

f(B) =ZZn:ln)\,~.

i=1


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Let C = C(A) C R” be the convex set defined by

C=1x=(x1,....,%): E ajje"t < n

I<i#j=n

and let xo = (&1, ..., &) where & = In \;. Then x is the unique maximum point of
the linear function £(x) = x; + ...+ x, on C.

Proof. The proof of the first part is very similar to the proof of Theorem 3.5.2 and
therefore omitted. To prove the second part, we observe that the point x, lies on the
boundary of OC that is a smooth strictly convex hypersurface defined by the equation

> aijett =n,

I<i#j=<n

cf. Sect.2.1.1.3. Moreover, the gradient of g(x) = Zi# a,-_,-ex'“f atxpis (2,...,2),
from which it follows that the affine hyperplane H defined by the equation £(x) =
£(xp) is tangent to JC at xo. Since C is convex, H is the supporting affine hyperplane
at xo and hence xg is an extremal point of £. Then xg has to be the maximum point,
because ¢ is unbounded from below on C. (]

Our next result is a version of Lemma 3.5.6 for hafnians.

4.2.5 Lemma. Let A be an a-conditionedn xn symmetric matrix with zero diagonal.
Suppose that A is obtained by scaling from a doubly stochastic symmetric n X n matrix
B. Then B is o*-conditioned.

Proof. Let A\, ..., \, be the scaling factors so that
b,’j = /\i/\_,-a,-j for all i, ]
Let us choose two 1 <i # j < n. Then

Z aip i\ = z biy =1 — by (4.2.5.1)

k#i,j k#i,j
and
D apAih= D bji=1-b;. (42.5.2)
ki, j k#i, j

Comparing (4.2.5.1) and (4.2.5.2) and using that A is a-conditioned, we conclude
that
AN < Oé)\j for all i, j,

from which B is a-conditioned. O


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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We prove Theorem 4.2.2 by induction on m, for which we need yet another lemma
which bounds the product of the scaling factors of an a-conditioned matrix.

4.2.6 Lemma. Forn > 2, let A = (aij) be an «-conditioned n x n symmetric

matrix with zero diagonal. Suppose that
I<i#j=<n

and that

I—Za,j < fOI"l—l

Ji#F

and some
n—2

2a

0 <p =<

Suppose that A is obtained from a symmetric doubly stochastic matrix B =

scaling, so that
b,’j = )\,’)\ja,‘j forall l,]

and some positive Ay, ..., \,. Then

8ﬁ2
= 2

A

Proof. Let us define

so that

and

10;] < é for i=1,...,n
n

Let us define an n x n matrix X = (x;;) by

0 + 9 . .
xijza,-j—l-w,-j where Wij = n_2 for l;éj

(bij) by

(4.2.6.1)

(4.2.6.2)
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and x;; = Ofori = 1,...,n. We observe that X is a symmetric n X n matrix with
row and column sums 1 and zero diagonal. Moreover, since A is a-conditioned, we
have

1 . .
aj > yro— forall i # j (4.2.6.3)

while by (4.2.6.2), we have

2 1
wy| < —2_ < L (42.6.4)
nn—2) no
and hence x;; > 0, so X is doubly stochastic.
By Theorem 4.2.4,

- 1 i1 ij T wij
ZIHA,' SE xljln JZE (aij—i—wij)lnaj_'_wj
i=1 I<izj<n dij I<ij<n dij

IA
N =
=

+
&
¥
I

| —
[

—~
&

+
|5
~

I<i#j<n ij I<i#j=n
Now, by (4.2.6.1)
1
2. W= 2, @i+ =0
I<i#j<n I<i#j=<n

and by (4.2.6.2)—-(4.2.6.4),

Z w_lzj 432am — 1) _ 1632

= nn=1D n*(n —2)2 ~ n

3

@
I<izj<n Y

which proves the upper bound for >""_, In \;. To prove the lower bound, we note
that x = (0, ..., 0) is a feasible point of the set C(A) of Theorem 4.2.4 and hence

anln A > 0.
i=1

O

4.2.7 Proof of Theorem 4.2.2. All implicit constants in the “O” notation below
depend only on a.

Foraset I C {1,...,2m}, let A(/) denote the submatrix of A consisting of
the entries a;; with i, j € I. Hence A(/) is a symmetric a-conditioned with zero
diagonal. Let B(/) be the doubly stochastic matrix obtained from A(/) by scaling.
We prove by inductionon k = 1, ..., m that
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haf B(I) =exp{—k+ O where |I| = 2k. 4.2.7.1)

1
J

IH'M»

LetI C {1,...,2m} be asubset such that |/| = 2k > 2. Letus pickani € I.To
simplify the notation somewhat, we denote B(/) just by B and assume without loss
of generality that i = 1. We use the row expansion (4.1.1.3):

haf B= Y bi;haf B;, (4.2.7.2)
Jel\{1}

where B; is the matrix obtained from B by crossing out the 1st and the jth row
and the 1st and the jth column. Note that (4.2.7.2) represents haf B as a convex
combination of haf B;.

By Lemma 4.2.5, the matrix B is a2-conditioned. Since B is doubly stochastic,
it follows that the entries of B do not exceed o?/(2k — 1). Let o ; be the sum of the
matrix entries of B;. Hence

1
0;j=2%—4+0 (%) : (4.2.7.3)

Let us scale B; to the total sum of entries 2k — 2, so we define

~  2k-=2
B; = p B; for jel\({l}.
J

Then

k—1
o; ~ .
haf B; = (2k : 2) haf B; for j eI\ {1}
and by (4.2.7.3) we conclude that
1 ~
haf B; = exp [—1 + O (%) ] haf B;. 4.2.7.4)

To estimate haf B j» we apply Lemma 4.2.6. Let us scale B ; to a doubly stochastic
matrix. The doubly stochastic matrix we get is the same matrix we obtain from
A(I'\ {1, j}) by scaling, that is, the matrix B(I \ {1, j}).

Since B; is obtained by crossing out two rows and two columns of a doubly
stochastic matrix B, the row and column sums of B; do not exceed 1, but since the
entries of B do not exceed a?/(2k — 1), the row and column sums of B ; are at least

202
2%k —1°
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By (4.2.7.3), the absolute value of the difference between any row or column sum of
Bjand 1is O(1/k).
Applying Lemma 4.2.6, we conclude that for all k > (), we have

haf B; = epoO (%)]haf B\ {1, /), (4.2.7.5)

where v; (o) is some positive constant. We use a trivial estimate
haf B = e%M provided k < (). (4.2.7.6)

Combining (4.2.7.6), (4.2.7.5), (4.2.7.2) and the induction hypothesis, we complete
the proof of (4.2.7.1). ([l

4.2.8 Remark. The gist of Theorem 4.2.2 is the lower bound for haf A. As one can
see from the proof, we get a much better upper bound combining the inequalities of
Theorem 4.1.4 and Corollary 3.4.5.

4.3 Hafnians and Pfaffians

4.3.1 Pfaffian. Let n be a positive even integer, n = 2m, and let A = (a[ j) be an
n x n skew-symmetric matrix, so that a;; = —aj; forall 1 < i, j < n. The Pfaffian
of A is defined as

m

1
mi2m Z (Sgn 0) Haa(Zifl)a(Zi)s (43]1)

oes, i=1

Pf A=

see, for example, Sect.1 of Chap. VI of [We97] or Chap.29 of [Pr94]. Note that
while different permutations o may contribute the same productin (4.3.1.1), all those
products are counted with the same sign: if 0y = 0,7, where 7 is the transposition,
T = (2i — 1, 2i), say, then sgn o1 = — sgn o, but since A is skew-symmetric, the
signs of monomials in (4.3.1.1) corresponding to o; and o, coincide. Similarly, if
01 = 0,7 where 7 is the product of two transpositions, 7 = (2i; —1, 2i,—1)(2i;, 2i»),
then sgn oy = sgn o, and the signs of monomials corresponding to o; and o,
coincide.

One can of course define Pf A for an arbitrary matrix A by (4.3.1.1) but then the
Pfaffian of an arbitrary matrix will coincide with the Pfaffian of its skew-symmetric

part:
A— AT
PfA:Pf( 5 )



http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Assuming that A is a skew-symmetric complex matrix, we may identify with A the
exterior 2-form w, € /\2 cn,

wy = E ajjei \ej,

I<i<j<n
where ey, ..., e, is the standard basis of C". In this case,

WAAN... Nwag=m!Pf A)e, A...Ne,. 4.3.1.2)
—_—

m times

Let G be an n x n complex matrix. Then the matrix B = GT AG is skew-symmetric
and

ws= Y. a;j(Ge) A (Ge)).

I<i<j<n

Since
(Ge)A...AN(Ge,) = (detG) (eg A ... Nep),

it follows from (4.3.1.2) that
Pf (GAGT) = (det G) Pf A. (4.3.1.3)

Equation (4.3.1.3) allows us to compute Pf A efficiently: indeed, for every 2m x 2m
skew-symmetric matrix A, one can easily compute a matrix G suchthat A = GT K G,

where K is a 2m x 2m block-diagonal matrix with blocks (_01 (1)) SO

0 1

—-10
0 0 ...
0 0

00...00
00...00

co:
oo

see, for example, Sect. 21 of [Pr94]. Then

Pf A=Pf (G'KG) = (detG)Pf K =detG.

4.3.2 Perfect matchings in directed graphs. Let H be a directed graph with set
{1, ..., n} of vertices, no loops and at most one edge ij or ji connecting any two
vertices i and j. We assume that n is an even integer, n = 2m. A collection I =

— — - -
[i1 12, ... in_1in ] of pairwise disjoint edges of H is called a perfect matching of H.
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We define sgn I = sgn o where o € S, is a permutation such that o (k) = i for
k=1,...,n (as before, the sign of I does not depend on the order in which we list
the edges of I). ~

Let I and J be two perfect matchings in H then the union / U J is a cycle cover
I" of H by even cycles (that is, cycles having an even length), cf. Fig.4.4.

We call a cycle of I" evenly oriented if, when we choose an orientation of the
cycle, the number of edges co-oriented with the cycle is even. Otherwise, we call
the cycle oddly oriented. Since the cycle is even, the definition does not depend on
the choice of an orientation of the cycle. For example, on Fig.4.4, the 6-cycle is
evenly oriented while the 4- and 2-cycles are oddly oriented.

4.3.3 Lemma. For any two perfect matchings I and J of H, we have
(sgn N(sgn J) = (=D,
where k is the number of evenly oriented cycles in I U J.

Proof. First, we observe that if thg conclusion of the lemma holds for H , it also
holds for the graph obtained from H by reversing the direction of one edge. Indeed,
if that edge belongs neither to I nor to J then reversing its direction does not change
sgn I, sgn J or k. If the edge belongs to / and to J both, then reversing its direction
changes both sgn / and sgn J. However, since that edge forms a 2-cycle in / U J,
which is always oddly oriented, cf. Fig.4.4, changing the direction of the edge does
not change the number of evenly oriented cycles. Finally, if the edge belongs to 1
and not to J then changing the direction of the edge reverses sgn I, leaves sgn J
intact and changes k by 1.

Therefore, without loss of generality, we assume that all cycles of length greater
than 2in / U J are oriented, cf. Fig.4.5.

In this case, k is the number of cycles of I" of length greater than 2. We define two
permutations o, 7 € S, as follows: We number the cycles of I, listing the cycles of
length greater than 2 first, list the vertices of the first cycle in the order of the cycle,
then the vertices of the second cycle in the order of the cycle, etc., just obtaining a
permutation i; .. .7,. We define o(l) = i; for/ = 1, ..., n. To define 7(I), we first
determine the cycle in which the /-th vertex j; lies. If i; lies in a cycle of length greater
than 2, we let 7(I) to be the next vertex of the same cycle in the order of the cycle.
If i; lies in the cycle of length 2, we let 7(I) = i;.

Fig. 4.4 A cycle cover I' of
H
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Fig. 4.5 Oriented cycles

and a 2-cycle i i i i L2

6 1 7 8

Iy L ' '

o L
. i
. i
l4 3
For example, for the cycle cover on Fig.4.5, we define o(l) = i; for/ =1, ...,12

and 7(1) = iz, 7(2) = i3, 7(3) = iy, T(4) = i5, 7(5) = is, T(6) = i1, T(7) = i,
7(8) = iy, 7(9) = i1, T(10) = i7, T(ll) =iy and 7(12) = 112, in which case o

—_— — — —>

corresponds to the perfect matchlng 1112, 314,156, 1713, i9i10,111i12 and 7 corresponds

—_— — — — —>
to the perfect matching i,i3, isis, igi1, igio, 110i7, 111112
We have

(sgn I)(sgn J) = (sgn o)(sgn 7) = sgn (ro ).
However, 7o ~! is the permutation that is the product of k even cycles, so
sgn (7'0’1) = (—l)k.
For the example on Fig.4.5, we have 70~ = (i1izi3isisic) (i7igi9i10) ([l

4.3.4 Theorem. Let A be a skew-symmetric n X n matrix, where n = 2m is an even
integer. Then
(Pf A)? = det A.

Proof. The result immediately follows from (4.3.1.3) and the fact that det K = 1 for
the matrix K defined by (4.3.1.4). It is instructive, however, to give a combinatorial
proof along the lines of the proof of Theorem 4.1.4. .
Let G be a complete directed graph with set {1, ..., n} of vertices and edges i for
all pairs i, j including i = j. We introduce weights a;; on the edges i j (in particular,
loops ii have weight 0).
We write

detA=> (sgn ) [ ] ay. (4.3.4.1)
P et

where the sum is taken over all directed cycle covers T of G and sgn Tis defined as
the sign of the corresponding permutation, cf. Sect.3.1.3. Note that sgn I' depends
only on the cycle structure of I, that is, on the number cycles of each length.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.6 Reversing the
orientation of an odd cycle

Suppose that T' contains a cycle of an odd length (an odd cycle). Since A is
skew-symmetric, reversing the orientation of an odd cycle changes the sign of the
corresponding term in (4.3.4.1), cf. Fig. 4.6.

Consequently, cycle covers T in (4.3.4.1) containing an odd cycle cancel each
other out, and so we can write

detaA= > () J]ay (4.3.4.2)
i}el:

I has no odd cycles

where c(f‘) is the number of cycles in T.

Next, let G be the complete undirected graph with set {1, ..., n} of vertices and no
loops and let G be a directed graph obtained by orienting the edges of G arbitrarily,
so that for every pairi # j exactly one edge ij or ji is included in G. Then we can
write (4.3.1.1) as

Pf A= Z (sgn Day,iy -+~ di, i,

1=[i.72 ..... inrin ]
where the sum is taken over all perfect matchings 7 of G,cf. Sect.4.3.2. Consequently,

(Pf A)? = 2 (sgn 1)(sgn J)aiiy + =+ @iy iy @ji o+ Aoy
[:’iﬁ;V..,injl)in]

J:[jljz ..... jn—]jn]

where the sum is taken over all ordered pairs (I, J) (we allow I = J and count

—

such pairs 01/1\06). The union of edges ijia, ..., in—1in, Jj1Jj2s ---» jn—1Jn 1S a Cycle
cover I' of G, where each cycle has an even length, cf. Fig.4.4. Let c.,(I") be
the number of cycles of I' of length greater than 2 (hence c¢.,(I') = 2 for the
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cycle cover on Fig.4.4). Then I' can be represented as an ordered union / U J of
vertex-disjoint perfect matchings 7 and J in 221 ways. By Lemma 4.3.3, the
product (sgn /)(sgn J) is independent on the representation, which allows us to
define

e(I') = (sgn I)(sgn J)

for perfect matchings I and J whose union is the cycle cover I'. Hence we can write

(Pf A)? = > e?20 [ . (4.3.4.3)

I" has no odd cycles i}'el"

Furthermore, since A is skew-symmetric, the cycle cover obtained by reversing
the orientation of a single edge in G contributes the same monomial to (4.3.4.3).
Moreover, since the cycle cover I' of the undirected graph G can be oriented in
2021 ways, we can rewrite (4.3.4.3) as

@AY= > «DEDO [y, (4.3.4.4)

I has no odd cycles i-j el

where the sum is taken over all oriented cycle covers I of the complete directed
graph G by even cycles and cz(f‘) is the number of 2-cycles in r. By Lemma
433, e(I') = (=1)2™ and comparing (4.3.4.2) and (4.3.4.4), we complete the
proof. (]

4.3.5 Pfaffian orientation. In view of Theorem 4.3.4, formula (4.3.1.3) and the fact
that the Pfaffian can be efficiently computed, the following question is of interest:
Given a 2m x 2m symmetric matrix A = (ai j) with zero diagonal, is it possible to
reverse the signs of some of the entries of A (that is, replace some ag;; by —a;;) so
that the resulting matrix B is skew-symmetric and haf A = Pf B?

Given such a matrix A, let us consider an undirected graph G 4 withset {1, ..., n}
of vertices and edges {7, j} provided a;; # 0. We obtain a skew-symmetric matrix
B if for every unordered pair {i, j} we reverse the sign of exactly one entry among
a;j and a ;. This procedure is encoded by making the graph G 4 directed: for every
edges {i, j} of G4 we introduce the directed edge i}' if the sign of a;; is not reversed.
We denote the resulting directed graph by G p- If hat A =Pf B, we say that G B is
the Pfaffian orientation of G 4.

Our next goal is to sketch a proof the famous result of Kasteleyn [Ka63], see also
[TF61], that if G 4 is a planar graph then it has a Pfaffian orientation, which can be
constructed efficiently. We follow [LP09].

We call an even cycle C in G4 relevant if the graph obtained by deleting from
G 4 the vertices of C and all adjacent edges contains a perfect matching.

4.3.6 Lemma. Let G g be an orientation of G a. Suppose that every relevant cycle
C is oddly oriented. Then sgn I = sgn J for any two perfect matchings in G g.
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Fig. 4.7 A drawing of a
planar graph 1 2

Proof. As follows from Lemma 4.3.3, (sgn /)(sgn J) = 1 for any two perfect
matchings / and J. (]

Let us consider a drawing of a directed planar graph G in the plane. Connected
components of R? \ G are called faces of G. There is one unbounded face, and there
can be no, one or several bounded faces. By choosing the orientation of the plane, we
can talk about the edges of any bounded face oriented clockwise or counterclockwise,
see Fig.4.7.

For example, for the graph on Fig.4.7, we have:

For the face I, the edges 3, 6 and 5 are oriented clockwise while the edge 8 is
oriented counterclockwise;

For the face /1, the edges 4 and 9 are oriented clockwise while the edges 6 and
7 is oriented counterclockwise;

For the face 111, the edge 1 is oriented clockwise while the edges 3, 4 and 2 are
oriented counterclockwise.

The set of edges 1,2,7,9, 8,5 form a cycle C. With respect to that cycle, the
edges 1, 9 and 5 are oriented clockwise while the edges 2, 7 and 8 are oriented
counterclockwise.

Note that if the same edge belongs to two bounded faces then in one of the faces
it is oriented clockwise and in the other counterclockwise.

Similarly, we define the orientation of the edges of any directed cycle drawn on
the plane.

We will use the Euler formula relating the vertices, edges and faces of a planar
graph G. To apply Euler’s formula, we need the graph G to be 2-connected, meaning
that every two vertices of G can be connected by at least 2 vertex-disjoint (with
the exception of the endpoints) paths in G, so that G has no “loose ends” and the
embedding of G looks like the one on Fig.4.8.

4.3.7 Lemma. Let G be a drawing of a 2-connected directed graph, without loops
or multiple edges, in the plane. Suppose that every bounded face has an odd number
of edges oriented clockwise. Then every relevant cycle C is G oddly oriented.

Proof. Since C is relevant, the graph obtained from G by deleting the vertices of C
and all adjacent edges contains a perfect matching and, therefore, the number v of
vertices of G lying inside the region bounded by C is even, so



114 4 Hafnians and Multidimensional Permanents

Fig. 4.8 A drawing of a
2-connected planar graph

v=0 mod 2.

Let w be the number of vertices of C and hence also the number of edges of C. Let
f be the number of faces lying inside C, let ¢; be the number of clockwise oriented
edges in the i-th face and let ¢ be the number of clockwise edges in C. Since each ¢;
is odd, we have

f
Zc,- = f mod 2.
i=1

Let e be the number of edges inside C. Then by the Euler’s formula,
+w)—(e+w)+ f=1

and hence
e=v+ f—1

Since every interior edge is counted as clockwise for exactly one face, we have

f

Zci=e+c

i=1

and hence
f=e+c=c+v+f—1 mod?2.

It follows then that
c=1 mod?2,

as required. O

Now it is clear how to construct a Pfaffian orientation of a planar graph: we build
the graph edge by edge so that at most one new bounded face appears at each step.
We orient the edge in such a way that the new face has an odd number of clockwise
oriented edges, see Fig.4.9.
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Fig. 4.9 Constructing a Pfaffian orientation of a graph

As follows by Lemmas 4.3.6 and 4.3.7, for any two perfect matchings I and J
in the graph, we have sgn I = sgn J and hence hat A = |Pf B| for the skew-
symmetric matrix B constructed from a given symmetric matrix A. If it so happens
that haf A = —Pf B, we reverse the sign of the first row and column of B.

Galluccio and Loebl proved that if the genus of the graph G 4 is g then haf A can
be written as a sum of 49 Pfaffians [GL99]. While no efficient algorithm for checking
whether a given graph has a Pfaffian orientation appears to be known, in the case of a
bipartite graph there is a polynomial time algorithm [R+99], see [Th06] for a survey.

4.3.8 Hafnians as expectations of random Pfaffians. Let A = (a;;) be a non-
negative real symmetric n X n matrix, where n = 2m iseven. For 1 <i < j <nlet
&;j be real valued independent random variables such that

Egij=0 and varg,-jzl for all 1§l<j§n

Let us define a skew-symmetric random matrix B = (bi j) by

gij /Cll'j ifi < ]
bij =1 -&jaij ifi>j
0 ifi = j.

It is not hard to see that
haf A = E (Pf B)>.
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As in Sect.3.9.1, the Markov inequality implies that the probability that (Pf B)?
overestimates haf A by a factor of A\ > 1 does not exceed 1/A. In [Ba99] it is shown
that if §;; are independent standard Gaussian then with probability approaching 1 as
n grows, we have

(Pf B)> > ¢"haf A

for some absolute constant ¢ > 0 (one can choose ¢ ~ 0.28). As in Sect. 3.9, we can
get a better constant ¢ &~ 0.56 by switching to complex Gaussian ;; and replacing
(Pf B)? by |Pf B|?, but unlike in the case of the permanent there does not seem to
exist a viable quaternionic version of the estimator.

In [R+16], the authors identified a class of matrices A for which the approximation
factor is subexponential in .

4.4 Multidimensional Permanents

4.4.1 Permanents of tensors. Let A = (a;, ;,) be a d-dimensional cubical n x
... X n array (tensor) of complex numbers. We define the d-dimensional permanent

of A by
PER A= > []aino.c
Uz,...,UdES,, i=1
where the sum is taken over all (d — 1)-tuples (o3, . .., 04) of permutations sampled

independently from the symmetric group S,,. In particular, ifd = 2then Aisann xn
matrix and PER A = per A, cf. Sect.3.1.1.

Ifa;, i, € {0,1}forall 1 <ij,...,i; < n,then PER A is naturally interpreted
as the number of perfect matchings in the d-partite hypergraph H encoded by A: the
vertices of H are split among d classes, where each class contains exactly n vertices,
numbered 1, ..., n and the edges of H consist of the d-tuples (iy, ..., ;) where
a;,..i, = 1 and i; denotes the i ;-th vertex from the j-th class. A perfect matching in
H is a collection of edges containing each vertex exactly once.

For example, the perfect matching in a 3-partite hypergraph pictured on Fig.4.10
corresponds to the pair of permutations (o,, 03), where

(1234 4o (1234
92=\2314) M B3=\3214)"

Hence for d > 3 it is an NP-hard problem to decide whether PER A > O for a given
d-dimensional array A with O-1 entries.

Given a d-dimensional array A, we call a (k, j)-th slice of A the set of all entries
a;, i, where iy = j. Hence if d = 2 aslice is arow (k = 1) or a column (k = 2) of
the matrix A and for a general d, each entry of A is contained in exactly d slices and
each slice consists of some n?~! entries of A.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.10 A perfect
matching in a 3-partite
hypergraph

Similarly to (3.1.1.2), we obtain the “(1, 1)-slice expansion” of the permanent of
a tensor:
PER A= > ay,.;,PER A; ;. (4.4.1.1)

1=<is,....ia=n

where A;, ;, is the d-dimensional (n — 1) x ... x (n — 1) array obtained from A by
crossing out all slices containing ay;,.j,-

Some (but far from all) of the results and methods developed in Chap. 3 extend to
multi-dimensional permanents. In particular, the permanents of tensors whose entries
are close to 1 can be efficiently approximated, cf. Theorems 3.6.1 and 3.6.2.

4.4.2 Theorem. For an integer d > 2 let us choose

d—-1Da

04 = sin 2 cos
2 2

for some oo = oy > 0 such that
2m
(d — 1)0( < ?

Hence 0 < 04 < 1 and we can choose 6, = 0.5, §3 = \/6/9 ~ 0.272, 64 ~ 0.1845
and 64 = Q(1/d).

(1) Foranyd-dimensional cubical array Z = (z[1 i d) of complex numbers satisfying

|1_Zi1...m < 44 forall 1<iy,...,ig<n
we have

PER Z # 0.

(2) Forany 0 < 0 < 64 there is v = v(04/9) > 0 and for any € > 0 and integer
n > 1 there is a polynomial p = pg,.s in the entries of a d-dimensional
n X ...xnarray A such that


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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degp < v(Inn —1Ine)

and
InPER A — p(A)| < ¢

provided A = (ai]___id) is a cubical d-dimensional n x ... x n array of complex
numbers satisfying

|1 —a;l___id| <0 forall 1<iy,...,ig <n.

Proof. The proof is similar to those of Sect.3.6. In Part (1), let @« = 4 be a real
number such that 0 < (d — 1)a < 27/3 and

5 e d—- 1D«
= S1n —CcoS ———.
d 2 2

We prove by induction on n that if A = (a,-,___,-t,) and B = (b,',___,-‘,) aretwon X ...xn
arrays of complex numbers satisfying

1 —ai.i| < 64 and [1—b; ;| < 64

forall 1 < i;,...,ig < n and such that A and B differ in at most one slice, then
PER A # 0, PER B # 0 and the angle between two non-zero complex numbers
PER A and PER B does not exceed .

For n = 1, then clearly PER A # 0 and PER B # 0 and the angle between the
two numbers does not exceed 2 arcsin ; < <. Assuming that n > 1, without loss of
generality, we assume that B is obtained from A by replacing ay;,.. ;, by bi;,. i, for
alll <ip,...,ig <n.By(4.4.1.1), we have

PERA= > ap.,PER A, , and

1<iz,...,ig<n

PER B= > bi;,.;, PER Ay,

1<iy,..., ig<n

where A;, ;, isthe (n —1) x...x (n—1) array obtained from A by crossing out all d
slices containing ay;, . ;,. Next, we observe that any two arrays A;, ;,and Aj, j,,upto
a permutation of slices, differ in at most (d — 1) slices. By the induction hypothesis
we have PER A;, ;, # 0forall 1 <ij,...,iy; < n and the angle between any two
non-zero complex numbers PER A;, ; and PER A; ; does notexceed (d — 1)a.
Applying Lemma 3.6.4, we conclude that PER A # 0, PER B # 0 and the angle
between PER A and PER B does not exceed


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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. da
2 arcsin e =%
COS 3

which completes the proof of Part (1).
To prove Part (2), let J = J;, be the n x ... x n tensor filled with 1s. We define
a polynomial
g(z) =PER(J +z(A —J))

of degree at most n, so that
g(0) =PER J = (n)?" and ¢(1) = PER A.
Moreover, for 3 = §;/6 > 1 we have g(z) # 0 whenever |z| < 8. We choose a

branch of f(z) = In g(z) for |z] < 1 such that f(0) is real and use Lemma 2.2.1 to
claim that for some k < y(Inn — In €) the Taylor polynomial

k (m) 0
=70+ Do
m=1 :

approximates f(z) for |z| < 1 within an additive error . We need to show that
pi (1) is a polynomial of degree at most k in the entries of A. To finish the proof as
in Sect.3.6.7, it suffices to show that g"(0) is a polynomial in the entries of A of
degree at most m. Indeed,

m a" -
g( )(O) Zﬁ z H (1 +z (ai(fz(i)...(fd(i) - 1)) ‘ZZQ

T2yeney 0'1165” i=1

= D> D (thotnemiin = 1) (@matinonin — 1) »

02500,04 €Sy (i1500sim)

where the last sum is taken over all ordered m-tuples of distinct indices (iy, ..., i,;).
Therefore,

g™ (0) = ((n —m)H*!

X Z (@ininyicr = 1) @ipying.ie = 1) = (@inpizgiam — 1)+

where the sum is taken over ordered d-tuples of ordered m-tuples (i Jlseeesld jm) for
1 < j < d of distinct indices i j;. O


http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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For fixed d and d, the polynomial p can be computed in n?®"~19 time. Later,
in Theorem 5.5.3, we prove that PER A # 0 if the ¢! distance of each slice of a
d-dimensional n X . .. x n complex cubical array A to the array of 1 s does not exceed
~van®1, where v; = (a(d — 1))?7'/d¢ and a ~ 0.278 is an absolute constant.

If the entries of the tensor are real positive, we obtain better bounds, although
for d > 2 the improvement is not as substantial as in the case of permanents, see
Sect.3.7.

4.4.3 Theorem. For an integer d > 2, let

T
0q = tan ——
4d —-1)

sothat 6, = 1,83 = /2 — 1~ 041, 64 =2 — /3 ~ 0.27, etc.

(1) Let us fix real § and T where

0<d<d; and T:(l—é)sin( —arctan6)>0

"
4d—1)

Let Z = (Zilmid) be a d-dimensional n X - - - X n array of complex numbers such

that forall 1 <iy,...,ig <n we have
}l—iﬁzilmid| < 0 and |3‘Zi1...i4| < T
Then
PER Z # 0.

(2) Forany integerd > 2 and any 0 < 6 < d, there is a constant v = y(64/6) > 0
and for any positive integer n and real 0 < € < 1 there is a polynomial p =
DPn.d.s.c of deg p < v (Inn — Ine€) in the entries of a d-dimensionaln x --- X n
array such that

InPER A — p(A)| < €

for any d-dimensionaln x - - - x n array A = (ail...,'l,) of real numbers satisfying

|1 —a;,.,| <0 forall 1<iy,...,ig <n.

Proof. The proof is similar to those of Sect.3.7. LetU,, = U, (d, 6, T) be the set of all

d-dimensional n X ... x n complex tensors Z = (zil___id) that satisfy the conditions

of Part (1). We prove by induction on n that for any two tensors A, B € U, that differ

in at most one slice, we have PER A # 0, PER B # 0 and the angle between the
T

complex numbers does not exceed m
If n = 1 then clearly PER A # 0, PER B # 0 and the angle between PER A
and PER B does not exceed


http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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T T T
2 arctan < —2arctand < ——.
1-46 2(d —-1) 2(d—-1)

Suppose that n > 1. Without loss of generality, we assume that B is obtained by A
by replacing ay;,. i, by bij,..i, forall 1 <i,,..., iz < n. We have

PERA= > a;.,PER A, , and

1<is,...,ig<n

PER B= > bi;.;, PER Ay .

1<is,....ia=<n

where A;, ;, isthe (n —1) ... x (n—1) array obtained from A by crossing out all d
slices containing ay;, . ;,. Next, we observe that any two arrays A;, ;,and Aj, j,,upto
a permutation of slices, differ in at most (d — 1) slices. By the induction hypothesis,
we have PER A;, ;, # 0forall 1 <ij,..., iy < n and that the angle between any
two non-zero complex numbers PER A;, ;, and PER A, ;, does not exceed /2.

Applying Part (3) of Lemma 3.7.3, we conclude that PER A # 0, PER B # 0 and
that the angle between PER A and PER B does not exceed

™

-
2arctan § + 2 i = .
arctan o + 2 arcsin =5 2d—1)

To prove Part (2), Let J = J,, 4 be the n x - -- x n tensor filled with 1 s and let us
define a univariate polynomial

r(z) =PER (J +z(A — J)).

Suppose that
—a <Nz < 14+a and [Nz] < p (4.4.3.1)

for some o > 0 and p > 0. Then

I—(+m6 < R (1+z(a,.,—1) <1+d+a)s and
3 (1 + 2 (@i, = 1))| =po.
Let us choose a sufficiently small « = «(d) > 0 so that &' = (1 + a)d < I, and let

1= . s wan s’
= Sin — arctan .
P=" 4d—1)

Then by Part (1) we have r(z) # 0 for all z satisfying (4.4.3.1). Let ¢(z) = ¢5,/5(2)
be a univariate polynomial constructed in Lemma 2.2.3, such that

$(0) =0, o) =1


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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and
—a < NPk < 1+a and [36Q) < p

provided
lz| < B forsome (= 0((8;/0) > 1.

We define the composition

9(2) = r(¢(2)).

Then ¢(z) is a univariate polynomial and deg g = (degr)(deg ¢) = O (n), where the
implicit constant in the “O” notation depends only on §,/4. In addition,

g(0) =r(0) =PER J = (n)*"" and ¢(1)=r(1) =PER A

and
g(z) #0 provided |z] < (.

The proof is finished as in Sect.3.7.5. We choose a branch of f(z) = In g(z) in the
disc |z| < 1 so that

f(0)=(d—1Dlnn! and f(1)=InPER A.

Let p,,(z) be the Taylor polynomial of f(z) of degree m computed at z = 0. By
Lemma 2.2.1, we can choose m = O(Inn — In €), where the implicit constant in the
“O” notation depends on 6,/9, so that p,, (1) approximates f (1) within an additive
error of e. It remains to show that the k-th derivative f* (0) is a polynomial of degree
k in the entries of the tensor A. From Sect.2.2.2, it suffices to show that g(k) (0) is
a polynomial of degree k in the entries of the tensor A. We showed in the proof of
Theorem 4.4.2 that ®)(0) is a polynomial in the entries of A of degree k and we
compute the expansion of the composition g(z) = r(¢(z)) as in Sect.3.7.5. O

For fixed d and 4, the polynomial p in Part (2) of Theorem 4.4.3 can be computed
in n 07100 time,

Figure4.11 pictures regions for the entries of a tensor allowable by Theorem 4.4.2
(disc) and allowable by Theorem 4.4.3 (rectangle).

4.4.4 Scaling. Similarly to the scaling of matrices (see Sect. 3.5), one can define the
scaling of tensors. We say that the d-dimensional n x ... X n tensor A = (al-l___,-l,) is
obtained from the d-dimensional n x ... X n tensor B = (b,-l,,,,},) by scaling if there
exist \yj > Ofork=1,...,dand j =1,...,n such that

Qi iy = iy - - Adighi i, forall 1 <iy,...,i; <n.

Clearly, in this case,


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 4.11 A neighborhood
for the entries of A (disc)
where PER A is
approximated by Theorem
4.4.2 and a neighborhood for
the entries of A (rectangle)
where PER A is

approximated by Theorem —— —
443 0
PER A= | [] M | PER B. (4.4.4.1)
I1<k=d
1<j<n

We say that B is d-stochastic if the entries of B are non-negative:

b > 0 forall 1<iy,...,iz<n

iy...0q

and the sum of entries in every slice is 1:

2 ; bil~~ik—liik+l---i(l =1

1<it,eonsik 15kt seesia <0

forall k=1,...,d andall i=1,...,n. (4.4.4.2)

4.4.5 Theorem. Any d-dimensional cubical tensor A = (ai]___i d) with real positive
entries

ai, .., >0 forall 1<iy,...,ig<n
can be obtained by scaling from a unique d-stochastic tensor B. The tensor B can
be found as a necessarily unique minimum of the convex function
Xiy..ig

fX) = Z Xi,..ig In

\<iyoig<n aiy..ig
on the convex polytope of d-stochastic n x ... x n tensors X. Thus we have

bii iy = Miy - Adig@iy iy forall 1 <iy,...,iqg<n

and some \¢j > 0 fork =1,...,dand j =1,...,n. The numbers \; are unique
up to a rescaling
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Aj —> ki forall k, j,

for some Ty, ..., 74 > 0 suchthatt---174 = 1.

The proof is very similar to the proof of Theorem 3.5.2, see [BS11] and also [Fr11]
for extensions in the case of non-negative tensors A. We note that

d
B = S byt Y b,-l...,,(ZInAk,-k)
k=1

— i -
1<iy,ig<n 1o-td 1<iy,....iq=<n

n n

d d
= E ln)\kj E bil---id = E E ln)\kj.
k=1 j=1 1<ii,....ia<n k=1 j=1
ix=J

For d > 3, it is relatively easy to construct an example of a d-stochastic tensor B
such that PER B = 0, see [BS11]. The situation with the d-dimensional permanent
is somewhat similar to that with the hafnian, cf. Sect.4.2: while there is no van
der Waerden-type lower bound, there is concentration of the permanents of well-
conditioned d-stochastic tensors.

4.4.6 Definition. Let A = (a,-l___,-d) be a d-dimensional tensor with positive entries.
For o > 1, we say that A is a-conditioned if

: .. .
iy ipiy < g, forall 1T <iy, ... ik 0, ....0iq<n

andall k=1,...,d. (4.4.6.1)

In words: a tensor with positive entries is a-conditioned if the ratio of any two entries
which differ in one index does not exceed .

4.4.7 Lemma. Let A be an a-conditioned d-dimensional cubical tensor and let B
be a d-stochastic tensor obtained from A by scaling. Then B is o-conditioned.

The proof is very similar to that of Lemma 3.5.6, see also [BS11] for details.
Our next goal is to prove the concentration of d-dimensional permanents of well-
conditioned d-stochastic tensors.

4.4.8 Theorem. For any real o > 1 and any integer d > 1 there exists v =
v(d, o) > 0 such that if A is an a-conditioned d-stochastic n X ... X n array then

nYe @D < PER A < ple @D,

The proof follows the same scheme as the proof of Theorem 4.2.2 for hafnians, see
also [BS11].

First, we need the dual description of the scaling factors \;; in Theorem 4.4.5, cf.
Theorem 4.2.4.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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4.4 Multidimensional Permanents 125

449 Lemma. Let A = (ailm,},) be a d-dimensional n X . .. X n tensor with positive
entries and let \ij > 0:1 <k <d, 1 < j < n be real numbers such that the tensor
B = (bil...id) where

biy.iy = Miy - Adigaiy iy forall 1 <iy,....ig<n

is d-stochastic. Then the point
& =1n )y

is a maximum point of the linear function £ : R>" — R,

d

L(x) = szkj for x = (xkj)

k=1 j=I

on the convex set C = C(A) C R¥*" defined by the inequality

d n
C=1x= (xkj) : Z aj, ..iy €Xp szkj =n

1<iy,.nig<n k=1 j=1

The proof is similar to that of Theorem 4.2.4.
Next, we show that if a d-dimensional tensor which is close to d-stochastic is
scaled to d-stochastic, then the product of the scaling factors is close to 1.

4.4.10 Lemma. Let A = (ailm,-(,) be an a-conditioned d-dimensionaln x ... x n

tensor such that the sum of entries of A in the (k, j)-th slice is 1 — 0xj, where

n

and some "

od-1d’

0<p =

Suppose further that the sum of the entries of Aisn. Let B = (bi1 i d) be ad-stochastic
tensor obtained from A by scaling, so that

bil...id = )\],‘] cee )\d,'da,-l,,,id for all 1 <ip,..., id <n

and some A\ > 0. Then

d n d—122 72
d
0 < E 11’1/\1(]‘ < %
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Proof. Since the point x;; = 0 belongs to the convex set C of Lemma 4.4.9, we

conclude that
d

Zzn:hmk, > 0.

k=1 j=1

Since the sum of entries of A is n, we have

D 0y =0 for k=1,....d. (4.4.10.1)
j=1
Let us define a tensor X = (x;, ;) by

o
Xi,.i, = Qi i, +w;i,.i, Wwhere w; ;, = v E Ok -
k=1

It follows by (4.4.10.1) that the sum of entries of X in every slice is 1. Since A is
a-conditioned, we have

1 . .
i ..iq > W for all Iy ooy lyd (44102)

and hence X is d-stochastic. From Theorem 4.4.5,

d n X
i1...0q
E E ln)\kj < E Xi.ig In
ai, ..

wdd

k=1 j=1 1<iy,....ig<n
Wiy ..y
= E (ail...id + wil...id) In (1 +
<t ig<n Gir-.ia

IA
M
=
3

E

I<iy,...ia=n
2
_ Z w;
1<iy,.ig<n CH1-ld
Since
gd
\wll~..id| < —
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by (4.4.10.2) we conclude that

d n 2 2 72 d—1.32 72
w; d _ d
E E ln)\kj < E —tleld < nd%(an)d ]:%.
n

a4
k=1 j=1 1<iy,oosig<n 1-ld

Now we are ready to prove Theorem 4.4.8.

4.4.11 Proof of Theorem 4.4.8. All implied constants in the “O” notation below
depend on « and d only.

For subsets Iy, I,,...,I; C {l,...,n} such that || = ... = |I;|, we denote
by A (1, ..., I;) the d-dimensional tensor consisting of the entries a;, ;, where
ir € fork=1,...,d.Let B (I, ..., ;) be the d-stochastic tensor obtained from
A (I, ..., 1;) by scaling. We prove by induction onm = |I;| = ... = |I| that

21
PER B (I}, ....Is) =exp{—-m(d -1+ 0| > — (4.4.11.1)
=/
Substituting m = n, we get the desired result.

LetI,...,I; C {l,...,n} be subsets such that |/;| = ... = |I;| = m and let
us choose i; € I;. To simplify the notation, we denote B (/y, ..., I;) just by B and
also assume that i; = 1. We use the (1, 1)-slice expansion (4.4.1.1):

PER B= > by, PER B, ;. (4.4.11.2)

where B;, _;, is the tensor obtained from B by crossing out all slices containing by;, . ;, .
Note that (4.4.11.2) represents PER B as a convex combination of PER B;, ;.

By Lemma 4.4.7, the tensor B is a?-conditioned. Since B is d-stochastic, the
entries of B do not exceed a*“~V/md=1. Let oy, ;, be the sum of the entries of
B Hence

i..ig-

oipiy=m—d+0 (—) (4.4.11.3)

(we obtain a lower bound when we subtract from the total sum of the entries of B
the sums over d slices and we obtain an upper bound if we add back the sums over
all pairwise intersections of slices).

We scale B;, ;, to the total sum of entries m — 1, so we define
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Then .
PER B, i = (&) PER B, .,
m—1

and by (4.4.11.3), we conclude that

-~

1
PER B, ; = exp {—(d ~1+0 (-)] PER B, ;,. (4.4.11.4)
m

o~

To estimate PER B, ;, we use Lemma 4.4.10. Let us scale Eiz...l}/ to a d-stochastic
tensor. The resulting d-stochastic tensor is the same tensor we obtain from A(Z \ {i;},
.., I;\{iz}) by scaling, thatis, the tensor B ({; \ {i1}, ..., I; \ {i4}). Since the tensor
B is d stochastic and the entries of B do not exceed o>~V /m?~!, we conclude that
the sum of entries in every slice of B;, ,, is at most 1 and at least 1 — a>@~V /m,
Consequently, the absolute value of the difference of the sum of entries in every
slice 1/3\,-2“_,}, and 1is O(1/m). Applying Lemma 4.4.10, we conclude that as long as
m > ~1(«, d) for some constant y; depending on « and d only, we have

o~

PER B, ; = exp [0 (%)]PER B\ {i1)},.... I\ {ia)). (4.4.11.5)

We use a trivial estimate
PER B = ¢ provided m < ~,(«, d). (4.4.11.6)

Applying the induction hypothesistoPER B (I} \ {i1}, ..., Iz \ {i4}) and combining
(4.4.11.6), (4.4.11.5) and (4.4.11.2), we complete the proof of (4.4.11.1). O

4.4.12 Algorithmic applications. It follows from Theorem 4.4.5, Lemma 4.4.7 and
Theorem 4.4.8 that for any o > 1, fixed in advance, the permanent of a -dimensional
a-conditioned n X . . . X n tensor can be efficiently (in polynomial time) approximated
within a polynomial in n factor of n” for some v = ~y(a, d). As is argued in [BS11],
this allows us to distinguish d-partite hypergraphs that are far from having a perfect
matchings from d-partite hypergraphs that have sufficiently many perfect matchings
even when “sufficiently many” means that the probability to hit a perfect matching
at random is exponentially small.

Let V =V, U...U YV, be the set of vertices of a d-partite hypergraph H, where
[Vi] = ... = |V4] = n and for every edge S of H we have |[SNV;| = ... =
|S N V| = 1. We identify each “part” V; with a copy of the set {1, ..., n}, fix an
0 < € < 1 and construct a d-dimensional n X ... X n tensor A = (ail---id) by

1 if (iy,...,iy) is an edge of H
a; =
ot e otherwise.
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Then H is 1/e-conditioned, and applying Theorem 4.4.5, Lemma 4.4.7 and Theorem
4.4.8 we can estimate in polynomial time PER A within a multiplicative factor of
n"“49_ Now, if every matching in H consists of at most (1 — §)n edges for some
5 > 0, we have PER A < ¢”(n!)¢~!. On the other hand, if H has at least 5" (n!)?~!
perfect matchings for some 0 < 3 < 1, we have PER A > 3" n"41. As long as
€’ < /3, by computing PER A within a factor of n7“® we can distinguish these two
cases.

We note that similar results can be obtained for the d-dimensional version of a
hafnian, cf. [BS11]. We also note that there is a Bregman-Minc type upper bound,
cf. Sect. 3.4, for d-dimensional permanents of 0—1 tensors [DG87].

The entropy-based method of proof of the Bregman-Minc inequality found in
[Ra97] (see Sect.3.4) was further applied to obtain non-trivial upper bounds for the
number of independent sets in graphs [Ka(01], the number of Hamiltonian cycles
in graphs [CK09] and hypergraphs of particular types [LL13], [LL14]. In contrast,
lower bounds are usually much harder to come by. A recent breakthrough by Keevash
[Ke14], [Kel5] establishes the existence and the asymptotic of the number of designs,
which can be interpreted as a result on a lower bound for multidimensional perma-
nents for some special (very symmetric) arrays with O—1 entries, see also [Po15] for
lower bounds complementing [LL.13] and [LL14].

Efficient algorithms for computing the d-dimensional permanent exactly in special
cases are discussed in [CP16].

4.5 Mixed Discriminants

4.5.1 Definition. Let Oy, ..., Q, be n x n real symmetric matrices. Then

p(xi, .. xy) =det (01 Q1 + ...+ x,0p)
is a homogeneous polynomial of degree n and its mixed term

al’l

mp(xl,---,xn)=D(Q1,---,Qn)

is called the mixed discriminantof Q1, ..., Q,.Mixed discriminants were introduced
by A.D. Alexandrov in his work on mixed volumes [Al38], see also [Le93].
We can express the mixed discriminant as a polynomial in the entries of the

matrices Qy, ..., @, as follows: suppose that Oy = (qlkj) for1 <i,j < nand
k=1,...,n. Then

x101+...+x,0, = (X1q,'1j+...+an{'j) for 1 <i,j<n

and hence
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det @1 Q1 +...+x,00) = > (sgn o) [ [ (1) + - - + %0alss)

og€eS, i=1
and, consequently,
n .
D(Qy..... 00 = > san o) [[ain) (4.5.1.1)
0,7€S, i=1
Thus the mixed discriminant D(Qy, ..., Q,) can be interpreted as a version of the

determinant of an n X n x n array whose 2-dimensional slices are identified with the
matrices Q1, ..., Q,, cf. Sect.4.4.

As follows by (4.5.1.1), the mixed discriminant is linear in each argument. It is
immediate from the definition that if 7 is an n X n matrix then

D(T*QO:T,....T*Q,T) = (detT)* D (Q1, ..., Qu). (4.5.1.2)

where T is the transpose of T'.
In general, we obtain the monomial expansion

det(x1 01+ ... +x,0p)

_xm'...xmn
= > L p(0n... 0L 0nnn 0] @D

myl---my!
M ey 20 ! my times m, times
mi+...4+m,=n
Indeed, it follows from the definition that D(Q, ..., Q) = n!det Q foreveryn x n
symmetric matrix Q. For x = (x,...,x,),let O, =x101+ ...+ x,0,. Then

1
det Qx = ;D(QX’ ceey Qx)

and we obtain (4.5.1.3) since the mixed discriminant is linear in each argument and
symmetric, that is, does not depend on the order of matrices.

Mixed discriminants generalize permanents: given an n X n matrix A = (a,-j), let
us define n x n symmetric matrices Q1, ..., Q, by Q; = diag (a;, ..., a;,), that
is, Q; is the diagonal matrix having the i-th row of A on the diagonal. Then

det(x1Q1+...+x,0,) = H( xiaij)
1

j=1

i=

and hence D (Qy, ..., Q,) = per A, cf. Sect.3.2.1.
Just as the permanent of a non-negative matrix is non-negative, the mixed dis-
criminant of positive semidefinite matrices is non-negative.
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4.5.2 Lemma. Suppose that Qy, ..., Q, are positive semidefinite n x n matrices.
Then

D(Qi,.... 00 = 0.

Moreover, if Qy, ..., Q, are positive definite then D (Qy, ..., Q,) > 0.

Proof. Since D (Q1, ..., Q,) is a continuous function of Qy, ..., Q,, without loss
of generality we may assume that Oy, ..., Q, are positive definite, in which case we
prove that D (Qy, ..., Q,) > 0. We proceed by induction on n. The case of n = 1

is clear. Suppose that n > 1. Since Q) is positive definite, we can write Q| = T*T
for some invertible n x n matrix 7 and then by (4.5.1.2)

D(Qy,..., Qn) =D (T*T, Qy, ..., On)
=(det T)°D (1, (T—l)* 0,771, (T—l)* QnT_l) ’ (4.5.2.1)

where [ is the n x n identity matrix. Fori = 1, ..., n, let u; be the matrix having 1 in
the i-th diagonal position and zeros elsewhere, so that / = u; + ... + u,. Denoting

0, = (T o7 for k=2,...,n (4.5.2.2)
we conclude that Q), ..., Q/, are positive definite matrices and by linearity we have
D(I,Qh.....0,) =D D (ui, 05..... Q). (4.5.2.3)

i=1

On the other hand, as follows from the definition or from (4.5.1.1), we have

D (uj, @5, ..., Q) =D (Qh..... 0h), (45.24)
where Q) is the (n — 1) x (n — 1) symmetric matrix obtained from Q) by crossing
out the ith row and ith column. Since the matrices Q;, ... Q) are positive definite,
by the induction hypothesis we conclude that D (Q5;, ..., Q);) > 0 and combining
(4.5.2.1)- (4.5.2.4), we conclude the proof. O

4.5.3 Combinatorial applications of mixed discriminants. For a vector u =
(uy,...,u,), we denote by u ® u the n x n matrix whose (i, j)-th entry is u;u;.
Clearly, u ® u is positive semidefinite. Various combinatorial applications of mixed
discriminants are based on the following formula:

Du Quy,...,u, ®u,) = (detfuy,..., u,,])z, 4.5.3.1)

whereuy, ..., u, € R"are vectors and [uy, ..., u,]is the n x n matrix with columns
ui,...,u,. By continuity, it suffices to check (4.5.3.1) when u, .. ., u, is a basis of
R" and then it follows by (4.5.1.2) from the obvious special case when uy, ..., u, is
the standard orthonormal basis of R”.
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The following application is from Chap. V of [BR97]. Let G be a connected
(undirected, with no loops or multiple edges) graph with n vertices and m edges, and
suppose that the edges are colored with n — 1 different colors. Let us direct the edges
arbitrarily and consider the n x m incidence matrix A = (a;;) of G, where

1 if vertex i is the beginning of edge j,
a;j = 1—1 if vertex i is the end of edge J,
0  otherwise.

Let us remove an arbitrary row of A and letu, .. ., a,, be the columns of the resulting
matrix, interpreted as vectors from R* ! Fork =1,...,n—1,let J, C {1,..., m}
be the set of indices of edges colored into the k-th color and let

Qk:Zuj(X)uj for k=1,...,n—1.

JE€Jk

Then Qy, ..., Q,—; are positive semidefinite matrices and D (Qy, ..., Q,—1) is the
number of spanning trees in G having exactly one edge of each color. Indeed, by
linearity of the mixed discriminant and (4.5.3.1), we have

D(Ql""’Ql’l—l)Z z (det[ujl""’ujnfl])z'

J1€J1, s u—1€Jp1

As is well-known (see, for example, Chap.4 of [E+84]), we have

+1 if the edges ji, ..., j,—1 form a spanning tree in G
det [ujl’ ’ uj"] - 0 otherwise.

4.5.4 Doubly stochastic n-tuples. Pursuing an analogy with the permanent, we
say that the n-tuple (Qy, ..., Q,) of n x n positive semidefinite matrices is doubly
stochastic if

trQ1=...=tr @, =1 and Q;+...+0Q0,=1,

the identity matrix. Indeed, if Qy, ..., Q, are diagonal matrices then (Qy, ..., Q)
is doubly stochastic if and only if the n x n matrix A whose i-th row is the diagonal
of Q; is doubly stochastic.

The following result was conjectured by Bapat [Ba89] and proved by Gurvits
[Gu06], [GuO08].

4.5.5 Theorem. Let (Q1, ..., Q,) be a doubly stochastic n-tuple. Then

D(Q1.....00) > —.
n

n
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The proof follows the approach of Sect. 3.3, which in turn follows [GuOS8].

4.5.6 Lemma. Let Qy, ..., Q, be n x n positive definite matrices. Then the poly-
nomial

p(Xty...,xy) =det(x1Q1+ ...+ x,0,)

is H-stable and the coefficient of every monomial of degree n is positive.

Proof. Let us choose z;,...,z, € C such that Iz > O fork = 1,...,n and
suppose that p (zy, ..., z,) = 0. Then the matrix
n
0=> %0k
k=1

is not invertible and hence there is a vector y € C" \ {0} such that Qy = 0. We
consider the standard inner product

n
(x,y):Zxkﬁ for x =(xy,...,x,) and y=(yi,...,¥n)
k=1

in C". Thus we have

0=(0y.y) =D z(Qiy. ). (4.5.6.1)
k=1
However, since Qy, ..., Q, are positive definite matrices, the numbers (Qyy, y)

are positive real, which contradicts (4.5.6.1) since the imaginary part of each z; is
positive.

Finally, by (4.5.1.3) and Lemma 4.5.2 the coefficient of x{"' ...x/ in p where
mi + ...+ m, = n is positive. O

Next, we discuss the capacity of p, see also Lemma 3.3.3.

4.5.7 Lemma. Let Q1, ..., Q, be a doubly stochastic n-tuple and let

pxi, ..., xy) =det(x; Q1+ ... +x,0,).

Then
p (X1, Xp)

X1yees Xy >0 X1 Xp

=1.

Proof. Let us define a function f : R" — R by

f @, ..., 1) =Indet (" Q) + ... +€"Q,)

and let H C R”" be the hyperplane #; + ... + ¢, = 0. It suffices to show that
the minimum of f on H is attained at f; = ... = f, = 0. By Lemma 4.5.6 and
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Sect.2.1.1.3, the function f is convex so it suffices to verify that the gradient of f
at t = 0 is proportional to the vector (1, ..., 1).
Since
V (Indet X) = (X*)7!,

denoting
S0 =30,
k=1
we obtain
and the proof follows. 0

4.5.8 Proof of Theorem 4.5.5. The proof follows by Lemmas 4.5.6, 4.5.7 and
Corollary 2.4.6. ]

There is a notion of scaling for n-tuples of positive semidefinite matrices. Just as
an n X n matrix can be scaled to a doubly stochastic matrix, see Theorem 3.5.2, an
n-tuple of positive definite matrices can be scaled to a doubly stochastic n-tuple. The
following result was obtain by Gurvits and Samorodnitsky [GS02].

4.5.9 Theorem. Let Qy,..., Q, be n x n positive definite matrices. Then there is
a doubly stochastic n-tuple (By, ..., B,), an invertible n x n matrix T and positive
reals T, ..., T, such that

Qi =7T*BT for k=1,...,n.

Proof. As in the proof of Lemma 4.5.7, we consider the function f : R* — R
defined by

f @, ....t,) =Indet (" Q1+ ...+ " Q,)

and the hyperplane H defined by the equation #; 4 ... 47, = 0. It is not hard to see
that f attains its minimum on H at some point (xi, ..., x,) where the gradient of
f is proportional to (1, ..., 1). As in the proof of Lemma 4.5.7, we obtain that for
some real a and

S=e"01+...+e"0,,

we have

af

= = et SN=a for k=1,...,n. 459.1
atk N=Xxy,..., Iy=Xx, ¢ r (Qk ) @ or " ( )
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Since

we conclude that
a=1. (4.5.9.2)

Since S is positive definite, we can write itas S = 7T for an invertible n x n matrix
T. We define

Bi=e*(T7) ' OuT7" and 7, =e™ for k=1,...,n.
Clearly, By, ..., B, are positive definite matrices,
Qv =7T 0T for k=1,...,n

and . .,

> Be=(r%)" (Z e Qk) T = (1) 7' sT = 1.

k=1 k=1
By (4.5.9.1) and (4.5.9.2) we get

r Be=e"tr (T7) QT '=e%tr QT (T =e%tr QS =1,

which completes the proof. O

In [GS02], Gurvits and Samorodnitsky also discuss scaling of n-tuples of positive
semidefinite matrices.

4.6 A Version of Bregman—-Minc Inequalities for Mixed
Discriminants

Theorem 4.5.5 is an extension of the van der Waerden inequality from permanents of
doubly stochastic matrices, see Sect. 3.3, to mixed discriminants of doubly stochastic
n-tuples of matrices. One can ask if there is a version of the Bregman - Minc inequality
for mixed discriminants, see Sect.3.4. Some weak version of such an inequality is
suggested in [B16a]. For what follows, it is convenient to associate with an n x n
matrix Q the quadratic form g : R* — R,

q(x) = (Qx,x) for x € R",
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where (-, -) is the standard inner product in R”. We define the eigenvalues, trace
and determinant of g as those of Q. Similarly, we define the mixed discriminant

D(qy, ..., qy) of quadratic forms ¢y, ...,q, — Ras D(Qy, ..., Q,), where Q;
is the matrix of ¢;. We observe that if we choose a different orthonormal basis in R”,
the matrices Q; change Q; := U*Q;U for some orthogonal n x n matrix U, so that
the eigenvalues of Q; and the mixed discriminant D(Qy, ..., Q,) do not change.
In particular, gy, ..., q, : R" — R is a doubly stochastic n-tuple of quadratic
forms, if the forms ¢, ..., g, are positive semidefinite, tr ¢; = 1 fori = 1,...,n
and
n
> ai) = ix|%,
i=1
where || - || is the standard Euclidean norm in R”.

4.6.1 Definition. Given a real a > 1, we say that an n x n positive definite matrix
Q is a-conditioned if

Amax(Q) = a)\min(Q)’

where Amax and Ay, are respectively the largest and the smallest eigenvalues of Q.
Equivalently, Q is a-conditioned if for the corresponding quadratic form, we have

g(x) < ag(y) forall x,yeR" suchthat x| =lyl=1 (46.1.1)

An n-tuple (Qy, ..., Q,) of n x n positive definite matrices is a-conditioned if
each matrix Qy is a-conditioned fork =1, ..., n and

gi(x) < agj(x) forall 1<i,j<n andall x eR",

where ¢, . .., g, are the corresponding quadratic forms.

Definition 4.6.1 extends Definition 3.5.5 from a-conditioned positive matrices
to n-tuples of n x n positive definite matrices. The following result is obtained in
[B16a].

4.6.2 Theorem. Let (Qy, ..., Q,) be an a-conditioned doubly stochastic n-tuple
of positive definite n x n matrices. Then

D(Q1,....0,) < n%e "V,

Combining Theorems 4.5.5 and 4.6.2, we conclude that for a fixed o > 1, the mixed
discriminant of an a-conditioned doubly stochastic n-tuple of matrices varies within
a polynomial in n factor of ™", just like in the case of permanents of doubly sto-
chastic matrices, cf. Sect.3.4.6, hafnians of doubly stochastic symmetric matrices
(Theorem 4.2.2) and similarly to multidimensional permanents of d-stochastic ten-
sors (Theorem 4.4.8). It would be interesting to find out if in Theorem 4.6.2 we
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can just require that the eigenvalues of the matrices Q1, ..., @, do not exceed o/n
(that would have been a true extension of the Bregman - Minc inequality to the
mixed discriminant). By and large, the proof follows the same scheme as the proofs
of Theorems 4.2.2 and 4.4.8. It proceeds by combining induction and scaling.

To proceed with the induction, we need a way to pass from an n-tuple of n x n
matrices to (n — 1)-tuple of (n — 1) x (n — 1) matrices. We do so by considering
a restriction of the quadratic forms onto a subspace. Let g;,...¢g, : R — R be
quadratic forms and let L C R” be a subspace, dim L = m. Then the restrictions
gi|L : L — R are quadratic forms on L. Since the subspace L inherits the Euclidean
structure from R”, we can define the mixed discriminant D (¢{|L, ..., gu|L).

First, we obtain a version of recursive formulas (3.1.1.2), (4.1.1.3) and (4.4.1.1).

4.6.3 Lemma. Letqy,...,q, : R" —> R be quadratic forms and let
an () = D Niui, x)?,
i=1

where \i, ..., \, are the eigenvalues and u, ..., u, are the corresponding unit
eigenvectors of q,. Then

n
D(q1,...,qn) =Z/\iD(q1|uf‘,...,qn_1|uf‘),
i=1

where ull C R” is the orthogonal complement of u;.

Proof. Since the mixed discriminant is linear in each argument, it suffices to prove
that

D(q. ... qnr, . x)°) =D (qilu™, ..., guor|u™) (4.6.3.1)

for any unit vector u € R”". Let us choose an orthonormal basis in R” containing
u as the last vector, and let Qy, ..., Q,_; be the matrices of ¢, ..., g,_ in this
basis. Then the matrices Q), ..., Q_, of the restrictions ¢ |ut, ..., g,—1|lu’ are
the (n — 1) x (n — 1) upper left submatrices of Q, ..., Q,_1 while the matrix E,
of (u, x) is the matrix whose (n, n)-th entry is 1 and all other entries are 0. It then
follows that

9
5 et Qi+ b1 Qo + 10 Ey) = det (101 4o+ 110, )

and (4.6.3.1) follows by Definition 4.5.1. U

Next, we show that if we scale an a-conditioned n-tuple of positive definite
matrices to a doubly stochastic n-tuple, we get an a>-conditioned n-tuple of matrices
(cf. Lemmas 3.5.6, 4.2.5 and 4.4.7). As we will have to deal with restrictions of
quadratic forms, we prove the statement in more generality.
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4.6.4 Lemma. Let q,...,q, : R" — R be an a-conditioned n-tuple of positive
definite quadratic forms, let L C R" be an m-dimensional subspace, let T : L —>
R" be a linear transformation such that ker T = {0}, let 71, ..., T, > 0 be reals,
and let us define quadratic forms py, ..., pm : L — R by

pix) =7;q;(Tx) for xeL and i=1,...,m.

Suppose that the m-tuple (pi, ..., pm) is doubly stochastic. Then the m-tuple
(P1y-vvs Pm) is o?-conditioned.

Proof. Letus define ¢ : R — R by
qx) = ZTiqi(x) for x e R".
i=1
Then by (4.6.1.1) the form ¢ is a-conditioned, so
)\max ((]) < Oé)\min (q),

where A\yax (¢) and A\pin (q) are, respectively, the largest and the smallest eigenvalues
of g. For all x, y € L such that ||x|| = ||y]| = 1, we have

1=q(Tx) > Auin@ITx|I> and 1=¢q(Ty) < Amax(@ITVI?
from which it follows that
ITx||> < a|Ty|* forall x,ye L suchthat |x||=|yl=1.  (4.64.1)

Using that each quadratic form g; is a-conditioned, we deduce from (4.6.4.1) that
for all x, y C L such that ||x|| = ||y|| = 1, we have

pi(¥) =71¢;(Tx) < Tidmax@DITxI? < T Amax@)ITYI? < ?7i Amin (@) 1 Ty 1%
< ?79;(Ty) = ®pi(y)

and hence each quadratic form p; is a>-conditioned.
Let us now define quadratic forms r; : L —> R by r;(x) = ¢;(Tx) forx € L
andi =1, ..., m. Since the n-tuple (qi, ..., g,) is a-conditioned, we have

ri(x) < arj(x) forall x € L andall i, j.

Therefore,
trr; < atrr; forall i,j.
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Since
l=twpi=mtrr, for i=1,...,m,
we conclude that
7, < ar; forall 1<i,j<m. 4.6.4.2)
Since the n-tuple (qi, ..., q,) is a-conditioned, we deduce from (4.6.4.2) that for

all x € L we have
pi(x) =7qi(Tx) < atjqi(Tx) < o’7jq;(Tx) = a’p;(x),
and the m-tuple (pi, ..., pm) is o2-conditioned. |

The last ingredient we need to prove Theorem 4.6.2 is a one-sided version of the
inequalities of Lemmas 4.2.6 and 4.4.10.

4.6.5 Lemma. Let Q1, ..., Q, be n X n positive definite matrices such that
n
Ztr Q; =n.
i=1
Let (B, ..., B,) be a doubly stochastic n-tuple, constructed in Theorem 4.5.9, so
that

O =nT*BT for k=1,...,n.

Then
D(B],...,Bn) > D(Q],...,Qn).

Proof. Let Q = Q1+ ...+ Q,andlet \, ..., \, be the eigenvalues of Q. Then

deto =[N < (%ZA,-) =(%tr Q) 1.
i=1 i=1
We have
D(Qlwu,Qn)Z(HTk)(detT)zD(Bl,...,B,,).
k=1

In the notation of Theorem 4.5.9,

ﬁTk :exp{—ixk} =1,
k=1

k=1

where x = (x, ..., x¢) is the minimum point of the function
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f(tr,....t) =Indet (" Q1 +...+€" Q)
on the hyperplane #; + ... 4 7, = 0. In addition,

(detT)* =det (" Q1 +...+e" Q,) =exp{f(x1, ..., %)}
<exp{f(0,...,0)} =det(Q1+...+0Q,) =detQ <1,

and the proof follows. (]
Now we are ready to prove Theorem 4.6.2.

4.6.6 Proof of Theorem 4.6.2. We prove a more general statement:

Let ¢1,...,9, : R" — R be an a-conditioned n-tuple of positive definite
quadratic forms, let L C R” be an m-dimensional subspace, let T : L — R" be a
linear transformation such that ker 7 = {0} and let 7y, ..., 7, > O be reals. Let us
define quadratic forms p; : L — R by

pi(x) =7qi(Tx) for xe L and i=1,...,m.

Suppose that (py, ..., p,) is a doubly stochastic m-tuple. Then
o1
D(pi,....pm) < exp —(m—1)+a22— . (4.6.6.1)
k=2 k

We obtain Theorem 4.6.2 if m = n, T = I is the identity map and 7; = 1 for
i=1,...,n.

We proceed to prove the above statement by induction on m.

If m = 1 then D(p;) = det p; = 1 and the statement clearly holds.

Suppose that m > 2. Let

Pn(x) = D Aj(uj. x)
j=1

is the spectral decomposition of p,,, where ); are the eigenvalues and u; are the
corresponding unit eigenvectors of p,,. Since tr p,, = 1, we have

Sa=1 (4.6.6.2)

LetL; =ujforj=1,...,mHence L; C Landdim L; = m—1.Letp;; = pi|L,
be the restriction of p; onto Lj, so p;; : L; —> R are positive definite quadratic
forms. By Lemma 4.6.3,
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D(pi.....pm) =D AND(Pijs--m Pmy) - (4.6.6.3)
‘We note that
_ a?
trpmjztrpm—)\jzl—)\j > 1—;,

since by Lemma 4.6.4 the quadratic form p,, is a>-conditioned.
Using that Py + ... + Pu—1); = l|lx||> forall x € L;, we get

m—1 2

~ —~ (0%
oj=D Py =(n—) =ty < m—2)+

i=1

for j=1,...,m. (4.6.6.4)

We define quadratic forms r;; : L; —> R by

-1
rij=———py for i=1,....m—1 and j=1,....m
gj
In particular,
Dlrrj=m—1 for j=1,....m. (4.6.6.5)
i=1
From (4.6.6.4), we get

D(IA’IJ’-~-7P<m 1)/) ( 1) ("us-- s Fm— 1)/)

1 m—
<(1= S TR (4.6.6.6)
—( m—1 m(m—l)) r1, T l)./)

Sexp[ 1+—]D(}’1],...,r(m1)j) for j=1,...,m

Let (w1 Goeees Win—1) j) be the doubly stochastic (m — 1)-tuple of quadratic forms,
w;j : L; —> R, obtained from ryj, ..., rou—1); by scaling as in Theorem 4.5.9.
From (4.6.6.5) and Lemma 4.6.5, we have

D(wlj,...,w(m,l)j) > D(rlj,...,r(m,l)j)

and hence from (4.6.6.6), we get

2
D (ﬁljv ...,]’7\(,“,1)]') < exp [—1 + %] D (u)lj, ey w(mfl)j). (4.6.6.7)
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Now we would like to apply the induction hypothesis to the quadratic forms

Wijy vy Wim—1)j - Lj — R.
Since the (m — 1)-tuple (wy;, ..., We—1);) is obtained by scaling from the (m — 1)-
tuple (rij, ..., m-1);), there is an invertible linear transformation S; : L; —> L;
and positive numbers i1, ..., fion—1); Such that
(m — Dpij (m — D p;
wij (x) =pijrij (Sjx) = ———LPij(Sjx) = ————pi(S;x)
0j gj
— DT
—Mq,-(Tij) forall xeL;
gj
andi = 1,...,m — 1. Foreach j = 1,...,m, we have a linear transformation

TS;:L; — R"withker T'S; = {0} and hence by the induction hypothesis

m—1
1
D (Wij, ..., Wen-1);) < €xp [—(m —-2)+a? ; %} (4.6.6.8)
forj=1,...,m.
Combining (4.6.6.2), (4.6.6.3), (4.6.6.7) and (4.6.6.8), we obtain (4.6.6.1), which
completes the proof. (I

4.6.7 Computing mixed discriminants. If the n-tuple (Q;, ..., Q,) is a doubly
stochastic then by Lemma4.5.6 wehave D (Q1, ..., Q,) <det(Q1+ ...+ Q) =
1. This, together with Theorem 4.5.5, the scaling algorithm of Theorem 4.5.9 and
the formula

n

D(MT*BiT, ..., \,T*B,T) = (H )\k) (detT)2D (By,...,B,) (4.67.1)
k=1

results in a deterministic polynomial time algorithm to approximate the mixed
discriminant D (Q1, ..., Q,) of positive semidefinite matrices within a multiplica-
tive factor of n!/n" ~ ¢™" [GS02]. A better approximation factor can be achieved by
a randomized polynomial time algorithm [Ba99], extending the permanent approx-
imation algorithm of Sect.3.9.1. Namely, given n x n positive semidefinite matri-
ces O, ..., Qn, we compute n x n matrices Ti, ..., T, such that Q; = T;*T for
k=1,...,n. Letuy,...,u, be vectors sampled independently at random from the
standard Gaussian distribution in R” and let [T uy, ..., T,u,] be the n x n matrix
with columns Tjuy, ..., T,u,. Using formula (4.5.3.1) it is not hard to show that

D(Qi,...,0,) =E (det[Tiuy, ..., Tu,)?,
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and that with probability approaching 1 as n grows we have
det (Tyur, ..., Tuy)* = (0.28)"D(Q1,..., Qn) -

If vectors uy,...,u, are sampled independently at random from the standard
Gaussian distribution in C" then

D(Qi,..., 0, =E |det[Tiui, ..., Tu,l*,

and that with probability approaching 1 as n grows we have

det [Tyuy, ..., Tu,)* > (0.56)"D(Q1,..., Qn).
Finally, assume that u1, . .., u, are sampled from the standard Gaussian distribution
in the quaternionic space H" and let [Tuy, ..., Tu,]c be 2n x 2n complex matrix
constructed from the n x n quaternionic matrix [Tuy, ..., Tu,] as in Sect.3.9.1.
Then det [Tuy, ..., Tu,]c is a non-negative real,
E det[Tuy,...,Tu,Jc =D (Q1,..., 0n)

and with probability approaching 1 as n grows, we have
det [TM], ey Tl/ln](c > (076)“D (Ql, ey Qn) .

Assume now that the n-tuple (Qy, ..., Q,) is a-conditioned. As follows from
Theorem 4.6.2 and Lemma 4.6.4, the scaling algorithm of Theorem 4.5.9, together
with formula (4.6.7.1) and Theorem 4.5.5, approximates the mixed discriminant
D(Qy, ..., 0,) within a factor of n°©”, which is polynomial in n provided « is
fixed in advance, cf. also Sects. 3.5, 4.2 and 4.4.

In their proof of the Kadison—Singer Conjecture [M+15], Marcus, Spielman and
Srivastava introduce and study the mixed characteristic polynomial

n 8 n
Por..o,@ =[] (1 - a_) det (xl + ;Zi Q,-)

i=1 <

)
21=...=2,=0

where Qy, ..., Q, are real symmetric or complex Hermitian m x m matrices. If
01, ..., Q, are positive semidefinite then the roots of the mixed characteristic poly-
nomial are real and necessarily non-negative. If m = n then the constant term of
Do,....0,, up to a sign, is equal to the mixed discriminant D(Qy, ..., Q,). The rela-
tion of the mixed characteristic polynomial to the mixed discriminant is similar to
the relation of the matching polynomial of Chap.5 to the permanent and hafnian.
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Chapter 5
The Matching Polynomial

Known in statistical physics as the partition function of the monomer-dimer model,
the matching polynomial of a graph is an extension of the hafnian, as it enumerates
all, not necessarily perfect, matchings in the graph. The Heilmann—Lieb Theorem
asserts that the roots of the matching polynomial (with non-negative real weights on
the edges) are negative real, which allows us to efficiently approximate the polyno-
mial through interpolation anywhere away from the negative real axis. We demon-
strate the “correlation decay” phenomenon of the probability for a random matching
to contain a given vertex to be asymptotically independent on whether the matching
contains some other remote vertex. Through the Csikvari-Lelarge “lifting” argu-
ment, it allows us to lower bound the matching polynomial of a bipartite graph by
the matching polynomial of a covering tree, which produces a useful Bethe-entropy
estimate. Finally, we prove a general bound on the complex roots of the hypergraph
matching polynomial, which allows us to obtain new interpolation results for (mul-
tidimensional) permanents of matrices and tensors that are not very far from the
matrices (tensors) of all 1s in the £! distance on the slices.

5.1 Matching Polynomial

5.1.1 Definition. Let A = (ai j) be an n x n symmetric matrix. For a positive integer
m such that 2m < n, we define

haf,, (A) = > ayj - dij, (5.1.1.1)
{iljl} ~~~~~ {imajm}

where the sum is taken over all unordered collections of m pairwise disjoint unordered
pairs{iy, ji}, .-, {im, jm} Where 1 <iy, ji, ..., i, jm < n.Inparticular,ifn iseven
and n = 2m then haf,,(A) = haf A. We also agree that hy(A) = 1. Thus h,,(A)
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enumerates all matchings consisting of m edges in a complete weighted graph with
n vertices.
We define the univariate matching polynomial by

ln/2]
pa(t) = D haf,, (A",

m=0

In statistical physics, p4 () is known as the partition function of the “monomer-dimer
model”, where edges of the matching correspond to “dimers” while the vertices of
the graph not covered by the matching correspond to single “atoms”.

The following remarkable result was obtained by Heilmann and Lieb [HL72].

5.1.2 Theorem. Let A be an n x n symmetric matrix with non-negative entries and
let

=l1,...,

Then the roots of the matching polynomial p4(t) are negative real and satisfy the
inequality
1

t < ——.
= "1

The bound on the roots obtained in [HL72] is, in fact, slightly better, cf. Remark
5.1.4 below.
We follow [HL72] and deduce Theorem 5.1.2 from the following result.

5.1.3 Theorem. Forasymmetric n X n matrix A let us define a univariate polynomial

[n/2]
aa(t) = D (=1)" by (A)" 2"

m=0

(1) Suppose that A is a real symmetric matrix with positive off-diagonal entries and
let A; be the (n — 1) x (n — 1) matrix obtained from A by crossing out the i-th
row and i-th column of A for some i = 1, ..., n. Then the roots of qa(t) and
qa,(t) are real and q 4, (t) interlaces q(t) provided n > 2.

(2) Suppose that A is a non-negative real matrix. Then the roots of q(t) are real.

(3) Let A be an n x n symmetric non-negative real matrix and let

B=04a= igll??fn Z aij.
Jii#i
If qa(t) = O then |t| < 2/P.

Proof. To prove Part (1), we proceed by induction on n = degga. If n = 2 and
i €{1,2} we have
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gat) =t*—app and qa (1) =1,

and hence g4, (1) indeed interlaces g4 (¢).

Suppose that n > 2. We split all matchings in the complete graph with vertices
{1, ..., n} contributing to (5.1.1.1) into two classes: those that contain i and those
that do not. Then we obtain the recurrence relation:

qa() = tqa, (1) = D aijqa,(®), (5.1.3.1)
JiJ#

where A;; is the (n —2) x (n —2) symmetric matrix obtained from A by crossing out
the i-th and j-th row and the i-th and j-th column. The polynomial g4, (¢) in (5.1.3.1)
accounts for the matchings not containing i while the sum in (5.1.3.1) accounts for
the matchings containing ;. We note that the highest terms of g4 (¢), g4, (¢) and g4, (t)
are positive (with coefficients equal to 1).

By the induction hypothesis, each g4, (¢) interlaces g 4,(¢) and hence by Part (1)
of Theorem 2.3.2, the polynomial

p() = Z aijqa; (1)

Jij#

interlaces g4, (t). Then by Part (2) of Theorem 2.3.2, the polynomial g, (¢) interlaces
qa(t) =tqa, () — p().

As follows by Part (1), the roots of g4 () are real if A is a symmetric real matrix
with positive off-diagonal entries. It then follows by continuity that the roots of g4 ()
are real if A is a non-negative real matrix, which proves Part (2).

To prove Part (3), we may assume that 5 > 0 since the case of 5 = 0 is trivial.
For a subset I C {1, ..., n} we denote by A; the submatrix of A obtained from A
by crossing out rows and columns in /. We denote g4, (¢) just by g;(¢) and prove by
descending inductionon |/| =n —2,n — 3, ..., 0 that

q:(®) > \/E provided i ¢ I and tzZ\fﬂ.

0 d
“¢)#0 an qropy(t) ~

Indeed,if I = {1,...,n}\ {i, j}, we have

(1) ajj 1
() =2 —aj, qup@® =1 and 22 =1~ > 2 /5 /3> /B
qruiy (1) t 2

provided ¢t > 2./5.
If |I| <n —2,using (5.1.3.1), for all i ¢ I we can write

q1(t) = tqrom () — Y aijqrugi.j () (5.1.32)
Ji¢l
J#
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and hence
QI(t) L Z qIUtj ()
qruii) (t) jijél 6]1u{z (t)
J#L

By the induction hypothesis, for ¢ > 2./ we have

qruii,j} (t) 1

qruiy (1) «/_

and hence

q:(1) Zau > 2\/‘ \/‘ f

qrui (f) , I,
J#

which completes the induction. Hence we proved that g4 () # 0 provided t > 2./3.
Since the polynomial g4 (¢) is even when n is even and odd when 7 is odd, the proof
follows. (Il

5.1.4 Remark. In [HL72] a slightly stronger bound is proven (by a more careful
induction): let us define

w; = E ajj mln ajj

Ji#E a,,>0

£ = max w;
i=l1,...n

B2 =% n}gX a;j
B =max {5, br}.

Then g4 (1) # O for |t| > 24/B. In particular, if A is the adjacency matrix of a
graph G with maximum degree A(G) > 1 of a vertex, we have g4(f) # 0 for

[t] > 2J/A(G) — 1.

5.1.5 Proof of Theorem 5.1.2. Let g4 (¢) be the polynomial of Theorem 5.1.3. Then

1
qat) =t"py (_t_2) .

By Part (2) of Theorem 5.1.3 it follows that the roots of p4(¢) are the (necessarily
real negative) numbers —1/¢> where ¢ are non-zero roots of g (¢). Since by Part (3)
of Theorem 5.1.3, every real root t of g4 (t) satisfies || < 2.//3, we conclude that
all roots of p4(t) satisfy t < —1/4/3, as desired. ([l



5.1 Matching Polynomial 149

One immediate corollary is that the numbers haf,,(A) form a log-concave
sequence.

5.1.6 Corollary. Let A = (ai j) be a non-negative symmetric matrix. Then
(haf,,(A))> > haf,_(A)haf, 1 (A) for m=1,...,|n/2] — 1.

Proof. Follows by Theorem 5.1.2 and Theorem 2.3.3. (]

5.1.7 Computing the matching polynomial. Let A be an n x n non-negative
real symmetric matrix, let p(¢) be the corresponding matching polynomial and let
3 = B4 > 0 be as defined in Theorem 5.1.2. Let us fix some 0 < § < 1. One
can deduce from Theorem 5.1.2 that for any given 0 < ¢ < 1 and complex ¢ the
value of p4(¢) can be approximated within a relative error of € in quasi-polynomial
n@Unn=Ine time as long as |t| < 6/4(3, and, moreover, In p4(t) can be approximated
within an additive error € > 0 by a polynomial of degree O(Inn — In€) in # and the
entries of A. Given such a 7, we define a univariate polynomial

ga(z) = pa(t2).

From Theorem 5.1.2, we deduce that g(z) # 0 as long as |z| < 1/J. We define

fa(z) =1Inga(z)

and use Lemma 2.2.1 to approximate f4(1) = In p4(¢) by the Taylor polynomial of
fa(z) at z = 0 of some degree d = O (Inn — In€). Since the values of haf,,(A) can
be computed exactly in 72 time, we can compute the m-th derivative of p4(t) at
t = 0in n?" time and hence the m-th derivative of f4(z) at z = 0 in n%" time,
cf. Sect.2.2.2, see also [Rel5].

In fact, for any § > 1, fixed in advance, the value of p4(¢) at a complex ¢ can be
approximated within a relative error 0 < ¢ < 1in n91"~19 time as long as

Fig. 5.1 The region where
pa(t) can be efficiently
approximated; zq is an upper
bound on the roots of p4 ()
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S

1)
[t] < ﬁ and |7 —argt| >

Moreover, in that region In p4(¢) can be approximated within an error € by a poly-
nomial of degree O(Inn — In€) in 7 and the entries of A. Figure5.1 shows a domain
of t € C for which p,4(¢) can be approximated in quasi-polynomial time. It consists
of an outer disc of radius J|z¢| for some fixed § > 1, where z( is an upper bound on
the roots of p,, with a sector of a fixed angle removed, and an inner disc of radius
v|zo| for some fixed 0 < v < 1.

To approximate p,(f), using Lemma 2.2.3 we first construct a disc D = {z e C:
lz] < 6} of some radius 5 = #(6) > 1 and a polynomial ¢ = ¢5 : C — C such
that 1/(0) = 0, ¥(1) = 1 and the image (D) lies in a sufficiently thin strip aligned
with the positive real axis, so that the set ¢)(D) does not contain the roots of p4. We
then consider the composition

9a(2) = pa(t¥(2))

and use the Taylor polynomial of f4(z) = Inga(z) at z = 0 to approximate g4 (1) =
pa(t), cf. Sect. 3.7 and see [PR16] for detail.

Patel and Regts further showed [PR16] that if A is the adjacency matrix of a
graph G with the largest degree A(G) of a vertex bounded above in advance, then the
above algorithm for approximating p 4 (¢) can be made polynomial and not just quasi-
polynomial. They show that in that case the values of haf,,(A) form = O(Inn—Ine)
can be computed in time polynomial in n and 1/e, see also Sect. 6.6.

Let z be the largest root of the matching polynomial p(#) (since zo < O, it is
also the root of p4(t) nearest to the origin). Then £1/,/—z¢ are the roots of the
polynomial g4 (f) of Theorem 5.1.3 of the largest absolute value. We note that g ()
is a monic polynomial and that the coefficient /,,(A) of #"~>" can be computed in
n?Cm time simply by enumerating all matchings of size m in the complete graph.
Arguing as in Sect.2.3.4, we can estimate the largest absolute value of the root of
g4 (t) and hence the value of zo within relative error ¢ in 7017~ time,

There is a Markov Chain based randomized polynomial time algorithm approxi-
mating p4 (t) for real + > 0, see Chap. V of [Je03]. If A is the adjacency matrix of a
graph, the complexity of the algorithm is polynomial in ¢.

For zeros of partition functions of subgraphs with various degree constraints, see
[Ru99, Wa99].

5.2 Correlation Decay for the Matching Polynomial

5.2.1 Graphs and probabilities. In what follows, it is convenient to switch from
the language of symmetric matrices to the language of weighted graphs. We consider
a graph G = (V, E; A), undirected, without loops or multiple edges, with set V of
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vertices, set E of edges and non-negative weights a, : e € E on the edges. We
define the matching polynomial

LIvi/2]
Ps(t) = Z /’lktk, where hy; = Z Aoy ** ey -
k=0 ey,....ex €E
ey,..., ey pairwise disjoint
We call the product a,, - - - a,, the weight of a matching ey, ..., e.
When G is the complete graph with set V = {1, ..., n} of vertices and weights

a, = a;; fore = {i, j}, where A = (a[ j) is a symmetric non-negative matrix, we
obtain the matching polynomial p4(¢) of Sect.5.1.1.

We assume that the parameter ¢ is non-negative real. Let us consider the set of
all matchings in G as a finite probability space, where the probability of a matching
consisting of the edges ey, .. ., ¢ is proportional to t*a,, - - - ¢; (if k = 0 we assume
that the product is equal to 1). Then the probability that a random matching contains
k edges is t*h; / Pg(t) and

Lvi/2]

1P, (1) d . ‘
=t—1InPs(t) = P~ (t khyt
Po) 0 G (1) c () /;:o k

is the expected number of edges in a random matching.

Let G = (V, E; A) be a weighted graph as above, and let S C V be a set of
its vertices. We denote by G — S the weighted graph obtained from G by deleting
all vertices from S together with incident edges. We start with a recurrence relation
similar to (5.1.3.1):

Po(t) = Poo (1) +1 D apuw Po—vu(®) (5.2.1.1)

weV:
{w,v}eE

Here visavertex of V, theterm Pg_, (#) enumerates all matchings in G not containing
v whereas the sum accounts for all matchings in G containing v (we use G — v as
a shorthand for G — {v} and G — v — w as a shorthand for G — {v, w}) We rewrite
(5.2.1.1) as

—1

Pg_y(t Pg_y_w(t
Po® _ {4, > a{v,w}G—() . (5.2.12)
Pg(1) = Pg_(1)

{w,v}eE

We note that Pg_,(¢)/Ps(t) is the probability that a random matching does not
contain vertex v whereas Pg_,—q(t)/Pg—,(t) is the conditional probability that a
random matching does not contain vertex w given that it does not contain vertex v.
We note that the sum
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1 Py (t)
EZX“'%m)

veV

represents the expected number edges (half of the expected number of vertices) in a
random matching, and hence we get

d 1 _ Pou(®)
tEIHPG(t)_ 2;(1 ) ) (5.2.1.3)

Formula (5.2.1.2) can be naturally generalized as follows: foraset S C V of vertices
and a vertex v € V' \ S, we have

-1

Po_g_,(t P v—w (t
Poso@ _ 1)L, > e O8N (5.2.1.4)
Pg_s(1) wevis: Pg_s_(t)

{w,v}eE

We interpret Pg_s_,(¢)/ Pc—s(t) as the conditional probability that a random match-
ing in G does not contain vertex v, given that it does not containing vertices from
S.

We discuss a dynamic programming type algorithm for computing the proba-
bilities Pg_s—(t)/Pg—s(t) and, as a corollary, the matching polynomial Pg(?),
which exhibits an interesting phenomenon, called the “correlation decay”. We fol-
low [B+07] with some modifications.

5.2.2 Lemma. Let us consider the set X of all non-negative vectors x = (x s,u) with
coordinates parameterized by a pair consisting of a set S C V of vertices and a
vertex v € V \ S and let us define a transformation T : X —> X by

-1

T(x) =y where ys,=|1+1 Z Afv,w)X(S,v),w
weV\S:
{w,v}eE

Let

,8 max Ay, w)
veV
weV:

{v,wleE

and suppose that

t= E for some A\ > 0.

(1) Suppose that
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1
T < xsy <1 forall SCV and veV\S.

Then for y = T (x) we have

1
TFx < ysy <1 forall SCV and veV\S.

(2) Foranyx',x" € X andy' =T (x"),y" = T(x"), we have

A
’ " / "
max |In —1In < —— max |Inx, —Inxg |.
Scv. yS,u yS,v| — A—}—l scv. | Sv S,v
veV\S veV\S

Proof. Since x5, > 0 for all S and v, for y = T(x) we have ys, < 1 for all § and
v. If, in addition, x5, < 1 for all S and v then

A
t Z Ay wyX({Sv},w = B Z A, w) = A

weV\S: weV\S:
{w,v}eE {w,v}eE

and yg, > (1 + A)~! for all S and v, which proves Part (1).
To prove Part (2), we introduce the substitution

fs,v = —IHXS’U and 775,1) = —ln yS,v-

Then the transformation 7 is written as

nNsv = In|1 +t Z a{v,w}e_fcs'”"“’
weV\S:
{w,v}eE

Then

¢t Z a{v,w}eff(s.v),uv

weV\S:
Z OMs.v . {w,v}eE
We\S Oi5.0}.w 1+t Z a{v’w}e*&s,u),w
tw,vjeE weV\S:

{w,v}eE
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1
=11 —
141t Z a{v,w}e_g‘s-”“'

weV\S:
{w,v}eE

IA
|

and the proof of Part (2) follows. O

5.2.3 Correlation decay. The transformation 7" of Lemma 5.2.2 is a contraction.
If we start with a vector xs, = 1 (or any other vector (1 + \)~! < x5, < 1) and
iterate 7', then the vector 7" (x) necessarily converges to the unique fixed point x*
of T, which, by (5.2.1.4) necessarily satisfies

o Pg_s—(1)
SV Pes(t)

As follows from Lemma 5.2.2, to approximate x* by 7" (x) coordinate-wise within
arelative error 0 < € < 1, we can choose

=0 n1/e 523.1
"= (m) 623D

iterations.

Let us introduce a metric on the set V of vertices, where dist(u, v) is the smallest
possible number of edges of G in a path connecting u and v (we let dist(u, v) = 400
if vertices u and v lie in different connected components). We note that to compute
the (S, v)-coordinate of 7™ (x), we only need to access (S’, w’)-coordinates, where
dist (4, v) < mforallu € (S/ \ S) U {w'}. As follows from (5.2.3.1), if \ is fixed
in advance, we obtain a quasi-polynomial algorithm of |V |2 IVI=In©) complexity to
approximate x§ , within relative error 0 < € < 1.

In particular, if we fix some Ao > 0 and € > 0 then for any A < Ao, up to an
additive error e, the value of Pg_,,(t)/ P (t) depends only on the structure of G in
the m-neighborhood of v for some m = m(e, A\p). In other words, for two weighted
graphs G| = (Vy, Ey; Ay) and G, = (V3, E3; Ay) and for two vertices vy € V; and
vy € V5 we have

Po-u®) _ Porn®] _
Pg, (1) P, () | —

provided the m-neighborhoods of v; of G and of v, in G, are isomorphic.
One particularly interesting case is when a, = 1 for all e € E, when
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[Vi/2
Ps(t) = Z (the number of k-matchings in G ) i*.
k=0

Then 3 = A(G), the largest degree of a vertex of G. If A and A(G) are fixed in
advance, we obtain a polynomial time algorithm for approximating x5 ,, because
the number of different coordinates (S’, w’) we need to access while computing the
(S, v)-coordinate of the iteration 7™ (x) grows roughly as A(G)™, which, by (5.2.3.1)
bounded by a polynomial in ¢~!. By looking at the two consecutive iterations of T,
in [B+07] a better rate of convergence is established. It is shown that T? in fact, a
contraction with a factor of

~(mo)

This phenomenon of fast convergence is called correlation decay because to approx-
imate x§ , we do not need to care at all about coordinates (S', w') with {S’, w'} very
different from {S, v}.

We note that once we approximate xg , we can approximate the value of Pg(7)

by telescoping. Namely, we number vertices vy, ..., v, of G and let
P (t Ps_, (t Po_y— ., (t
Pot) = G (1) G0 Py, (1)
PG—Ul (t) PG—vl,Uz(t) PG—Ul—...—U,l,| (t)
* * % —1
= (xsoylesl,vz o .xsnflvvn) ’
where S() = @, S] = {Ul}, Sz = {v], Uz}, ey Sn_1 = {U], ey l)n_|}.

5.2.4 Definition. For positive integers m and k > 2, we define Tﬁq as the tree with
vertices at the levels 0, 1, ..., m, with one vertex, called the root at the Oth level
connected to k — 1 vertices at the level 1, and with every vertex at the i-th level
connected to one vertex at the (i — 1)st level and k — 1 vertices at the (i 4+ 1)-st level,
fori =1, ..., m — 1. Each vertex at the m-th level is connected to one vertex at the
(m — 1)st level, see Fig.5.2.

We set the weight on every edge of T

m

equal to 1.

Fig. 5.2 The tree T}
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5.2.5 Lemma. Let us fix k and let v™ be the root of T* . For any t > 0, we have

m*

llm PTfn_vm(t)_q/l‘i_é"t(k—l)_l
m—oo  Pp(t) 2t(k — 1) '

Moreover, for any ty > 0, the convergence is uniform on the interval 0 < t < t,.

Proof. As follows from Sect.5.2.3, for any € > 0 there is my = my(e, k, t9) such
that for ¢ < 7y the value of Prt _» (t)/Prx (¢), up to an error ¢, depends only on the
mo-neighborhood of v™. However, for all m > m the m(-neighborhoods of v™ € T’,‘n
remains the same, from which it follows that the limit in question, call it x, indeed
exists.

If we remove the root v, of TX and all incident edges, we get a vertex-disjoint
union of (k — 1) trees ']I‘fnfl, see Fig.5.2. Hence by (5.2.1.2) the limit x satisfies the
equation

X = —1 ,
1+t(k—Dx

from which
JT+4tk—1)—1
2tk — 1) '

O

We interpret the limit in Lemma 5.2.5 as the limit probability that a random
matching in ']I‘f‘n does not contain the root, cf. Sect.5.2.1.

5.2.6 Regular graphs of large girth. A graph G is called k-regular if every vertex
of G is incident to precisely k edges. The girth of an undirected graph G = (V, E)
without loops or multiple edges, denoted gr G, is the smallest number g of ver-
tices of a cycle vy — v, — ... — vy — vy, where vy, ..., v, € V are distinct and
{vr, va}, {v2, v3}, ..., {vg—1, vy}, {vg, v1} € E. If G has no cycles, that is, if G is
a forest, we say that gr G = +o00. Locally (that is, in the vicinity of each vertex),
a graph of a large girth looks like a tree, which often allows us to understand the
behavior of its matching polynomial.

5.2.7 Lemma. Let us fix an integer k > 1 and let G, = (V,, E;; 1), n € N, be
a sequence of k-regular graphs such that gr G, — +00 as n —> 00 and with
uniform weights equal 1 on every edge of G,,. Let v, € V, be a sequence of vertices.
Then, for the matching polynomials Pg, (t) and Pg, ., (t) we have

i Fou @ _ 2%k —2
n—oco Pg (1)  kJT+d(k—1)+k—2

and the convergence is uniform over v, € V,. Moreover, for any fixed ty > 0, the
convergence is also uniform over all 0 <t < t,.

forall t >0
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Fig. 5.3 A 3-regular tree
with root at 0 and 3 levels

Proof. Let us fix tp > 0 and an ¢ > 0. As is discussed in Sect.5.2.3, there exists
mo = myg (e, ty, k) such that up to an error ¢, the ratio Pg,_,, (t)/ Pg, (t) depends only
on the mg-neighborhood of v, in G,. If gr G,, > m, the neighborhood of v, looks
like the k-regular tree with root at v,, uniform weight 1 on every edge and m levels,
see Fig.5.3. Hence it follows that the limit in question, say y, indeed exists.

If we remove the vertex v, with incident edges, then the m-neighborhood of v,
in the resulting graph will be a vertex-disjoint union of k trees T¥ . From (5.2.1.2)

it follows that |

T 1tk

y

where x is the limit in Lemma 5.2.5. O

Again, we interpret the limit in Lemma 5.2.7 as the limit probability that arandom
matching in G,, does not contain a particular vertex v,,.

Finally, we compute the logarithmic asymptotic of the partition function Pg, ()
for k-regular graphs of growing girth.

5.2.8 Theorem. Let us fix an integer k > 1 and let G,, = (V,, E; 1), n € N, be
a sequence of k-regular graphs such that gr G, —> +00 as n —> 00 and with
uniform weights equal 1 on every edge of G,. Then, for any t > 0 we have

. InP; (1) k-1 1+ /1 + 4tk — 4t
lim = In
n—s 00 |Vn| 2 2
k—21 k1 +4tk —4t+k—2
— n
2 2k —2

1 ( 2kt — 2t )
+ —1In .
2 V1 44tk —4r — 1

Proof. By Lemma 5.2.7 and (5.2.1.3), we have
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Fig. 5.4 The graph of the

limit in Theorem 5.2.8 for 21
10-regular graphs G,, of

growing girth, as a function

of t

1 k—1
2 kJST¥&Gk—D+k—-2"

where for any 7y > 0, the convergence is uniform over 0 < ¢ < t,. Let us fix an
0 < e < t. Then

1 1
lim In Pg,(t) — — In Pg, (6))
n—>oo(|Vn| Al

. 1 d
lim t—1InPg (1) =
n—oo |V,| dt '

(1 k—1
)\ : 281
/E (27— kT\/m—l— T(k _ 2)) dr (5 8 )

Since G, is k-regular, the number of edges of G, is k|V,|/2 and we can bound

1 1
In Pg, () <
[Vl [Vl

k
In(1+ e)"1/2 < E1n(1 + o).

One can show that the integrand in (5.2.8.1) is regular at 7 = 0, and in fact,

1 k—1 k
— - ==4+0() as 7T— 0+.
27kt /l14+4rtk—D+71k—-2) 2

Hence we can take the limit in (5.2.8.1) as ¢ —> 0-+. Computing the integral, we
complete the proof. O

The graph of the limit for 10-regular graphs as a function of ¢ is pictured on
Fig.5.4.

5.3 Matching Polynomials of Bipartite Graphs

5.3.1 Definition. We consider the special case of Pg(¢) for a bipartite graph G.
Alternatively, for a given n x n non-negative matrix A = (a;;) andinteger 1 < k < n,
we define
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perk(A) = Z Aiyjy o i jies

1<ij<...<ix<n
J1seees Jk pairwise distinct

the sum of permanents of all £k x k submatrices of A and let

ra(t) =Y per, (A", (53.1.1)

k=0
where we agree that per,(A) = 1.
Our exposition loosely follows Csikvari [Cs14] and Lelarge [Lel5].

5.3.2 A 2-lift of a graph and a 2-lift of a matrix. Let G = (V, E; A) be an
undirected weighted graph without loops or multiple edges. We construct its 2-/ift
H as follows. For each vertex v of G, we introduce two vertices, say v and v, of H.
For each edge {u, v} if G we introduce two edges: either a pair {v;, u;} and {v;, us}
of edges or a pair {vy, uy} and {v,, u;} of edges (we have a choice here), see Fig.5.5.
We make H a weighted graph by copying the weight of edge e on the lifts of e.

For example, if G is a cycle with n vertices then a 2-lift H can be a pair of vertex
disjoint n-cycles of a 2n-cycle, see Fig.5.6.

One can similarly define n-lifts. Random lifts of graphs were studied in connection
with expander constructions [ALO6], but also in connection with perfect matchings
[LROS].

Following [Lel5], we define a 2-lift of an n X n matrix A = (aij) asa2n X 2n
matrix B = (b;;), where forall 1 <, j < n we have

either b,‘j = b(i+n)(j+n) = a;j and b(,‘+n)j = b,‘(j.;,_n) =0

or bi(jin) = bismj = aij and bjj = biyny(j+n) = 0.

Fig. 5.5 Two ways to lift

u Vv u
an edge 2 52 2 V2
I
O———O X
) Vi : u, Y]
v
o ————O o ————©
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Fig. 5.6 2-lifts of a triangle

v
VZ 2
MzAV W2 T/l2 W2
AQ /
u |
1 Wl I ul Wl
v ' v
,,,A,W MA,W
For example, if
A= 12 (5.3.2.1)
=134
then
1200 1002 1002
3400 0430 3400
B = 0012 ,C = 0210 and D = 0210 (5.3.2.2)
0034 3004 0034

are 2-lifts of A. It is clear that our definitions of a 2-lift of a matrix and a 2-lift of a
weighted bipartite graph agree.

The following result was proved by Csikvari [Cs14] in the case of uniformly
weighted graphs and then extended by Lelarge [Lel5] to arbitrary positive weights.

5.3.3 Theorem. Let G be a weighted bipartite graph with positive weights on the
edges and let H be a 2-lift of G. Then

Py(t) < Pi(t) forall t>0.

Equivalently, if A is an n x n non-negative matrix and B is a 2-lift of A then for the
polynomials r,(t) and rg(t) defined by (5.3.1.1), we have

rg(t) < ri(t) forall t>0.
Proof. Let G be a trivial 2-lift of G consisgi\ng of two vertex-disjoint copies of G,

say, Gy and G|. Since every matching in G can be written uniquely as a disjoint
union of a matching in G and a matching in G, we deduce that
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=N _ p2
Pg(t) = P5(1)

(here we don’t use that G is bipartite).
Next, we are going to prove that

Py(t) < Pg(t) forall t>0. (5.3.3.1)

Letey, ..., e be amatching in H and let us consider the edges fi, ..., fi of G that
are the images of ey, . . ., ¢, under the natural projection H —> G. Sinceey, ..., e
is a matching, each vertex in G belongs to at most two of the edges fi, ..., fi.
Consequently, the multiset F = {fi,..., fi} is a vertex-disjoint union of edges
of mutiplicity 2, paths, and cycles. Since G is a bipartite graph, the cycles have
necessarily an even number of vertices.

Letus fix a multiset F = {f}, ..., fi} of edges as above, obtained by a projection
of a k-matching in H, and let us compare the total weights Wy (F) and Wg(F) of
matchings in H and G respectively, projected onto F. If F can be represented as a
vertex-disjoint union F = F; U F; then clearly

Wy (FiU Fy) = Wy (FO)Wh(F,) and Wg(Fi U Fy) = Wg(F1) Wa (F2),

so is suffices to compare Wy (F) and Wg(F) when F is connected.

If F consists of a single edge of multiplicity 2, then Wy (F) = Wg(F), as there
are exactly two edges of equal weight projected onto the edge in F', see Fig.5.5.

If F is a path then Wy (F) = Wg(F), since if F is a projection of a matching
in H, there are exactly two matchings in H of the same weight projecting into
F, whose union consists of two vertex-disjoint paths projected onto F. Similarly,
there are exactly two matchings in G projected onto F whose union consists of two
vertex-disjoint paths projected onto F, see Fig.5.7.

In particular, every path in G can be lifted to two matchings in G.

Finally, if F is an even cycle then Wy (F) = Wg(F). If a matching in H is
projected onto an even cycle in G, then there are exactly two such matchings in H.
Similarly, there are two vertex-disjoint cycles in G projected onto F' containing two
matchings in G projected onto F, see Fig.5.8.

This concludes the proof of (5.3.3.1) and hence the proof of the theorem. ]

Fig. 5.7 If there is a

|
|
matching in H projecting | =
onto a path in G then there H | G
are exactly two such l
matchings in H (one of thick O 0—0—0—0
lines and the other of thin > < | S
lines). Similarly, there are _ |
exactly two matchings in G l
projecting onto the same G v G

pathin G
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Fig. 5.8 If there is a
matching in H projecting
onto an even cycle, then
there are exactly two such
matchings (one of thick lines
and the other of thin lines).
Similarly, there are exactly
two matchings in G
projected onto the cycle

Fig. 5.9 If a4-cyclein G is
lifted to two vertex-disjoint

H

<
N

G
NN

G
4-cycles in H then there is a @
<

G
N

4-matching in H projected
onto the cycle. If a 4-cycle in
G is lifted to an 8-cycle in H
then there is no 4-matching
in H projected onto the cycle

Some remarks are in order. We may have Py (f) < Pcz; (t) = Pg(t), since there
can be a 2k-cycle in G which is the projection of a 4k-cycle in H. In that case, there
is a 2k-matching in G projecting onto the 2k-cycle but there is no 2k-matching in H
projecting onto that 2k-cycle, see Fig.5.9.

For example, for matrix A of (5.3.2.1), we have per B = per C = 100 = 10? for
2-lifts B and C of (5.3.2.2), while per D = 52 < 10 for the 2-lift D of (5.3.2.2).

We note that if G is a triangle and H is a 2-lift that is a 6-cycle such as on Fig. 5.6,
then Pg () is a polynomial of degree 1 (since the maximum matching in G consists
of one edge) while Py () is a polynomial of degree 3 (since the maximum matching
in H consists of 3 edges). Therefore, Theorem 5.3.3 does not hold if G is not required
to be bipartite. For non-bipartite graphs, the proof breaks down at the last step: if F
is an odd cycle which is a projection of a matching in H, then F is a projection of
exactly two such matchings whose union is an even cycle of twice the length of F
and not two vertex-disjoint copies of F, see Fig.5.10.

Applying 2-lifts repeatedly, one can obtain from a general graph a graph with a
larger girth that locally looks more and more like a tree.

The following result and its proof is attributed to Linial in [Cs14, Lel5].

5.34 Lemma. Let G = (V, E) be an undirected graph without loops or multiple
edges. Then there is a graph H obtained by repeated applications of 2-lifts to G such
that gr H > gr G.
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Fig. 5.10 If there is a H
matching projecting onto a

cycle of length 3, then there

are exactly two such

matchings (one of thick lines

and the other of thin lines)

whose union is an even cycle

of length 6

< e m m e m e m - - -

"
G

Proof. Suppose that gr G = g and let k be the number of cycles of length g. Let G be
a random 2-lift of G, where independently for each edge {u, v} of G, we choose the
lift {u;, v;} and {u,, v} or the lift {u;, v,} and {u,, v}, with probability 1/2 each,
see Sect.5.3.2. Then a g-cycle in G is lifted to a pair of g-cycles in G with probability
1/2 and to a 2g-cycle in G with probability 1/2. Indeed, a path vy — vy —... — v, of
length g is lifted to a pair of paths of length g each in G, and then the closing edge
v| — vy is either lifted to a pair of edges closing each path to a cycle of length g or to a
pair of edges patching the paths into a cycle of length 2g, see Fig.5.9. Consequently,
for every 2-lift G of G we have gr G > g and the expected number of g-cycles in G
is k. Since with positive probability G consists of two vertex- -disjoint copies of G, in
which case the number of g-cycles in G is 2k > k, there is a lift G which has fewer
than k cycles of length g. Iterating, we conclude that there is a sequence of 2-lifts of
G which produces a graph H with no g-cycles, in which case gr H > gr G. (I

Asacorollary of Lemma 5.3.4, Theorems 5.3.3 and 5.2.8, we obtain the following
lower bound.

5.3.5 Theorem. Let G = (V, E; 1) be a k-regular bipartite graph with uniform
weights I on all edges. Then, for k > 2,

In Ps (1) >k—lln(1+«/1+4tk—4t)
-2

\4 2
k—2ln ka/1+ 4tk —4t +k—2
2 2k -2

1 ( 2kt — 2t )
+ —1In .
2 144tk —4r — 1
forallt > 0.
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Proof. Using Lemma 5.3.4, forn = 1, ..., we construct an infinite sequence G, =
(Vu, Ey; 1) of graphs where G; = G, graph G, is a 2-lift of G, for all n and
gr G, — 400 asn —> oo. Since |V,+1] = 2|V,|, from Theorem 5.3.3 we

conclude that
In P, G, (f )

for n=1,...,
[Val
is a non-increasing sequence. The proof now follows from Theorem 5.2.8. ]

Taking the limit as t —> +o00, we obtain a lower bound for the number of perfect
matchings in a k-regular bipartite graph.

5.3.6 Theorem. Let A be an n x n matrix with 0-1 entries such that every row and
every column of A contains exactly k 1s. Then

Inper A

> (k—1Intk—1)— (k—2)Ink.

Moreover, there is a sequence of {A,} of n x n matrices with 0-1 entries, each
containing exactly k 1s such that

1 A,

lim P e~ DIntk— 1) — (k — 2) Ink.
n—>-00

Proof. Let r4(t) be the matching polynomial of A, see Definition 5.3.1. Then r4 (¢)

is a polynomial of degree n with the coefficient of " equal to per A > 0, see, for

example, Theorem 3.3.2.

Therefore,
. Inra(t) Inper A
lim —Int) =
t—>+00 n n

On the other hand, by Theorem 5.3.5,

I |+ T+ 4k — 4
nra() Z(k_l)ln( + J; ik t)
n

k1 +4tk —4t +k—2
—(k—2)ln( + + )
2k —2

( 2kt — 2t )
+In
1+ 4tk —4r — 1

and hence
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1+ /1 +4tk—4
—Int >(k—1)In + ik !
NG

ka1 +4tk —4t+k—2
—(k—2)ln( + + )

Inry(t)

2k —2)4/1

" 2kt — 2t

n .
(«/1 + 4tk — 4t — l)ﬁ

Taking the limit as t — +00, we obtain

1 _ _ 2
nper A 2k lln(k—l)—k 2lrl k
n 2 2 k—1

= (k—Dlntk—1) — (k—2)Ink,

+ 5 Ink 1)

as required.

Asin the proof of Theorem 5.3.5, matrices { A, } are obtained as adjacency matrices
of graphs G, that are repeated 2-lifts of a given bipartite k-regular graph and such
that gr G, — 400 asn —> 0. (]

We can rewrite the bound of Theorem 5.3.6 as

k— 1)\ & Dn
per A > k" (T) ,

in which case it becomes the familiar bound (3.3.5.1).

5.3.7 Upper bounds for the matching polynomial of a k-regular graph. In
[D+15], Davies, Jenssen, Perkins and Roberts prove thatif G = (V, E) is a k-regular
graph then, for any ¢ > 0, the quantity

d P!
ooy = P
|E| dt |E| Pg (1)

attains its maximum when G is the k-regular complete bipartite graph, see Fig.5.11.
This quantity is naturally interpreted as the expected proportion of the edges of G
covered by random matching in G, where the probability that a random matching
contains exactly s edges is proportional to #°.

As is remarked in [D+15], this implies that for any # > 0, the maximum of
PV

over k-regular graphs G = (V, E) is attained when G is the complete bipartite graph.
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Fig. 5.11 The complete
bipartite 3-regular graph

5.4 The Bethe-Entropy Lower Bound

The goal of this section is to prove the following result due to Lelarge [Lel5].

5.4.1 Theorem. For a positive n x n matrix A = (aij) and a real t > 0, let
ra(t) =Y per,(A)*
k=0

be the matching polynomial, where per, (A) is the sum of the permanents of all k x k
submatrices of A and pery(A) = 1.
On the set M,, of n X n nonnegative real matrices X = (xi j) such that

n n
Zx;jilforizl,...,n and injglfor j=1,...,n
j=1 i=1

let us define a function

Fas(X) = Zln tai;) xij — Zx,, Inx;; + Z(l—x,,)ln(l Xij)

i,j=1 i,j=1 i,j=1

—Zn: l—ix,j In 1—Zn:)6l'j
i=1 j=1 Jj=1

Then f4, is strictly concave on M,, attains maximum on M,, at a unique point and
Inr,(f) > max X).
A0 = max £, 00

Taking the limit as t — +o00, we obtain a lower bound for the permanent.

5.4.2 Theorem. Let BB, be the polytope of n x n doubly stochastic matrices, that is,
non-negative matrices X = (xi j) such that



5.4 The Bethe-Entropy Lower Bound 167

i=1

injzl for i=1,...,n and Zx,-jzl for j=1,...,n.
j=1

For a positive n x n matrix A = (a,-j) and X € B, let

gA(X) = Z Xij hlai + Z (1 —xij) In (1 _xij) .
ij

X
ij=1 ! ij=1
Then g4 is a concave function and

1 A > X).
nper A > XmezgigA( )

The inequality of Theorem 5.4.2 was conjectured by Vontobel [Vo13] and deduced
by Gurvits [Gul1] from Schrijver’s inequality [Sc98]. We take a different route here,
due to Lelarge [Lel5], first proving Theorem 5.4.1 and then obtaining Theorem 5.4.2
as a limit case. If A = (a,- j) is a doubly stochastic matrix, from Theorem 5.4.2 we
get

n

Inper A > ga(A) = D (1—a;)in(1—a;).

ij=1

which is Schrijver’s inequality.

The lower bounds for In r4 (¢) of Theorem 5.4.1 and for In per A of Theorem 5.4.2
are known as the Bethe-entropy lower bounds. Their advantage is that they supply
an easily computable lower bound as a solution to a convex optimization problem.

We prove Theorem 5.4.1 by taking a closer look at the lift of an arbitrary positive
matrix. We follow Lelarge [Lel5] with some modifications.

Let A = (a,- j) be an n x n positive matrix, which we interpret as the matrix
of weights on the complete bipartite graph K, , with vertices 1L,...,nL and
IR, ...,nR, so that the weight on the edge iL and jR is a;;, cf. Sect.3.1.2. As
we iterate 2-lifts m times, as described in Sect.5.3.2, we obtain a graph G with
N = 2"ty vertices, where each vertex has typelL,...,nLorlR,...,nR,depend-
ing on where it projects under the natural projection G — K, ,. Each vertex of
type i L is connected by an edge to a vertex of type jR with weight g;; on the edge
for j =1, ..., n and each vertex of type jR is connected by an edge to a vertex of
type i L with weight a;; on the edge fori =1, ..., n, see Fig.5.12.

In particular, G = (V, E) is an n-regular graph. Our goal is to compute the
asymptotic of In P (¢)/| V| as the girth of G grows. First, we prove a refinement of
Lemma 5.2.5, for which we introduce trees £, and R, that are refinements of trees
T* from Sect.5.2.4.

5.4.3 Definition. The tree £.; is a tree with m levels that has the root of type i L at
the level O connected to n — 1 vertices at the level 1 of type kR for all kK # j. Every
vertex at the level 1 is connected to n vertices of the type kL fork =1, ..., n, one
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Fig. 5.12 A part of the lift
of a 3 x 3 matrix

Fig. 5.13 The C;l tree for
n=3

of which is the root while the other n — 1 are at the level 2. Every vertex at the level
2 is connected to n vertices of the type kR for k = 1, ..., n, one of which is at the
level 1 and the other n — 1 are at the level 3, etc.

The tree R, is a tree with m levels that has the root of type jR at the level 0
connected to n — 1 vertices at the level 1 of type kL for all k # i. Every vertex at the
level 1 is connected to n vertices of the type kR fork = 1, ..., n, one of which is the
root while the other n — 1 are at the level 2. Every vertex at the level 2 is connected
to n vertices of the type kL for k = 1, ..., n, one of which is at the level 1 and the
other n — 1 are at the level 3, etc.

If we remove an edge connecting vertices of the type iL and jR in a lift of a
matrix, in the neighborhood of the removed edge, the lift will look like the union of
two trees of the types £/ and R"/, see Figs.5.12 and 5.13.

The weights on the edges are replicated in the usual way: an edge connecting
vertices of types i L and j R has weight g;;, see Fig.5.13.

5.4.4 Lemma. Let us fix a positive n x n matrix A = (a,-j). Let v,, denote the root
of Ly, respectively Ry,. For every t > O the limits
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Ppij_, (1)
lim —Em—vn =lij =lij(A,[)

and

Pii (1)
lim — =t = = (AL D)
m—s>00 P’R,',;(t)

exist and satisfy the system of equations
—1 ~1

l,’j =141t Z aixtik and rij = 1+t Z akjlkj
k: k#j k: k#i

forall 1 <i,j < n. Moreover, for any ty > 0 the convergence is uniform over all
0<t<t.

Proof. The proofis arefinement of that of Lemma 5.2.5. As follows from Sect.5.2.3,
for any € > 0 there is my = my(e, A, fp) such that for r < fy, the value of
P o (1)/ P (1), up to an error €, depends only on the mg-neighborhood of v,,

in £;;. However, for m > mg the mq neighborhood of v,, in £, remains the same,
from which it follows that the limit /;; indeed exists. The existence of the limit r;; is
proved similarly. N

If we remove the root v, of £;; with all incident edges, we get a vertex-disjoint
union of n — 1 trees Rifl‘_ | for k& # j and if we remove the root of v,, of R, with

all incident edges, we get a vertex-disjoint union of n — 1 trees Ef,{_l fork #i.The
equations for /;; and r;; then follow from (5.2.1.2). O

A crucial observation of Lelarge [Lel5] relates the probabilities /;; and r;; to the
solution of a convex optimization problem.

5.4.5 Lemma. Let us fix an n x n positive matrix A = (a,- J-) andt > 0. Let the set
M, of matrices X = (xij) and a function f = f4, be defined as in Theorem 5.4.1.
Then f is a strictly concave function.

Letl;; =1;;(A,t) andrij = rij(A, t) be the probabilities from Lemma 5.4.4. Then

the matrix X* = X*(A,t) = (xl*j) defined by

*_

N ta,-jl,-jrij
=
4 1+ taijl,‘.,-rij

is the maximum point of f on M,,.

Proof. Fori =1,...,n,letus define
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g:(X) == D xijlnxi; + > (1= x;;) In(1 — x;)

j=1 j=1

— 1—ix,j In l—zn:)cij + Zn:x,-j In Zn:x,-j
j=1 j=1 j=1 j=1

and
M,(X) = inj In Z)Cij
Jj=1 Jj=1
For j =1, ..., n,let us similarly define
hj(X) == xjInx;+ > (1 —x;)In(l - x;)
i=1 i=1
— (1 — Zx,-j)ln(l — inj) + (inj)ln(inj)
i=1 i=1 i=1 i=1
and

Uj(X) = (Zx,-j)ln(inj) .
i=1 i=1

From Sect. 2.1.3, the functions g; (X) and 1 ; (X) are concave, while from Sect. 2.1.1.2,
the functions u; and v; are convex.
Since we have

X =D In(tag;) xij + D g:(X) + D hi(X) = D wi(X) = D vi(X),
i=1 j=1

ij=1 i=1 j=1

we conclude that f(X) is concave. Moreover, since >/, u; (X) + >_}_; v;(X) isa
strictly convex function, the function f(X) is strictly concave.
To check that X* is indeed the maximum point of f, we compute the gradient

of f.
‘We have

%f(X) =In (ta;;) —Inx;;—In (1 — x,~,~)+ln(1 — ink)~|—ln(1 - zxkj)'
! k=t p

Using the equations of Lemma 5.4.4, we write

taijlij
U120 p il

taijl,«jrij =
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and
Vb taidir — 1 4+ taijli; _ 3 akly
R UVt D il 1+t 200 o arjly’
from which
. 14l (5.45.1)
_xlu — Py —— LD
Tl X aigli
Similarly, we write
taijlijrij = -+
a‘] ]r'] 1+t2k: k#jaikrik
and
L+t aikrik
1 ta;ili;ri; = —
+ ta;jlijri 1+tzk;k¢jaikrik
from which ) tayr; 5452

X, = —————--:
K 1+t ZZ:I airlik
It follows from (5.4.5.1) that

n n -1
1= x5 = (1 +1 Zakjlk,-) (5.4.5.3)
k=1

k=1

and it follows from (5.4.5.2) that

n n -1
1= x5 = (1 +1 za,-kr,-k) . (5.4.5.4)
k=1 k=1

In particular, it follows from (5.4.5.3) and (5.4.5.4) that X* is a feasible point of f.
Using (5.4.5.1)-(5.4.5.4) we obtain that

0 taijlij Lt D ) GikTik
_f(X)‘ =In (ta;;) —In ai j In Zk.nk;ej
Oxij X=X+ L4127 akily L4150, anri

n n
- ln(l +t Za,-kr,-k) - ln(l +t Zakjlkj)

k=1 k=1

=—Inl;—In[1+7 D ayry | =0.
k: k#j
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Hence the gradient of a strictly concave function f at a feasible point X* is 0 and
X* is the maximum point of f. O

Next, we prove a refinement of Lemma 5.2.7.

5.4.6 Lemma. Let us fix a positive n X n matrix A = (al- j), arealt > 0 and let
X* = X*"(A, 1) = (xf;) be the maximum point of the function fa ,(X) in Lemma
5.4.5.

Let G,, be a sequence of weighted graphs obtained from the complete bipar-

tite graph K, , with weights A by a repeated application of 2-lifts and such that
gr G,, — 400 asm —> o0o. Let vy, be a vertex of G,. Then

PG, .y, (1) . . . .
m —=1- x¥ provided v, iso e IL
e e (1) ,Z:; ij P m 1S of typ

and

PG, —y, (t .
P62, 1) =1- Zx,*j provided v, isoftype jR.

i=l

lim
m—s00 PG,,, (1)

The convergence is uniform over v,, € G,,. Moreover, for any fixed t, the convergence
is also uniform over all 0 <t < .

Proof. We begin as in the proof of Lemma 5.2.7. Let us fix fy > O and an € > 0. As
is discussed in Sect.5.2.3, there exists my = m(¢, A, t) such that up to an error e,
the ratio Pg, —,, (t)/Pg,, (t) depends only on the mg-neighborhood of v,,. However,
if gr G,, > my, the mo-neighborhood depends only on the type of the vertex v,,, see
Fig.5.13, from which it follows that the limit indeed exists.

If v, is of type iL and gr G,, > s then in the s-neighborhood of v,,, the graph
G,, — v, looks like a vertex-disjoint union of n trees Rfjfl, forj =1,...,n.
Therefore, by (5.2.1.2) and Lemma 5.4.4, the limit is equal to

—1

n n
Lo | =1=2
j=1 j=1

where the last equation follows by (5.4.5.4).

If v, is of type jL and gr G,, > s then in the s-neighborhood of v,,, the graph
G, —vy, looks like a vertex-disjoint union of n trees Ef]fl Jfori =1, ..., n.Therefore,
by (5.2.1.2) and Lemma 5.4.4, the limit is equal to

n -1 n
(1+t21ij) =1—ZX;:-,
i=1 i=1

where the last equation follows by (5.4.5.3). ]
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5.4.7 Proof of Theorem 5.4.1. Letusfixaty > 0.Form =1,2,...,1let G,, be
a weighted graph obtained from K, , with matrix A of weights by a sequence of m
2-lifts and such that gr G,, — 400 as m —> 00, see Lemma 5.3.4. Then G,, has
n2™t! vertices. Foreachi = 1,...,n, exactly 2™ of the vertices have type i L and
foreach j = 1, ..., n, exactly 2 of the vertices have type jR. Applying (5.2.1.3)
and Lemma 5.4.6, we conclude that

dInPg (1) 1 <
el AL (1), 5.4.7.1
minoo dt n2m+l 2 t Uzl l./( ) ( )

and the convergence is uniform for all 0 < ¢t < ;.
On the other hand, since the function t — f4 ,(X) is smooth and strictly con-

cave, the maximum point X*(#) depends smoothy on 7. Since X*(¢) is the maximum
point, we get

ft( )‘ —O forall i, j

X=X*(t

and, therefore,

—ﬁ (X*(0) = Z(

d , 0 .0y
>\X:X*m 2@ )+ 5 fi >\X=X*m

Z x5 ().

Therefore, by (5.4.7.1)

N|b—t

. d In Pg, (t) 1 d "
0 G nan = 2 g (XO) (5472

and the convergence is uniform over all 0 < t < 1.
As is easy to see,

li X =1l X) =
Jim, S (X'©) = lim max fi(X) =0

and, as in the proof of Theorem 5.2.8, we have

In P; (t
fim PO _
t—0+ p2mtl

Then from (5.4.7.2), we obtain

fim 1P6 O _ f,(X*(t)) - iXm% £.(X) (5.4.7.3)

m—soo p2mtl
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for all 0 < t < 1y and hence #y) was chosen arbitrarily, (5.4.7.3) holds for all # > 0.
Since by Theorem 5.3.3, we have

Inra(t) - lnPGm(t)
2n T p2mtl

’

the proof follows. (]

5.4.8 Proof of Theorem 5.4.2. Since r4(¢) is a polynomial with the highest term
(per A)t" with per A > 0, we have

liT Inrs(t) —nlnt =Inper A. (5.4.8.1)

t

By Sect.2.1.3, g4(X) is a continuous concave function and hence the maximum of
ga on B, is attained, say, at doubly stochastic matrix X*. Then X* € M,, where
M, is the set of matrices defined in Theorem 5.4.1 and hence by Theorem 5.4.1, for
every t > 0 we have

n

Inra(t) —nlnt > fa, (X*)—nlnt = ga(X*) —nlnt + (Int) Z i =ga (X7)
ij=1

and the proof follows by (5.4.8.1).

5.5 Hypergraph Matching Polynomial

5.5.1 The matching polynomial of a hypergraph. Let H = (V, E) be ad-uniform
hypergraph with set V of vertices and set E of edges. Hence each edge e € E is a
set of d vertices from V. A matching in H is a set of pairwise vertex-disjoint edges.
Given complex weights w : E —> C on the edges of H, we define the weight of a
matching {ey, ..., ex} by w(ep) - - - w(er). We consider the matching with no edges
as having weight 1. We define the matching polynomial of H by

Pyuw)y= D wlen)--wle,

where the sum includes all matchings in H, including the empty matching with the
corresponding product equal to 1.

The following result bounds from below the distance from complex zeros of
Py (w) to the origin.


http://dx.doi.org/10.1007/978-3-319-51829-9_2
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5.5.2 Theorem. Let H = (V, E) be a d-uniform hypergraph for d > 1 and let
w : E —> C be complex weights such that

et
> lw(e)] < % forall veV.

eckE:
vee

Then
Py (w) # 0.

Proof. Given aset S C V of vertices, let H — S be the hypergraph with set V \ S
of vertices and consisting of the edges of H that do not intersect S. We denote the
restriction of w : E —> C onto H — § also by w. Then for any vertex v € V, we
have

Pr(w) = Pr—y(w) + D w(e)Py—o(w). (5.5.2.1)

eck:
vee

where Pp_,(w) accounts for all matchings not containing v, whereas the sum
accounts for all matchings containing v (we use H — v as a shorthand for H — {v}).

We prove by induction on |V| that Py (w) # 0 and, moreover, for any vertex v
of V, we have

1 — Pva(w) < 1 )
Pyp(w) | — d—1

If |V| < d, we have Py(w) = Py_,(w) = 1 and the inequality holds. If |V| = d,
the hypergraph may contain either one edge or no edges. In the former case, we have
Py (w) =1+ w(e) while Py_,(w) = 1 and the inequality reduces to

1
_d_l’

1
1 —
‘ L+ w(e)

_‘ w(e)
T+ we)

which obviously holds when w(e) = 0. If w(e) # 0, we can further write

1

‘ w(e) _‘ 1 <( d4 _1)‘ o (d—=D!
T+w)]| |1+we)t| = \(d-=1)! T dl—(d — 1)1
d-1" 1

Sqd_qd T T g1

If H contains no edges then Py_,(w) = Py(w) = 1 and the inequality holds as
well.

Suppose now | V| > d. By the induction hypothesis, for every vertex v; € V, we
have Py_,, (w) # 0. We rewrite (5.5.2.1) as
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P Py_.
Paw) > w(e) (w) (5.5.2.2)
Pr_y, (w) = Py )
vee
Telescoping, for every edge e = {vy, vy, ..., vy} containing v, we can write
P —e P —e P —\V1,U2
H—e(W) H—e(W) PH(y.0 (W) (5.5.2.3)

PH—vl(w) N PH—{vl,vz,...,vd,l}(w) PH—[Ull(w) ’

where by the induction hypothesis, we have

Py_(o,,...oy(w) #0 and

P—v Vg1
LT IC)) forall k=1.....d—1,

-

from which

‘ PH*{Ul ----- Uk+l}(w)
Py oy o) | T d—1

for k=1,...,d—1. (5.52.4)

Combining (5.5.2.2)-(5.5.2.4), we conclude that

‘1 Py (w) (d—l)d 1( d )"“_1
d

—— 5525
Prr—, (w) dd —1 d ( )

from which it follows that
Py (w) # 0.

The transformation z — 1/z maps the disc

1
D = 1= < -

onto the disc with center on the real axis and whose boundary intersects the real axis
in the points d/(d + 1) and d/(d — 1). Therefore, from (5.5.2.5), we have

e | d |1
Py(w) | — d—1 d—1
which completes the induction. (I

The bound of Theorem 5.5.2 decreases as 1/ed as d grows.
For a weight w : E —> C and a parameter z € C, let zw denote the weight on
the edges of H scaled by z. Then
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k

d
ﬁpH(wZ)‘po = k! Z w(er) - w(e).

€l sy €k
is a matching

In particular, the derivative can be computed in | E|°® time by the direct enumeration
of all matchings of k edges in H. As follows from Lemma 2.2.1 and Sect.2.2.2, for
any 0 < § < 1, fixed in advance, for any complex weights w : H — C satisfying

d— 1!
2wl = 07—
eckE:
veE

and any 0 < € < 1, the value of Py (w) can be approximated within relative error e
in |E|CWnIEI=In9) time, If the largest degree of a vertex is bounded above in advance,
the computation can be done in genuine polynomial time via the approach of [PR16],
see also Sect. 6.6.

The correlation decay approach to computing P (w) was tried in [D+14], [S+16].
In particular, a polynomial time approximation algorithm was constructed in [D+14]
that counts the number of matchings in a 3-uniform hypergraph such that the degree
of every vertex does not exceed 3.

We apply Theorem 5.5.2 to multidimensional permanents, see Sect. 4.4. We show
that if each slice of a d-dimensional tensor A = (ail W d) is close in the £!-metric to the
tensor of all 1s, then PER A # 0 and, consequently, In PER A can be approximated
in quasi-polynomial time. This contrasts with Theorem 4.4.2, where we require the
deviation to be small in the £°°-metric.

5.5.3 Theorem. Let A = (a,-]‘__id) beann x ... x n array of n? complex numbers,
such that

d—1 d—1
> 1= ai.i| < ad_l%”d_l
15[],4“,l’,_|,i,'+1 ..... ig<n
foralll <ij <nandall j=1,...,d, where

o~ 0.2784645428

is the positive solution of the equation

xe't =1.

Then
PER A # 0.

The following lemma is a weaker version of a bound from [Wa03].

5.5.4 Lemma. For a positive integer n, let us define a polynomial


http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_4
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pn(2) =

v
k!

Then
pn(2) #0 provided |z| < an,

where o ~ 0.2784645428 is the constant of Theorem 5.5.3.

Proof. First, we observe that
|ze' 7| < lzle'™ < 1 provided [z] < .

Then for |z| < «, we have

(nZ) (1 2) - nkzk "
-l = e > yer st
=n+1 k=n+1
o0
I’l
k!
and hence p, (nz) # 0. O

Szegd proved that as n grows, the zeros of p, (nz) converge to the curve

{z: |ze'* .zl =1}
see [PVI7].
5.5.5 Proof of Theorem 5.5.3. We have
PERA= > Jlano.cwo= 2D []0+ @no.cn—1)-

T2yenny O’dES,, i=1 [ TN O'JGS,, i=1

‘We consider the complete d-partite graph H = (V, E) withn+...4+n = nd vertices

and the weight of the edge (iy, ..., is) equal a;, ;, — 1. Let
We= D wlen)-wle)
€y ex€E:
€l yenny « 1S a matching

be the total weight of k-matchings in H, where we agree that Wy, = 1. Then

$ " d—1 —(d—1)
PER A =2 ((n =)™ W = ()" 3 (%) (Z) Wi
k=0 = \K!
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Let us define the univariate polynomial

q(z) = Z W zk.
k=0

Interpreting the value of g(z) as the value of the hypergraph matching polynomial
Py on the scaled weights z (ail___,-d — 1), from Theorem 5.5.2 we deduce that

. 1
q(z) #0 provided |z] < W.

Let

nok
z
p@) = F
k=0 "

By Lemma 5.5.4,
p(z) #0 provided |z] < an.

Applying Corollary 2.5.10 successively to the pairs {p, ¢}, {p, p *q}, ..., {p, p *
... % p*xq}, we conclude that the polynomial

i 1\ /) —@D .
()0
= k! k

satisfies
r(z) #0 provided |z] < 1.

In particular,

n NG )\ @D

k=0

as claimed. O


http://dx.doi.org/10.1007/978-3-319-51829-9_2

Chapter 6
The Independence Polynomial

Known in statistical physics as the partition function of a hard core model, the
independence polynomial of a graph is a far-reaching extension of the matching
polynomial, demonstrating a much more complicated behavior. The roots of the
independence polynomial do not have to be real, but the Dobrushin—Scott—Sokal
bound for its complex roots is similar to the bound for the roots of the match-
ing polynomial. The correlation decay is observed for sufficiently small activities
but disappears for large activities, so there is phase transition. The highlight of the
chapter is in establishing the exact point of that phase transition, first for regular
trees, and then, following Weitz, for arbitrary graphs. It also provides us with an
instance where the correlation decay approach outperforms the Taylor polynomial
interpolation method (so far). The two methods would achieve the same degree of
approximation if there are no roots of the independence polynomial near the positive
real axis up to the Weitz bound, as was conjectured by Sokal. We prove a result
of Regts stating that there are indeed no roots near the positive real axis halfway
between the Dobrushin—Scott—Sokal and Weitz bounds.

6.1 The Independence Polynomial of a Graph

6.1.1 Definition. Let G = (V, E) be an undirected graph with set V of vertices, set
E of edges, without loops or multiple edges. A set U C V of vertices is independent
if no two vertices of U span an edge of G. We consider the empty set ¢ independent.
Let CY be the complex vector space with coordinates indexed by the vertices of G,
hence we write 7 = (z, : v € V) for a typical z € C". For a subset U C V we
consider the monomial

ZU - H v,

velU

© Springer International Publishing AG 2016 181
A. Barvinok, Combinatorics and Complexity of Partition Functions,
Algorithms and Combinatorics 30, DOI 10.1007/978-3-319-51829-9_6
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where we agree as usual that
9
z'=1.

We define the independence polynomial of G, ind : C¥ — C, by

indg(z) = Z V.

ucv
Uis independent

In particular, indg (0) = 1. We call z, the activity of v. In statistical physics, indg (z)
is known as the partition function of the “hard core model”. It describes mutually
repelling particles that can occupy positions at the vertices of a graph and avoid
coming too close to each other, that is, avoid occupying adjacent vertices.

Let v € V be a vertex and let

Ny={ueV: {u,v} CE}

be the neighborhood of v in G (note that we do not include v in its own neighborhood).
Forsets A, B C V of vertices, by G(A) we denote the subgraph induced by the subset
A of vertices (hence two vertices from A span an edge of G(A) if and only if they
span an edge of G) and by G(A) — B we denote the graph obtained from G (A) by
deleting all vertices from B together with incident edges. If an independent set U
contains v then it cannot contain any of the vertices adjacent to v and we arrive to
the identity

indg(z) = indg—y(2) + 2y indg_y—p, (2), (6.1.1.1)

see Fig.6.1 (we use G — v — N, as a shorthand for G — ({v} U N,)).

Fig. 6.1 a A graph G with a
vertex v, b the graph G — v
and c the graph G — v — N,

() © o
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The following result on the location of zeros of indg was obtained by Dobrushin,
see [D096] and [SS05]. We follow [CF16], which, in turn, contains a modification
of an argument from [Bo06].

6.1.2 Theorem. Let G = (V, E) be a graph and let0 < r, < 1: v € V be reals.

Suppose that
ol = A=r) [] ra
uey:
{u,v}eE
Then
indg(z) # 0.

Proof. Recall that for a set A C V of vertices, we denote by G(A) the induced
subgraph on the set A. We formally consider the polynomial indg4) as a function on
CV, although the variables z, with v ¢ A do not enter into it. We prove by induction
on |A| the following two inequalities:

indG(A) (Z) ;é 0 (6121)
and .
ind
in 61 (2) < H r forany B C A (6.1.2.2)
indga)(2) ueA\B

and z € C" satisfying the conditions of the theorem. We agree that the right hand
side of (6.1.2.2)is 1 if B = A.If A = V then (6.1.2.1) is what we need.

If A = ¢ then (6.1.2.1) and (6.1.2.2) hold trivially. Suppose that A # ¢ and that
(6.1.2.1) and (6.1.2.2) hold for all proper subsets of A. Let us choose v € A. By the
induction hypothesis, indg(4)—y (z) 7 0 and using (6.1.1.1) we can write

indg4)(z) = indg(a)—v(2) + 2z indga)—v—n, (2)

. ind __n (z
= indga)_v(2) (1 + ZM)

- (6.1.2.3)
lndG(A)fv (2)

By the induction hypothesis, from (6.1.2.2) it follows that

1 -1

H Fy - H Fy )

ue(A\frh\(A\({v}UN,)) {uus}AéE

indgay—v—n, (2)
indg(a)-v(2)

where the last equality follows since every vertex u € (A \ {v}) \ (A \ ({v} U N,))
is necessarily connected to v by an edge, cf. Fig. 6.1. Therefore,
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’ indga)—v-n, (2) < (l-r)<l (6.1.2.4)

indg(4)-v(2)

and (6.1.2.1) follows by (6.1.2.3). We also note that from (6.1.2.3) and the first
inequality in (6.1.2.4) it follows that

indg(a)-v(2)

- rl (6.1.2.5)
indga)(z) !

Let B C A be a subset. If B = A then (6.1.2.2) holds trivially, so we assume that
B is a proper subset of A. Then for some v € A we have B C A \ {v} and applying
the induction hypothesis to the pair B C A \ {v} and using (6.1.2.5) we obtain

-1

indg(p)(z) indg(p)(z) ||indga)—v (2) H . -1
indga(2) indga-v(2) || indga(2) L A\BPAE) ‘ Y
=1~
uEA\B
which completes the proof. O

Suppose that the degree of every vertex of G does not exceed some A > 1.
Choosing

A
ry,=—— forall veV
A+1

we obtain from Theorem 6.1.2 that
A

indg(z) #0 provided |z,] < m

forall velV.

Scott and Sokal [SS05] showed that the bound can be improved somewhat.

6.1.3 Theorem. Suppose that the degree of every vertex of G does not exceed some
A > 2. Then

A—1 A—1
indg(z) # 0 provided |z,| < % forall veV.

Proof. The proof is very similar to that of Theorem 5.5.2. We proceed by induction
on the number |V | of vertices. If |V | = 1, the result holds, so we assume that |V | > 1.

We embed into our inductive proof yet another inductive argument (the inner
induction as opposed to the outer induction). Namely, we prove by induction on | V|
that if G = (V, E) is a graph with the largest degree A(G) < A of a vertex and if
v € V is a vertex of degree at most A — 1 then


http://dx.doi.org/10.1007/978-3-319-51829-9_5
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1
A—1

_ indG_U(Z)
indg ()
(A _ I)A—l

provided |z,| < RN forall ueV.

indg(z) #0 and ‘1

The case of |V| = 1 is easily verified, so we assume that |V| > 2. By the outer
induction hypothesis, indg_,(z) 7# 0, so we can rewrite (6.1.1.1) as

ind indg_,_
nde@ _y, inde—u-n, () (6.1.3.1)
lndev (Z) lndev (Z)
Let N, ={vy,..., v} forsome 0 < k < A — 1. If k = 0, that is, if v is an isolated
vertex, then
indg_,(z) 1 1
1l——|=|1- <
indg(z) 142z, A—1
and the step of the inner induction is completed.
Suppose that k > 0 so that v has neighbors in G. Then
infiG—u—Nl,(Z) _ in.dG—v—vl (2) o 'indG—v—vl—...—vk (2) ' (6.13.2)
lndev(Z) lndev(Z) lndevalf...ka_l (Z)
By the inner induction hypothesis
indg_y—y,—..—y,(2) #0 for i=1,..., k.
Moreover, since the degree of v; in the graph G —v —v; —. .. —v;_ does not exceed
A — 1, by the inner induction hypothesis
ind —V—V]—...—V; 1 .
‘1— indGovu-.ou@ | _ for i=1,... k. (6.1.3.3)
lndG—’U—U]—...—U,’,l (Z) A - 1

Hence from (6.1.3.2) we conclude that

indg_y—n, (2)
indg_v (Z)

A\
<
=

(A _ I)Afl AAfl 1

AA (A= DAT T AT

and from (6.1.3.1) we conclude that

’ _ indG (Z)
indG,u (Z)
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Therefore, indg (z) # 0 and, as in the proof of Theorem 5.5.2, we conclude that

1
A—-1

’

%_m%ﬂ@)
indG (Z)

which concludes the inner induction.

To conclude the outer induction, it remains to prove thatindg(z) # 0 if the degree
of every vertex v of G is A. We choose an arbitrary vertex v and use (6.1.3.1) and
(6.1.3.2) as above, only that the right hand side of (6.1.3.2) is a product of A (as
opposed to A — 1) factors. Still, the degree of v; in G — v — v; — ... — v;_; does not
exceed A — 1 and therefore (6.1.3.3) still holds. Hence from (6.1.3.2) we conclude

that
A \2
< [
=)

(A = 12! A2 1

A T (A—DA T A1

indg_,—n, (2)
indG_v(Z)

and from (6.1.3.1) we have

‘1 _ il’ldG (Z)
il’ldev (Z)

and indg(2) # 0. O

As is discussed in [SS05], the bound of Theorem 6.1.3 is optimal, as it is asymp-
totically achieved on regular trees. Also, see [SS05] for extensions, generalizations
and connections to Lovasz’s Local Lemma.

6.1.4 Example: the Tutte polynomial of a graph. In [CF16], Csikvari and and
Frenkel deduced from Theorem 6.1.2 bounds on the zeros of a wide class of graph
polynomials, which they call polynomials of exponential type. We consider one
example from [CF16], the Tutte polynomial of a graph.

Let G = (V,E) be a graph. Let w = (w, : e € E) be a vector of complex
variables indexed by the edges e of G and let { be yet another complex variable. We
define the Tutte polynomial of G by

Te(Gw) = > " [ we,

ACE ecA

where the sum is taken over all sets A of edges of G and k(A) is the number
of connected components in the graph with set V of vertices and set A of edges.
In particular, T is a monic polynomial in ¢ of degree |V| since for A = ¢ the
corresponding monomial is just ¢!V,

We express Tg(C, w) in terms of the independence polynomial of some other
graph G = (V, E) as follows. The vertex set V consists of all subsets U C V such
that |U| > 2. Two subsets U; and U, span an edge in G if and only if Uy N U, # @.
Hence the independent sets in G are the collections of pairwise disjoint subsets
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Ui,..., U C V, each of cardinality at least 2. Let G(U) be the subgraph of G
induced on U. We define the activity zy of a vertex U of G by

zy =0 if G(U) isnotconnected

and by
zy = ¢ H w, if G(U) is connected.

ecE
both endpoints of e lie in U

If Uy, ..., Uy C V are pairwise disjoint subsets of cardinality at least 2, such that
all induced subgraphs G (Uy), ..., G(Uy) are connected then for the set A C E of
edges that is the union of the sets of edges in G(U)), ..., G(Uy), we have

k
n(A)=k+(|V|—Z|U,-|),

i=1

since the connected components of the graph with set V of vertices and set A of edges
are the induced subgraphs G(U)), ..., G(Uy) and the remaining isolated vertices.

On the other hand,
k k
D (= UD =k=D U
i=1 i=1

from which we deduce that
To (¢, w) = ¢""indg (2). (6.1.4.1)

Let us consider constant weights w, = wy for some wy € C. Using (6.1.4.1) and
Theorem 6.1.2, Csikvari and and Frenkel [CF16] prove that T (¢, w) # 0 if

IC] > YA(G) (1 + [wo])A@

for some absolute constant v > 0 (one can choose v = 21).

For some specializations of the Tutte polynomial better bounds are known. For
example, if w, = —1 for all ¢ € E then chrg(() = T¢((, w) is the chromatic
polynomial of G, which, for positive integer ¢ counts the number of ways to color
the vertices of G into at most ¢ colors so that no two vertices spanning an edge of
G are colored with the same color, see also Lemma 6.5.5. Sokal [SO1a] proved that
chrg (€) # 0if || > 8A(G).

6.1.5 Computing the independence polynomial. As was noticed in [Re15], Theo-
rem 6.1.3 allows one to approximate ind (z) within relative error € in |V |0 (nIVI=Ine
time provided

(A _ 1)A71

lzo] < 0 AL
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forany 0 < § < 1, fixed in advance, where A = A(G) > 2 is the largest degree of
vertex of G. To see that, let us consider a univariate function f({) = Inindg((z).
Let p,,(¢) be the Taylor polynomial of degree m of f({) at ( = 0. It follows from
Lemma 2.2.1 that p, (1) approximates f(1) within an additive error ¢ provided
m = O(In|V| — In€). Moreover, by Sect.2.2.2, to compute the p,,(() it suffices to

compute
k

d
~_ind ,
acr indg (Cz) o
which in turn reduces to the enumeration of all independent sets of G of size at most
m, which can be accomplished in |V |°?™ time. Patel and Regts show [PR16] that
if the largest degree A(G) of a vertex of G is fixed in advance then indg(z) can be
approximated in polynomial time (|V|/€)?", see Sect. 6.6.

Similar algorithms are described in [PR16] and [RelS5] for other combinatorial
polynomials. As Regts notes [Rel5], for some polynomials p computing values
p(z) for with |z]| large is feasible, for which one should apply Lemma 2.2.1 to the
polynomial

p(2) = 2P p(1/2).

A natural example is provided by the chromatic polynomial, see Sect.6.1.4 and
Lemma 6.5.5, where Lemma 2.2.1 produces a quasi-polynomial approximation
algorithm to compute chrg(¢) provided || > YA(G) for any v > 8, fixed in
advance. Sokal conjectured, see [Ja03], that chrg(¢) # O provided ¢ > A(G).
Should this conjecture be true, chrg(¢) can be efficiently approximated provided
N > (1 +5A(G) for any fixed § > 0, see [PR16].

‘We note that
(A — DA! 1 1
—_— = — (140 —
AA Ae A (6.1.5.1)

as A —> +oo.

Itis shown in [LV99] that the problem of approximating ind (z) is NP-hard provided
z=(A, ..., ) for A > ¢/A(G), where ¢ > 0 is an absolute constant.

There are certain parallels between the matching polynomial considered in
Chap. 5 and the independence polynomial. Given a graph G = (V, E), one can
consider its line graph L(G). The vertices of L(G) are the edges of E and two ver-
tices of L(G) span an edge if the corresponding edges in G share a vertex. Then a
matching in G corresponds to an independent set in L (G) and vice versa. Line graphs
form a rather restricted class of graphs, for example, they are always claw-free, that
is, do not contain an induced subgraph pictured on Fig. 6.2.

Extending Theorem 5.1.2, Chudnovsky and Seymour [CS07] proved that the roots
of the univariate independence polynomial (when all activities z, are equal) of a claw-
free graph are real. In that case, using Lemma 2.2.3 and arguing as in Sect.5.1.7, for
any § > 1, fixed in advance and any complex z such that
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Fig. 6.2 A claw

1
and |7 —argz| > 5

we can approximate ind¢g at z, = z for all v € V within a relative error € > 0 in
n@Unn=Ine time. Furthermore, Patel and Regts show [PR16] that if A(G) is fixed in
advance, the algorithm can be made genuinely polynomial, see also Sect. 6.6.

We also note that the nearest to the origin complex root of the univariate indepen-
dence polynomial of any graph is necessarily negative real [SSO5]. More precisely,
let us fix any vector of non-negative real activities x = (x, > 0: v € V) at the
vertices V of a graph G and for a ( € C, let us consider its scaling

(x=(xy,: veV).
Then among the roots of the univariate polynomial
g(z) =indg((x) where (x = ((x,: veV)

nearest to the origin, there is necessarily a negative real root. We prove this later in
Theorem 6.5.4.

6.2 The Independence Polynomial of Regular Graphs

6.2.1 The probability space of independent sets. Let G = (V, E) be a graph. For
areal + > 0 we consider the value of the independence polynomial ind¢(z) where
zy = t for all v € V, which we denote just by ind (). We consider the set of all
independent sets S C V, including the empty set, as a finite probability space with

/181

indg (1) ’

Pr(S) =

Then
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d tind/, (¢ 1
L inindg () = 26 _ > qsi
dt indg (1) indg (1) =
is independent
= > ISIPr(S) =ES| (6.2.1.1)

.. Scv
is independent

is naturally interpreted as the expected size of a random independent set S. Conse-
quently,

t d
L ninde
V] ar ninde®)

is naturally interpreted as the expected fraction of vertices contained in a random
independent set S.

Assume now that G is k-regular, that is, every vertex of G is incident to exactly k
edges of G. Davies, Jenssen, Perkins and Roberts proved [D+15] that the expected
fraction of vertices contained in a random independent set of a k-regular graph
is maximized when G is the vertex-disjoint union of k-regular complete bipartite
graphs, cf. Fig. 5.11. We follow their proof below, see also [Zh16] for a survey.

6.2.2 Theorem. Let G = (V, E) be a k-regular graph. Then for any t > 0 we have

t d t(1 4 1)1
— — Inindg(z) < %
|V]dt 21+ 0k —1

where equality is attained if and only if G is the vertex-disjoint union of k-regular
complete bipartite graphs. Consequently,

Vi

indg(r) < (20 +0*=1)*,

where equality is attained if and only if G is the vertex-disjoint union of k-regular
complete bipartite graphs.

Following [D+15], we start with a lemma.

6.23 Lemma. Let G = (V, E) be a graph where O < |V | < n. Then fort > 0 we

have
indj; (1) - n(l 4 ¢)r!

indg(t) =1 = I+ -1’

with equality obtained if and only if E = () so that G consists of n isolated vertices.

Proof. First, let us assume that |V| = n. Let G° = (V, #J) be the graph with set V
of vertices and no edges. Then every set S C V of vertices is independent and

n

indg-(¢) = Z (Z)t’" =(1+0n"

m=0


http://dx.doi.org/10.1007/978-3-319-51829-9_5

6.2 The Independence Polynomial of Regular Graphs 191

Let .
indg (1) = D an(G)1",

m=0

where a,, is the number of independent m-sets in G. Since each independent (m + 1)-
setin G contains exactly m + 1 independent m-sets and any independent m-set in G
is contained in at most | V| — m independent sets of size m + 1, we obtain

m+ Dayyy < m—m)a, for m=0,1,...,n—1 (6.2.3.1)

and, consequently,

Iterating, we obtain a;/ (;’) < a;/(") provided j > i, which we write as
aj(i) < a; (]) provided n > j>1i>0. (6.2.3.2)
Let
2n
tind. (1) (indg (1) — 1) = D bu(G)t™ and
m=2
2n
tind (1) (indg- (1) — 1) = > cn(G)",
m=2
where
n n
b, = Z j(_)a[ and ¢, = Z ia,-(,).
i+j=m J i+j=m J
i,j>0 i,j>0
Hence
by —cn= > ai(”.)(j —= > (-0 (ai(”.) —a,-(’?)) >0
i+j=m J i+j=m J !
i,j>0 j>i>0

by (6.2.3.2). In addition, b,, = ¢, for all m if and only if (6.2.3.1) holds for all m.
Hence

tindg. (r) (indg (1) — 1) > tindg(¢) (indg-(t) — 1) forall >0
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with equality if and only if G = G° and the proof follows assuming that |V | = n.
Since for n > 2, we have

I+0"=1  (d+0"'=1  14+n—(1+0"
n(l+0m1  (m—DA4+0)"2 " nn— 1)1 +)!

k]

we conclude that
n(l+¢)"! (n—1{A+0)2

A+ =1 U+ —1

and the proof follows for any |V| < n. (]

Given an independent set S C V in G, we call a vertex v € V occupied by S
if v € S and unoccupied otherwise. A vertex v € V is called uncovered by S if
it is not adjacent to any occupied vertex and covered otherwise. In particular, an
occupied vertex is necessarily uncovered but an uncovered vertex may or may not
be occupied. The set of neighbors of v that are not adjacent to any vertex u € S
that is not a neighbor of v is called the free neighborhood of v (the vertex v is not
a neighbor of itself). Vertices in the free neighborhood may or may not be covered,
see Fig.6.3.

As in Sect.6.2.1, we consider the set of independent sets in G as a probability
space.

6.2.4 Lemma. Let v € V be a vertex, let p, be the probability that v is occupied
and let q, be the probability that v is uncovered. Then

1. We have ;

pv=1+t

v-

2. Let us fix a set U of neighbors of v such that the probability that U is a free
neighborhood of v with respect to an independent set is positive and let H be
the subgraph induced by U. Then the conditional probability that v is uncovered
given that U is the free neighborhood of v is 1/ind g (t), where we agree that the
ratio is 1 if U is empty.

Fig. 6.3 An independent set Q Q
(black dots), covered vertices
(grey dots), uncovered

N

N S
vertices (white dots) and the Q \ Q q
free neighborhood of the \\\
central vertex (dots inside N L L
< < <
< <
x

J /)
%

O

the shaded region)

Ved
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3. Let U and H be as in Part (2). Then the conditional expectation of |U N S| given
that U is the free neighborhood of v is t ind, (¢)/ indy (¢), where we agree that
the ratio is 0 if U is empty.

Proof. In Part (1), if v is unoccupied and uncovered by an independent set S then
S’ = SU{v}isanindependentset, Pr(S") = rPr(S) and v is occupied by S’. Similarly,
if v is occupied by S then S’ = S \ {v} is an independent set, Pr(S’) = ¢t ~'Pr and v
is uncovered by S. Consequently,

= >, Pr®= > P+ > Pr(s)

S:v is uncovered S:v is occupied S:v is uncovered
and unoccupied

= Z Pr(S) +¢! Z Pr(S)=$pu

S:v is occupied S:v is occupied

and the proof of Part (1) follows.

In Part (2), if U = () then then every neighbor u of v is covered by a vertex that
is not a neighbor of v and hence u ¢ S and v is necessarily uncovered. Suppose
now that U # ) and let ¥ be the set of independent sets S for which U is the
free neighborhood of v. Then, for S € ¥ the vertex v is uncovered if and only if
SNU =@.1If § € ¥ is an independent set then S; = SN U is an independent set in
H, S, = S\ U is an independent set in G such that S, € ¥ and Pr(S) = ¢!5/Pr(S»).
Vice versa, if S; C U is an independent set in H and S, € X is an independent set
such that S, N U = @ then S = S; U S, is an independent set such that § € ¥ and
Pr(S) = Pr(S,):'S!!. Hence

> Pr(s) = > t5Pr(S,)

Sex Sy: S is independent in H

$eX: SNU=P (6.2.4.1)
=indy() D Pr($)

S$eX: S;NU=P

and

Pr(SezzsmU=QJ|SeE)=( > Pr(S))/(ZPr(S))

SeX: SNnU=¢ Sex
1

“indy (1)

and the proof of Part (2) follows.

To prove Part (3), we define ¥ as above. Clearly, if U = { then the conditional
expectation of [U N S| is 0. We assume therefore that U # (). Arguing as in the proof
of Part (2), we obtain
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>UnSs|-Pr(s) = > 1S 115 Pr(S,)
Sex S;: S is independent in H
SeX: S;NU=0

=tindy, () > Pr(s)

$eX: SHsNU=0

and by (6.2.4.1)

E(SNU|: Se¥) =(Z|sm U| ~Pr(S))/(ZPr(S))

Sex Sex
_ tindl, (1)
" indg ()’

which concludes the proof of Part (3). (I
Now we are ready to prove Theorem 6.2.2.

6.2.5 Proof of Theorem 6.2.2. As before, we consider the set of all independent
sets in G as a probability space. For a vertex v € V, let p, be the probability that
the vertex is occupied and let g, be the probability that the vertex is uncovered. Let
N, be the neighborhood of v in G and let U, s be the free neighborhood of v with
respect to an independent set S.

Let U, be the set of all subsets U C V that appear as the free neighborhood of v
with positive probability y, ¢, so that

Z you =1 forall veV.
Ueld,

Let

u=\Ju,

veV

and for U € U let

Xy = Z Yu,U-

v: UelU,

Hence

D=2 > wu=IVI (6.2.5.1)

Ueld veV Uel,

Let G(U) denote the subgraph induced by U.
Using Part (1) of Lemma 6.2.4, we express the average size of a random indepen-

dent set S as follows: ;
BISI =2 po=1 2 4v

veV veV
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From Part (2) of Lemma 6.2.4 we further write

D=2 i = 2 o ®

veV veV Ueld, de(U) () 1ndG(U)(l‘)
Hence t
Xy
E[S| = . ~ 6252
| | 1 +1 [;{ 1ndG(U)(t) ( )

On the other hand, since every vertex u € S has k neighbors, for any independent
set S we can write

1 1
IS] =22 NN S| =2 > U5 NSl
veV veV
Using Part (3) of Lemma 6.2.4, we write
1 t indg g, (1) 1 t indg gy, (1)
E|S| = - ———Vou = — —Xy. (6.2.5.3)
k Z 1ndG(U)(t) Yo k UZEZ:/{ lndg(y)(l) v

Ueld,

Since |U| < k, from Lemma6.2.3 we have

t(1+ k!

t
—ind, (¢
ndean () = Frpr =

. (indg ) (@) — 1)

and hence using that x(U) > 0 we obtain from (6.2.5.3)

(140! r1+ 0 aiCl
EIS| < T3 r=1 Z ) - (1+,)k_1zuindaw><r>'

Using (6.2.5.2), we conclude that

1+ 0! ( +0)*
EIS| = G Z W) = G =Bk

so that

t(1+ k!
EST = S0y =1 Z ().

Applying (6.2.5.1), we obtain

1(1+ k!

|V| ElS| < W (6.2.5.4)
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The desired inequality follows by (6.2.1.1). We get equality in (6.2.5.4) if every free
neighborhood that appears with positive probability consists of exactly & discon-
nected points or empty. (]

6.3 Correlation Decay for Regular Trees

6.3.1 Occupancy probabilities on graphs and trees. Let G = (V, E) be a graph
and let z = (zu VNS V) be a vector of non-negative activities. We consider the set
of independent sets S in a given graph G as a finite probability space where

Pr(S) = (indg(2)) "' [ 2

veS

(if S = ¢ then the corresponding product is 1). Let p(v) be the probability that a
vertex v is occupied, that is, belongs to a random independent set S. We rewrite
(6.1.1.1) as

indg_y(2) _ I

! _ ' . (6.3.1.1)
indg_v_n, (2)
indg(2) 14, Men@
Then indg_,(z)
mdg—y(Z
l—p) = —"7T-—
p( ) indg(Z)

is the probability that a random independent set S in G does not contain v.

If G is a tree then G — v is a vertex-disjoint union of trees and hence the ratio

indequv (Z)
indG_U (Z)

is naturally interpreted as the probability that none of the neighbors of v is occupied
in each of the trees obtained from G by deleting v.
First, we consider the case of an (almost) regular tree ']I‘fl, see Sect. 5.2.4, in detail.

6.3.2 Trees T and the phase transition. Let us consider a tree T, with vertices
at the levels O, 1, ..., n, with one vertex, called the root, at the Oth level connected
to (k — 1) vertices at the level 1 and with every vertex at the i-th level connected
to one vertex at the (i — 1)-st level and k — 1 vertices at the (i + 1)-st level, for
i =1,...,n—1, see Sect.5.2.4 (we assume that k > 3). If a vertex v at the i-th
level is connected to a vertex u at the (i 4+ 1)-st level, we call u a descendant of v.

We fix at > 0 and, as in Sect. 6.3.1 consider the set of all independent sets in TX
as a probability space, with probability of an independent set S proportional to !5,
In other words, we set all activities z, = t. Let p, = pr.,(¢) be the probability that
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root is occupied, that is, lies in a random independent set of 'JI",‘,. We are interested in
the asymptotic behavior of p, when k and ¢ are fixed and n grows.
The equation (6.3.1.1) implies that

1 t
= where = —. 6.3.2.1
T+ (—po ] =T (0321

— Pn

It turns out that the asymptotic behaviors of p, for large and small ¢ are very different.
Namely, let
_ ( k — 1)k71
c — (k _ z)k ’

called the critical t. Then for t < t, there exists

n—-oo

while for ¢ > ¢, there exist limits
Peven = 1lim py, and poga = lim pa,q
n—o0 n—so00

and Peven 7Z Podd- The values t < t, are called subcritical whereas values ¢ > ¢, are
called supercritical. Physicists say that the model experiences a phase transition at
t=t.

In view of (6.3.2.1), the results follow from the following general theorem, cf.
[Sp75].

6.3.3 Theorem. Fix somet > 0 and an integer k > 2 and consider the transforma-
tion

T(x)=T(x)= — for 0<x<1.

1+ txk

Let
B (k — k!

t, = G

For a positive integer n, let T" denote the n-th iteration of T, so that T*(x) =
T(T (x)), T3(x) = T(T(T (x)), etc.

Then there exists a unique point xo = xo(t, k) such that T (xo) = xo. If t < t.
then

lim T"(x) =x¢ forall 0 <x <1.
n—oo

Moreover, the convergence is exponentially fast, meaning that there exist v =
Y(t, k) > 0and 0 < 6 = 6(t, k) < 1 such that

|1nT”(x)—lnx0| < 40" forall 0 <x <1.
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Ift > t. then there exist x_ = x_(t, k) and x4 = x(t, k) such that
X_<Xg <Xy

while
lim T (x) =x_ forall 0<x < xp
and

lim 72" (x) =x, forall xo<x < 1.

Proof. 1t is convenient to parameterize x = e * for 0 < s < 4o00. In the new
coordinates, T can be written as

T(s) =1In (l + te_s(k_l)) .

Since T (s) is decreasing from 7(0) = In(1 +¢) > 0 to T(400) = 0, there is a
unique fixed point a = a(t) such that T'(a) = a, see Fig.6.4.

Moreover, if s > athen T(s) < T(a) =aandif s < athen T(s) > T(a) = a.
Since for s > 0 we have 7, (x) > T,,(x) if and only if #; > #, we conclude that a(¢)
is an increasing continuous function of ¢. In addition,

lim a(t) =0 and Ilim a(t) =+o0
t—>0+ t—>+400

and hence the set of possible values of a(¢) is the interval (0, +00).

We have
, t(k — e * =D
T (s) =—

[+ reG-D)
and )
ttk — 1)e 4"~
T’(a) — _;
1+ re—at=D
Fig. 6.4 The graphs of 21
y =In(1+3e7%) and
y=x.
1 4
0
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Since
14+ tefa(kfl) — ea’

we conclude that
t=eC D" ~1) and T'(@)=—(k—1)(1-e).

Ifa = In %=} then 7'(a) = —1 and

k—1\" 1 (k — D!
L= (k—z) k=2 (k=2 = fe-
Since a(t) is an increasing function of ¢, we conclude that for + < 7. we have
0> T'(a) > —1 and for t > t. we have T'(a) < —1.

Itis now clear thatif # > 7. then a is an unstable fixed point: if s # a is sufficiently
close to a then |T'(s) — a| > |s — a| and hence for any s # 0 the sequence 7" (s)
cannot converge to a. On the other hand, if # < 7, then a is a locally stable fixed
point: if s is sufficiently close to a then |T(s) —a| < 6|x —a| forsome 0 < 6 < 1
and for any s sufficiently close to a the sequence T"(s) converges to a.

We consider the second iteration 7 (7 (s)). Clearly, T (T (s)) is an increasing func-
tion of s. We claim that 7' (T (s)) is either concave or has exactly one inflection point,
where it changes from convex to concave, see Fig. 6.5.

‘We have
(T(T(s)) =T (T(s)T'(s)
tk—1)(1+ te’s(k*”)f(k*l) t(k — 1)e=sk=D
= | 1t (1 + tefs(kfl))_(k—l) 1 + [673(1{71)
ﬂ(k _ l)Zefs(kfl)
(1 + tefs(kfl))k + 1 (1 + tefs(kfl)) ’

Fig. 6.5 The graph of 14
T (T (s)) fort = 2 and
k=11
0.5 -
0
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Thus we need to show that (7' (T (s))’ is either decreasing or first increasing and then
decreasing.
Equivalently, letting y = ¢~**~1 we have to show that the function

L4+t +1(1+1¢
f(Y)=(+y)+(+y) for 0 <y<1
y

is either decreasing or first decreasing and then increasing. We write

k
fO) =t +k)+ % + er(']‘.)yf“,

j=2
from which it follows that f is convex. Since
lim f(y) = +o0,
y—0+

this proves that f(y) is either decreasing for 0 < y < 1 or first decreasing and
then increasing. Consequently, 7' (7T (s))’ is either decreasing or first increasing and
then decreasing. Therefore, 7 (7T (s)) is either concave for s > 0 or has exactly one
inflection point, where it changes from convex to concave.

Next, we observe that s = a, where a is the unique fixed point of 7 must also be
a fixed point of T2. If b < a is a fixed point of T2 then ¢ = T'(b) > a is another
fixed point of T2 and if ¢ > a is a fixed point of T?thenb = T(c) < ais also a
fixed point of 72. Since T? has at most one inflection point, there cannot be more
than 3 fixed points, see Fig.6.6.

If there are three fixed points of T2 then we must have (7'(a))? = T(T (a))’ > 1
which means that ¢ > ¢, see Fig.6.6a. If < t., we must have one fixed point of T2,
which is also the fixed point of 7. Moreover, T2(s) is an increasing function such
that T2(s) < s fors < a and T?(s) > s for s > a.

It follows that if + < ¢, then for any 0 < s < a, the sequence T?'(s) is an
increasing sequence converging to a, while for any s > a, the sequence is T?"(a) is
a decreasing sequence converging to a, see Fig.6.7.

Fig. 6.6 The map T2 has (a) (b)
either three (a) or one (b)
fixed points. In a, the fixed
point a of T is locally
repelling and in (b) it is
locally attracting
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Fig. 6.7 Iterations 72" (s)
fors < a and s > a when
t <t

Fig. 6.8 Iterations 72" (s)
when ¢t > t..

Therefore,
lim T"(s) =a forall 0<s < oo.

n—-o0

If t > 1, then for any 0 < s < b the sequence T?"(s) is an increasing sequence
converging to b and for any b < s < a the sequence T2"(s) is a decreasing sequence
converging to b, while for any a < s < c the sequence T>*(s) is an increasing
sequence converging to ¢ and for any s > ¢ the sequence 7%"(s) is a decreasing
sequence converging to ¢, see Fig. 6.8.

Therefore,

lim T?"(s) =b forall 0 <s <a and

n—-o0

lim 7% (s) =c¢ forall s> a.

n—-o0

It remains to show that if + < 7. then |T"(s) — a| decreases exponentially fast
with n. Since T switches sets s < a and s > a it suffices to prove exponential decay
for one of the two sets. However, see Fig. 6.7, we have that

d d
0 < —T%s) < —T%() <6 forall s<a orforall s>a
dS dS s=a
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and some § = §(¢) < 1. Thus 7?2 is a contraction for all s > a or for all s < a, so
that

ITZ"(a)—TZ”(s)| < 0 |s—al forall s >a orforall s <a.
Since for
a<s<+4o00 wehave T?(a)=a < T*(s) < T?*(+o0) =In(1+1),

the proof follows. (]

6.3.4 Correlation decay in trees TX. Let us consider the tree TX of Sect. 6.3.2 and
fix some subcritical

(k — D!

P < tp=— " .

(k —2)

Let p;, = p; (1) be the conditional probability that the root of T* is occupied given
that all vertices at the n-th level are occupied, see Fig.6.9a.

Arguing as in Sects. 6.3.1 and 6.3.2, we conclude that p? satisfies the recursion

1
1—pl= — where pgj = 1.
I+e(1- p;z)—l)k 1

Fig. 6.9 Black dots are a) (b)
occupied vertices, white dots

are unoccupied vertices and

grey dots are the vertices that

can be occupied or

unoccupied
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Hence by Theorem 6.3.3, we have

lim p?=1—x 6.3.4.1)
—>00

n
where x is the unique real solution of the equation

1

Moreover, the convergence in (6.3.4.1) is exponentially fast, meaning that
|ln (1 — pfj) —In(1 —x)| < ~4",

for some v = ~y(t, k) > 0 and some 0 < §(z, k) < 1.

Next, let p¥ = pj’ (1) be the conditional probability that the root of T% is occupied
given that all vertices at the n-th level are unoccupied, see Fig.6.9b. Arguing as in
Sects.6.3.1 and 6.3.2, we conclude that p} satisfies the recursion

1

1—py = —  where pg =0.
Lo (1—pr ) ‘
Hence by Theorem 6.3.3, we have
lim p;=1-—x, (6.3.4.3)
n—-0o0

where x is the same unique real solution of the Eq. (6.3.4.2). Moreover, the conver-
gence in (6.3.4.3) is exponentially fast, meaning that

[In(1—p4) —In(1 —x)| < 7",

for some v = ~y(¢,k) > 0 and some 0 < §(¢, k) < 1. In particular, the limits in
(6.3.4.1) and (6.3.4.3) coincide.

Finally, let us impose impose some arbitrary occupancy constraints A at the n-th
level of T%, see Fig.6.9c and let p} = p/, (1) be the conditional probability that
the root is occupied given those constraints. For a vertex v of TX, let p™ (v) be the
conditional probability that v is occupied given the constraints A at the n-th level.

Arguing as in Sects. 6.3.1 and 6.3.2, we arrive to the recurrence

1
1—pv) = : (6.3.4.4)
L+e(l=p))--(1=pj))
where vy, ..., vi_; are the descendants of v and the initial conditions are p* (v) = 1

if vertex v at the n-th level is occupied and p* (v) = 0 if vertex v at the n-th level is
unoccupied.



204 6 The Independence Polynomial
For vertices v at the n-th level, we clearly have
0=pf < p"() < 1=p;.

From (6.3.4.4), for the vertices v at the (n — 1)-st level, we have

Iterating, we obtain,
Py < ph() < po.

when m is even and v is a vertex at the (n — m)-th level and
Py < phW) < p
when m is odd and v is a vertex at the (n — m)-th level. Therefore,

min{py, py} < py < max{p,, p;}.
From (6.3.4.1) and (6.3.4.3), we conclude that

lim pt =1-x, (6.3.4.5)

n—-o0

where x is the unique real solution of (6.3.4.2). In other words, asymptotically, as
n grows, the conditional probability that the root is occupied does not depend on
the occupancy constraint A at the n-th level if T’,;. Hence we say that for subcritical
t < t. the model exhibits correlation decay. Moreover, the convergence in (6.3.4.5)
is exponentially fast, meaning that

IIn(1—p}) —In(1 —x)| < 43",

for some v = (¢, k) > 0 and some 0 < § = 6(t, k) < 1.

For supercritical values ¢ > f, the root of the tree TX remembers the occupancy
constraint on the leaves, no matter how large n is. If pJ = p?(¢) is the conditional
probability that the root is occupied given that all leaves are occupied, we have
(both limits exist). Similarly, for the conditional probability py = pi (¢) that the root
is occupied given that all leaves are unoccupied, we have

lim pj < lim pY
p2n n—>oop2n+1

n—-o0
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(both limits exist). Imposing the condition that all leaves are occupied, makes the
vertices on the m-th level more likely to be occupiedif m = n mod 2 and less likely
to be occupied if m =n + 1 mod 2.

6.4 Correlation Decay for General Graphs

Our next goal is to show that the similar correlation decay for subcritical ¢ holds
not only for trees but also for general graphs. This was proved by Weitz [We(06] and
we follow his exposition. As the first and crucial step, we consider trees TIZ with
different non-negative real activities z, at vertices.

6.4.1 Trees ']Tf; with different activities at vertices. Suppose now that each vertex
v of T’Z has its own real activity z, > 0. From (6.3.1.1), the probability p(v) that
vertex v is occupied satisfies

1
1—p) = = zv(l — p(ul)) — (1 — P(uk—]))’ (6.4.1.1)
where uy, ..., u;_ are the descendants of v. Following [We06], we introduce ratios
r(v) = ﬂ
1= p)
for each vertex v of TX. Then
0<r(v) =+o0, p()= %
and the recursion (6.4.1.1) is written as
2y
r(v) = (1 n r(ul)) — (1 n r(”k—l))’ (6.4.1.2)
where uy, ..., u,_; are the descendants of v.

Let rM* = pMaX(7) denote the largest possible value of 7(v) at the root v of T
given the vector of activities z = (z,, : u € V) where the maximum is taken over all
possible choices of the initial values r (u) at the leaves u of T'fl and let r,’lnin = r;“i“ (2)
denote the smallest possible value of r(v) at the root v of TX given the vector of
activities z = (z,, : u € V) where the minimum is taken over all possible choices of
the initial values r () at the leaves u of TX. We denote r™¥(t), respectively ™" (t)
the corresponding quantities when z, = ¢ for some ¢ > 0 and all vertices u.
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6.4.2 Theorem. Suppose that
0 <z, <t

for some t > 0 and all vertices u of TX. Then for n > 2, we have r™(z) < +o0,
" (z) > 0 and the inequalities

)

) T )

6.4.2.1)

and

1 max l max t
RGO /O (6.4.2.2)
1 4 rmin(z) 1 + rimin(y)

hold. In addition, r["™*(z) < 400 and (6.4.2.2) holds forn = 1.

Some remarks are in order. As follows from (6.4.1.2), if n is odd, the value of
rmax is attained when r(v) = 0 for all leaves v of T and the value of 7™ is attained
when r(v) = 400 for all leaves v of T’,‘L, while if n is even, the value of r,"™ is
attained when r(v) = o0 for all leaves v of T* and the value of r™" is attained
when r(v) = 0 for all leaves v of TX. By continuity, inequality (6.4.2.2) holds when

0 < z, < t. It can be written as

L—p@) _ L= po
L= pp™@ ~ T= @)

where p™, respectively, p™" is the maximum, respectively minimum, probability

that the root is occupied taken over all possible initial occupancy probabilities 0 <
p() < 1 on the leaves of Tfl. As is discussed in Sect. 6.3.4, for subcritical values

(k _ l)k—l

t<t.=
= (k —2)F

we have ]
1= py" (@)
m —>2—- =1

n—co 1 — piex(r)

and hence necessarily
-m"@ _
AT e
In other words, the tree Tﬁ with different subcritical activities at each vertex also
exhibits correlation decay.
We prove Theorem 6.4.2 by induction on n. First, we establish some inequalities.
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6.4.3 Lemma.

(1) Leta,b, c and d be non-negative numbers such thatb > 0, d > 0,

a c
< d 1l < — < —.
a < c an =3 =7
Then
14+a _ 1+c¢
1+b — 14d
(2) Letc > b > 0 be reals. Then for any o > § > 0, we have

14+ ac - 1+ dc
l+ab ~— 1+

Proof. We have

l+c l14+a _ d+9U+b)-(+a)(+d) (b+c)—(a+d +(ch—ad)
l+d 14+b (1+d)1 +b) o (1+d)(1+b) ’

Since

we conclude that ¢cb — ad > 0.
Writing ¢ = ~ya for some v > 1, we conclude that d < b and hence

b+c)—(a+d) =b+ya—a—vb=(n—1D@—>b)>0

and the proof of Part (1) follows.
To prove Part (2), we note that

1—|—ac_1+(5c_(1+ac)(1+5b)—(1+6c)(1—|—ab)_ (c = b)(a—9)
l+ab L1+6b (1 + 6b)(1 + ab) T A+l +ab) T

O

6.4.4 Lemma. Let k > 2 be a positive integer, and t, b and ¢ be non-negative real

such that
t t

b<c ¢>——— and b < ———
C = Aapt MV = G o

Let us define a function

T+r(I+ab)y™ o (1 +op1b)7!

Apy ey, Q) =
J (e 1) T+1(0+a10) -1+ a0)

for aiy,...,ax_1 > 0.
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Then

flag,...,oq-1) < f(,...,1) forall 0 <aq,...,0p_1 <1.
Proof. We need to prove that

F o D (l+td+ae)™ A+ a0
= 1+t +ab)™ (L + b))

provided 0 < «y, ..., a4—; < 1. Since for o) = ... = a4 = 1 we attain equality
above, it suffices to prove that the function

glar,...,oq_) =l+t(A+ab)™ - (1 4+ aq1b)™!
—f, D) —tfA, DA+ a0 U+ age)7!

is non-decreasing in every variable 0 < «; < 1 provided the remaining variables
0 < «; <1 are fixed. By symmetry, it suffices to check that

—_— e, 0p—1) >0
ﬁalg(al k—1)

provided 0 < «, ..., ag—; < 1. Computing the derivative, we obtain

0
a9 (1, .cyap) =—tb(L+ab) ' (A +ab)™ - (14 1)
!

+ref(,..., DA+ A +ae0)™ (A 4+ o)™

Hence it suffices to prove that

1 1 (4
tone Qrme) Atoae) o ) (6.4.4.1)
1+a1b (1+ayb)---(1+ ay_1b) b

On the other hand,

_c+te(l+b)" D _ a4+ b)y~* =D 4 te(1 4 b)~*=D
b+tb(1+c)~* D = (1 +¢)~® D 4 tb(1 +¢)~*k-D
1+o)A+b)"% D A4k

T+ +0) %D T (1+bE

C
SALERIEY

(6.4.4.2)

By Part (2) of Lemma 6.4.3, we have

14+ «a4c 1+¢
<

< for i=1,....,k—1
14+ ;b 1+b
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and hence

1+a1c.(l+alc)~-~(1+ak,1c) _ (14 )
l+ah (14+apb)---(14+a_1h) = (1+b)

(6.4.4.3)

Combining (6.4.4.3) and (6.4.4.2), we obtain (6.4.4.1) and hence complete the
proof. ([

The final lemma before we embark on the proof of Theorem 6.4.2.
6.4.5 Lemma. Foranyt > 0 we have

maX(t) < rmaX(t) and rmm(t) > rmm(t)

for all positive integer n.

Proof. We proceed by induction on n. We have
g () =400 and rg™ () =0

and, by (6.4.1.2),

t
) = ————= =1t < 13" (1)

(1+ ()

and ;
() = ————==0 = ry"(@).

(1 + rmex ()

For n > 1 by (6.4.1.2) and the induction hypothesis, we have

ax t t de
ry () = < =1, (1)
(1 + rmln (t)) (1 + rmm (t))
and, similarly,
min (l) > t mm (I)
r, = > ,
1 (1 + rmaX(t)) ( max (t))
which completes the proof. (]

6.4.6 Proof of Theorem 6.4.2. Let v be the root of TX. We have

e (z) = rf™ () = +oo and ™) = ™) =0,
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from which

M) =2y, PN =1, rM(2) =) =0
Since z, < t, we have

1 max 1 max t
@ oy, oy, o @
1+ rM(z) L+ (1)

which proves (6.4.4.2) forn = 1.

If we remove v with adjacent edges from T’,;, we obtain a vertex-disjoint union of
k — 1 trees T’,‘H, the i-th tree with activity vector z; satisfying z; (1) < ¢t for all u.
Applying (6.4.1.2), we obtain
v
e (2) = and
(L4 (zp)) - (14 rMn (zx-)
v

(L7 @) - (1 + ™ ze-)

(6.4.6.1)

e =

and, similarly,

t : t
() = ———— and r,"({t) = ————
(14 i (1) (14 rmax )<

We proceed by induction on n. For n = 2, by (6.4.6.1) we have
) =z, @) =1, () >0, () >0

and

@ L) T @) (1+r;“a*(r>)"‘ _ )
) L) e T L) )

which establishes (6.4.2.1) forn = 2. Moreover, since ry"** (z) < ry***(¢), theinequal-
ity (4.3.2) follows by Part (1) of Lemma 6.4.3.
Suppose that n > 2. Applying the induction hypothesis, we obtain from (6.4.6.1)

G 1 HNE) T+ @) (1 +rmaX(r)) A0
r;lnin(z) 1+me(Z1) 1+l’mm(Zk 1) l+rm1n(t) - r;nin(t)'

In particular, r"**(z) < 400, r,‘lnin (z) > 0 and (6.4.2.1) follows.
Hence our goal is to prove (6.4.2.2).

First, we observe that if
max
ry N (z) = ()
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then (6.4.2.2) follows by (6.4.2.1) and Part (1) of Lemma 6.4.3. Hence without loss
of generality, we may assume that

e (z) > (). (6.4.6.2)

Let 7’ be the vector of activities obtained from z by replacing the activity z, of the
root by ¢t > z,. From (6.4.6.1) it follows that

t . t .
r:lna)((z/) — _r:lnaX(Z) and r:lmn(zl) — _r:lnln(z)
Zu Zv

so that by Part (2) of Lemma 6.4.3, we have

L4rm™@) _ L4+r()
1+rrrlnin(z/) — 1+r’§nin(z)'

Therefore, without loss of generality, we may assume that
Zy =t. (6.4.6.3)

Recall that z; is the vector of activities at the vertices of the i-th tree ']I‘fl_] obtained
from TX by removing the root v with the adjacent edges. Let I C {1,...,k — 1} be
the set of indices i such that

(@) = @),
Let 7’ be the vector of activities at the vertices of T obtained by replacing the vector
z; of activities at the vertices of the i-th tree TX_, by 7 for all i € I and let z be the
corresponding vector of activities at the vertices of the i-th tree TX | (hence z} = z;

ifi ¢ I and z; is the constant vector of ¢ if i € I).
By the induction hypothesis,

L+r@) _ T4+
L+rmin(z) = 1+ M)

and using (6.4.6.1) and (6.4.6.3), we conclude that

r;l'l'lax (Z) - r:l\’laX (Z/)

rrllnin(z) - rrrlnin(z/)'

Moreover, we have

rMh(Z) < rMt(z) forall i=1,....k—1
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and by (6.4.6.1) and (6.4.6.3) we have

() < r™(E).
It follows then by Part (1) of Lemma 6.4.3 that

L+m™@) _ 1+r™@)
1+ rrllnin(z) - 14+ r’rlnin(z/) :

Therefore, without loss of generality, we may assume that / = ¢} and hence
Pt (z) < M) for i=1,...,k—1. (6.4.6.4)
In view of (6.4.6.4), let us define 0 < «y, ..., ax—; < 1 such that
mm(z,)—armm(t) for i=1,...,k—1.

By the induction hypothesis,

maX(ZZ) - maX(t)

mm (Zl) - mm (t)

and hence
"™ (z) < ar™@) for i=1,...,k—1.

Applying (6.4.6.1) and (6.4.6.3), we conclude that

147" (2) - 1+t(1+a1rm‘“(t)) (1+ak lrmm(t))
LHr@ 7 1 (T4 arm™ @) - (14 ar™ (1)~

Besides, from Lemma 6.4.5,

t
() = i (t) = —— and

(14 rmn ()
t

( maX(t))

mm (I) < rmm(t) _

Applying Lemma 6.4.4, we obtain

L@ _ L+ (rmo) 14

LHrmin) = g (L4 rma() © 0 T+

which proves (6.4.2.2) and completes the proof of the theorem. [
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6.4.7 Correlation decay for general graphs. Let G = (V, E) be a general graph
and suppose that the degrees of vertices do not exceed A > 3. Weitz [We06] showed
that if

(A =121

< ti=——r
(A—=2)4

then the probability p(v) that a particular vertex is occupied is asymptotically inde-
pendent on whether vertices far away from v are occupied (as in Sect.5.2.3, we
measure the distance between a pair of vertices by the smallest number of edges in a
path connecting the vertices). Weitz [We06] deduced this result from Theorem 6.4.2,
and we sketch the reduction here.

First, we note that Theorem 6.4.2 implies correlation decay on k-regular trees
with subcritical activities

k— k!
szu<t<t6=( )

< T (6.4.7.1)
at the vertices. Indeed, suppose that v is the root of a k-regular tree with n levels,
see Fig.5.3, and let uy, . .., u; be the neighbors of v. Let us impose some occupancy
condition A on the leaves of the tree (that is, set some leaves as occupied, as the rest
as unoccupied). If we remove v with incident edges, the remaining graph splits into
the vertex-disjoint union of k trees T |, and from (6.3.1.1) we deduce the following
recursive relation

1

1-pt) =
P = = ) (L= P )

for the probabilities p® (i) of occupancy. Theorem 6.4.2 implies that as n grows, the
probabilities p2 (uy), ..., p™ (ux) converge to limits independent on the occupancy
condition A at the leaves of the tree and hence the probability p? (v) that the root is
occupied also converges to a limit independent of A.

The next observation is that we have correlation decay if G is a tree where the
degree of every vertex is at most k and subcritical activities (6.4.7.1) at every vertex.
This case reduces to the case of a k-regular tree by adding auxiliary vertices where
needed with zero activities, cf. Fig.6.10.

Finally, Weitz [We06] reduces the case of a general graph G = (V, E) with largest
degree A(G) > 2 of a vertex and subcritical activities at the vertices to the case of a
tree with degrees of the vertices not exceeding A(G). We present a modification of
that construction suggested by Gamarnik [Gal6].

We start by rewriting (6.3.1.1) for the case when z, = ¢ forall v € V:

indg_, (1) 1

- = indg_y_n, () °
indg (¢) L+ =50

(6.4.7.2)
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Fig. 6.10 A tree (black
nodes) with a vertex v
appended (white nodes) to a
3-regular tree with root v

Let vy, ..., v, k < A(G), be the vertices of N, (that is, the neighbors of v), listed
in some order. We can further rewrite

indG—v—Nv(t) =indG—v—v|(I) . indG—U—Ul—Uz(t)
indev(t) indeu(t) indevful (t)

. 6.4.7.3
lndevalf...fl)k (t) ( )
indG—v—vl—m—vk,l (t)
Let p(v, vy, ..., v;; vi+1) be the conditional probability that a random independent
set contains v;; given that it does not contain any of the vertices v, vy, ..., v;. Then
indg_y—y — —p., (¢
L= p oy v vip) = oGt O
lndG—v—vl—...—v,» (t)
and combining (6.4.7.2) and (6.4.7.3), we obtain
1 (v) !
—p) = .
I+t =p@;v)d—poviv)-(1=p v, ..., o1 vk))
On the other hand, each of the probabilities p (v, vy, ..., v;; v;+1) can be computed
as the probability of occupancy of v;4 in the graph G — v — v — ... — v; obtained
from G by removing the vertices v, vy, ..., v; together with incident edges. This

allows us to arrange the computation of p(v) recursively into a tree. For example,
for suppose we want to compute the probability p(v) of occupancy in the graph on
Fig.6.11.

Then we obtain the tree pictured on Fig.6.12.
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Fig. 6.11 A graph and a vertex v
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Fig. 6.12 Computational tree to compute the occupancy probability p(v) for the graph on Fig.6.11.
We recursively compute occupancy probabilities for black nodes in the corresponding subgraphs
of the graph

Denoting by px(u) the occupancy probability of a vertex u# in a graph X, we
obtain recursively:

1
l—pu(e)=1-pxd)=1-pr(c) =1-pile) = —

1+1¢
1 d) =1 (e)=1 (e)=1 () 1 Lt
— =1- e)=1— e)=1— c) = = ’
Py PG PH PE 1+t1+rz 14 2¢
1 1+ 2t
1 — b)=1— d) = = ’
pF() PD() 1+t% 1+3[+[2
1 1+ 3t 4 ¢2
1= pcle) =1-ppb) = 2 I T ] 44 4 202

I+ 1431412 142t
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I = pala) = 11 __ 144t 4212 -
L4 14+ 50+ 502 + 1
I=p) = - 12 : _ 1450452 456
L+1 l+;rté-1£5+t%:-r3 11.:43;23,2 1+ 61 + 82 + 2¢3
so that finally

432413
1461 + 812 +2¢3°

p(v) =

Indeed, it is easy to see that for the graph on Fig.6.11, there are two independent
sets of 3 vertices, one of which contains v, there are 8 independent sets of 2 vertices,
three of which contain v, there are 6 independent sets of one vertex, one of which
contains v, there is a unique independent set of 0 vertices not containing v and there
are no independent sets of 4 or more vertices.

This construction establishes correlation decay for general graphs of maximum
degree k and subcritical activities z,, satisfying (6.4.7.1). Using telescoping as in
Sect.5.2.3, Weitz [We06] further deduced that for such a family of graphs one can
approximate indg(z) for non-negative weights z = (z,) within relative error € in
time polynomial in |V| and ¢! as long as (6.4.7.1) holds. In particular, as long as
A(G) < 5, the value of indg (1, ..., 1), that is, the number of independent sets in
G, can be efficiently approximated. On the other hand, Sly [SI110] and Sly and Sun
[SS14] showed that the approximate counting of independent sets in computationally
hard when (6.4.7.1) is violated.
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‘We note that

(A=D21 e 1
—(A—Z)A ZK(1+O(Z)) as A —> +oo.

Although the above bound and (6.1.5.1) are both inversely proportional to A(G), the
correlation decay bound above achieves a better constant.

Sokal conjectured [SO1b] that for any 0 < € < 1 there exists § = d(¢) > 0 such
that for any graph G with the largest degree of a vertex not exceeding A > 2, we
have indg(z, . .., z) # 0 provided

(A—l)A71
0<hiz< (-0 — and |3z < 4.
(A=2)

Should this conjecture be true, the technique of Lemma 1.2.3, see also [PR16]
and Sections 3.7, 5.1.7 and 6.1.5, would allow us to bridge the gap between the


http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_5
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approximations achievable via the Taylor polynomial method and the correlation
decay method'.

Below we present a result of Regts [Rel6] confirming the absence of the roots
near the positive real axis “halfway between” the Dobrushin - Scott - Sokal bound
(6.1.5.1) and the conjectured Sokal bound.

6.5.1 Theorem. Let us choose an 0 < € < 1. Let G be a graph with the largest
degree of vertex not exceeding A > 2. Then

indg(z) #0

for all activities 7 = (z,) such that

€T

< ta <
lzo] < |_2_|_26

and |arg z, forall veV.

™
2+26) (A1)

The proof is based on the following geometric lemma.

6.5.2 Lemma. Letusfixareal) < e < 1, letd > 1 be an integer and for k < d let
wi, ..., Wi be complex numbers such that

71- .
|wj| <1 and |argwj| < m for j=1,...,k.

Let z be a complex number such that

€T
t d <
2l = tan o g and Tzl = 5mee
and let
. 1
ol 4zwywy
Then

lw| <1 and |argw| < ———.
(2 +2e)d

Proof. Clearly,

™

< 1 d < .
hwi-wel < 1 and - fargwy - = 5=

In particular, R (zw;---wg) > 0 and hence |1 + zw; ... wi| > 1 and |w| < 1.
Moreover, see Fig.6.13,

s
arg (1 +zwy...w < arctan |zwqp---wg| < arctan |7| < ———.
|arg ( 1 Ol < [zwy Kl < lz|] < 21 20d

! Added in Proofs: The conjecture was proved in H. Peters and G. Regts, “On a conjecture of Sokal
concerning roots of the independence polynomial”, preprint arXiv:1701.08049 (2017)
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Fig. 6.13 The real axis 1
(horizontal), the vectors f--mmmoo- 7
u=zwy---wgand 1 +u !
;
0
The proof now follows. ]

6.5.3 Proof of Theorem 6.5.1. The proof is somewhat similar to that of Theo-
rem 6.1.3. We proceed by induction on the number | V| of vertices of G (the outer
induction). If |V| = 1, the result clearly holds, so we assume that |V| > 1.

We embed in the proof another inductive argument. Namely, we prove by induction
on |V|thatif G = (V, E) is a graph of the largest degree A(G) < A of a vertex and
if v is a vertex of degree at most A — 1 then

indg_,
indg(z) £0, |Mo=@ 1 _ g
indg(z)
indg._,
‘arg inde—v(@) | _ i . (6.5.3.1)
indg(2) 2+20(A-1)
The case of |V| = 1 is easy to check, so we assume that |V| > 2. As in the proof

of Theorem 6.1.3, we use the recursive formulas (6.1.3.1) and (6.1.3.2) and note
that the product in the right hand side of (6.1.3.2) contains k < A — 1 factors. If
k = 0, so that v is an isolated vertex of G then indg_,(z) # 0 by the outer induction
hypothesis and
indg_,(2) 1
indg(z) 14z,

so that (6.5.3.1) holds. Hence we assume that k > 0 and v has neighbors vy, ..., v
in G.
Since the degree of v; in G — v — v; — ... — v;_; does not exceed A — 1, by the

induction hypothesis, we have

indG—v—vl—...—ui,l (Z)
indG—v—vl—...—v,» (2)
indG—y—v,—..—v,_,(2)
indG—v—vl—...—vi (Z)

< 1 and

(6.5.3.2)

™

T 2+29(0-1D

arg for i=1,...,k.

Applying Lemma 6.5.2 withd = A — 1, we deduce from (6.1.3.1) and (6.1.3.2) that
(6.5.3.1) holds, which completes the inner induction.

It remains to check that indg(z) # O if the degree of every vertex v of G is A.
Let us pick an arbitrary vertex v. We still use (6.1.3.1) and (6.1.3.2), only that the
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product in the right hand side of (6.1.3.2) now contains A factors. Since the degree
of v;inG —v —v; —...—v;_; still does not exceed A — 1, we still have (6.5.3.2).
From (6.1.3.2) and (6.5.3.2) we conclude that

indg_y—_n, (2) TA €T
arg 7, —; = + <7
indg_,(2) 24+2e)(A—-1) 2+42¢
and indg(z) # 0 by (6.1.3.1). O

The correlation decay method for complex activities is explored in [H+16].

Our next goal is to prove that among the roots of the univariate independence
polynomial nearest to the origin, one is necessarily real and hence negative real
[SS05]. More generally, we prove the following result.

6.5.4 Theorem. Let G = (V, E) be a graph and let x = (x, : v € V) be non-
negative real activities at the vertices of G, so that x, > 0 forallv € V. For ( € C
let us define (x = (Cx, : v eV)andlet

9(¢) = indg (Cx)
be the corresponding univariate polynomial. Then

min [(|= min [(],
(eC: g(O=0 ¢ CeR: g(O)=0 ¢

that is, among the roots of g(() nearest to the origin, one is negative real.

We follow [Lol2], Sect.5.3.1. First, we define the chromatic polynomial of a
graph.

6.5.5 Lemma. Let G = (V, E) be a graph without loops or multiple edges. For a
positive integer n, let chr (n) be the number of ways to color the vertices of G using
a set of at most n distinct colors so that no two vertices spanning an edge are colored
with the same color. Then

1. Fork =1,...,|V]| there exist integer ai(G) such that
DV (G) = 0 for k=1,...,|V]
and
14

chrg(n) = Zak(G)nk for all positive integer n.
k=1

2. Fork =1,...,|V| there exist integer b;.(G) such that

b(G) = 0 for k=1,...,|V]
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and
4

chrg(n) = Zbk(G) (Z) for all positive integer n.
k=1

Proof. To prove Part (1), we proceed by induction on the number | E| of edges of G.
If |E| = 0, that is, if G consists of | V| isolated vertices, then chrg(n) = n!V! and
the result follows. Suppose now that |E| > 0 and let e € E be an edge of G. Let
G — e be the graph with set V of vertices and set E \ {e} of edges, so that G — ¢
is obtained from G by deleting the edge e. Let G /e be the graph obtained from G
by contracting the edge e. We obtain the set V' of vertices of G /e by replacing the
endpoints u, v of e in V by a single new vertex w and we obtain the set E’ of edges of
G /e by removing e from E and replacing all edges in E with one endpoint in {u, v}
by the edges with the corresponding endpoint at w (should multiple edges arise, we
replace them by a single edge), see Fig. 6.14.
It is not hard to see that

chrg(n) = chrg_.(n) — chrg . (n) (6.5.5.1)

Since the graph G — e has |V| vertices, the graph G /e has |V| — 1 vertex and both
G — e and G /e contain fewer than |E| edges, the proof follows by induction from
(6.5.5.1).

To prove Part (2), we define b; (G) as the number of ways to color the vertices of
G using exactly k colors so that no two neighbors are colored with the same color.
Clearly by (G) > 0. To color the graph using at most n colors, we choose a subset
of k colors in (Z) ways and then color the graph in b;(G) ways using all chosen
colors. ]

The polynomial chrg is called the chromatic polynomial of the graph G. We can

formally define
4 4

chig(z) = > ar(G)t = Zbk(G)(,i)
k=1 k=1

for any complex z € C, where

Fig. 6.14 A graph G, its
edge e and graphs G — e and
Gle e
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Fig. 6.15 Graphs G and 2
G(S) for ] 2 1
§S=1{1,2,2,2,3,3}
G
2
3 4 33
G(S)

(z)_z(z—l)~-~(z—k+1)
k) k! '

Next, we connect the independence and chromatic polynomials of graphs. Given
agraph G = (V, E) and a multiset S of copies of vertices of G (that is, some vertices
of G can have multiple copies in S and some can have no copies), we define the graph
G (S) with set S of vertices as follows: an edge of G(S) connects two vertices u and
v of § if and only if # and v are copies of the same vertex of G or copies of vertices
connected by an edge in G, see Fig.6.15.

If for a multiset S and activities z,, at the vertices of G, we define the monomial

ves

where each vertex in S is accounted for with its multiplicity. Our goal is to obtain a
power series expansion of Inindg (z), where z = (z, : v € V) isavector of activities
at the vertices of G sufficiently close to 0, so that

11 —indg(2)| < 1.

In this case, we choose the branch of Inindg(z) thatis O when z, = 0 forallv € V.

6.5.6 Lemma. Let G = (V, E) be a graph and let 6 > 0 be a sufficiently small real
number such that

|1 —indg(z)| <1 provided |z,| <6 forall veV.

Then
Inindg(z) = Z

S={V1,eees Voo Uy U}

1!' r

1 s
f!al(G(S))Z ,

where the sum is taken over multisets S of vertices of G, p; is the multiplicity of v;
in S and

d
a(G(S)) = e chrgs)(2) o

is the first coefficient of the chromatic polynomial of G(S). Moreover, the series
converges absolutely and uniformly on the polydisc |z,| < § forv € V.
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Proof. Let us fix some x € C and consider a function
2 (1+2) ="+ for zeC suchthat |z] < I,

where we choose the branch of In(1 + z) that is O for z = 0. We have the Taylor
series expansion

o0
At =143 (i)zk provided |z] < 1. 6.5.6.1)
k=1

Moreover, the series converges absolutely and uniformly on compact sets inside the
polydisc |z] < 1 and |x| < 1.
From (6.5.6.1), we get

(indg(2))" =1+ Z ()12) Z | . (6.5.6.2)
k=1

SCV,|S[>0
S independent

Furthermore, we write

Z S| = Z 252,

SCV,ISI>0 Sty SiCV
S independent [Stl,-s [ Sk[>0

where the sum is taken over all ordered k-tuples of not necessarily distinct non-empty
independent sets Sy, . .. S; of G. Given such a k-tuple Sj, . .., Sy of independent sets,
let S = S; U...U S be the disjoint union of copies of Sy, ..., S; and let G(S) be
the corresponding graph with set S of vertices. Then G(S) can be colored using
exactly k colors, so that no two vertices spanning an edge are colored with the same
color (we call this a proper k-coloring). Conversely, given a multiset S of possibly
multiple copies of vertices of G, each proper k-coloring of G(S) corresponds to a
representation S = S; U ... Sk, where Sy, ..., S are non-empty independent sets
in G, as follows: if a copy of a vertex v of G in S is colored with the i-th color
then we include v in S;. If S consists of copies of r distinct vertices vy, ..., v, with
respective multiplicities y, . .., u, then exactly p;!- - - u,! of proper k-colorings of
G (S) correspond to the same ordered k-tuple Sy, ..., Sy of non-empty independent
sets of G. From (6.5.6.2), we can write

. X zZ X
(lndG(Z)) =1+ Z —H' Z (k)bk(G(S)),

S={V1,000s V150 Uy, U
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where the sum is taken over all non-empty multisets S of vertices of G while b (G (S))
is the number of proper k-colorings of G(S) and p, ..., p, are the multiplicities of
vertices in S. From Part (2) of Lemma 6.5.5, we obtain

N

Z
T e @) (6.5.6.3)

(indg(2))" =1+ >

S={V1,.ees V] ey Upyuuny Uy}

and the series converges absolutely and uniformly on the polydisc |z,| < § and
|x| < 1, say. On the other hand, for a > 0 we can write

zlna

d
Ina = d—e

Z z=0.

Computing the derivative of (6.5.6.3) at x = 0, we obtain

Inindg(z) = Z

S={vy,..., Ul yeey Upyeeny Uy}

1 s
WGI(G(S))Z s

where a; (G (S)) is the first coefficient of the chromatic polynomial of G(S). U
Now we are ready to prove Theorem 6.5.4.

6.5.7 Proof of Theorem 6.5.4. For sufficiently small § > 0 we have
11— g(Ol <1 provided [¢| < §

and hence by Lemma 6.5.6, we have a univariate power series expansion

Ing(¢) = >

S={v1, V1 Ur e 0}

ﬁ“l(G(S))C'S‘XS- (6.5.7.1)

It follows then that the distance po from O to the nearest root of g(() is the radius of
convergence of (6.5.7.1), see also Lemma 2.2.1. Since xi, ..., x, > 0, we have

x5 >0 forall S.
By Part (1) of Lemma 6.5.5, we have
(=D)Bla; (G(S)) < 0 forall §.

Therefore, the maximum absolute value of the series (6.5.7.1) on any disc |(] < p
where it converges is attained at ( = —p and equal to the sum

>

S={vi,..., Vleeey Uy, U )

—1 [S]S
T (GO (6.572)
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of non-negative real numbers. In other words, (6.5.7.1) converges in the disc |(| < p
if and only the series of non-negative real numbers (6.5.7.2) converges. Hence the
radius py of convergence of (6.5.7.1) is the smallest p > 0 where (6.5.7.2) diverges
and —py is necessarily a root of g((). (]

6.6 On the Local Nature of Independent Sets

Let us compare the correlation decay approach of Sects.6.3 and 6.4 and the
Taylor polynomial interpolation method of Sect. 6.1.5. The correlation decay method
is based on the observation that for subcritical activities z,, the independence polyno-
mial can be approximated based on the local structure of the graph in a neighborhood
of each vertex. The Taylor polynomial interpolation method, again for sufficiently
small activities, relies on the information about independent sets of a small (loga-
rithmic) size. Such sets can be scattered all over the graph, so it may appear that we
rely on some global structural properties of the graph. Here we show that this is an
illusion, as the Taylor polynomial interpolation can also be done based on the local
information only. Namely, we show that the sum of weights

2. =
.. Scv ves
§ is independent
[S|=k

of independent k-subsets in a graph G = (V, E; z) can be computed entirely from
the data contained in the family of (k — 1)-neighborhoods of the vertices of the
graph. Besides, we show that if the maximum degree of a vertex of the graph is
bounded above in advance, then the interpolation in Sect. 6.1.5 can be done in genuine
polynomial and not just in quasi-polynomial time. Our exposition is loosely based
on [PR16].

6.6.1 Definitions A graph with multiplicities is an undirected graph H = (U, R; 1)
with set U of vertices, set R of edges, without loops or multiple edges, and with
positive integers p(u), called multiplicities, assigned to its vertices u € U. We say
that two such graphs H; = (Uj, Ry; p1) and H, = (Ua, Ry; pp) are isomorphic if
there is a bijection ¢ : Uy —> U, called an isomorphism, such that {¢(u), ¢(v)} is
an edge of H, if and only if {u, v} is an edge of H; and such that the multiplicity of
¢(u) in H, is equal to the multiplicity of u in H;.

Let G = (V, E) be a graph and let H = (U, R; i) be a graph with multiplicities.
A map ¢ : U —> V is called an embedding if ¢ is an injection and {¢(u), ¢(v)}
is an edge of G if and only if {«, v} is an edge of H (multiplicities of vertices of
H play no role here). Given a graph G = (V, E; z) with set V of vertices, set E of
edges and complex activities z,, at the vertices of G and a graph H = (U, R; p) with
multiplicities, we define a partition function
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in(G) = Z H (Z1/,'(u))H(u) )

P: U—V uel
is embedding

In particular, if Fy is a graph with k vertices, no edges and multiplicity 1 of each

vertex, then
irnG) =k D> ]z (6.6.1.1)
scv ves
§ is independent
[SI=k

since every independent k-set of G can be obtained as the image of F; in exactly k!
ways. Note that i, (G) is what we need to reconstruct the independence polynomial

of G, since
V]

indg(2) = 1+ > —ir(G).
k=1 "

6.6.2 Decomposition into connected graphs. Suppose now that the graph H =
(U, R; ) is connected. Then iy (G) collects only the local information regarding
G = (V, E). Indeed, let u be an arbitrary vertex of H. Once we know the image
1¥(u) € V under the embedding v : U —> V, we know that for every w € H
the image ¥ (w) is connected to ¥ (u) by a path of m edges in G if and only if w is
connected to u in H by a path of m edges. Hence the image of H lies entirely in the
(k — 1)-neighborhood of a vertex of G for k = |U|.

The crucial observation is that for any graph A with multiplicities, the value of
i (G) can be expressed in terms of iy (G) for connected graphs H' with multi-
plicities, such that each H’ has at most as many vertices as H has and the sum of
multiplicities of the vertices of each H' is at most the sum of multiplicities of the
vertices of H. Indeed, assuming that H is not connected, let us represent it as a
vertex-disjoint union H = H; U H, such that there are no edges of H connecting a
vertex of H; with a vertex of H,. Expanding the product iy, (G) - iy, (G), we observe
that we collect all the terms of i 5 (G), but also some extra terms, so that

i#(G) = i, (G) i (G) — > i (G), (6.6.2.1)
m

where H’ is a graph with multiplicities obtained from H; and H, by at least one of
the following sequence of two operations (a) and (b):

(a) we identify some vertices of H; with some vertices of H, so that if u; is
identified with u, then the new vertex u of H' is assigned the multiplicity of p(u;) +
p(u2); and

(b) we connect some, unchanged on step (a), vertices of H; with some, unchanged
on step (a), vertices of H, by edges.

Whenever we create a multiple edge, we replace it by a single edge. We observe
that the number of connected components in each H’ so obtained is smaller than the
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Fig. 6.16 A disconnected 1 1
graph with multiplicities F> ° °
and connected graphs with E
multiplicities Hy, Ha, and 2
Hap 1 P 11
° ° o—eo
Hl H2a HZb
Fig. 6.17 A disconnected ol
graph with multiplicities F3
and connected graphs with le F; ol
multiplicities Hy, Ha,, Hap,
H3q, H3p, H3c and H3g 1
°
H]
2 1 1
° —eo
H2a H2b 1
302 1 1 1 1 1 ./;\'1
° —o —o o 17
H;,, Hy H,, 3d

number of connected components of H. Iterating this procedure, we express iz (G)
entirely in terms of iy (G) with connected H'.
For example, for the graphs with multiplicities pictured on Fig.6.16, we have

ir,(G) = in (G) - iy, (G) = in, (G) — im,, (G).

A more tedious computation shows that for the graphs with multiplicities pictured
on Fig.6.17, we have

+2ip,, (G) + 6ip, (G) + 3iy, (G) + 2ig, (G). o

6.6.3 The case of a bounded degree. Suppose now that the maximum degree
A(G) of a vertex of G = (V, E) is bounded above in advance. Then the procedure
of computing (6.6.1.1) can be done in polynomial time |V |°(), as long as k =
O(In|V]). The algorithm proceeds as follows.

First, we create a list of connected graphs H = (U, R; ) with multiplicities
such that there is an embedding v» : U — V and the sum of weights at the
vertices of H does not exceed k. Since H is connected, we can always order the
vertices Uy, ..., Uy, m < k, of H in such a way that every vertex u; fori > 2 has a
neighbor among the preceding vertices. Once the image (1) is chosen (in at most
|V| ways) then for each vertex u; there are at most A(G) choices of 1 (u;), given
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that the images uy, ..., u;—; are already chosen. This creates a list { of at most
[VI(A(G)*! = |V|9D graphs H. Note that if H has m vertices then there are
(yl; :11) ways to assign positive integer weights to the vertices of H so that the sum of
weights is k, which is |V | as long as k = O(In |V ).

For each graph H from the list 7, we compute iz (G) in |V[°1) time.

Next, we create a list 7 consisting of the graphs with multiplicities H that are
represented as a union of a connected graph from  and some isolated vertices and
such that the sum of multiplicities at the vertices of H does not exceed k. Given a
graph H € 'H \ 'H, we write H = H; U H,, where H; € H and H, consists of the
isolated vertices and apply the algorithm of Sect.6.6.2. Note that all graphs H’ in
(6.6.2.1) with i ' (G) # 0 (we only need to collect those) also belong to H and have
fewer isolated vertices than H has. When applying (6.6.2.1), we should account
for isomorphic graphs H’ (this is how we get integer coefficients in the formula
(6.6.2.2)). However, testing the isomorphism of two graphs H{, H; € H reduces to
testing the isomorphism of their connected components H;, H, € H, which can be
done in |V|°(M time as above: once we picked the image of a vertex of H; under
a prospective isomorphism ¢, we have at most A(G) choices for the image of each
next vertex. Thus we recursively compute iy (G) for all H € H in the order of the
increasing number of isolated vertices, so that in the end we compute (6.6.1.1).



Chapter 7
The Graph Homomorphism Partition
Function

Known in statistical physics as the partition function of a multi-spin system, this is
one of the most general forms of a partition function. It covers permanents, hafnians,
independent sets, graph colorings and some more exotic objects such as the Hamil-
tonian permanent. We apply the Taylor polynomial interpolation to find a domain
where the partition function can be efficiently approximated. This leads to “softer”
(doable) versions of “hard” (impossible) problems of combinatorial enumeration: for
example, instead of counting all independent sets of a given cardinality in a graph,
we compute the total weight of all subsets of vertices of a given cardinality, where
the weight of each subset is exponentially small in the number of edges of the graph
it spans. We discuss one of the oldest and most famous models in statistical physics,
the Ising model for magnetization, which connects various topics: perfect matchings,
graph homomorphisms, cuts in graphs and phase transitions of various kinds. The
Lee—Yang Theorem asserts that the zeros of the partition function of cuts lie on the
unit circle, which is interpreted as the absence of phase transition in the presence of
a magnetic field.

7.1 The Graph Homomorphism Partition Function

7.1.1 Definition. Let G = (V, E) be an undirected graph with set V of vertices, set
E of edges, without multiple edges or loops, and let A = (ajj) be a k X k symmetric
real or complex matrix. We define the graph homomorphism partition function by

homg(A) = > [T aswon- (7.1.1.1)

¢:V—>{1,....k} {u,v}€E

The sum is taken over all maps ¢ of the set V of vertices into the set {1, ..., k} of
indices of the matrix entries and the product is taken over all edges of the graph G.
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230 7 The Graph Homomorphism Partition Function

If A is the adjacency matrix of a graph H with set U of k vertices then homg (A)
counts graph homomorphisms, that is, maps ¢ : V. — U such that {¢(u), ¢(v)} is
an edge of H whenever {u, v} is an edge of G.

Choosing the matrix A in a special way, we obtain various quantities of interest.

7.1.2 Example: independent sets. Let us choose k = 2 and

0 1
()
Each map ¢ : V —> {1, 2} defines a set of vertices S, = ¢~'(1) C V and the

contribution of ¢ in (7.1.1.1) is 1 if S is an independent set in G and 0 otherwise.
Hence homg (A) counts independent sets in G.

7.1.3 Example: colorings. Let us define

[1 ifi #j
aij = e .
0 ifi =j.
We interpret every map ¢ : V. — {1, ..., k} as a coloring of the vertices of G into

one of the k colors. Then the contribution of ¢ in (7.1.1.1) is 1 if the coloring is proper,
that is, the endpoints of every edge are colored differently, and the contribution of ¢
is 0 otherwise. Hence homg (A) counts the proper colorings of G with k colors.

For more examples, see Sect.5.3 of [Lo12].
Recall that by A(G) we denote the largest degree of a vertex of G.

7.1.4 Theorem. For a positive integer A, let

et alA
OA = sin — cos —
2 2

for some oo = «up such that

2
O<a<—7T,
3A

so that we can choose 63 = 0.18, 64 = 0.13 and 55 = Q(1/A). Then for any graph
G with A(G) < A, we have

homg(Z) # 0
for any k x k complex symmetric matrix Z = (zi j) such that

|1 —zij| < 0a forall 1 <i,j <k.

A version of Theorem 7.1.4 was first proved in [BS14]. We present a simpler
proof achieving better constants.
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As before, see Sect.3.6, Theorem 4.1.5, Sects. 4.4, 5.5 and 6.1.5, we obtain that
hom (A) is easily computable if the entries g;; satisfy a slightly stronger inequality.

7.1.5 Theorem. Let us fix a constant 0 < § < I, where d, is the constant in
Theorem 7.1.4. Then there exists a v = v (0a/0) > 0 and for any 0 < € < 1, for
any graph G = (V, E) such that A(G) < A and any k there exists a polynomial
D = DG.k.s.c inthe entries of k x k symmetric matrix A = (a,-j) such that

degp < y(n|E| —Ine)

and
[Inhomg(A) — p(A)| < ¢

provided
1 —aj;| <6 forall 1<i,j<k.

Moreover, given 6, G, € > 0 and k, the polynomial p can be constructed in
(k| E])CUnIEI=In®) time, where the implied constant in the “O” notation depends on
the ratio d, /9 alone. The proof is very similar to that of Theorem 3.6.2, we sketch it
below.

Let J = Ji be the k x k matrix filled with 1s. We define a univariate polynomial
9 =9a,a by

9(z) = homg (J +z (A = J)),

so that g(0) = hom¢ (J) = kY and g(1) = homg(A). We note that

dS
dzsg(z)‘z:o = an > [T (42 (@swsw — 1))

T V—{l,...k} {u,v}€E

= Z Z (@gnow) — 1) -+ (@punow) — 1) »

&V —>{1,... .k} {ur, v}, {us v €E

z=0

where the inner sum is taken over all ordered s-tuples I of distinct edges of G. Let

V(I) be the set of distinct vertices among uy, vy, ..., Uy, vs. Then we can further
write

d’ VIV

dz* g(z)L:O - Z k

X z (@swnown = 1)+ (@swnowy — 1) -

SV (D —>(1,...k}

Here the factor of k!VI=IV(I accounts for the number of ways to extend a map
¢:V({I)— {l,...,k}tothe whole set V O V(I) of vertices. It follows now that
g (0) is a polynomial of degree s in the entries a;; computable in (|E|k)°® time.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_5
http://dx.doi.org/10.1007/978-3-319-51829-9_6
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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We define f(z) = In g(z) in a neighborhood of z = 0 and the proof proceeds as in
Sect.3.6.7.

Patel and Regts show [PR16] that if A(G) is fixed in advance, then the value of
p(A) can be computed in polynomial time (k| E|/€)?", where the implied constant
depends on the ratio §, /9 only.

Using Theorem 7.1.5, we obtain the following relaxed versions of hard counting
problems in Examples 7.1.2 and 7.1.3.

7.1.6 Example: sets weighted by independence. In the context of Example 7.1.2,
let us define A by
A= 1—-014+9 7
1+61+6
where ¢ is the constant of Theorem 7.1.5. Then

(1+6) " Thomg(A) = D" w(S)
scv (7.1.6.1)

where w(S) = (1 4+ 8)7¢® (1 — §)*

and e(S) is the number of edges in G with both endpoints in S. In particular, w(S) = 1
if S is independent and

exp {—20e(S) — 8%e(S)} < w(S) < exp{—26e(S)}.

Hence (7.1.6.1) is the sum over all subsets of vertices of G, where each subset S is
counted with weight 1 if S is independent and is counted with a weight exponentially
small in the number of edges that vertices of S span, if S is not independent.

As follows by Theorem 7.1.5, we can compute the sum (7.1.6.1) in quasi-
polynomial time (genuinely polynomial time, if A(G) is fixed in advance [PR16]).

7.1.7 Colorings weighted by properness. In the context of Example 7.1.3, let us
define

N R R
Y1 =6 ifi =,

where 6 > 0 is the constant in Theorem 7.1.5. Then

1+ Fhomg(A) = > w(9)
o:V—>{1,...k} (7.1.7.1)

where  w(¢) = (1+ 6@ (1 — 5

and e(¢) is the number of edges of G whose both endpoints are colored into the same
color by the coloring ¢. Thus we have w(¢) = 1 if ¢ is a proper coloring and

exp {—20e(¢) — 8’e(¢)} < w(¢) < exp{—2de(¢) }.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Hence (7.1.7.1) represents the sum over all colorings ¢ of G, where ¢ is counted
with weight 1 if ¢ is proper and is counted with a weight exponentially small in the
number of edges that are not properly colored, if ¢ is not proper.

Theorem 7.1.5 implies that we can compute the sum (7.1.7.1) in quasi-polynomial
time.

To prove Theorem 7.1.4, we first introduce a multi-affine version of homg.
7.1.8 Edge-colored graph homomorphisms. Let G = (V, E) be a graph as above
and let Z = ( ’“’) be a |[E| x M complex matrix with entries indexed by edges

{u, v} € E and unordered pairs 1 < i, j < k. We write z”“ instead of z! z assumlng
that

uv __ uv vu i

Zij =2Zji =% =&

Equivalently, we can think that a k x k symmetric matrix is attached to every edge
of G. We introduce the partition function

Homg(Z) = > [] 2o

o V—>{1,...,k} {u,v}eE

which we call the partition function of edge-colored homomorphisms. If z}‘j” = Z;j
(that is, the same symmetric matrix is attached to each edge of G), we are in the
situation of Definition 7.1.1 and Homg (Z) = homg (Z). The advantage of working
with Homg (Z) as opposed to homg (Z) is that Homg (Z) is a multi-affine function,
that is, the degree of Homg (Z) in each variable z;‘j“ does not exceed 1.

We will prove that in fact

Homg(Z) #0 provided |1—z | < da
forall {u,v}e€ E andall 1<i,j <k,

where 0, is the constant of Theorem 7.1.4.

7.1.9 The recursion. For a sequence W = (vy, ..., v,) of distinct vertices of G and
a sequence L = (Iy, ..., 1l,) of not necessarily distinct indices 1 < [y, ...,l, <k,
we define
w
Hom,' (Z) = > IT #tse

¢:V—>{1,....k}  {u,v}eE
o(v))=l,..., d(v,)=l,

(we suppress the graph G in the notation). In words: we restrict the sum defining
Homyg to the maps ¢ that map prescribed vertices to prescribed indices. We denote
by |[W| and by |L| the number of vertices in W and the number of indices in L
respectively. If W is a sequence of distinct vertices and L is a sequence of not
necessarily distinct indices such that |W| = |L|, for a vertex w in W we denote by
[(w) the corresponding index in L, so /(v;) = [; in the above definition. We denote
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by (W, u) the sequence W appended by a vertex u, different from all vertices in
W and by (L, l) the sequence of indices L appended by an index /, not necessarily
different from the indices in L. Then, for any vertex u not in the sequence W, we
have

k
Hom}(2) = > Hom(, ) (2). (7.1.9.1)
=1

Fora 0 < § < 1 we define the polydisc U(d) = U(J, G) consisting of all
|E| x @ matrices Z = (zﬁ’;’) such that

[1—2z| <0 forall {u,v}€E and 1<i,j<k.

We will use the following straightforward observation: suppose that W contains
two vertices u and v such that {u#, v} € E with corresponding indices / and m in L,
sothat W = (W, u,v)and L = (L', I, m). Let A, B € U($) be two matrices that
differ only in the entries z?j” for 1 <i, j < k. Then

HomY (4) = %Hom{V(B).
Im

In particular, if Hom{v (A) #0and Hosz(B ) # 0 then the angle between non-zero
complex numbers Hom} (A) and Hom," (B) does not exceed 2 arcsin J, see Fig.3.7.

7.1.10 Proof of Theorem 7.1.4. Let us denote §, just by § and let

O0<a<—
3A

be a number such that

e aA
0 = sin — cos —.
2 2
We prove by the descending induction on r = |V, ..., 1 the following statements:

Statement 1.r. Let W be a sequence of distinct vertices and let L be a sequence
of not necessarily distinct indices such that |W| = |L| = r. Then Hom}' (Z) # 0
forall Z € U (9).

Statement?2.r. Let W be a sequence of distinct vertices such that |W| = r. Suppose
that W = (W', u) and let L’ be a sequence of not necessarily distinct indices such
that |W'| = |L'| =r — 1. Let 1 <1, m < k be indices. Then for any Z € U () the
angle between complex numbers Homg:'lg‘) (Z) # 0 and Homg:’n‘f))(Z) # 0 does
not exceed aA.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Statement 3.r. Let W be a sequence of distinct vertices and let L be a sequence
of not necessarily distinct indices such that |W| = |L| = r and suppose that W =
(W',u) and L = (L', [). Let v be a vertex not from W and let A, B € U () be

two matrices that differ only in the coordinates zj‘i” for j =1, ..., k. Then the angle

between Hom}' (A) # 0 and Hom}' (B) # 0 does not exceed a.

Suppose that r = |V| so that W is a sequence of all vertices V of G. If L is a
sequence of indices such that |L| = |V| then

Hom}' (2) = [] i #0

{u,v}eE
and Statement 1.r follows. Writing W = (W', u), we have

, Z4 v )
(W'u) _ L1(v) (W', u)
Homy, 2y = [] S | Homg ) (2)
v: {u,v}eE ml(v)

and hence the angle between Homgzv,:};’) (Z) # 0 and Homgvnf)) (Z) # 0 does not
exceed
2Aarcsind < aA

and Statement 2.r follows. Statement 3.r is vacuous since there are no vertices outside
of W.

Suppose that 1 < r < |V| and that Statements 1.(r + 1), 2.(r + 1) and 3.(r + 1)
hold.

Let W be a sequence of distinct vertices and let L be a sequence of not necessarily

distinct indices such that |W| = |L| = r. Let us choose a vertex v not in W. Then
by (7.1.9.1),
k
Hom)'(2) = > Homﬁm (2) (7.1.10.1)
j=1
From Statement 1.(r + 1) we have Homg‘;’;(Z) #0forall j =1,...,kand from

Statement 2.(r 4 1) the angle between any two complex numbers HomEZ’;;) (2)#0
and Homgz/y’_;’))(Z) # 0 does not exceed oA < 27 /3. Therefore, by Lemma 3.6.4,

we have
Hom} (Z) #0

and Statement 1.r follows.

Let W and L with |W| = |L| = r be sequences as above and suppose that
W = (W ,u)and L = (L',[). Let v be a vertex not in W and let A, B € U(6) be
the matrices that differ only in the coordinates zfj” for j = 1,..., k. Letus define a

matrix C € U () such that


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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cl”jf’:l for j=1,...,k
and C agrees with A and B in all other entries. From Statement 1.(r + 1) we have

Hom{}"})(C) #0 for j=1,....k

and from Statement 2.(r + 1) the angle between any two numbers Homzzv”il;) C)#0

and HomEK‘jf))) (C) # 0 does not exceed oA < 27/3. We rewrite (7.1.10.1) as

k k
Hom} (4) = >_ajHom{};"(C) and Hom} (B) = >_ b Hom{}! " (C).
j=1 P=

Applying Lemma 3.6.4 again, we conclude that the angle between Hom)' (A) # 0
and Hom{v (B) # 0 does not exceed

2 arcsin =«
al
cos &=

and Statement 3.7 holds.

Let W with |W| = r be a sequence as above and suppose that W = (W', u). Let
L' be a sequence of indices such that |[L'| = r — 1. Given A € U (0) and two indices
1 <1, m <k, let us define a matrix B by

b,‘}”:a””. forall v suchthat {u,v}e€ E andall j=1,...,k

mj

and keeping all other entries of B the same as in A. Then

HomEZ,}';)(B) = Hom%’;:)) (A).
Let dy be the number of neighbors of u in the sequence W’ and let d; be the num-
ber of neighbors of u not in the sequence W’. Then, from Statement 1.r we have

Hom%:};’)(A) # 0 and Homgzﬂn’;)) (A) # 0 while from Statement 3.r the angle

between Homgzv,i;;’) (A) and Hom%{vn‘:; (A) = HomEZV,j}?) (B) does not exceed
2dgarcsind + dia < door + dyov = aA,
which proves Statement 2.r.

This concludes the induction and hence the proof of Statements 1.1 and 2.1. For
any vertex v of V, we have

k
Homg (Z) = ) Hom!(Z)

J=1


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 7.1 A graph and a cut @ O O o)

of 8 edges associated with

the set S of 3 black dots
C \ 4 O
C L 4 L 4 D
O O O O

and the proof of the theorem follows by Statement 1.1, Statement 1.2 and Lemma
3.6.4. O

7.1.11 Cuts and limits of approximability. Let G = (V, E) be a graph and let

S C V be aset of vertices. The cut associated with S is the set of all edges of G with

one endpoint in S and the other not in S. We denote by cuts (S) the number of edges

in the cut. For example, for the graph G and set § in Fig. 7.1, we have cutg (S) = 8.
Let

w(G) = max cutg (S)

be the largest number of edges in a cut of a graph G. Berman and Karpinski proved
[BK99] that there is an absolute constant 3 > 1 such that it is an NP-hard problem
to approximate p(G) within a factor § > 1 for a given graph satisfying A(G) < 3.
Clearly, the problem remains NP-hard if we further restrict it to connected graphs,
in which case u(G) > |V| — 1.

Let k = 2, letus choose 0 < ¢ < 1 and let
e 1
= ().

e Flhomg (A) = D" e e,
Scv

Then

Since the number of terms in the above sum is 2!V!, we obtain

Inhomg (A) FIE - V] In2 < WG < Inhomg (A) +IE|
In(1/¢) In(l/e) — K - In(1/¢) '

Assuming now that G is a connected graph with A(G) < 3, we conclude that for
any given § > 0, by choosing a sufficiently small ¢ = €(§) > 0, we approximate
1(G) within a relative error § by

In homg (A,)

|E| + (/0


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Hence for some ¢ > 0 approximating homg (A,,) is an NP-hard problem. This can
be contrasted with Theorem 3.7.1, where approximability holds for matrices with
positive entries arbitrarily close to 0.

For hardness results on exact computation of homg, see [BG05] and [C+13], for
hardness of approximate computation, see [GJ12] and [GJ15].

For applications of the correlation decay approach to approximating Homg, see
[LY13].

Closely related edge-coloring models, also known as vertex models, holant prob-
lems or tensor networks were studied in [Rel5] and [PR16]. There we consider all
possible colorings ¢ of the edges of G = (V, E) into k colors, at each vertex v of G
a complex number z(v, @) is determined by the multiset of the numbers of edges of
each color that have v as an endpoint, and the partition function computes

ZHZ(U,¢).

¢ veV
It is shown that the partition function is never zero provided

0.35

1 —2z(v, ¢)| < W

forall veV andall ¢,

which leads to a quasi-polynomial [Rel5] and polynomial [PR16] in the case of
a bounded degree A(G) algorithms for approximating the partition function in the
corresponding domains.

7.2 Sharpening in the Case of a Positive Real Matrix

In this section, we sharpen the approximation bounds in Theorem 7.1.5, assuming
that the matrix A is positive real.

7.2.1 Theorem. Let

03 = tang ~ 0.36 and 6p =tan ) for integer A > 4.

T
4(A -1
so that 4 ~ 0.27, 5 ~ 0.20, etc.

Let us fix
0 <§ < 0a.

Then there exists a constant v = v (da/0) > 0 and for every connected graph
G = (V, E), for every positive integer k and every 0 < € < 1 there is a polynomial

P = PG.k.s.c inthe entries of a k x k symmetric matrix A such that

degp < y(In|E| —1Ine)


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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and
[lnhomg(A) — p(A)| < €

for any k x k real symmetric matrix A = (ai j) such that
1 —a;| <6 forall 1<i,j<k
provided A(G) < A.

As in Sect.7.1, given 0, G, € > 0 and k, the polynomial p can be constructed in
(k|E)OMIEI=In9) time, where the implied constant in the “O” notation depends on
the ratio d5 /6 alone. If A is fixed in advance, the value of p(A) can be computed
in polynomial time (k|E|/e)°", where the implied constant in the “O” notation
depends on the ratio d, /6 alone, cf. [PR16].

Asin Sects. 3.7 and 4.4, we deduce Theorem 7.2.1 by bounding the complex roots
of hom¢ away from the positive real axis. As in Sect. 7.1, it is more convenient to
work with the multi-affine extension Homg, see Sect.7.1.8. We deduce Theorem
7.2.1 from the following result.

7.2.2 Theorem. For A > 3, let d5 be the constant of Theorem 7.2.1 and let us
choose
0 < < 0a.

Let

1
T:(l—é)sin(%—iarctamd) >0 if A=3 and

1
7 =(1 —¢)sin L——arctané >0 for A>4.
8(A—-1) 2

Then for any connected graph G such that A(G) < A, we have
Homg(Z) #0
for any k x k complex symmetric matrix Z = (z,- j) such that
l—E}iz,-j| < 6 and |3z,~_,~| <7 forall 1<i,j<k.

For the rest of the section, we prove Theorem 7.2.2. Theorem 7.2.1 follows then
as in Sects. 3.7 and 4.4.

As in Sect.7.1.9, we define restricted functionals Hom{V(Z). For0 <§ < 1 and
0 < 7 < 1—4,wedefine adomain (4, 7) = U(J, 7, G) in the space of matrices Z:

uo,n={z=): [1-9zy| <o [z <~

ij

forall {u,v} € E andall 1§i,j§n}.


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
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We will use the following observation. Let W be a sequence of distinct vertices, which
includes some two vertices u and v such that {u, v} is an edge of G and let L be a
sequence of not necessarily distinct indices such that [W| = |L|. Let A, B € U(J, T)
be two matrices that differ only in the entries sz/.” for 1 <i, j < k. Then

bu v
Hom} (B) = ' Hom}Y (A),
A1)l (v)

where /(1) and [ (v) are the indices in L corresponding to # and v in W. In particular,
if Hom}" (A) and Hom)' (B) # O then the angle between two numbers is at most

-
2 arctan .
1-9

7.2.3 Proof of Theorem7.2.2. Let
™
o= 5 +arctand if A =3 and

o= m—l—arctané if A>4.

We introduce the following statements.

Statement 1.r. Let W be a sequence of distinct vertices such that the graph induced
on W is connected and let L be a sequence of not necessarily distinct indices such
that |W| = |L| = r. Then

Hom) (Z) #0 forall ZeU (5,7).
Statement 2.r. Let W be a sequence of distinct vertices such that the graph induced
on W is connected and |W| = r. Suppose that W = (W', u) and let L’ be a sequence

of not necessarily distinct indices such that |L’| = r — 1. Then for any two indices
1 <l,m <kandany Z € U (§, 7) the angle between complex numbers

Hom(; ' (Z) #0 and Hom(;, " (Z) # 0

does not exceed 7/2.

Statement 3.r. Let W be a sequence of distinct vertices such that the graph induced
on W is connected and let L be a sequence of not necessarily distinct indices such
that |W| = |L| = r. Suppose that W = (W', u) and L = (L’,[) and let v be a
neighbor of u not in the sequence W.Let A, B € U (9, T) be two matrices that differ
only in the entries z;;” where {u, v} € E'and j =1, ..., k. Then the angle between

Hom}'(A) #0 and Hom)'(B) # 0

does not exceed a.
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First, we claim that Statements 1.7, 2.7 and 3.7 hold for r = |V|. Indeed, suppose
that r = | V|, so that W is a sequence consisting of all vertices of the graph. Then

Hom)'(Z) = [] b #0

{u,v}eE

and Statement 1.r follows. Writing W = (W', u), we have

, 41
W, 11
HomEL/J';)(Z) =

v
(v) (W',u)
. Hom(L,!m) (Z2)

v: {u,v}eE Zm L(v)

and hence the angle between Homgzv/:f)’)(Z) # 0 and Homgzv,i;;;; (Z) # 0 does not
exceed

-
2A arctan ——,
1—-9
which does not exceed
s T .
— < — if A=3
3 2
and does not exceed
TA T .
— < — if A>4.
4(A—1) 2

Hence Statement 2.7 follows. Statement 3.r is vacuous since there are no vertices
outside of W.

Next, we claim that Statements 1.(r + 1), 2.(r + 1) and 3.(r 4 1) imply Statements
l.rand3.r forall 1 <r < |V].

To deduce Statement 1.r, let us choose a sequence W of distinct vertices and a
sequence L of not necessarily distinct indices such that the graph induced on W is
connected |W| = |L| = r.Since W # V there is a vertex v notin W with a neighbor
in W, so that the graph induced on (W, v) is connected. Then by (7.1.9.1) we have

k
Hom)'(Z) = > Hom(, (). (7.2.3.1)
j=1

By Statement 1.(r + 1) we have HomE‘LVy’.;’))(Z) # 0 for all Z € U (J, 7) and by

Statement 2.(r + 1) the angle between any two numbers

Hom(, "} (Z) #0 Hom(;")(2) # 0
does not exceed 7/2. By Lemma 3.6.4 we have HomZV(Z ) # 0 and hence Statement
1.r follows.
To deduce Statement 3.7, let W and L be a sequence as above, |W| = |L| =r
and suppose that W = (W', u) and L = (L', ). Suppose that v is a neighbor of u
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which is not in W and assume that A, B € U (4, 7) are two matrices that differ in
the entries z;‘j” for j =1,...,konly. Let C € U (6, 7) be a matrix such that

c;‘j-”:l for j=1,...,k

and all other entries coincide with those in A and B. By Statement 1.(r 4 1) we have

HomEZ’_;))(C) # 0for j = 1,..., k and by Statement 2.(r 4 1) the angle between

any two complex numbers HomEZ’i’;) (C) #0and Homgv,‘;))) (C) # 0does not exceed
/2. Applying (7.2.3.1), we can write

k

k
Hom)' (A) = Zal”j”HomEZV/”['f};))(C) and Hom! (B) = Zb;‘;HomEZV,j‘]r;’)(C)
j=1

j=1
and by Lemma 3.7.3 the angle between
14 w
Hom, (A) #0 and Hom, (B) #0

does not exceed
2 arctan § + 2 arcsin

-
1-6°
which is equal to

g+arctan6=a if A=3

and is equal to

ﬁ—i—arctané:a if A24

Hence Statement 3.r follows.

Finally, we claim that Statements 1.(r+1),2.(r 4+ 1) and 3.(r 4 1) imply Statement
2.rfor2 <r < |V]. Let W be a sequence of distinct vertices such that the graph
induced on W is connected, |W| = r and W = (W’, u) and let L’ be a sequence of
not necessarily distinct indices such that |L'| = r — 1. Let 1 <[, m < k be any two
indices. Given a matrix A € U (6, 7), we define a matrix B € U (9, 7) by

b}‘j” =a'" forall v suchthat {u,v} € E andall j=1,...,k (7.23.2)

mj
and letting all other entries of B equal to the corresponding entries of A. Then
(W',u) W)
Hom;, }\(B) = Hom,; ;" (A).
Letdy > 1 (we use that r > 2) be the number of neighbors v of u in the sequence W’

and let d;, < A — 1 be the number of neighbors v of # not in W’. Then by Statement
1.r we have
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7.2 Sharpening in the Case of a Positive Real Matrix

Hom(};"(4) # 0 and Hom{}’)(4) # 0

while by Statement 3.r the angle between non-zero complex numbers

(W',u

Hom(;’ " (A) and Hom!, ;" (A) = Hom{},}""(B)

does not exceed -

2d, arctan s + d;a.

If A = 3 then (7.2.3.3) does not exceed

d d
0777 + ]TW + (di — dp) arctan §.

If d > d, then (7.2.3.4) does not exceed

2dy 47
<

9 9

<

o3

and if d; < dj then (7.2.3.4) does not exceed

d()ﬂ' d]ﬂ'

9 9

s
< - <
3

SE

If A > 4 then (7.2.3.3) does not exceed

doﬂ' dlﬂ'
d —d tan .
4(A—1)+4(A—1)+(1 ) arctan

If d > d, then (7.2.3.5) does not exceed

2dy T
<

dA—-1) — 2
and if d; < dy then (7.2.3.5) does not exceed
TA T
_— < -
4A-1) 2

Hence Statement 2.r holds.

243

(7.2.3.3)

(7.2.34)

(7.2.3.5)

This proves Statements 1.1, 3.1 and 2.2. Let us choose a vertex u of the graph and
two indices 1 < I,m < k. Given a matrix A € U (4, 7), let us define a matrix
B by (7.2.3.2). By Statement 1.1 we have Homj(A) # 0 and Homj(B) # 0
and by Statement 3.1 the angle between non-zero complex numbers Homj (A) and

Homj (B) = Hom, (A) does not exceed
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2T,
3a < 3 if A=3

and does not exceed

TA

aA < —— <
2(A—1)

27 .
— if A>4.
3

By (7.1.9.1), we have

k
Homg(Z) = ) Hom{(Z)
=1

and by Lemma 3.6.4, we have Homg(Z) # O forall Z € U (9, 7). (I

7.3 Graph Homomorphisms with Multiplicities

Following [BS16], we consider a refinement of the graph homomorphism partition
function.

7.3.1 Definition. Let G = (V, E) be an undirected graph with set V of vertices, set
E of edges, without loops and multiple edges, and let A(G) be the largest degree
of a vertex of G. We assume that A(G) > 1. Letm = (my, ..., my) be a vector of
positive integers such that

my+---+mp=\V|.

For a k x k symmetric complex matrix A = (ai j) we define the partition function of
graph homomorphisms with multiplicities m by

homg » (A) = Z H Apu)d(v) - (7.3.1.1)

o:V—>{1,....k} {u,v}eE
|¢~" (i)|=m; fori=1,....k

Here the sum is taken over all maps ¢ : V — {l,...,k} such that to every
i = 1,...,k precisely m; vertices are mapped. We observe that homg ,,(A) is a
polynomial in the entries a;; of A and deghomg ,, = |E|.

In [BS16], the following result is obtained.

7.3.2 Theorem. There is an absolute constant 6y > 0 (one can choose 5y = 0.108)
such that for every graph G = (V, E) with the largest degree A(G) > 1 of a
vertex and every positive integer vector m = (my, ..., my) of multiplicities such
thatmy + ...+ my; = |V| we have

homg ,, (A) # 0,
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provided A = (a,»j) is a k x k symmetric complex matrix satisfying
do .
[l —a;jj| < ——= forall 1<i,j<k.
A(G)
As in Sect. 7.1, Theorem 7.3.2 implies the following corollary.

7.3.3 Theorem. Let us fix some 0 < § < &y, where 0 is the constant in Theorem
7.3.2. Then there exists v = v(dp/9) > 0 and for any 0 < € < 1, any graph
G = (V, E), any positive integer k-vector m = (my, ..., my) there is a polynomial
D = DG.k.m.s.c I the entries of a k x k symmetric complex matrix A such that

degp < Y(n|E| —1Ine)

and
[Inhomg , (A) — p(A)| < €
provided

1)
[T —a;;| < 2G) forall i,j.

As in Sect.7.1, given G, m and ¢, the polynomial p of Theorem 7.3.3 can be
computed efficiently, in quasi-polynomial (|E k)" IEI="9) time. Given G, A and
m, we define a univariate polynomial

9(z) =homg , (J +2(A = J)),
where J = J is the k x k matrix filled by s, so that

Vi

myl---m

9(0) = homg ,, (J) = and g(1) = homg ,, (A).

k!

For an ordered set I = ({uy, v}, ..., {uy, vs}) of distinct edges of G, let V (/) be
the set of vertices {u;, vy, ..., uy, vg}. Arguing as in Sect.7.1,
dS
dZ.Y

g(z)]ZZO
B VA VD!
B 2. 2. (my — ¢~ (D) (my — ¢~ (0))!

I=({ur.vihfugvsd) VI —{1,...k)
[¢=' ()| <m; for i=1,...k

X (a¢<u1)¢(v1) - 1) T (‘%(M)é(m) - 1) :

Here the outer sum is taken over all ordered collections / of s edges of G, the inner
sum is taken over all maps ¢ : V(I) —> {1, ..., k} of the endpoints of the edges
from I into the set {1, ..., k} such that the inverse image of every i € {l, ..., k}
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consists of at most m; points from V (I). The multinomial coefficient

VAV
(m1 ==L+ - (my — ¢~ (K))!

accounts for the number of ways to extend ¢ to the whole set V of vertices of G
in such a way that the inverse image of every i € {1, ..., k} consists of exactly m;
points.

It follows that ¢*>(0) is a polynomial of degree s in the entries of the matrix A
computable in (k| E|)°® time. We define f(z) = In g(z) and proceed as in Sect. 7.1
and in Sect. 3.6.7 before that.

We obtain a quasi-polynomial algorithm to approximate homg ,,(A) within a
given relative error ¢, provided the matrix A = (a;;) satisfies |1 — a;;| < ¢ for all
i, j and some fixed 0 < § < &y. Patel and Regts show [PR16] that the algorithm can
be made genuinely polynomial provided A(G) is fixed in advance.

The functional homg ,, (A) specializes to some combinatorial quantities of inter-
est.

7.3.4 Hafnian. Suppose that G consists of n pairwise disjoint edges, so that |V | =
2nand A(G) = 1.Letk =|V|=2nandletm = (1, ..., 1). Then

homg ,,(A) =2"n!haf A, (7.3.4.1)

see Sect.4.1.1. Indeed, every map ¢ : V. — {1, ..., k} in (7.3.1.1) is necessarily
a bijection and the corresponding term is the product of weights a;, j, ---a;,;, in a
perfect matching in the complete graph with k = 2n vertices. Since 2"n! different
maps ¢ result in the same perfect matching (we can switch the vertices of each edge
and also permute the edges), we obtain (7.3.4.1).

Theorem 4.1.5 is a particular case of Theorem 7.3.2 up to the value of &y, which
is better in Theorem 4.1.5.

More generally, suppose that k > 2n, thatm = (1, ..., 1) and that G consists of
n pairwise disjoint edges and k — 2n isolated points. Then

homg ,,(A) = (k — 2n)!12"n!haf, A,

where haf, A enumerates matchings of size n in the complete graph with weights
a;; on the edges, see Sect. 5.1.1.

7.3.5 Hamiltonian permanent. Suppose that G is a cycle with n vertices, so that
|[Vl=nand A(G) =2.Letk =|V|=nandletm = (1, ..., 1). Then

homg ,(A) = nham A, (7.3.5.1)

where ham A enumerates Hamiltonian cycles in the complete graph with n vertices
and weights a;; on the edges, see Sect.3.8. The factor n in (7.3.5.1) accounts for
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n distinct functions ¢ that differ by a cyclic shift of vertices of G and produce the
same Hamiltonian cycle. It follows from Theorem 7.3.2 that ham A # 0 provided
A= (a,- j) is a complex symmetric matrix satisfying |1 —a;;| < do/2 foralli, j where
dp is the constant in Theorem 7.3.2. Consequently, ham A can be approximated within
relative error € in quasi-polynomial time provided |1 — a;;| < 6/2, where § < dy is
fixed in advance.

7.3.6 Enumerating independent sets. Let k = 2, let m = (m;, m,) and let us

choose
01
A= (1 1).

A map ¢ : V — {1, 2} contributes 1 to homg, ,(A) in (7.3.1.1) if o' cV
is an independent set and contributes 0 otherwise. Consequently, homg ,, (A) is the
number of independent sets in G of cardinality m ;. Detecting an independent set of a
given size in a graph is a notoriously hard problem. For example, for any 0 < € < 1
fixed in advance, it is an NP-hard problem to approximate the largest cardinality of
an independent set in G = (V, E) within a factor of |V|'=¢ [H499, Zu07].

Let us choose 0 < § < dp as in Theorem 7.3.3 and let us define

b )
P (1 BEGRN m)
- b i )
1+ NG} 1+ 20
Now homg (K) can be approximated in quasi-polynomial time. For a subset S C V,
let e(S) be the number of edges of G spanned by the vertices of S. Then

—IE|
(1_,_%) homg , (A) = ; w(S) where

|$1=m1 (7.3.6.1)

5 76(5) 5 E(S)
w-(5)  (5@)

In particular,

w(S) < exp [—25%] and w(S) =1 if S isindependent.

Thus the sum (7.3.6.1) accounts for all subsets S C V of m, vertices, where inde-
pendent subsets are counted with weight 1, and all other subsets are counted with
weight exponentially small in the number of edges they span. Computing (7.3.6.1)
allows us to distinguish graphs that are sufficiently far from having an independent
set of size m (for example, when every subset in of m; vertices spans at least €| E|
edges for some € > 0) from graphs that have many independent sets of size m; (for
example, when the probability that a randomly chosen m;-subset is independent is
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at least 2¢~2%IE1/A(G)) Note that in the latter case, if G is not very far from regular,
so that |E|/A(G)| ~ |V/|, the probability to hit such an independent set at random
is exponentially small in | V|.

7.3.7 A multi-affine version of homg,(A). We introduce an extension of
homg ,, (A). Let Z = (z;‘j”) be a |E| x k(kz—“) matrix (tensor) indexed by edges
{u,v} € E of the graph G and unordered pairs {i, j} of not necessarily distinct
indices 1 < i, j < k. We write z;; Y instead of ZL J}} assuming that

2y =g =2 =2
We define
Homg, . (Z) = > IT <o (73.7.1)
GV—s{l,...k}  {u,v}eE
o~ () |=m; fori=1,....k

IfA= (a,j) is k x k symmetric matrix and zf.‘j“ = a;; for all {u, v} € E, we clearly
have homg ,(A) = Homg ,,(Z). The advantage of working with Homg ,,(Z) is
that it is multi-affine, that is, the degree of every variable in Homg ,(Z) does not

exceed 1. We will prove that Homg ,,,(Z) # 0 for complex Z = (zfj”) provided

11—z }‘TOG) forall {u,v} € E andall 1<i,j<k,

where §p > 0 is an absolute constant (one can choose dy = 0.108).

Given § > 0, we define U () C CIEI x Ck*k+D/2,
UG ={z =) : [1-27| < 6} (73.7.2)
(we suppress dependence on G in the notation). Hence our goal is to prove that

do

Homg ,,(Z) #0 forall Z e U(d) where 6= AG)

7.3.8 Recursion. We need a version of the recurrence formula (7.1.9.1). Let
W = (vy, ..., v,) be an ordered sequence of vertices of G. A sequence W is called
admissible if all vertices vy, ..., v, are distinct. Let L = (i1, ..., i,) be a sequence
of indices 1 <i; < k. The multlplzczty m; (L) of i in L is the number of occurrences
of a given 1 51 <kin L:

mi(L)=|j:ij=i|.

We call a sequence L admissible if m;(L) < m; fori = 1, ..., k. For admissible
sequences W = (vy, ..., v,) of vertices and L = (i, ..., i,) of indices such that
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|[W| = |L|, we define

Hom (2) = > [T 2o

&:V—>{1,....k} {u,vleE
[~ (i) |=m; fori=1,....k
o(vj)=ij for j=1,....,r

Hence Hom}' (Z) is obtained by restricting the sum (7.3.1.1) to the maps ¢ that map
the vertices v; into i; for j = 1,...,r. If W = {J and L = { then HomE/(Z) =
Homg ,,(Z).

Let W be an admissible sequence of vertices, let L be an admissible sequence of
indices such that |W| = |L]|.

Let v € V be a vertex such that the sequence (W, v) obtained by appending W
by v is admissible (that is, v is not in W). Then

Hom)'(Z)= > Hom{})(2). (7.3.8.1)

(L,i) is admissible

where (L, i) denotes the sequence L appended by i.
Let | < i < k be an index such that the sequence (L, i) is admissible. Then
m; (L) < m; and

l v
Hom} (2) = e > Hom{}(2). (7.3.8.2)

v
(W,v) is admissible

We note that swapping the values on any two vertices u, v € V does not change
the multiplicities of the values of ¢.

To proceed with the induction, we need a simple geometric lemma which says
that the sum of vectors rotates by a small angle if each vector is perturbed slightly
and the vectors point roughly in the same direction.

7.39 Lemma. Letay,...,a,andby,...,b, be complex numbers such that ay, . . .,
a, are non-zero and
b
21| < ¢ for j=1,....n
aj
and some 0 < € < 1. Let
n n
a —Zaj and b:ZbJ
j=1 j=1

and suppose that
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n
lal = 7" lajl
j=1

for some 1 > 7 > €. Then a # 0, b # 0 and the angle between a and b does not
exceed .
arcsin —.
T
Proof. Clearly a # 0. Writing

bj =(1+¢;)a; where |e¢;|<e for j=1,...,n,

we obtain

n n n n
€
b= E (I+e€))aj=a+ E €ja; where E €jaj| < € E laj| < —lal.
’ ’ ’ ’ T
j=1 j=1

j=1 j=1
Hence
b €
—— 1 < =
a T
and
. €
arg —| < arcsin —,
a T
cf. Fig.3.7. The proof now follows. ]

Building on Lemma 7.3.9, we supply the first ingredient of our induction argu-
ment.

7.3.10 Lemma. Let us fix an admissible sequence W of vertices, an admissible
sequence L of indices such that 0 < |W| = |L| < |V| — 2, a complex tensor Z, a
real ¢ > 0 and a real 0 < o < 27/3 such that € < cos(a/2) and let

. €
w = arcsin ————.
cos(a/2)

Suppose that for any two vertices u, v € V and for any two indices 1 <1i, j < k such

that the sequences (W, u,v) and (L, i, j) are admissible, we have Homézv”;'}l)))(Z)

# 0, Hom{;"!"(Z) # 0 and

(W,u,v)
Hom, % (Z) B

(W,u,v)
Hom(L,i’j) (Z)
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Let us fix two vertices v, u € V such that the sequence (W, u, v) is admissible
and an index i such that the sequence (L, 1) is admissible. Suppose that for
any two indices j, and j, such that the sequences (L, i, ji) and (L, i, j») are

admissible, the angle between two non-zero complex numbers Homgg}”}:’; (2)

and HomEZVl"J:)) (Z) does not exceed .. Then HomEZ’iﬁ) (Z) #0, Hom%K}?(Z) o
0 and the angle between the complex numbers does not exceed w.

Let us fix two indices i and j, possibly equal, such that the sequence (L, i, j) is
admissible and a vertex u such that the sequence (W, u) is admissible. Suppose
that for any two vertices vi and vy such that the sequences (W, u, v) and
(W, u, vr) are admissible, the angle between two non-zero complex numbers

Wi, W, w.
HomEL‘;‘j’;l)(Z) and Hom(;")(Z) does not exceed c. Then Hom(,"(Z) #

0, Homg';'))(Z) # 0 and the angle between the complex numbers does not
exceed w.

Proof. To prove Part (1), using (7.3.8.1), we write

(W,u) _ (W,u,v)
Hom(“) (Z) = Z Hom(L’iyj) (Z) and
j=1.k
(L,i,j) is admissible
(W,v) _ (W,u,v)
Hom(;:"(2) = > Hom(, " (Z).
j=1,...k

(L,i,j) is admissible

For j such that (L, i, j) is admissible, let us denote

_ (W,u,v) _ (W,u,v)
aj —Hom(L’[.’j) (Z), b;= Hom(L’j’i) (2),

a =Zaj and b= ij.
J J

By Lemma 3.6.3, we have

«
al > 1 a;| for 7 =cos—.
! 2

J

Since

a=Hom{,Y(2) and b=Hom{, "} (2),

the result follows by Lemma 7.3.9.

To prove Part (2), using (7.3.8.2), we write

1
(W.u) - (W.u.v)
Hom,, }'(Z) = D) E Hom(Lyi',‘j'; (Z) and

(W,u,v) is admissible
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1

Hom"'"(7) = —— Hom!"“? (7).
(D mi —m;(L, j) MEZV (LD

(W,u,v) is admissible

For v such that (W, u, v) is admissible, let us denote
W, W,
ay =HomEL!i"‘j';)(Z), b, = HomEL,j'fil)’)(Z),

a=Ya, and b= b,
v v

By Lemma 3.6.3, we have

o
la| > 7 lay| for 7 =cos—.
2

v

By Lemma 7.3.9, the angle between non-zero complex numbers a and b does not
exceed w. Since

1 1
HOIn(W'w )= —— g and Hom(W’?) Z)y=————b,
o = ) @ = T @ )

the proof follows. O

7.3.11 Finding a fixed point. The gist of Lemma 7.3.10 is as follows. Suppose that
the value of Hom}" (Z) does not change much if we permute any two indices in L,
or, equivalently, any two vertices in W. We would like to know how the argument
of the complex number Hom}" (Z) changes if we change one vertex in W or one
index in L. Let r = |W| = |L| be the length of the sequences. In Lemma 7.3.10 we
show that if Hom‘L)V (Z) does not rotate much when we change one index in L then
Homy’ (Z) does not rotate much if we change one vertex in W' for shorter sequences
W | =|L| =r —1andif Hom{V(Z) does not rotate much when we change one
vertex in W then Homzv,/(Z) does not rotate much if we change one index in L’ for
shorter sequences |W'| = |[L'| =r — 1.

We would like to find a fixed point of the conditions of Lemma 7.3.10 for which

o = w. That is, we want to find an € > 0 for which the equation

. €
o = arcsin ————
cos(a/2)

has a solution 0 < o < 27/3. It is clear that for all sufficiently small ¢ > 0 such a
solution exists. In fact, any

4
0<e< max (sina) (cos g) = — (7.3.11.1)
0<a<2m/3 2

will do.
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Next, we link the property that Hom,' (Z) doesn’t change much if any two vertices
in W or any two indices in L are permuted with partial derivatives. We recall the
definition (7.3.7.2) of the polydisc U (9).

7.3.12 Lemma. Let us fix an integer 2 < r < |V|andreal T > 0and 0 < 6 < 1.
Suppose that for any admissible sequences W of vertices and L of indices such that
|W| = |L| = r and for any Z € U(0) we have HomL (Z) # 0 and the following
condition holds: if W = (W', v) and L = (L', i), then

}HomL(Z)‘ > — Z ‘lelw

forany Z € U(9).
Then for any admissible W and L such that |W| = |L| = r and for any Z € U(6),
the following condition is satisfied: if W = (W', u,v) and L = (L', i, j) then
(W',u,v)
Hom ;. (Z)
(W ,u,v)
Hom,,, ", (Z)

46A(G)

-1 (1 -7

< e —1 where &=

Proof. Let us choose admissible W and L such that |W| = |L| = r and suppose
that W = (W, u,v) and L = (L, j, i). Without loss of generality, we assume that
i # j.Since HomLW(Z) # 0 for all Z € U(J), we choose a continuous branch of
In Hom{v (Z), so that In Hom{v (Z) is real when Z is the matrix of 1s. Then

InHom} (2) = ( 0 Hom} (Z)) /Hom,'(Z)
9z 9z

and using that the coordinates z,; of any Z € U (4) satisfy ‘zji‘ > 1 — 4, we obtain

A(G)
Z lnHornL (2)| < T and
w: {w,v}€E ’l ( - )T
I: 1<l<k
(7.3.12.1)
A(G)
Z — lnHomL )| < ———.
w: {w,u}eE Jt (1 - 5)7-

I 1<i<k
Given a matrix A € U(0), we define a matrix B € U/(J) by

b’ =ay” forall w#v suchthat {u,w}e E andal [=1,....k

by —aﬂ forall w #u suchthat {v,w}e€ E andall [ =1,...,k,

while making all other entries of B equal to the corresponding entries of A. Then
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(W ,u,v) _ (W ,u,v)
Hom, " (B) = Hom,, ;" (A)

and from (7.3.12.1), we conclude

[1n Hom(}” 442 (4) — In Hom}/ /57 ()|

(L', j,i) (L0, ])
W'u, Wu,
_ ‘m Hom(}/*:"(4) — In HomEL,’if’j?(B)‘
< max ilnHomW(Z) + E ilnHomW(Z)
T Zel©) o74v L vw L
w: {u,w}eE Jt w: {v,w}eE il

I 1<I<k I 1<i<k

2A(G 40A(G
x | max ‘a;‘,"’ — b‘;}”| L laf =bi" ] < 246) x (20) = H4AG) =¢.
lué?LVk : : (1 — 5)’7’ (1 - 5)’7’
Denoting
(W' u,v)
_ Hom(L,_jJ.) (Z2)
- (W' u,v) ’
Hom(L,!i’j) (2)
we conclude that | In {| < £. Denoting s = In (, we conclude
} 0 s" 00 |s|n ¢
C-ll=le—1= 2~ = > —r=e-1
n=1 n=1
O

7.3.13 Tuning up £&. We would like to have
& —1 < €
for some e satisfying (7.3.11.1), see Sect.7.3.11, so we choose
E=In(l+¢).

Our next (and last) lemma relates the parameter 7 in Lemma 7.3.12 to the angles
between various complex numbers Hom)' (Z).

7.3.14 Lemma. Let 0 < « < 2mw/3 be a real number, let W be an admissible
sequence of vertices and let L be an admissible sequence of indices such that 1 <
|[W| = |L| < |V| — 1. Suppose that for every Z € U(6), for every w such that
(W, w) is admissible and for every 1 < 1, j < k such that (L,l) and (L, j) are
admissible, we have Homézv”ll)‘))(Z) # 0, HomEK‘;‘)))(Z) # 0 and the angle between
the two complex numbers does not exceed .
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Suppose that W = (W', v) and L = (L', i). Then

@
for T = cos 7

Hom} (Z)] = —— > ||

A(G) o2y

w: {w,v}eE
Jil=<j<k

Proof. Let w be a vertex such that {v, w} € E. If w is an element of W’ then

vw
Zjj PR Ho
ij

W(z) = Hom}" (Z) if the element of L’ corresponding to w is j
0 otherwise

(here we use that HomLW(Z ) is a multi-affine function of Z).

If w # visnotanelement of W’ then (W, w) is an admissible sequence of vertices
and
Hom!"")(Z) if (L, j) is admissible

(L,j)
0 otherwise.

l] a uwHO LW(Z) [

By (7.3.8.1), if w # v is not in W’ then

W,
Hom) (Z) = E HOm(L’]'-‘)’)(Z)
jil<j<k
(L,j) is admissible

and hence by Lemma 3.6.3,
Hom(2)] =7 > ‘HomEZ*J?(Z) .

Jil=<j<k
(L,j) is admissible

Denoting by dj the number of vertices w such that {w, v} € E and w is an element
of W’ and by d; the number of vertices w such that {w, v} € E and w is not an
element of W', we obtain

0
Z |23 B vaomL (2)| = dy |Hom}' (2)|
w: {w,v}eE
Jil=j<k
XY @)
w: {w,v}€E,
w is not in W’
Jr1=j=k,
(L,j) is admissible
1 w A( ) w
<do |Hom} (Z)| + di7~" [Hom} (2)| < |[Hom}" (Z)|

and the proof follows. (]


http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Now we are ready to prove Theorem 7.3.2.

7.3.15 Proof of Theorem 7.3.2. First we define some constants. For some 0 < @ <
27/3, to be specified later, we choose

€ = (sin ) (cos g) so that « = arcsin ;,
2 cos(/2)
see Sect.7.3.11. Let
E=In(l+¢) sothat ¢ —1=¢,

see Sect.7.3.13. and let

«
T = COS —.
2
see Lemma 7.3.14. We define
&t
o =
44&T
and let
~AG)
so that TN
@ _ .
a1-r —

see Lemma 7.3.12. As our goal is to maximize dp, we choose « to maximize

= (cos %) In (1 + (sin ) (COS %)) .

Numerical computations show that it is reasonable to choose
a=1

so that
e~ 0.74, ¢£=~0.55, 7~0.88

and
dp > 0.108.

Our goal is to show that

Homg ,,(Z) #0 forall Z € U(J).
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We prove by descending induction for r = |V, |V| — 1, ..., 2 the following State-
ments 1.r-5.r.

Statement 1.r. Let W be an admissible sequence of vertices and let L be an
admissible sequence of indices such that |W| = |L| = r. Then Hom{v (Z2) #0.

Statement 2.r. Let W be an admissible sequence of vertices and let L be an
admissible sequence of indices such that |[W| = |L| = r. If W = (W', v) and
= (L', i) then

Hom)' (2)| = —— > |

Statement 3.r. Let W be an admissible sequence of vertices and let L be an
admissible sequence of indices such that |W| = [L| = r. If W = (W', u, v) and
= (L,i, J) then

(W', u,v)
Hom(L,,j’i) (Z2)

(W'ou,v) -
Hom(L,!i‘j) (2)

‘Sé.

Statement 4.r. Let W be an admissible sequence of vertices such that |W| = r.
Suppose that W = (W', w) and let L’ be an admissible sequence of indices such that
|L’'| = r — 1. Leti and j be indices such that the sequences (L', i) and (L', j) are
admissible. Then Homgzv/i’i’)”) (Z) #0, Homg:’j";)(Z) # 0 and the angle between the
complex numbers does not exceed a.

Statement 5.r. Let L be an admissible sequence of vertices such that |L| = r.
Suppose that L = (L', i) and let W’ be an admissible sequence of vertices such that
|[W’'| =r — 1. Let u and v be vertices such that the sequences (W, u) and (W, v) are
admissible. Then Hom%,;';) (Z2) #0, Homg/,’;';)(Z) # 0 and the angle between the
complex numbers does not exceed a.

Suppose that » = |V|and let W = (vy,...,v,) and L = (iy, ..., ;). Then
w vy
Hom}!' ()= [] 2"
1<j<l<r:

{vj,uleE

and hence Statement 1.r holds. Furthermore, if deg v, is the degree of v,, we get

>

w: {w,v, }€E
I 1<I<k

v,w

—Hom} (Z)| = (degv,) [Hom, (Z)|

0
avw
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and Statement 2.r follows as well. Lemma 7.3.12 implies that Statement 3.7 holds.
Statements 4.r and 5.r hold since if L’ is an admissible sequence of indices such
that |[L’| = |V| — 1 then there is a unique index i such that the sequence (L', i) is
admissible and if W’ is an admissible sequence of vertices such that |W'| = |V | —1
then there is a unique vertex w such that the sequence (W', w) is admissible.
From formula (7.3.8.1) and Lemma 3.6.3, we get the implication:
Statement 1. » and Statement 4.r = Statement 1.(r — 1).
From Lemma 7.3.14, we get the implication
Statement 4.r — Statement 2.(r — 1).
From Lemma 7.3.12, we get the implication
Statement 1.(r — 1) and Statement 2.(r — 1) = Statement 3.(r — 1).
From Part 1 of Lemma 7.3.10, we get the implication
Statement 3.r and Statement 4.r — Statement 5.(r — 1).
From Part 2 of Lemma 7.3.10, we get the implication

Statement 3.r and Statement 5.r = Statement 4.(r — 1).

This proves Statements 1.2-5.2. Applying again Part 2 of Lemma 7.3.10, we get
the implication

Statement 3.2 and Statement 5.2 = Statement 4.1.
Then from formula (7.3.8.1) and Lemma 3.6.3, we get the implication
Statement 4.1 — Statement 1.0,

which completes the proof. d

7.4 The Lee-Yang Circle Theorem and the Ising Model

Our goal is to prove the following remarkable theorem of Lee and Yang [LY52].

7.4.1 Theorem. Let A = (a,-j) be an n x n complex Hermitian matrix (thus we
have a;; = aj; for all i, j) such that |a;;| < 1 forall 1 <1, j < n. Let us define a
univariate polynomial


http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_3
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Fig. 7.2 The cut created by
a set S of vertices and the
directed edges contributing
to the weight of the cut

NN

Cuty(z) = z Z‘Slna[j.

Scil,....n) icS

J¢S
Then every root zo of Cuty satisfies |zo0] = 1.

The polynomial Cut4(z) enumerates all cuts in the complete directed graph G
with set {1, ..., n} of vertices and weight a;; on the edge i — j, cf. Sect.7.1.11.
Every subset S C {1, ..., n} of vertices, including S = @, creates a cut. The weight
of the cut is the product of weights of all directed edges of G that originate in S and
end outside of S (for § = ¢ and for § = {1, ..., n} the weight of the cut is 1), see
Fig.7.2, while the monomial z!S! accounts for the cardinality of the set S.

‘We note that the weights of the cuts corresponding to a set S and to its complement
are complex conjugates of each other and hence

1 [
7" Cuty (—) = Cuts (2).
4

As follows from Lemma 2.2.1, see also Sect. 3.6, Theorem 4.1.5, Theorem 4.4.2,
Sect. 6.1.5, Theorems 7.1.5 and 7.2.3, for any 0 < § < 1, fixed in advance and any
0 < € < 1 there is a polynomial p = p, 5. in z and the entries a;; of ann x n
Hermitian matrix A = (a;;) such that deg p = O (Inn — In¢) and

[InCuts(z) — p(A,2)| < €
provided |a;;| < 1forall, j and |z| < §. As before, the approximating polynomial

p can be computed in 70"~ time.
Our proof follows [Hi97], see also [Ru71] and [As70].

7.4.2 Lemma. Let a be a complex number such that |a| < 1 and let z; and z, be
complex numbers such that |z1|, |z2| < 1. Then

1+az;+az+ 71220 #0.


http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_3
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_4
http://dx.doi.org/10.1007/978-3-319-51829-9_6
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Proof. If |a| = 1 then aa = 1 and

l+azi+an+ziz2 = +az) (1 +az)
and the proof follows. Hence we may assume that |a| < 1. Solving the equation

l+az1+az+72122=0

for z,, we obtain

1+az,
I =—= . 7.4.2.1
2 712 ( )
For any z such that |z| = 1, we have
[1+az|=|1+az| and |a+z| =|a+zl|z| = |az + 1],
from which it follows that the transformation
I +az
I —=
a—+z
maps the unit circle |z| = 1 onto itself and the disc |z] < 1 onto its complement
|z] > 1 (we use that |a| < 1). Therefore, if z, satisfies (7.4.2.1) with some |z;| < 1,
we must have |z2| > 1 and the proof follows. (Il
7.4.3 Proof of Theorem 7.4.1. Let us consider an n-variate polynomial
pa(Ziy .. 20) = Z zSHa,-j, where z° = Hz,-. (7.4.3.1)
Scil,....n} zég ies
J

=(1+al‘jZi+ajiZj+ZiZj) H (T4 zx).

From Lemma 7.4.2 it follows that

Dij (Z1,...,2,) #0 provided |zi],...,|z,] < 1.
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Therefore, for any real 0 < p < 1, the polynomial

(2155 20) > Pij (215 - -5 PZ0)

is D-stable, see Sect.2.5. On the other hand, p4 is the Schur (Hadamard) product of
the polynomials p;; over all pairs 1 <i < j < n. Therefore, by Theorem 2.5.1, for
any real 0 < p < 1, the polynomial

z 25 plSin=/2 Haij

Scil,...n} ieS
JES

is D-stable. Taking the limit as p — 1, by Hurwitz’s Theorem, cf. the proof of
Lemma 2.4.2, we conclude that

pA(Zla'-'aZﬂ);éO prOVided |Z]|,--~,|Zn|<1-

Therefore,
Cuta(z) = pa(z,...,z) #0 provided |z| < 1.

Since .
7" Cuty (—) = Cuty(2),
z

we conclude that
Cuty(z) #0 provided |z| > 1

and the proof follows. (]

As follows from our proof, we have

pa(Zl, .. 2p) = Z ZSHal‘j #0

Sc{l,..n}  i€S
" Jes
provided
lzil <1 for i=1,...,n.

Consequently, for any 0 < § < 1, fixed in advance, there is an algorithm which,
given a Hermitian matrix A = (ai j) such that |g;;| < 1 for all i and j, complex
Z1,-..,2n such that |z;| < dfori = 1,...,nand areal 0 < € < 1 approximates
pa(zi, ..., z,) within a relative error of € in n?U"~1"9 time. For a Markov Chain
Monte Carlo based algorithm, see [JS93].

7.4.4 The Ising model. One of the oldest and most famous models in statistical
physics, the Ising model, seeks to explain the phase transition in magnetization. It
is described as follows: let G = (V, E) be an undirected graph without loops or


http://dx.doi.org/10.1007/978-3-319-51829-9_2
http://dx.doi.org/10.1007/978-3-319-51829-9_2
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Fig. 7.3 The graph of a ® @ @ @ ®
rectangular region of 7>

multiple edges. Typically, G is a graph of a rectangular region of the 2-dimensional
integer grid Z? or a cubical region of the 3-dimensional grid Z3, see Fig.7.3.

We think of the vertices of G, which we number 1, 2, ..., |V]|, as of atoms. Suppose
that some real numbers b;; for {i, j} € E are attached to the edges of G, which
characterize interactions between neighboring atoms and that real numbers ¢; for
i = 1,..., N are attached to the vertices of G, which characterize the external
magnetic field. An assignment o : V. — {—1, 1} of signs to the vertices of G is
called a configuration and the signs themselves are interpreted as spins of the atoms.
The energy of the configuration o is defined as

H(o)=— > bjo(i)a(j) = Y cio().

{i,jleE ieV
The partition function of the Ising model is just the sum over all 2!V! configurations:

ZG.n= Y. e HON

o V—>{-1,1}

(7.44.1)
= D ep | D bijoo()+ D col) ] ¢
o:V—{-1,1} {i.j}eE ieV

where ¢ > 0 is a parameter interpreted as the temperature and v > 0 is an absolute
constant. The partition function defines a probability distribution on the set of all 2!"!
configurations:

e~ VH©@)/1

PI‘(O’) = m

for 0:V — {—1,1}. (7.4.4.2)

Some observations are in order. As the temperature t —> 400 grows, the dis-
tribution approaches the uniform distribution on the set of all configurations. As the
temperature ¢ —> 0+ falls to 0, the distribution concentrates on the configurations
with the lowest energy. Suppose that ¢; = 0 for all i, so that there is no external
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Fig. 7.4 The most likely
configurations in the

(@ (c)
ferromagnetic case a and b
and in the anti-ferromagnetic
case ¢ and d. Black dots
denote spins +1 while white
dots denote spins —1
(b) (d)

magnetic field. If all b;; > O then the configurations where the spins of neighboring
atoms coincide have lower energy and hence higher probability. This is called the
ferromagnetic case. If all b;; < 0 then the configurations where the spins of neigh-
boring atoms are opposite have lower energy and hence higher probability. This is
called the anti-ferromagnetic case, see Fig.7.4.

One can observe now that by a change of variables, Z(G, t) is transformed into
the partition function of Theorem 7.4.1, more precisely into (7.4.3.1). Namely, we
write

Z(G,t) =exp {1~ Z b,,—i—Zc,

{i,j}eE ieV

X Z exp 4 —27yt ™! Z bij + Z i

o V—>{-1,1} {i,jleE:
a(ii#a(j) o521

A configuration o : V — {—1, 1} is uniquely determined by the subset S C V of
vertices where o (i) = 1. Hence letting

ajj = exp {—2’7l_1b,‘j} and z; = exp {—Z’YI_ICI'} s

we can further write
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Z(G,t) =exp 'yfl Z bij—f-ZC; ZZSHQU,

{i.j}€E ieV Scv  ieS
Jjgs

where we agree that a;; = 1if {i, j} ¢ E (equivalently, we agree that b;; = 0 if
{i,j} ¢ E)and
ZS = HZ,‘.

ieS

Hence up to a simple factor, Z(G, t) is indeed transformed into the partition func-
tion (7.4.3.1) of cuts. Moreover, the case of |g;;| < 1 treated by Theorem 7.4.1
corresponds to the ferromagnetic case of b;; > 0. Theorem 7.4.1 thus says that in
the ferromagnetic case the roots of ¢ — Z(G, t; ¢), as a function of the constant
magnetic field ¢; = c interpreted as a complex variable, are purely imaginary, that
is, satisfy i ¢ = 0.

There are two related, though not identical, notions of a phase transition in the Ising
model. Both are asymptotic, as the graph grows in some regular way (for example,
when the square region in Z? or the cubical region in Z3 gets larger, see Fig. 7.3). The
first notion has to do with complex zeros of the partition function Z(G, ) defined
by (7.4.4.1). Various quantities that have physical interpretation can be expressed in
terms of the “free energy per atom”

1
— InZ(G, 1),
N4

see [Ci87] and references therein. If for a sequence G, = (V,,, E,)) of growing graphs
a complex zero of the function t — Z(G,, t) approaches the positive real axis, it
means that the “thermodynamic limit”

1
lim InZ(G,,t)

n—>»00 |

nl

hits a singularity at some temperature 7., and hence those physical quantities hit a
singularity (discontinuity or loss of smoothness) as well, which is an indication of a
phase transition (such as the loss of the magnetization or gas becoming liquid, etc.)
occurring at the temperature ., see [YL52]. Hence Theorem 7.4.1 implies that as
long as the magnetic field remains constant and non-zero, there is no phase transition
in the ferromagnetic case, as all the zeros of t — Z(G,, t) stay away from the
positive real axis even as the graph G,, grows. If the external magnetic field is zero,
Onsager [On44] demonstrated that there is indeed a phase transition at a particular
temperature in the case of a growing rectangular region of the 2-dimensional grid
as on Fig. 7.3, in the ferromagnetic case with constant interactions b;; > 0, see also
Chap. 10 of [Ai07] for the computation of the partition function in that case.

The second notion of the phase transition has to do with the correlation decay
phenomenon, as in Sects. 5.2, 6.3 and 6.4. Suppose that there is no external magnetic
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field, so that ¢; = 0 for alli € V. Let us consider the probability distribution on the
set of configurations o defined by (7.4.4.2). We choose a particular vertex i in G and
consider the conditional probability that o (i) = 1, given that the spins of the vertices
far away from i are also equal to 1. For example, i is the central vertex on Fig. 7.3,
the spins are fixed to 1 on the boundary of the square and the size of the square is
allowed to grow. We say that the phase transition occurs at a particular temperature
t. if for higher temperatures ¢ > ¢, the probability that o(i) = 1 asymptotically
does not depend on the boundary conditions (no long range interactions), while for
lower temperatures ¢ < f, the probability that o (i) = 1 asymptotically depends on
the boundary conditions (long range interactions appear). In 1936, Peierls found a
relatively simple argument, which allows one to show that this kind of the phase
transition indeed occurs for a variety of graphs, in particular for grids in Z¢ with
d > 2, see [Ci87] for an exposition and references.

7.4.5 Reduction to matchings. Fisher [Fi66] showed that computing the partition
function Z (G, t) defined by (7.4.4.1) in the case of zero magnetic field (that is, then
¢; = 0foralli € V) can be reduced to counting weighted perfect matchings in some
auxiliary graph G, that s, to computing an appropriate hafnian, see Sect.4.1. More-
over, if G is a planar graph, the graph G is also planar, so one can use Pfaffians to
compute Z(G, t), see Sect.4.3. Heilmann and Lieb [HL72] modified Fisher’s argu-
ment to account for a non-zero magnetic field and showed that in general computing
Z(G, t) reduces to computing the matching polynomial of a graph, see Chap.5.
Below we follow [Fi66].

To simplify the notation, we write (7.4.4.1) in the absence of the magnetic field

simply as
zG) =Y. ] ep{bije@reii},

o:V—=>{-1,1}{i,j}€E

where b;; are some real weights on the edges of E. Since the product o(i)o(j)
takes only two values, +1 and — 1, we can interpolate exp{bija(i)a(j)} by an affine
function in o(i)o(j) and write

z6G) = D |1 (fi+giocde(i)
o:V—>{—-1,1}{i,j}eE
where f;; = % >0 and g; = %

Next, we factor out f;; and write

Z(G) = H fii | Zo(G) where
et (745.1)
b, b,‘j
ZoG) = > ] (0 +hyot)o()) and hy =

e’ — e~

b:: —b:; "

e’i 4 e~ Vi
o:V—{—1,1}{i,j}eE +
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We note that the signs of /;; and b;; coincide. We will be computing Zy(G).
Let us expand the product in the definition of Zy(G). We obtain various monomials
of the type
higjy -+~ hi 0 () (1) - - (i) (). (7.45.2)
The monomials that survive summing over all ¢ : V. — {—1, 1} correspond to the
collections 7 of distinct edges {i;, ji}, ..., {is, js} that cover every vertex i of V an
even, possibly zero, number of times. We call such collections Eulerian. Hence we

can write
Zo(G) =2V Z H hij. (7.4.5.3)
TCE  ({i.j}eT
T is Eulerian

Next, we begin to modify G. First, we construct an intermediate graph G = (V, E)
with weights on edges such that Zy(G) = Zy(G) and the degree of every vertex on
G does not exceed 3. We do it step by step, each time replacing a vertex of degree
d > 3 by d clones, connected in a circular order as on Fig.7.5.

The edges of the obtained graph are of the two kinds: the inherited edges, con-
necting clones of the vertex to other vertices (thick lines on Fig.7.5) and circular
edges, connecting clones of the vertex of G within themselves (thin lines on Fig.7.5).
The weights /; ; on the inherited edges are copied from those on the corresponding
edges of G, while for any circular edge {i, j} we let fz,-j = 1. Whenever o (i) # o(j)
for some two clones of a vertex in G, we also have o (i) # o(j) for two neighboring
clones and hence by (7.4.5.1) the contribution of the corresponding configuration o
to the partition function is just 0. Repeating this process, we obtain a graph G with
vertices of degree 1, 2 and 3 and such that Zy(G) = Zo(G). Note that if G is planar
then G is also planar.

Hence without loss of generality, we may assume the degree of every vertex of
G is 1,2 or 3. We still denote weights on the edges of G by 4;; and without loss
of generality we assume that /;; > 0. Next, we construct a weighted graph G such
that Zy(G) is expressed as the partition function enumerating perfect matchings in
6, see Sect.4.1.

We keep vertices of degree 1 intact. If /;; is the weight on the unique edge incident
to such a vertex, we assign weight w;; = 1/h;; to the unique inherited edge in G

Fig. 7.5 Replacing a vertex T
of degree 6 by 6 vertices of ’
degree 3
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Fig. 7.6 Constructing G -7
from G 7

incident to the vertex, see Fig.7.6. Every vertex of G of degree 2 we replace by two
clones, connected by an auxiliary edge of weight 1 in G (thin line on Fig.7.6) and
connected to other vertices by two inherited edges (thick lines on Fig.7.6). If an
edge incident in G to such a vertex has weight h;;, we assign weight w;; = 1/h;;
to the corresponding inherited edge in G. Every vertex G of degree 3 we replace by
three clones connected by auxiliary edges of weight 1 each (thin lines on Fig.7.6)
and connected to other vertices by three inherited edges (thick lines on Fig.7.6). If
an edge incident in G to such a vertex has weight &;;, we assign weight w;; = 1/ h;;
to the corresponding inherited edge in G.

Given an Eulerian collection T of edges in G, we construct a perfect matching
in G as follows: we include an inherited edge into the perfect matching if and only
if the corresponding edge of G is not included in 7. We then include auxiliary
edges to complete the matching (the choice is unique). One can observe that the
correspondence is a bijection between Eulerian collections in G (which are just
collections of vertex-disjoint cycles) and perfect matchings in G. One can deduce
from (7.4.5.3) that

Zo(G) =21 ] hij | haf(G).

{i,j}eE

where haf (6) is the sum of weights of the perfect matchings in G and where the
weight of a perfect matching is the product of weights of its edges, see Sect.4.1.
We note that if G is a planar graph then G is also planar.
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Chapter 8
Partition Functions of Integer Flows

We consider yet another extension of the permanent, and some of the methods and
results of Chap.3 (capacity of polynomials, connections to H-stable polynomials,
the van der Waerden and Bregman—Minc bounds) are used. Geometrically, with each
integer point of a polyhedron in R”, we associate a monomial in n real variables and
the partition function is just the sum of monomials over the integer points in the
polyhedron. When the variables are non-negative, we prove a general upper bound
for the partition function in terms of the solution to a convex optimization problem
(entropy maximization) on the polyhedron. Although for general polyhedra there can
be no matching lower bound, such a bound indeed exists in the case of polyhedra of
feasible flows in a graph. This allows us to understand what a “typical” random integer
point in a flow polyhedron looks like. Based on this understanding and with intuition
supplied by the Local Central Limit Theorem, we present a heuristic “Gaussian”
formula for the partition function of a general polyhedron. Its validity has indeed
been proven in some particular cases, though not in this book.

8.1 The Partition Function of 0-1 Flows

8.1.1 Definitions. Let us choose positive integer vectors R = (ry, ..., 7,) and C =
(c1, ..., cy) such that

n+...4rm=c1+...+4¢, =N (8.1.1.1)

and let Xo(R, C) be the set of all m x n matrices with row sums R, column sums
C and 0-1 entries:
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n
So(R.O) = D= (dy): D dy=ri for i=1,...m
j=1

n
Zdijzcj for j=1,...,n and
i=1

dij € {01} forall i, j}.
The vectors R and C are called margins of a matrix from X (R, C). The Gale-Ryser
Theorem, see for example, Sect. 6.2 of [BRI1], provides a convenient necessary and
sufficient condition for £y (R, C) to be non-empty: assuming that

m>c>c>...>c, >0

and that
n>r >0 for i=1,...,m,

there is a 0-1 matrix with row sums R and column sums C if and only if the balance
condition (8.1.1.1) holds and

m k
> min{ri. k} = > ¢; for k=1,....n. (8.1.1.2)
i=1 j=1

In the extreme case when Xy(R, C) consists of a single matrix, that matrix has Is
arranged in a staircase pattern:

11111
11100
11100
11000

Thus in the above matrix we havem = 5,n =4, R = (5,3,3,2),C = (4,4,3,1, 1)
and (8.1.1.2) are equalities.

Assume that ¥ (R, C) is indeed non-empty. Given a non-negative m X n matrix
W= (w,- j) of weights, we define the partition function of 0-1 flows by

Flo(R.C:W)= > [Jwi

DEXG(RC) i, j
D=(d;})

and we agree that 0° = 1 so that Fly(R, C; W) remains a continuous function of W
when w;; —> 0+.

In particular, if m =nand R =C = (1, ..., 1) then Flo(R, C; W) = per W, see
Sect.3.1.
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Fig. 8.1 A bipartite graph 1L 1R

and a feasible 0-1 flow (thick

edges) with supplies 7L 2R

(1,2, 1, 2) and demands

(1,1,2,1,1) 3R
3L 4R
4L 5R

8.1.2 The flow interpretation. When the matrix W of weights is itself a 0-1 matrix,
the partition function Flo(R, C; W) is naturally interpreted as the number of feasi-
ble flows in the network. Namely, we consider a bipartite graph G with m + n
vertices numbered 1L,2L,...,mLand 1R, 2R, ...,nR andedges (iL, jR) when-
ever w;; = 1. We assign to each vertex i L the supply r; and to each vertex jR the
demand c;. A feasible 0-1 flow is a subset F' of edges of G such that every vertex
i L is incident to r; edges from F and each vertex j R is incident to ¢; edges from F'.
For example, the feasible 0-1 flow on Fig. 8.1 corresponds tom =4, n =5,

11010
10100
01101
00011

and R =(1,2,1,2),C =(1,1,2,1,1).
The following estimate of Flo(R, C; W) in terms of the capacity of a certain
polynomial, see Sect. 2.4, was obtained by Gurvits [Gul5].

8.1.3 Theorem. Given a non-negative m x n matrix W = (w; j) of weights, we
define a polynomial pw in m + n variables by

Pw (X5 ooy X3 V1o v ey Vo) = H (xi + wijy;) -

1<i<m
1=j=n

Given margins R = (r, ..., ry) and C = (cy, ..., cp), let

) . Pw (X1s ooy Xy Vs ooy Yn)
a(R,C; W) = »1,%2&0 = — —.

V] ses¥n >0 Xy o Xm Yi " n

Then

mor n—ri | " — e ) Cim)
ri'(n—r;)" in! ¢ (m —c;) m:
1 .
(H ril(n — ;)" ) H ci\m —c;)lmm a(R, C; W)
L [ j=1 J J/

i=1

= Flo(R, C; W) = a(R,C; W).
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Proof. First, we claim that Fly(R, C; W) is the coefficient of the monomial

x;l_rl - x:’z/lir"’ y;"l e y;"
in the monomial expansion of py . Indeed, let us write the monomial expansion of
pw by expanding the product of mn factors (xi + wjj yj). With each monomial of
pw, we associate an m X n matrix D = (dij) of Os and 1s as follows. We letd;; = 1
if from the factor (xi + w,-jyj) we pick up the term w;;y; and we let d;; = 0 if we

pick up x;. We obtain the monomial x} ™" - - - x =" yi" ..y precisely when the row
sums of D are ry, ..., r, and the column sums of D are ¢y, ..., ¢,.

Next, we observe that py is H-stable, see Sect. 2.4, provided W = (w; J-) is a non-
negative real matrix. Indeed, if xy, ..., x,, and yy, ..., y, are complex variables such
that 3 x1,...,3x, >0and Iy, ..., Iy, > Othen;“s(x,- +w,-jyj) > O forall i, j
and hence pw (X1, ..., Xm; Y1, .-+, Yu) # 0.

Finally, we note that the degree of x; in py does not exceed n fori =1, ..., m,
while the degree of y; in pw does not exceed m for j = 1, ..., n. The result now
follows from Theorem 2.4.7. O

Some remarks are in order. Suppose that W is a 0-1 matrix, so that Flo(R, C; W)
enumerates 0-1 flows. In many asymptotic regimes, the quantity a(R, C; W) captures
at least the logarithmic order of Fly(R, C; W). For example, if m, n, r; and ¢; grow
roughly proportionately, so that In Flo(R, C; W) grows roughly linearly with mn, it
follows from Stirling’s formula

x!= «/ﬁ(;)x (1+0 (x_l)) as x — 400,

that (R, C; W) approximates Flo(R, C; W) within a factor of eQm+m that is,
a(R, C; W) captures the logarithmic order of Flo(R, C; W). If m = n and r; =
¢; = 1 for all i, j then Flo(R, C; W) = per W and a(R, C; W) approximates
Fly(R, C; W) within a factor of

1 2n(n—1)
(1 . _) ~ e—Z(n—l)7
n

and hence even in some sparse regimes a(R, C; W) captures the logarithmic order
of Flp(R, C; W). If W is sparse matrix, the bounds can be improved further, see
[Gul5], since the bounds in Theorem 2.4.7 can be made sharper by a more careful
application of Theorem 2.4.3.

In [B10b], a weaker bound for the approximation of Fly(R, C; W) by a(R, C; W)
was obtained. Based on that bound, it was shown that a “typical” matrix D = (di )
of Os and 1s, with row sums R and column sums C, concentrates about a particular
“maximum entropy” matrix ® = (Gi j) that maximizes the strictly concave function

1 1
Z (X,‘j lng + (1 —)C[j) In 1 _Xij)

ij
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on the polytope of m x n matrices X = (x,«_,-) with row sums R, column sums C and
entries between 0 and 1. We discuss the connection is Sect. 8.5.1.

If W = (1),y x» is the matrix filled by 1s, then Fly(R, C; W) is just the number
of all 0-1 matrices with row sums R and column sums C. There is an extensive
literature on approximate and asymptotic formulas for Fly(R, C; W), see [G+06,
C+08, BH13, IM16] and references therein.

Since Fly(R, C; W) can be represented as the coefficient of a monomial in a
product of mn linear forms, it follows from Sect.3.2.1 that Fly(R, C; W) can be
represented as the permanent of an (mn) x (mn) matrix. For example, form = n = 3,
R=(3,2,1)and C = (2,2, 2), formula (3.2.1.2) gives

000 w11 Wit 0 0 0 0
000 O 0 w2 W12 0 0
000 O 0 0 0 w13 W13
100wy wpy; O O O O
100 O 0 W2 W2 0 0
100 O 0 0 0 w23 W3
011 w31 W3p 0 0 0 0
011 0 0 w3z W32 0 0
011 0 0 0 0 w33 W33

1

Flo(R. C: W) = Gmmmi P

which simplifies to

Flo(R, C; W) =ww31wipwnw3ws + Wi W wiwiWwi3ws

T W W2 W W2 W 3Ws3.
As Jerrum, Sinclair and Vigoda remark in [J+04], their randomized polynomial time

algorithm for approximating the permanent of a non-negative real matrix can be
applied to approximate Flo(R, C; W) in polynomial time.

8.2 The Partition Function of Integer Flows

8.2.1 Definitions. Let us choose positive integer vectors R = (ry,...,r,)and C =
(cy,...,cy) such that

n+...+rm=c1+...+c, =N (8.2.1.1)

and let X (R, C) be the set of all m x n non-negative integer matrices with row
sums R and column sums C:
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E+(R,C)={D=(dij): Sdy=r for i=1,....m,
=1

Zd[j:cj for j=1,...,n,
i=1
djeZ and dy; >0 forall i,j}.

The vectors R and C are called margins of a matrix from X (R, C). It is not hard
to show that for positive integer vectors R and C the set X, (R, C) is non-empty if
and only if the balance condition (8.2.1.1) is satisfied. Assuming that £, (R, C) is
non-empty, for an m X n non-negative matrix W = (wi j) of weights, we define the
partition function of integer flows by

FLLR.C;wy = > []wi.
Dex,(R.C) ij
D=(d;;)

As in Sect. 8.1, we agree that 0% = 1, so that Fl. (R, C; W) remains a continuous
function of W when w;; —> 0+.

8.2.2 The flow interpretation. Suppose that w;; € {0, 1} for all i, j. Then
Fl. (R, C; W) is interpreted as the number of integer feasible flows in a network.
As in Sect.8.1.2, we consider a bipartite graph G with m + n vertices numbered
IL,...,mLand 1R, ..., nR and edges (iL, jR) whenever w;; = 1. We assign to
each vertex i L the supply r; and to each vertex j R the demand c;. A feasible integer
flow is an assignment of non-negative integer numbers to the edges of G so that for
every vertex i L the sum of the assigned numbers on the incident edges is r; while
for every vertex j R the sum of the assigned numbers on the incident edges is c;.

More generally, suppose that G is a directed graph without loops or multiple
edges. Suppose that to every vertex v of G an integer a(v) is assigned, which can be
positive (“demand”), negative (“supply”) or O (“transit”). A feasible integer flow is
an assignment of non-negative integers x (e) to every edge e of G so that for every v
the balance condition inflow — outflow = a(v) is satisfied, see Fig.8.2:

Z x(e) — Z x(e) =a(v) forall v.

ee=u—v ee=v—u

Given that the set of feasible integer flows is non-empty, it is finite, if and only if
the graph contains no directed cycles of the type vi — v, — ... = v, — v;. If
there are no directed cycles, one can construct a bipartite graph G and a bijection
between the set of feasible integer flows in G and the set of feasible integer flows in
G as follows. With every vertex v of G we associate two vertices vL and vR of G s
connected by a directed edge vL — vR. For every edge v — u of G, we introduce
the edge vL — uR of G. For every vertex v of G, we choose a positive integer z(v)



8.2 The Partition Function of Integer Flows 275

Fig. 8.2 A graph with 4
vertices and a feasible flow,
corresponding to
demands/supplies written
inside each vertex

Fig. 8.3 The feasible integer
flow in a bipartite graph with
z(v) = 20 for all v,
corresponding to the feasible
integer flow on Fig. 8.2

which is at least as large as a possible outflow from v. We let the supply in vL equal
to z(v) and demand in v R equal to z(v) 4+ a(v), where a(v) is the demand/supply in
v. To construct the bijection, if x(e¢) for e = v — u is a flow in G, we introduce the
flow x(e) on the edge vL — uR in G and for every vertex v of G, we introduce the
flow of z(v)— outflow of v on the edge vL —> vR, see Fig.8.3.

Hence the number of integer feasible flows in an arbitrary directed graph without
directed cycles can be encoded as Fl (R, C; W) for appropriate R, C and W.

In fact, we can also incorporate upper bounds on the size of flow on edges, that is,
enumerate integer feasible flows x(e¢) in G with additional constraints x(e) < c(e),
where c(e) are given positive integers (frequently referred to as capacities of edges).
For that, for every edge v — u, we introduce two auxiliary vertices w; and w_,
replace the edge v — u by the three edges v — w4, w_ — w4 and w_ — u,
and let a(wy) = ¢(v — u) and a(w—_) = —c(v — u). Then a flow on x(e) on
the edge v — u in G satisfying x(e) < c(e), corresponds to the flow x(e) on the
edge v — w4, flow c(e) — x(e) on the edge w_ — w, and flow x(e) on the edge
w_ — u, see Fig.8.4.

In particular, we can express the number Fly(R, C; W) of feasible 0-1 flows, see
Sect. 8.1, as the number Fl, (R’, C’, W) of feasible integer flows. One particular case
resulting in the Kostant partition function of type A is of interest to representation
theory, see [BV09]. There we are interested in the number of feasible integer flows
in a graph with vertices numbered 1,...,n and edges i — j for j > i, see also
Fig. 8.2 for an example.
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Fig. 8.4 Enforcing the x(e)
condition x(e) < ¢

A
1
|
|
|
|
l
|
v

x(e) C c—x(e) C )X(e)

We will use a representation of Fl, (R, C; W) as the permanent of a structured
random matrix. Recall that a random variable w is standard exponential if the density
of wis

et ift>0
0 ifr <0.

Recall that
400
Euf = / ke dt = k!
0

for non-negative integer k.
The following result was obtained in [Ba07].

8.2.3 Lemma. Let Q2 = (wi j) be the m x n matrix of independent standard expo-
nential random variables w;j. Given positive integer vectors R = (ry, ..., 1r,) and
C = (ci,...,c,) such that

n+...4rm=c1+...+4¢c, =N

andanm x nmatrix W = (u),- j) of weights, let us construct a random N x N matrix
A(RQ) = Ag.c.w(R2) as follows: the rows of A(S2) are split into m blocks, with the
i-th block containing r; rows, the columns of A are split into n blocks, with the jth
block containing c; columns and the entries in the (i, j)-th block are all equal to
w;jwij, see Fig.8.5.
Then
E per A(2)

File e rplerl -yl

FL.(R, C; W) =

Proof. Let us pick one entry from every row and every column of A(£2) and let d;;
be the number of entries picked from the (7, j)-th block. Clearly, D = (di j) is an
m X n non-negative integer matrix with row sums R and column sums C and the
expectation of the product of the picked entries is
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Fig. 8.5 The structure of the c
matrix A(2) ,-/\J.\
nd L el
dij di;
E [ ] (wijwi)™ = ] dijtw?. (8.2.3.1)
i,j i,j

Let us now compute how many times we obtain a given non-negative integer matrix
D = (d;;) with row sums R and column sums C. For that, fori = 1, ..., m, we split
the i-th block of r; rows into n sub-blocks with d;1, ..., d;, rows in

r,-!
Lt diy!

m

i

ways, for j = 1,..., n, we split the j-th block of ¢; columns into m sub-blocks with

dyj, ..., dyj columns in
n

ci!
| e

jor il dj!

ways and then for each i and j such thatd;; > 0 we choose one entry in every row of
the j-th sub-block of the i-th block of rows and every column of the i-th sub-block
of the j-th block of columns altogether in

n
[
i,j

ways, see Fig. 8.6.

Fig. 8.6 Subdividing rows c

and columns further into : ] :

sub-blocks ‘dlj | | d;; | ‘dn?j
dy [T
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Hence we obtain (8.2.3.1) in

-1

(ﬁ}’[!) ﬁCj! Hd,j'
Jj=1 ij

i=1

ways total and

E per A(Q) = (Hr,»!

i=1

) [ei! ] Fler. C: W),

j=1

which completes the proof. d

8.3 Approximate Log-Concavity

For a non-negative integer vector R = (ry, ..., ), we denote

m m '
Fi.

R| = . and y(R)=|]=.
IRl=>ri and ¥(R) =

i=1 i=1"1
Our goal is to prove the following result from [Ba07].

8.3.1 Theorem. Let W be an m x n non-negative real matrix, let Ry, ..., R; be
non-negative integer m-vectors and let Cy, . . . , Cy be non-negative integer n-vectors
such that |R;| = |C;| = N for all i. Suppose further that ay, ..., o > 0 are reals
such that oy + ... + o = 1 and such that

k

k
R:ZaiRi and C:ZaiCi
i=l

i=1

are positive integer vectors.
Then

NV k o
STV RVOFLR. C:W) = T](FLR. G W)y max (v(R).4(C))
’ i=1

Theorem 8.3.1 implies an approximate log-concavity of the numbers
FL (R, C; W).

8.3.2 Corollary. Let W be an m x n non-negative real matrix, let Ry, ..., Ry be
non-negative integer m-vectors and let Cy, . . ., Cy be non-negative integer n-vectors
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such that |R;| = |C;| = N for all i. Suppose further that ay, . .., o > 0 are reals
such that oy + ...+ o = 1 and such that

k k
R:ZaiRi and C=Zo¢iCl
i=1

i=1

are positive integer vectors. Assuming that R = (ry, ..., ry) and C = (c1, ..., Cp),
we have

k
_mm H H% FIL.(R,C; W) > H(Fl+ (R;, Ci: W) .
i=l j=1€i i=1

From Stirling’s formula,

NN 6,N ’ ri! —r-\/zi
mzm(1_1-0( /N)), ?ze mri (1+0(/r))

ci! .
and C—g/=e 12me; (14 0(1/c)),

J

it follows that
m
! 1 ,
~ min H_r C_i] zmm{zom) fr 1y, 20@ /—cl~~~cn}-
i J

There seem to be neither a counter-example nor a proof of a hypothetical stronger
inequality, which claims genuine log-concavity of F1, (R, C; W):

k .
FI, (R, C: W) > H(Fl+ (R, C;,: W))a’

i=1

The proof of Theorem 8.3.1 uses the permanental representation of F1, (R, C; W)
of Lemma 8.2.3, matrix scaling (see Sect.3.5), the van der Waerden (Sect.3.3) and
Bregman—Minc (Sect. 3.4) inequalities.

For an m x n positive real matrix B = (b,- j), we define a function gz : R™ @
R" — R by

gp(x,y) = Z bijes i for x = (&,..., &) and Yy = (1, ..., ).

1<i<m
I<j=n

Let (-, -) denote the standard inner product in Euclidean space. For R € R™ and
C € R", we define a subspace Lz ¢ C R" & R" by
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ER,cz{(x,y)eRmEBR”: (R,x):(C,y):()}.
We further define a function f ¢ of B by

fre(B)= inf gp(x,y) > 0,
(x,y)eLr.c

R,

see Theorem 3.5.8.

833 Lemma. Let R = (ry,...,ry) be a positive integer m-vector and let C =
(c1, ..., cp) be apositive integer n-vector such that |R| = |C| = N. Let W = (w,-j)
be anm x n positive matrix. Foranm X n matrix Q = (w,- j) of independent standard
exponential random variables, let us define the m x n matrix B = B(Q2) = (bi j)
by b;; = wjjwjj foralli, j. Then

NS (e N 1 _
W(H;) H; v Efrc(B) = FLL(R, C: W)

7 n Cj

. " r; ; 1
< min H—', H# WEfé\{C(B)
j=1"7"

Proof. With probability 1, the matrix B is positive. Using Theorem 3.5.8, we scale
B to a matrix with row sums ry, ..., r, and column sums cy, ..., c¢,. That is, we
compute a positive m X nmatrix L = L(Q2),L = (l[ j) with row sums R and column
sums C and positive \; = N\; () fori =1,... ., mandpu; = p; () forj=1,...,n,
such that

b,‘j = l,’j/\,'ﬂj for all i, ]

By Theorem 3.5.8, we can choose

N\ o [fRCB) = e [ fr,c(B)
i N J N ’

where x* = (&1, ...,&y) and y* = (uy1, ..., f4,) is the minimum point of gg ¢ (B)
on Lz c. It follows that

N L N N0 < S
(1) (117) 2 0] - S e - S
i=1 j=1

j=1 i=1

fRc(B)
= NN .

(8.3.3.1)

Let A(Q2) be the N x N matrix constructed in Lemma 8.2.3. Let us divide the entries
in the (7, j)-th block of A(£2) by A;pjricj and let D = D(L2) be the N x N matrix
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we obtain. Then

per A = (H(rl/\)") H(c],u, )/ | per D

m n r[\é( )
H H per D (8.3.3.2)

by (8.3.3.1). It is not hard to see that the matrix D is doubly stochastic, and hence
by the van der Waerden bound, see Theorem 3.3.2, we have

N!
per D > NN
On the other hand, the entries of the (i, j)-th block of D can be written as [;; /r;c;

and hence do not exceed min{1/r;, 1/c;}. Therefore, by the Bregman—Minc bound,
see Corollary 3.4.5, we have

=

per D < min ﬁ:— H—é
i=1 j=1 ]

Hence from (8.3.3.2),

n

min U H ﬁ fRC(B) > perA

m
> I I rli
—_ 1
i=1

The proof now follows from Lemma 8.2.3. ]

NN NN

~— n:|

"o\ NUSYeB)
< |

Next, we establish some convex properties of fz c(B). We define u; € R by
ug = (1,...,1) (the d-vector of all 1s) and note that

gB (x + auy, y+ ﬂu,,) = e‘”ﬁgg(x, y) forall «,f eR.

8.3.4 Lemma. Let Ry, ..., R, be m-vectors and let Cy, ..., Cy be n-vectors such
that

(Ri,uy) =(Ci,u,) =1 for i =1,... k.
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Let By, ..., By be positive real m x n matrices and let oy, . . ., ay > 0 be real such
that oy + ... 4+ a4 = 1. Let

k k k
RZZOéiR,', CZZOQC,‘ and BZZO{,‘B,
i=1 i=1 i=1

Then .
frc(B) = H (fr.c,(B)"

Proof. Let us choose a point (x, y) € Lz, ¢, so that
(R,x)=(C,y)=0. (8.3.4.1)
We define

xi=x —(Ri,x)u,, and y; =y —(C;,v)u, for i =1,... k.

Hence

(Ris xi) = (Ri, x) — (Ri, x)(R;, up) =0 and

(Ci7 yl) = <Ci7 )’) - (Civ )’)(Cz, un) = 07
so that

(xi, yi) € Lr.c,- (8.3.4.2)
Then
k k

gp(x,¥) = D g (x,y) = H g5, (x. )" (8.3.4.3)

and

(Ri,x) ,(Ci

98, (x.y) = g, (xi + (Ri, x)um, yi +(Ci, y)un) =€ N (xi, yi). (8.3.4.4)

Since by (8.3.4.1)

k
()™ = epr<Za,-Ri, x>} =exp{(R.x)} =1 and
(el )™ —eXp[<ZazCz, y>] =exp {{C, y)} =1,

combining (8.3.4.2)—(8.3.4.4) we obtain

—.

i=1

A:»

i=1
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k k
g5, y) = [ (98 i 30)™ = [] (frc:(B))"
i=1 i=1

Sine the point (x, y) € Lg ¢ was chosen arbitrarily, the proof follows. U

8.3.5 Proof of Theorem8.3.1. By continuity, it suffices to prove Theorem 8.3.1
assuming, additionally, that matrix W = (w;;) is positive.

Given anm x n matrix 2 of independent standard exponential random variables,
let us construct a random matrix B = B(€2) as in Lemma 8.3.3. By Lemma 8.3.3,
we have

NV 1
TV RVOFL(R, C;W) = B fic(B) and

1
max (7(R), Y(COYFLy (R, Cis W) < B ff o (B) for i=1,....k.

If @4, ..., Q are different realizations of 2 and

k
= E 0; 24,
i=1

then for the corresponding matrices B, = B(€2;) fori =0, 1, ..., k, we have

k
By = Z «;B;
i=1

and by Lemma 8.3.4,

k
fic(Bo) = H (e, (B)"

Note that we can apply Lemma 8.3.4 since |R;| = |C;| = N for all i, so that

Sfri.c. = fryncyn and  frc = frn.c/N

and the sum of the coordinates of vectors R;/N,C;/N, R/N and C/N are
equal to 1.
Since the density of the random matrix 2 = (wi j) is

Hij e~ ift;; > Ofor alli, j
0 otherwise,

applying the Prékopa—Leindler inequality of Sect.2.1.6, we conclude that
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k
EfYcB) = [](E £y B)".
i=1

which completes the proof. (]

8.3.6 Proof of Corollary 8.3.2. Using that the function

Cx+1)
n—

for x >1
xx

x—1

is concave, we conclude that
k k
YR =[] (R) and ~(C) = [[~¥(C)
i=1 i=1

and the proof follows from Theorem 8.3.1. (]

8.4 Bounds for the Partition Function

Corollary 8.3.2 allows us to estimate the partition function F1; (R, C; W) in terms
of the capacity of a certain polynomial.

8.4.1 Complete symmetric polynomial. The complete symmetric polynomial

hy (21, ..., 2q) of degree N ind variables 7y, . . ., z4 is the sum of all (N;fl_l) mono-
mialsinzy, ..., z4 of the total degree N. It can be defined recursively as hy (z1) = Z{V
and
N
hN (Z17 AR Zd) - Zzghl\[—d (Z17 A ?Zd—l) 9
m=0
which also provides a fast way to compute %y at any given z1, ..., Z4.
8.4.2 Theorem. Let R = (ry, ..., ry) be a positive integer m-vector and let C =
(c1, ..., cp) be a positive integer n-vector such that

n+...+rm=c+...+¢c, =N.

Let W = (wij) be a non-negative real m x n matrix of weights. Let us define a
polynomial p = pg.c.w in m 4 n real variables xy, ..., Xy} Y1, ..., Yo by

DXty ooy Xy V15 oo Y0) = hn(zij) for zij = wijx;iyj,

where hy(z;;) is the complete symmetric polynomial of degree N in mn variables
zijwhere 1 <i <mand1 < j <n. Let
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X1y ey Xms V1o oo
0y (R, C:W) = inf ”(1,1 L ),

X1 yeees X >0 X1 X' Yy “Vn

Then

o
[

N+m—1\"YN+n—1 L
tom o — max HL L a+ (R, C)
m— 1 n—1 P ;! i ;!

Proof. Expanding p into the sum of monomials, we get

P by
P(xl,~~-,Xm;yl,-~-,yn)= z F1+(A,B;W)x?'~-~x,f1 yll"'yn
A=(ay,....am)
B=(by.....b,)
where the sum is taken over all pairs non-negative integer m-vectors (ay, ..., dn)

and n-vectors (by, ..., b,) suchthata; +...+a, = b+ ...+ b, = N. Hence the
upper bound is immediate. As the total number of monomials is (e (e,
the lower bound follows from Corollary 8.3.2 and (2.1.5.3).

Theorem 8.4.2 shows that ay (R, C; W) approximates Fl (R, C; W) within a
factor of N2+ (the implicit constant in the “O” notation is absolute). In many
interesting asymptotic regimes, a4 (R, C; W) captures the logarithmic asymptotics
of FI,. (R, C; W). A similar, though less explicit, bound

B+ (R, C; W) ) .
N OGnn) = FlL(R,C; W) = (R, C; W)
where
m n . 1
R,C; W)= inf i e -
o : bty 0 Hx’ Hy" H 1 —wijx;y;
Viseees Yu >0 i=1 Jj=1 i,j iy

w;jx;yj<lforalli,j

was obtained in [Ba09]. Based on it, it was shown in [B10a] that a “typical” ran-
dom non-negative integer matrix D = (d[ j) with row sums R and column sums C
concentrates about a particular “maximum entropy” matrix matrix ® = (9,- j) that
maximizes the strictly concave function

Z((xif + 1) In (xij + 1) — Xjj lnx,-_,-)

ij
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on the polytope of non-negative real matrices X = (x,-_,-) with row sums R and column
sums C. We discuss the connection in Sect. 8.5.2.

If W = (1), x » is the matrix filled with 1s, then F1 (R, C; W) is just the number
of non-negative integer matrices with row sums R and column sums C. There is an
extensive literature on asymptotic and approximate formulas for the number of such
matrices, see [DG95, GMO08, CM10, BH12, IM16] and references therein.

8.5 Concluding Remarks: Partition Functions for Integer
Points in Polyhedra

The partition functions Flo (R, C; W) and F1 (R, C; W) can be considered as special
cases of more general partition functions for 0-1, respectively integer, points in
polyhedra.

8.5.1 Partition function of 0-1 points. Let A = (a;;) be an integer r x n matrix
of rank r, let b = (by, ..., b,) be an integer r-vector, and let w = (wy, ..., w,) be
a positive real vector of weights. We consider the set Xy(A, B) of the 0-1 vectors x
that lie in the affine subspace defined by the system Ax = b:

n
XO(A,b):{x:(xl,...,x,,): Zaijxj:bi for i=1,...,r and

j=1

x; €1{0,1} for j=1,...,n}.
We define a weighted sum (partition function) over Xy (A, b)

So(A,biwy = > wiw
xeXy(A,b)
X=(X1,.00sXy)

Itis not very hard to come up with an upper bound similar to the bound « of Sect. 8.1:
n

So(A,b;w)y < inf 7T T (1w ) 8.5.1.1

0(A, byw) < inf 4 r l_[](+wjl ) ( )
j=

In general, there is no non-trivial lower bound for So(A, b; w) since there is no guar-
antee that the set Xy (A, b) of 0-1 vectors satisfying a given system of linear equations
is non-empty. There is, however, a dual reformulation of (8.5.1.1) which leads to
sharper upper bounds and, sometimes, to good approximations of Sy(A, b; w).

Let Py(A, b) be the polyhedron that is the intersection of the cube [0, 1]" with the
affine subspace defined by the system Ax = b,
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PO(A,b)z{xz(xl,...,xn): > ayx;=b; for i=1,....r and
j=1

0<x;<1 for j=1,....n}.

Suppose that Py(A, b) has a non-empty relative interior, that is, contains a point
X = (x1,...,x,)suchthat 0 < x; < 1forj =1,...,n.Letus consider a strictly
concave function

n

1 1
Hw (.X],...,)Cj) =Z(lenx—j+(l—xj)ln1_

J=1

+lenwj)

J

where 0 <x; <1 for j=1,...,n.

It is not hard to show that H,, attains its maximum on Py(a, b) at a unique point
&, ...,&,) in the relative interior of P, cf. the proof of Theorem 3.5.2 and see
[BH10] for detail, and we claim that

So(A, b;w) < exp{Hy (&1, ..., &)} (8.5.1.2)
and, moreover, that the bounds of (8.5.1.1) and (8.5.1.2) are identical.

Indeed, the Lagrange multiplier optimality condition implies that for some real
ALy -+ A, We have

J

1-¢ c
ln( gj)‘f‘lnwj:_z)\iaij for j:l,...,n, (8513)
i=1

that is,
w;j

wj +exp {— 27 Niaij }

& = for j=1,...,n. (8.5.1.4)

Since (&1, ...,&,) € P(A, b), we also have

" a,-jwj .
E — =b; for i=1,...,r (8.5.1.5)
S w;+exp{— 3 Nayj }

Equations (8.5.1.5) imply that (A, ..., A,) is the (necessarily unique) critical point
of the strictly concave function

(S1, ..., 8) —> anln(l +U)jeXp[Zr:aijSi])_ Zr:biSi,
i=1

j=1 i=1
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and, consequently, ¢/ = ed fori = 1,...,r is the point where the infimum in
(8.5.1.1) attained. Hence the bound in the right hand side of (8.5.1.1) is

exp[—zr:)\ibi}li[(l-l-wjexp{zr:aij)\j}), (8516)
i=1

= i=1

while from (8.5.1.3) and (8.5.1.4), we get

n

1
Z (51 In — 3 +(1-¢)In T—¢ +&;In w.i)

_Zg, (ln +w,)—gln(1—€j)

_—225,Aa,, +Zln(l +w,exp[ZAaU])

j=1i=1
=— Z)\ibi + Zln(l + w;exp {Zz\iaij})
i=1 j=1 i=1

and hence the bounds (8.5.1.1) and (8.5.1.2) indeed coincide.

The advantage of (8.5.1.2) is that it admits a useful probabilistic interpretation.
Let X = (X4,..., X,) be an n-vector of independent Bernoulli random variables
such that

Pr(X;=1)=¢ and Pr(X;=0)=1-¢ for j=1,....n
Then from (8.5.1.3) and (8.5.1.4), we conclude that for any vector x € Xy(A, b),
x = (x1,...,x,), we have

n

PrX=x)=[]¢ (1-¢)" :H(l_g ) H
j=1 S

J=1

1

_ Nixjaij + ! ;
=exp ZZ iXjdij fo nw; jl:Ill—l—w.jleP{Zi:l/\iaif}

j=1i=1

n . r n 1
w’ eXp )\,’b,‘ -
g J [; ] ]1:[1 1+ w; exp {Zi:l )\,‘a,‘j}

We note that the probability that the random vector X hits a particular point x €
Xo(A, D) is proportional to the contribution wy" - - - w of that point x to the partition
function Sy(A, b; w). We obtain the following identity for the partition function:
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So(A, b: w) =Pr (X € Xy(A, b))
X exXp [_ Z)\zbz] H(l + w; eXp [Z)\iaij]) (8517)
i=1

j=1 i=1
=Pr (X € Xy(A, b)) exp{Hy (&1, ..., &)}

Comparing (8.5.1.6) and (8.5.1.7), we conclude that the upper bound (8.5.1.1)—
(8.5.1.2) is just a consequence of the trivial bound

Pr (X € X(A,b)) < 1. (8.5.1.8)

One can try to improve the bound (8.5.1.1)—(8.5.1.2) by trying to strengthen (8.5.1.8).
Thus we want to estimate the probability that a vector X = (X,...,X,) of
independent Bernoulli random variables satisfies the system of linear equations
Z;l':l a;jX; = b; fori = 1,...,r. In [Sh10], Shapiro used anti-concentration
inequalities to sharpen (8.5.1.8). In particular, one obtains
Pr (X € Xy(A,b)) < min max {¢;,1—¢;,} - -max{¢;.1-¢;},
J

LseensJir

where the minimum of the products is taken over all collections of r linearly inde-
pendent columns of the matrix A. This results in an improvement, often substantial,
of the bound (8.5.1.1)—(8.5.1.2):

So(A, by w) < exp{Hy (&1, &)}
x min max {&;,, 1 =&} max{¢;, . 1-¢;}.
J

LseensJir
Another useful observation is that
n n
E Za,-ij =Zaij€j=bi for i=1,...,r.
=1 j=1

Therefore, one may try to adapt the local Central Limit Theorem approach to estimate
Pr (X € Ay(A)) in (8.5.1.7). It is not hard to compute the r x r covariance matrix
0= (qij) of random variables Z;f:l ai;jXj, ..., Z?:l ar; X

qdij = Zaikajk (fk - 51%)
k=1

and the local Central Limit Theorem, when applicable, would imply that

det A

Pr (X € XAy(A, b)) ~ W’
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where det A is the determinant of the lattice A C Z" generated by the columns
of the matrix A. This approach was used in [BH13] to obtain asymptotically exact
formulas for the number of graphs with a given degree sequence and for the number
0-1 integer matrices with prescribed row and column sums, and in [BH10], [Be14]
for the number of 0-1 and non-negative integer d-dimensional arrays with prescribed
sums over (d — 1)-dimensional “slices”.

Suppose that the set Xy(A, b) is not empty and let us consider it as a finite prob-
ability space, where Pr (x) is proportional to wy' ---w for x = (xy,...,x,). If
there is a lower bound for Sy(A, b; w), complementing the upper bound (8.5.1.1)
and (8.5.1.2) as in Theorem 8.1.3 for the partition function of 0-1 flows, one can
deduce that a random point x € Xy(A, b) in many respects behaves as a vector
X = (Xi,..., X,) of independent Bernoulli random variables. Indeed, it follows
from (8.5.1.7) that Pr (X € Xy(A, b)) is not too small, and hence various averaging
statistics on X and x € Aj(A, b) are sufficiently close. This observation was used in
[B10b, BH13, C+11].

8.5.2 Partition functions of non-negative integer points. As in Sect.8.5.1, let
A = (a;;) be an integer r x n matrix of rank r, let b = (by, ..., b,) be an integer
r-vector, and let w = (wy, ..., w,) be a positive real vector of weights. We consider
the set X (A, B) of non-negative vectors x that lie in the affine subspace defined by
the system Ax = b:

n
X+(A,b)=[x=(x1,...,xn): > aijxj=b; for i=1,....r and
=1

xjeZ and szo for j:l,...,n}.

To avoid convergence issues, we assume that X, (A, b) is finite and consider a
weighted sum (partition function) over X’ (A, b):

S (A, b;w) = Z wl - w
X€X,(A,b)

The estimates for S, (A, b; w) are similar to those for Sy(A, b; w) in Sect.8.5.1.
Below, we briefly sketch them, see also [BH10]. We get an upper bound

n

. - —by b 1
Se(A,b;w) < inf " ———— (8.5.2.1)
tyety >0 i1 1— w;t, -1
w/t:‘”wt:‘”<1 J
for j=1,..., n

The dual form of (8.5.2.1) is as follows. Let P, (A, b) be the polyhedron that is the
intersection of the non-negative orthant R, with the affine subspace defined by the
system Ax = b,
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P+(A,b)={x=(x1,...,x,l): > ayx;=b; for i=1,....r and
j=1

x; >0 for j=1,...,n}.

Suppose that P, (A, b) is bounded and has a non-empty relative interior, that is,
contains apointx = (xy, ..., x,) suchthatx; > Ofor j =1, ..., n. Let us consider
a strictly concave function

Gw(xl,...,xj)=Z((xj+l)ln(xj+1)—lenxj+lenwj)
Jj=1
where x; >0 for j=1,...,n.

Then G, attains its maximum on P, (a, b) at a unique point (&, ..., &,) in the
relative interior of P, see [BH10] for detail, and

Se(A, by w) < exp{Gu (&1, .... &)}, (8.5.2.2)

Moreover, the bounds of (8.5.2.1) and (8.5.2.2) are identical.

The probabilistic interpretation of the bound (8.5.2.1)—(8.5.2.2) is as follows. Let
X = (Xy, ..., X,) be an n-vector of independent geometric random variables such
that

1 &\
Pr (X; =k) = J for k=0,1,... and j=1,...,n,
l+§j 1+fj

sothat E X; = ¢;. Then
St(A,b;w) =Pr (X €e X, (A,D)) Gy &1y ..., &) (8.5.2.3)
and (8.5.2.1), (8.5.2.2) can be written as
Pr X e X (A, D) < 1.

In [Sh10], using anti-concentration inequalities, Shapiro obtained a stronger bound

1
Pr (X € X((A,b)) < mi :
PXERAD) = ) (118

where the minimum is taken over all collections {ji, ..., j-} of r linearly indepen-
dent columns of A. The r x r covariance matrix Q = (qi j) of random variables

n n .
211X, ., 205 arj X is computed as
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gij = Zaikajk &+ &)

k=1
and the local Central Limit Theorem, when holds, implies that

det A
Qn)/2/det Q’

where A C Z' is the lattice generated by the columns of A. In [BH12], this approach
applied to obtain asymptotically exact formulas for the number of non-negative
integer matrices with prescribed row and column sums.

Suppose that the set X, (A, b) is not empty and let us consider it as a finite
probability space, where Pr (x) is proportional to wy" - - - w" forx = (xy, ..., x,). If
there is a lower bound for S (A, b; w), complementing the upper bound (8.5.2.1) and
(8.5.2.2) asin Sect. 8.4 for the partition function of integer flows, one can deduce thata
random point x € X, (A, b) in many respects behaves as a vector X = (X, ..., X,,)
of independent geometric random variables. Indeed, it follows from (8.5.2.3) that
Pr (X € Xy(A, b)) is not too small, and hence various averaging statistics on X and
x € Xy(A, b) are sufficiently close. This observation was used in [B10a].

Pr (X € X.(A, b)) ~
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D-stable, 38
H-stable, 31
independence, 181
interlacing, 28
matching, 145
computing, 149
of a bipartite graph, 159
mixed characteristic, 143
multi-affine, 38
Tutte, 186
Product
Hadamard, 39
Schur, 39, 41

S
Scaling, 3
of matrices, 64, 67, 71
of n-tuples of, 134
symmetric, 102
of tensors, 122
Sequence
log-concave, 30
Subgraph
induced, 182

T
Tensor, 116
a-conditioned, 124
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slice of, 116 Lee—Yang, 258
Theorem of Regts, 217

Csikvdri and Lelarge, 160 Scott and Sokal, 184

Davies et al., 190 Szegd, 41

Dobrushin, 183 Weitz, 205

Gauss—Lucas, 18 Tree

Gurvits and Samorodnitsky, 134 k-regular, 156
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