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Preface

Preface to the third edition

In this edition we have expanded the elementary part of the book to make
it self-contained, and have added new intermediate level material related to
recent developments. This new material fits nicely into the general structure
of Quantum Mechanics, as well as to our book.

In particular, on the intermediate level, we added sections on the time-
dependent Born-Oppenheimer approximation, adiabatic theory, geometrical
phases, Aharonov-Bohm effect and density functional theory.

We also added a sections on quantum open systems, expanded some oth-
ers, and organized the relevant sections into a separate chapter under this
name. This chapter develops some fundamental concepts lying at the heart
of quantum information theory, presently perhaps the fastest growing area of
physics. It also comes closest to issues of foundations, which are not consid-
ered in this book. However, we refer to an excellent recent paper [116] for an
in-depth discussion of the issues involved, and many references.

As in the previous editions, we tried to stay at the most elementary math-
ematical level possible, and did not pursue generalizations and mathematical
questions arising naturally in the subject. The latter is done in the excellent
books of F. Strocchi ([285]), L. Takhtajan ([287]), G. Teschl ([288]), J. Dimock
([79]), B. C. Hall, ([153]) and G. Dell’Antonio ([76]).

Consequently, prerequisites for this edition are the same as for the previ-
ous ones: introductory real and complex analysis and elementary differential
equations. This book could be used for senior level undergraduate, as well as
graduate, courses in both mathematics and physics departments.

The new material makes the book more flexible as a source in designing
courses guided by different interests and needs. This edition could be used for
introductory, intermediate and advanced courses; some of the sections would
serve for introductions to geometrical methods in Quantum Mechanics, to
quantum information theory and to quantum electrodynamics/field theory
(Sections 7.5-7.7, 7.9, 12.4; Chapters 18-19 and 20-24, respectively).



VI Preface

Acknowledgment: The authors are grateful to R. Frank, M. Lemm, B.
Nachtergaele and S. Teufel for reading parts of the new material and making
many pertinent remarks.

Vancouver / Toronto, Stephen Gustafson
May 2020 Israel Michael Sigal

Preface to the second edition

One of the main goals motivating this new edition was to enhance the
elementary material. To this end, in addition to some rewriting and reorga-
nization, several new sections have been added (covering, for example, spin,
and conservation laws), resulting in a fairly complete coverage of elementary
topics.

A second main goal was to address the key physical issues of stability of
atoms and molecules, and mean-field approximations of large particle systems.
This is reflected in new chapters covering the existence of atoms and molecules,
mean-field theory, and second quantization.

Our final goal was to update the advanced material with a view toward
reflecting current developments, and this led to a complete revision and reor-
ganization of the material on the theory of radiation (non-relativistic quantum
electrodynamics), as well as the addition of a new chapter.

In this edition we have also added a number of proofs, which were omitted
in the previous editions. As a result, this book could be used for senior level
undergraduate, as well as graduate, courses in both mathematics and physics
departments.

Prerequisites for this book are introductory real analysis (notions of vec-
tor space, scalar product, norm, convergence, Fourier transform) and com-
plex analysis, the theory of Lebesgue integration, and elementary differential
equations. These topics are typically covered by the third year in mathematics
departments. The first and third topics are also familiar to physics undergrad-
uates. However, even in dealing with mathematics students we have found it
useful, if not necessary, to review these notions, as needed for the course.
Hence, to make the book relatively self-contained, we briefly cover these sub-
jects, with the exception of Lebesgue integration. Those unfamiliar with the
latter can think about Lebesgue integrals as if they were Riemann integrals.
This said, the pace of the book is not a leisurely one and requires, at least for
beginners, some amount of work.

Though, as in the previous two issues of the book, we tried to increase the
complexity of the material gradually, we were not always successful, and first
in Chapter 13, and then in Chapter 20, and especially in Chapter 21, there
is a leap in the level of sophistication required from the reader. One may say
the book proceeds at three levels. The first one, covering Chapters 1 -11, is
elementary; the second one, covering Chapters 13 - 18, is intermediate; and
the last one, covering Chapters 20 - 24, advanced.



Preface VII

During the last few years since the enlarged second printing of this book,
there have appeared four books on Quantum Mechanics directed at mathe-
maticians:

F. Strocchi, An Introduction to the Mathematical Structure of Quantum Me-
chanics: a Short Course for Mathematicians. World Scientific, 2005.

L. Takhtajan, Quantum Mechanics for Mathematicians. AMS, 2008.

L.D. Faddeev, O.A. Yakubovskii, Lectures on Quantum Mechanics for Math-
ematics Students. With an appendiz by Leon Takhtajan. AMS, 2009.

J. Dimock, Quantum Mechanics and Quantum Field Theory. Cambridge Univ.
Press, 2011.

These elegant and valuable texts have considerably different aims and rather
limited overlap with the present book. In fact, they complement it nicely.

Acknowledgment: The authors are grateful to I. Anapolitanos, Th. Chen, J.
Faupin, Z. Gang, G.-M. Graf, M. Griesemer, L. Jonsson, M. Merkli, M. Miick,
Yu. Ovchinnikov, A. Soffer, F. Ting, T. Tzaneteas, and especially J. Frohlich,
W. Hunziker and V. Buslaev for useful discussions, and to J. Feldman, G.-M.
Graf, I. Herbst, L. Jonsson, E. Lieb, B. Simon and F. Ting for reading parts
of the manuscript and making useful remarks.

Vancouver /Toronto, Stephen Gustafson
May 2011 Israel Michael Sigal

Preface to the enlarged second printing

For the second printing, we corrected a few misprints and inaccuracies; for
some help with this, we are indebted to B. Nachtergaele. We have also added
a small amount of new material. In particular, Chapter 11, on perturbation
theory via the Feshbach method, is new, as are the short sub-sections 14.1
and 14.2 concerning the Hartree approximation and Bose-Einstein condensa-
tion. We also note a change in terminology, from “point” and “continuous”
spectrum, to the mathematically more standard “discrete” and “essential”
spectrum, starting in Chapter 6.

Vancouver /Toronto, Stephen Gustafson
July 2005 Israel Michael Sigal



VIII Preface

From the preface to the first edition

The first fifteen chapters of these lectures (omitting four to six chapters
each year) cover a one term course taken by a mixed group of senior under-
graduate and junior graduate students specializing either in mathematics or
physics. Typically, the mathematics students have some background in ad-
vanced analysis, while the physics students have had introductory quantum
mechanics. To satisfy such a disparate audience, we decided to select material
which is interesting from the viewpoint of modern theoretical physics, and
which illustrates an interplay of ideas from various fields of mathematics such
as operator theory, probability, differential equations, and differential geome-
try. Given our time constraint, we have often pursued mathematical content
at the expense of rigor. However, wherever we have sacrificed the latter, we
have tried to explain whether the result is an established fact, or, mathemat-
ically speaking, a conjecture, and in the former case, how a given argument
can be made rigorous. The present book retains these features.

Vancouver /Toronto, Stephen Gustafson
Sept. 2002 Israel Michael Sigal
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1

Physical Background

The main ingredients of any physical theory are the state space, the dynam-
ical law giving the evolution of states, and the description of the results of
measurements. The mathematical description of these structures is extracted
from experiments. We describe here the foundational experiments and ideas
of quantum mechanics.

The starting point of quantum mechanics was Planck’s idea that electro-
magnetic radiation is emitted and absorbed in discrete amounts — quanta.
Einstein ventured further by suggesting that the electro-magnetic radiation
itself consists of quanta, or particles, which were then named photons. These
were the first quantum particles and the first glimpse of wave-particle du-
ality. Then came Bohr’s model of an atom, with electrons moving on fixed
orbits and jumping from orbit to orbit without going through intermediate
states. This culminated first in Heisenberg, and then in Schrodinger quan-
tum mechanics, with the next stage incorporating quantum electro-magnetic
radiation accomplished by Jordan, Pauli, Heisenberg, Born, Dirac and Fermi.

To complete this thumbnail sketch we mention two dramatic experiments.
The first one was conducted by E. Rutherford in 1911, and it established the
planetary model of an atom with practically all its weight concentrated in
a tiny nucleus (10713 — 107!2 cm) at the center and with electrons orbiting
around it. The electrons are attracted to the nucleus and repelled by each
other via the Coulomb forces. The size of an atom, i.e. the size of electron
orbits, is about 1078 ¢cm. The problem is that in classical physics this model
is unstable.

The second experiment is the scattering of electrons off a crystal conducted
by Davisson and Germer (1927), G.P. Thomson (1928) and Rupp (1928), after
the advent of quantum mechanics. This experiment is similar to Young’s 1805
experiment confirming the wave nature of light. It can be abstracted as the
double-slit experiment described below. It displays an interference pattern for
electrons, similar to that of waves.

In this introductory chapter, we present a very brief overview of the basic
structure of quantum mechanics, and touch on the physical motivation for

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_1
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2 1 Physical Background

the theory. A detailed mathematical discussion of quantum mechanics is the
focus of the subsequent chapters.

1.1 The Double-Slit Experiment

Suppose a stream of electrons is fired at a shield in which two narrow slits
have been cut (see Fig. 1.1.) On the other side of the shield is a detector
screen.

N < shield
- —
electron '\1.
N slits
gun |/
> —
> screen

Fig. 1.1. Experimental set-up.

Each electron that passes through the shield hits the detector screen at
some point, and these points of contact are recorded. Pictured in Fig. 1.2 and
Fig. 1.3 are the intensity distributions observed on the screen when either of
the slits is blocked.

P, (brightness)

.

NN NN N

Fig.1.2. First slit blocked.
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NN N NN
N

Fig.1.3. Second slit blocked.

When both slits are open, the observed intensity distribution is shown in
Fig. 1.4.

P£P +P,

— \/
‘\
— </

Fig.1.4. Both slits open.

NN N 2N N ¥

Remarkably, this is not the sum of the previous two distributions; i.e.,
P # P, + P,. We make some observations based on this experiment.

1. We cannot predict exactly where a given electron will hit the screen, we
can only determine the distribution of locations.

2. The intensity pattern (called an interference pattern) we observe when
both slits are open is similar to the pattern we see when a wave propagates
through the slits: the intensity observed when waves F; and Es (the waves
here are represented by complex numbers encoding the amplitude and
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phase) originating at each slit are combined is proportional to | E; + F2|? #
|E1[* + |E|? (see Fig. 1.5).

<
7)) S

Fig.1.5. Wave interference.

NN N N

We can draw some conclusions based on these observations.

1. Matter behaves in a random way.
2. Matter exhibits wave-like properties.

In other words, the behaviour of individual electrons is intrinsically random,
and this randomness propagates according to laws of wave mechanics. These
observations form a central part of the paradigm shift introduced by the theory
of quantum mechanics.

1.2 Wave Functions

In quantum mechanics, the state of a particle is described by a complex-valued
function of position and time, ¥ (z,t), * € R3, ¢t € R. This is called a wave
function (or state vector). Here R? denotes d-dimensional Euclidean space,
R = R!, and a vector € R? can be written in coordinates as x = (1, ...,q)
with z; € R.

In light of the above discussion, the wave function should have the following
properties:

1. |¢(-,t)|* is the probability distribution for the particle’s position. That
is, the probability that a particle is in the region 2 C R? at time ¢ is
Jo [¥(x,t)Pdz. Thus we require the normalization [o, [¢(2,t)|*dx = 1.

2. 1) satisfies some sort of wave equation.

For example, in the double-slit experiment, if ¥; gives the state beyond the
shield with the first slit closed, and ¥ gives the state beyond the shield with
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the second slit closed, then ¥ = 1)1 + 15 describes the state with both slits
open. The interference pattern observed in the latter case reflects the fact that

[[? # |11]? + 2]

1.3 State Space

The space of all possible states of the particle at a given time is called the state
space. For us, the state space of a particle will usually be the square-integrable
functions:

PR = 0B = €| [ p(e)de <oc)

(we can impose the normalization condition as needed). This is a vector space,
and has an inner-product given by

(1, 6) = /]R B(a)ola)d

In fact, it is a Hilbert space (see Section 25.2 for precise definitions and math-
ematical details).

1.4 The Schrodinger Equation

We now give a motivation for the equation which governs the evolution of
a particle’s wave function. This is the celebrated Schridinger equation. An
evolving state at time ¢ is denoted by v(z,t), with the notation ¢ (t)(x) =
bl b).

Our equation should satisfy certain physically sensible properties:

1. Causality: The state 1(to) at time ¢ = to should determine the state v(t)
for all later times t > tg.

2. Superposition principle: If (t) and ¢(t) are evolutions of states, then
a)(t) + Bo(t) (a, B constants) should also describe the evolution of a
state.

3. Correspondence principle: In “everyday situations,” quantum mechanics
should be close to the classical mechanics we are used to.

The first requirement means that ¢ should satisfy an equation which is first-
order in time, namely

d
¥ = (1.1)

for some operator A, acting on the state space. The second requirement implies
that A must be a linear operator.

We use the third requirement — the correspondence principle — in order
to find the correct form of A. Here we are guided by an analogy with the
transition from wave optics to geometrical optics.



6 1 Physical Background

Wave Optics — Geometrical Optics

! !

Quantum Mechanics — Classical Mechanics

In everyday experience we see light propagating along straight lines in accor-
dance with the laws of geometrical optics, i.e., along the characteristics of the
equation

oo

ot
known as the eikonal equation. On the other hand we know that light, like
electro-magnetic radiation in general, obeys Maxwell’s equations which can
be reduced to the wave equation (say, for the electric field in the complex
representation)

+¢|V 9| (¢ = speed of light), (1.2)

0%u 9
g2 =€ Au, (1.3)
where A = 2321 6? is the Laplace operator, or the Laplacian (in spatial

dimension three).

The eikonal equation appears as a high frequency limit of the wave equa-
tion when the wave length is much smaller than the typical size of objects.
Namely we set u = ae Zf, where a and ¢ are real and O(1) and A > 0 is the
ratio of the typical wave length to the typical size of objects. The real function
¢ is called the eikonal. Substitute this into (1.3) to obtain

i+ 2N Yag — A\ 2ad? +ix"ad
=c2(Aa+2iA"'Va - Vo — A\2a|Ve|> + N 1aAg)

(where dots denote derivatives with respect to ¢). In the short wave approxi-
mation, A < 1 (with derivatives of @ and ¢ O(1)), we obtain

70’&2 = 762a|v¢|25

which is equivalent to the eikonal equation (1.2).
An equation in classical mechanics analogous to the eikonal equation is
the Hamilton-Jacobi equation

oS

5 = —h(@VS), (1.4)

where h(z, k) is the classical Hamiltonian function, which for a particle of mass
m moving in a potential V is given by h(z, k) = ,! |k|*> + V(z), and S(z,t)
is the classical action. We would like to find an evolution equation which
would lead to the Hamilton-Jacobi equation in the way the wave equation
led to the eikonal one. We look for a solution to equation (1.1) in the form
Y(x,t) = a(z, t)e’S @D/ where S(x,t) satisfies the Hamilton-Jacobi equation
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(1.4) and # is a parameter with the dimensions of action, small compared to a
typical classical action for the system in question. Assuming a is independent
of h, it is easy to show that, to leading order, ¥ then satisfies the equation

2
ihgtz/}(x,t) = —;mAmz/J(x,t) + V(x)(z,t). (1.5)
This equation is of the desired form (1.1). In fact it is the correct equation, and
is called the Schriodinger equation. The small constant & is Planck’s constant;
it is one of the fundamental constants in nature. For the record, its value is
roughly

i~ 6.6255 x 10727 erg sec.

The equation (1.5) can be written as

0
ih =H 1.6
ih o = Hu (1.6)
where the linear operator H, called a Schrodinger operator, is given by

h?
Hy = —QmAl/J + V.

Example 1.1 Here are just a few examples of potentials.

Free motion : V = 0.
A wall: V =0 on one side, V' = oo on the other (meaning ¢ = 0 here).
The double-slit experiment: V' = oo on the shield, and V = 0 elsewhere.

The Coulomb potential : V(z) = —a/|z| (describes a hydrogen atom).
mw? 2
5l

Ao

The harmonic oscillator : V(x) =

We will analyze some of these examples, and others, in subsequent chapters.

1.5 Classical Limit

Now we go in the opposite direction and pass from a quantum description
to a classical one. Thus we assume that the ratio o := h/(classical action)
— 0 (the classical limit). Changing to dimensionless units, we arrive at the
dimensionless Schrodinger equation

o 2
i (@t) = = Ag(at) + V@)l ), (1.7)
where (abusing the notation) m and z, ¢ stand for the dimensionless parameter
and variables. For the classical limit, we would like to set & = 0 in (1.7), but
we see that the limiting equation becomes trivial: V (z)y(z,t) = 0. So we have
to do something more subtle.



8 1 Physical Background

Write ¢ as ¢ = ae ' where a and S are real-valued functions. Plug this
into the Schrodinger equation and take the real and imaginary parts of the
result to obtain (assuming a~! is not too singular)

oS 1 9 a?

=— - A 1.
ot 5 [VS|F =V + om @ A (1.8)
oa 1 1

- Va— _ aAS. 1.
ot VS -Va om & S (1.9)

Problem 1.2 Derive these equations.
Now, we can set a = 0 in (1.8) and (1.9) (classical limit). If we denote S, :=
S’a:O and a, = a’azo, then (1.8) gives
0S.
ot

which is the Hamilton-Jacobi equation of Classical Mechanics. Hence S, is
the classical action. The equation (1.9) can be rewritten as

1
SP+Vv=0 1.10
+, [VSL 4V =0, (1.10)

da?

ot
This is a classical transport equation. Thus at a = 0, we arrive at two classical
equations, (1.10) and (1.11).

Let a, be a solution to (1.9) with S = S.. We show in Section 2.5 that,
for small a, the function

= —div( _ (V9)a?). (1.11)

1
m

y iSx
wsc = qg.e o

(‘sc’ stands for the semi-classical), constructed from purely classical objects
gives, gives a good approximation to the exact wave function ) = ae "
Let p = a® = |¢|?. By the interpretation of Quantum Mechanics, this is the

probability density. By Classical Mechanics, v = Yns is the classical velocity.

Hence, we interpret j := pv = a? wa as the probability current density. Now,

equation (1.11) can be rewritten as

dp

o = v (1.12)

This is the law of conservation of probability in differential form (for more
details, see Subsection 3.5).

The equations (1.10) and (1.12) (at @ = 0) describe classical non-
interacting particles of density p(x,t) = |a.|?(x, t)’a:O and velocity v(z,t) =
VS*W(LM). Taking the gradient of (1.10) and using that V|VS.|? = 2(VS. -
V)VS, and VS, = mv, we obtain an equation for the velocity v:

dv
= — 1.1
m o VvV, (1.13)
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where % = (9, + v - V)v is the material derivative. This is the classical

Newton’s equation for particle flow in the potential V' (z).

To take into account quantum corrections, one has to retain the last term
on the r.h.s. of (1.8) (or treat it by a perturbation theory). We do not pursue
this here, but take it up in the semi-classical analysis later on.

Next we consider a stationary state ¢ (x,t) = e~ & ¢(x), where Hp = E¢.
Then S = —Et+Yy and a = |¢| where y is the argument of ¢: ¢ = |¢p|eX = ae’X.
Hence,

oS da
=_-F d = 0.
ot and gy =0
These equations, together with Eqs (1.8) and (1.9), imply that
2A
VS —2m(E-V) =" "¢ (1.14)
a
and
div(a*VS) = 0. (1.15)

In the regime o = fi/(classical action) — 0 (the classical limit) we obtain
a stationary flow of particle fluid. Hence in the classical limit, v = Vﬁf* is
interpreted as velocity, and k = V.S, as momentum. Note that (1.14) implies
that in the classical limit, |k| = \/2m(E — V) (in the classically allowed region
V(z) <E).
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Dynamics

The purpose of this chapter is to investigate the existence and a key property

— conservation of probability — of solutions of the Schrodinger equation for

a particle of mass m in a potential V. The relevant background material on

linear operators is reviewed in the Mathematical Supplement Chapter 25.
We recall that the Schrédinger equation,

oY

ih ot

= Hy (2.1)
where the linear operator H = f;;A + V is the corresponding Schrodinger
operator, determines the evolution of the particle state (the wave function),
1. We supplement equation (2.1) with the initial condition

Yli=0 = o (2.2)

where 1y € L?(R3). The problem of solving (2.1)- (2.2) is called an initial
value problem or a Cauchy problem.

Both the existence and the conservation of probability do not depend on
the particular form of the operator H, but rather follow from a basic property
— self-adjointness. This property is rather subtle, so for the moment we just
mention that self-adjointness is a strengthening of a much simpler property —
symmetry. A linear operator A acting on a Hilbert space H is symmetric if
for any two vectors in the domain of A, ¢, ¢ € D(A),

(A, d) = (¢, Ad).

2.1 Conservation of Probability

Since we interpret |¢(z,t)|? at a given instant in time as a probability distri-
bution, we should have

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_2
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12 2 Dynamics

/R3 [¥(x,t)|*de = /]RS |(x,0)[*de =1 (2.3)

at all times, t. If (2.3) holds, we say that probability is conserved.

Theorem 2.1 Solutions v (t) of (2.1) with ¢(¢) € D(H) conserve probability
if and only if H is symmetric.

Proof. Suppose 9(t) € D(H) solves the Cauchy problem (2.1)-(2.2). We com-
pute
d . w_ Ly -
1

(here, and often below, we use the notation v to denote dvy/dt). If H is
symmetric then this time derivative is zero, and hence probability is conserved.
Conversely, if probability is conserved for all such solutions, then by a version
of the polarization identity,

) = (6 +wl” — 6 = BI? —illg+ il +ills — D), (24)

whose proof is left as an exercise below, we have {, (¥(t), ¢(t)) = 0, for any two
solutions ¥(t) and ¢(t). This implies (Hv, ¢) = (b, Ho) for all ¢, ¢ € D(H)
(since we may choose ¥y = ¥ and ¢g = ¢). This, in turn, implies H is a
symmetric operator. The latter fact follows from O

Problem 2.2 Prove (2.4).

Problem 2.3 Show that the following operators on L?(R?) (with their nat-
ural domains) are symmetric:

1. z; (that is, multiplication by z;);

2. pj = —ih0y;
3. Hy:= —;;A;
4. the multiplication operator by f(z) (¢(z) — f(z)¥(x)), provided f :

R3? — R is bounded;

5. f(p) := F~Lf(k)F, where f : R® — R is bounded and F denotes Fourier
transform,;

6. integral operators K f(z) = [ K(z,y)f(y)dy with K (z,y) = K (y, z) and,
say, K € L*(R3 x R3).

2.2 Self-adjointness

As was mentioned above the key property of the Schrédinger operator H
which guarantees existence of dynamics is its self-adjointness. We define this
notion here. More detail can be found in Section 25.5 of the mathematical
supplement.
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Definition 2.4 A linear operator A acting on a Hilbert space H is self-adjoint
if A is symmetric and Ran(A +i1) = H.

Note that the condition Ran(A £ i1) = H is equivalent to the fact that the
equations

(Ati)yp=f (2.5)

have solutions for all f € H. The definition above differs from the one com-
monly used (see Section 25.5 of the Mathematical Supplement and e.g. [244]),
but is equivalent to it. This definition isolates the property one really needs
and avoids long proofs which are not relevant to us.

Example 2.5 The operators in Problem 2.3 are all self-adjoint.

Proof. We show this for p = —ihd, on the space L?*(R). This operator is
symmetric, so we compute Ran(—ihd, + ). That is, we solve

(=ih0y + i)Y = f,

which, using the Fourier transform (see Section 25.14), is equivalent to (k +
)Y (k) = f(k), and therefore

Y(z) = (2wh)—1/246ikw/hgfl dk.

Now for any such f € L?(R),
(L4 k)2 (k)| = | f (k)] € L2(R),

so 1 lies in the Sobolev space of order one, H*(R) = D(—ihd, ), and therefore
Ran(—ihd, +i1) = L?. Similarly Ran(—ihd, —il) = L2. O

Problem 2.6 Show that x;, f(z) and f(p), for f real and bounded, and A
are all self-adjoint on L?(R3) (with their natural domains).

In what follows we omit the identity operator 1 in expressions like A — z1.
The next result establishes the self-adjointness of Schrédinger operators.

Theorem 2.7 Assume that V is real and bounded. Then H := — ;;A—l—V(x),
with D(H) = D(4), is self-adjoint on L?(IR?).

Proof. Tt is easy to see (just as in Problem 2.3) that H is symmetric. To
prove Ran(H + i) = H, we will use the following facts proved in Sections 25.4
and 25.5 of the mathematical supplement:

1. If an operator K is bounded and satisfies ||[K|| < 1, then the operator
1 4+ K has a bounded inverse.

2. If A is symmetric and Ran(A — z) = H for some z, with Im z > 0, then it
is true for every z with Im z > 0. The same is true for Im z < 0.
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3. If A is self-adjoint, then A — z is invertible for all z with Im z # 0, and
1

[Tm 2|

I(A=2)71I< (2.6)

Since H is symmetric, it suffices to show that Ran(H + i\) = H, for some
A €eR, £X > 0, i.e. to show that the equation

(H+ i\ = f (2.7)
has a unique solution for every f € H and some A € R, £\ > 0. Write
Hy = ffle. We know H, is self-adjoint, and so Hy + i\ is one-to-one and
onto, and hence invertible. Applying (Ho +i\)~! to (2.7), we find

Y+ ENY =g,

where K(\) = (Ho+iX\) "'V and g = (Ho+iX\) "' f. By (2.6), [K(N)]| < 1 [|V].
Thus, for |A] > ||V, IK(\)|] < 1 and therefore 1 + K()) is invertible,
according to the first statement above. Similar statements hold also for
K(\T := V(Hg +i)\)~!. Therefore

v=01+EKEN) g
Moreover, it is easy to see that
(Ho +i\)(1+ K(\) = (1 + K(\)T)(Ho +i))

and therefore 1 = (Ho +i\)~1(1 + K(A\)T) =1 f (show this). So ¢ € D(Hp) =
D(H). Hence Ran(H +iA) = H and H is self-adjoint, by the second property
above. [J

Unbounded potentials. The Coulomb potential V(z) = “;“ is not bounded.
We can extend the proof of Theorem 2.7 to show that Schrodinger operators
with real potentials with Coulomb-type singularities are still self-adjoint. More
precisely, we consider a general class of potentials V' satisfying for all ¢ €
D(Ho)

IVl < allHol| + bl (2.8)

(Hop-bounded potentials) for some a and b with a < 1.

Problem 2.8 Show that V(x) = | Satisfies (2.8) with a > 0 arbitrary and
b depending on a. Hint: Write V(z) = Vi(z) + Va(x) where

V() Jz[ <1 _Jo x| <1
%@{0 2| > 1’ %W{wm|ﬂ>1

Use that ||[Vi¢| < sup|®|||Vi||, that by the Fourier transform sup || <
(S (k> + ) 72dk) " 2(| A¢l + cll]), and the fact that [(|k[* + ¢)"2dk — 0

as ¢ — OQ.
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Theorem 2.9 Assume that Hj is a self-adjoint operator and V' is a symmetric
operator satisfying (2.8) with a < 1. Then the operator H := Hy + V with
D(H) = D(H,) is self-adjoint.

Proof. As in the proof of Theorem 2.7, it suffices to show that |V (Hy —
i\)7t| < 1, provided ) is sufficiently large. Indeed, (2.8) implies that

IV (Ho —iN) "¢l < al|Ho(Ho — iX) " ¢l| + b]| (Ho — i\) "¢ (2.9)

Now, since [[Hogl? < [Hogl? + ARl = [|(Ho — iN)@|? and |[(Hy -
iN) 16| < |AIV6], we have that

IV (Ho — i)~ ¢ll < allgll + oA~ ]l (2.10)

Since a < 1 we take X such that a+b|\|~! < 1, which gives |V (Ho—i\) 7| <
1. After this we continue as in the proof of Theorem 2.7. [J

Problem 2.10 Prove that the operator H := —QHZA — @ (the Schrodinger

|]
operator of the hydrogen atom with infinitely heavy nucleus) is self-adjoint.

Theorem 2.9 has the following easy and useful variant

Theorem 2.11 Assume that Hy is a self-adjoint, positive operator and V' is
symmetric and satisfies D(V') D D(Hy) and

(1, Vip) < aly, Hoyp) + bl (2.11)

with @ < 1. Then the operator H := Hy + V with D(H) = D(Hy), is self-
adjoint.

For a proof of this theorem see e.g. [245], Theorem X.17.
Now we present the following more difficult result, concerning Schrodinger
operators whose potentials grow with x:

Theorem 2.12 Let V() be a continuous function on R3 satisfying V (z) > 0,
and V(z) — oo as |z| — oco. Then H = f;:lA + V is self-adjoint on L?(R?)

The proof of this theorem is fairly technical, and can be found in [162], for
example.

Remark 2.13 Here and elsewhere, the precise meaning of the statement “the
operator H is self-adjoint on L?(R?)” is as follows: there is a domain D(H),
with C5°(R?) ¢ D(H) C L?*(RY), for which H is self-adjoint, and H (with
domain D(H)) is the unique self-adjoint extension of — ;‘;A + V(x), which is
originally defined on C§°(R?). The exact form of D(H) depends on V. If V is
bounded or relatively bounded as above, then D(H) = D(A) = H?(R%).
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By definition, every self-adjoint operator is symmetric. However, not ev-
ery symmetric operator is self-adjoint. Nor can every symmetric operator be
extended uniquely to a larger domain on which it is self-adjoint. For example,
the Schrodinger operator A := —A — ¢/|z|* with ¢ > 1/4 is symmetric on the
domain C§°(R3\{0}) (the infinitely differentiable functions supported away
from the origin), but does not have a unique self-adjoint extension (see [245]).
It is usually much easier to show that a given operator is symmetric than
to show that it is self-adjoint, since the latter question involves additional
domain considerations.

2.3 Existence of Dynamics
We consider the Cauchy problem (2.1)- (2.2) for an abstract linear operator
H on a Hilbert space H. Here ¢ = 4(¢) is a differentiable path in H.

Definition 2.14 We say the dynamics exist if for all ¥g € H the Cauchy
problem (2.1)- (2.2) has a unique solution which conserves probability.

The main result of this chapter is the following
Theorem 2.15 The dynamics exist if and only if H is self-adjoint.

We sketch here a proof only of the implication which is important for us,
namely that self-adjointness of H implies the existence of dynamics, with de-
tails relegated to the mathematical supplement Section 25.6 (for a proof of the
converse statement see [244]). We derive this implication from the following
result:

Theorem 2.16 If H is a self-adjoint operator, then there is a unique family

of bounded operators, U(t) := e *H/" having the following properties for
t,s € R:
ihgtU(t) = HU(t) = U(t)H, 2.12

Ut)U(s) =Ul(t+s),

(U@L = (141l (2.15

Theorem 2.16 implies the part of Theorem 2.15 of interest to us here. Indeed,
the family ¢ (t) := U(t)t)o is the unique solution of the Cauchy problem (2.1)-
(2.2), and also conserves probability. (The uniqueness follows from (2.3).)

The operator family U(t) := e~ H/h is called the propagator or evolu-
tion operator for the equation (2.1). The properties recorded in the equa-
tions (2.14) and (2.15) are called the group and isometry properties. The
operator U(t) = e /" is furthermore invertible (since U(t)U(—t) = 1).
Moreover, one can show that it preserves the inner product:

(2.12)

U(0) =1, (2.13)
(2.14)

)
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U, Ut)9) = (¢, ),

for all 1, ¢ € L?,i.e. it is unitary (see Definition 25.29). Such a family is called
a one-parameter unitary group.

Sketch of a proof of Theorem 2.16. We begin by discussing the exponential of
a bounded operator. For a bounded operator, A, we can define the operator
e” through the familiar power series

o0 A"
e = Z nl

which converges absolutely since

o0 o0

SIS
nl = n!

n=0 n=0

With this definition, for a bounded operator A, it is not difficult to prove
(2.12) - (2.14) for U(t) = e~®*4/" and if A is also self-adjoint, (2.15).

Problem 2.17 For A bounded, prove (2.12) - (2.14) for U(t) = e~#*A/" and,
if A is self-adjoint, also (2.15).

Now for an unbounded but self-adjoint operator A, we may define the
bounded operator ¢4 by approximating A by bounded operators. Since A is
self-adjoint, the operators

1
Ay = 2)\2[(A +iA) T (A=) (2.16)
are well-defined and bounded for A > 0. Using the bound (2.6), implied by
the self-adjointness of A, we show that the operators A, approximate A in
the sense that

A — AYp as A — oo for ¢ € D(A). (2.17)

Since Ay is bounded, we can define the exponential e*4* by power series as
above. One then shows that the family {e*4*, X\ > 0} is a Cauchy family, in
the sense that

| ("4 — e )y — 0 (2.18)

as A\, \ — oo for all ¢» € D(A). This Cauchy property implies that for any
Y € D(A), the vectors e* ) converge to some element of the Hilbert space
as A — 00. Thus we can define

e ) = Jim ey (2.19)
for 1 € D(A). It follows from (2.15) that ||e?4e|| < ||3| for all ¢ in D(A),

which is dense in H. Thus we can extend this definition of ¢4 to all ¥ € H.
This defines the exponential €4 for any self-adjoint operator A.
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If H is self-adjoint, then so is Ht/h for every t € R. Hence the conclusions
above apply to Ht/h. This defines the propagator U(t) = e *#*/" Using
Problem 2.17 and (2.19), we can prove that U(t) has the properties (2.12) —
(2.15). This implies Theorem 2.16. O

The theorem above, together with the Fourier transform (see Section 25.14),
also provides one method of defining functions of self-adjoint operators:

Definition 2.18 Let A be a self-adjoint operator, and f()) be a function on
R whose inverse Fourier transform, f, is integrable: [, |f(t)|dt < oo. Then the
operator

f(A) = (2rh)~1/? /}R f(t)e At (2.20)

is well-defined, is bounded, and is self-adjoint if f is real. It is a function of
the operator A.

Example 2.19 Theorem 2.16 allows us to define exponentials of the self-
adjoint operators on L*(R*) with which we are familiar: z;, p; := —ihd,,,
Hy := fQFL;A, f(x) and f(p) (for f a real function).

Problem 2.20 (i) Determine how the operators e/ and e# act on functions
in L?(R3).

(ii) Show that the families e**i%/" o € R, and e®i®" b € R, are one
parameter groups of unitary operators on L?(IR3).

Problem 2.21 For any 1 in our Hilbert space, define the operator e~
19 — 1), the solution to the Schrédinger equation,

o

ih g, = Hy, (2.21)

with the initial condition . Show that (a) e~ "' preserves the inner product,
_ iHt _ iHt
(7 m e n ¢) = (4, 9),
(b) the operators e~ %" and e %" are inverses of each other and (c) the adjoint
of e~ 7' is given by e“gt, ie.
iHt

(€= ", 0) = (,e' 1 ).

Hint: For the first relation in (a), prove first that e~ s isometry, preserves
the norm, and then use the parallelogram relation between norms and inner
products show that it preserves also the inner product. For the second relation
in (a), consider the differential equation for

o i};t o u;t ’Lﬂ
and for the third relation, show that it follows from the first two. (For H
bounded, one can also use the representation
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oo .
iHt 1 1Ht
e h = — n7
; n!( h )

where the series Y07 I (= ") is absolutely convergent.)

To summarize, if H is self-adjoint, then the operators U(t) := e~ *1t/h

exist and are unitary for all ¢ € R (since Ht/h is self-adjoint). Moreover,
the family v (t) := U(¢)to is the unique solution of the equation (2.1), with
the initial condition ¥(0) = g, and it satisfies ||¢(¢)|| = ||1o||. Thus for the
Schrédinger equation formulation of quantum mechanics to make sense, the
Schrodinger operator H must be self-adjoint. As was shown in Theorem 2.9,
Schrédinger operators H := fg‘;A + V(x) with potentials V(z) satisfying
(2.8) are self-adjoint, and therefore generate unitary dynamics.

2.4 The Free Propagator

We conclude this chapter by finding the free propagator U(t) = efot/? i,

the propagator for Schrodinger’s equation in the absence of a potential. Here

Hy:= — 2’2 A acts on L?(R3). The tool for doing this is the Fourier transform,
whose definition and properties are reviewed in Section 25.14.
_alkl?

Let g(k) = e~ 2 (a Gaussian), with Re(a) > 0. Then setting p := —ihV
and using Definition 25.78 and Problem 25.75 (part 1) from Section 25.14, we

have
_lz—y?

o(p)(x) = (2mah?) /2 / T P(y)dy.

Since —h%A = |p|?, we can write this as

le—y|?
(3 2) @) = (ma?) 2 [l way. @222
Taking a = Tffh here, we obtain an expression for the Schrodinger evolution
operator e~ "ot/ for the Hamiltonian of a free particle, Hy = —QHZA:

. —3/2 ) 2
(e—iHot/hw)(x) — <27”ht) /]Rd elm‘;n;y‘ Y(y)dy. (2.23)

m

One immediate consequence of this formula is the pointwise decay (in time)
of solutions of the free Schrodinger equation with integrable initial data:

e’iHOt/hzb(:c)‘ < <2ﬁht>_3/2 /]RS [U(y)|dy. (2.24)

m

As another consequence, we make a connection between the free Schrodinger
evolution, and the classical evolution of a free particle. Using the relation
|z —y|? = |z|? — 22 - y + |y|?, we obtain
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. —3/2 . 2 im|y|?
efiHot/ﬁw(x) - <2mht) e /eiin@m'y/h (6 it lﬂ(y)) dy.

m

cm|y|?

Denoting ¢ (y) := e* 2nt (y), we have

. it\ P e ~
e—zHot/hw(x) — (m) e 2nt wt(mx/t) (225)

where (as usual) ¢ denotes the Fourier transform of 1. One can show that if
(k) is localized near kg € R?, then so is (k) for large t, and therefore the
right hand side of (2.25) is localized near the point

Ty = vpt, where vo = ko/m,

i.e., near the classical trajectory of the free particle with momentum k.

2.5 Semi-classical Approximation

In this section, we describe the semi-classical approximation of the quan-
tum propagator. As in Section 1.5, we consider the dimensionless Schrodinger
equation in dimensionless units,

2

iaa1/)(:c,t) =

ot o A1) +V (2)¢ (2, 1), (2.26)

where m and z,t are the dimensionless parameter and variables and « is the
ratio a := hi/(classical action) — 0 (the classical limit).

As in Section 1.5, assuming an initial condition of the form vy := age
we write ¥ as ¥ = ae’/*, where a and S are real-valued functions. Plug this
into equation (2.26) and take the real and imaginary parts of the result to
obtain (assuming a~! is not too singular)

iSo/OA
’

os 1 9 o

o = 72m|VS| -V+ om Aa, (2.27)
1 1

‘3‘; = - VS-Va-_ aAS. (2.28)

For a discussion of the physical meaning of Eqgs. (2.27)-(2.28), see Section 1.5.
Setting @ = 0 in (2.27) and denoting the solution of the resulting equation

by S, gives
085,
ot

which is the Hamilton-Jacobi equation of Classical Mechanics. Hence S, is the
classical action. Now, we consider (2.28) with S = S, and denote by a = a.
the solution of the resulting equation, i.e.

1 2
; =0, 2.2
+, (VS 4+V =0 (2.29)
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Oay

1
o = —mVS* -Va, —

1
2ma*AS’*, (2.30)
Eq. (2.30) is a transport equation along the classical trajectories of the vector
field V.S-V (i.e. the solution a is obtained by transporting the initial conditions
ap along the characteristics of V.S - V). Egs. (2.29) and (2.30) are solved by
the method of characteristics, with a, given by an explicit expression (see
[77, 92, 141, 250]).

With the purely classical objects S, and a,. solving the equations (2.29)
and (2.30), we associate the wave function

T/JSC — a*ezS*/a7

gives the leading order approximation to v, called the semi-classical or WKB
(for Gregor Wenizel, Hendrik Anthony Kramers, and Léon Brillouin) approz-
imation. (‘s¢’ for ‘semi-classical’.) We show below that, as long as Egs. (2.29)
and (2.30) have solutions, the difference of the exact solution and semiclassical
approximation satisfies the estimate

[9r — ¥l < Ctay, (2.31)

where we display the time-dependence as the subindex ¢. This is a remarkable
estimate which shows that a function constructed from purely classical objects
gives a good approximation to the quantum wave function. Since ¢, = U (¢)y,
(2.31) gives a semi-classical estimate of the propagator U (t).

We now prove estimate (2.31) justifying the semi-classical approximation
sketched above. Instead of writing solutions to (2.26) as ¢ = ae™/* | with a
and S real-valued functions (satisfying (2.27) and (2.28)), we look for them
in the form

1/)15 _ aeiS*/a,
where S, solves equation (2.29), which does not involve a and a. Plugging

this into (2.26), we find the equation for a:

Ja
ot
(L(t) depends on t through S,.) Thus, as long as Eq (2.29) has a solution, Eq.

(2.32) is equivalent to Eq. (2.26). We observe that, by (2.30), a. solves (2.32)
to the order O(«),

1 1 )
=La, L=L{t)=- VS.-V-  AS + S;A. (2.32)

(9, — L)a, = —;?nAa*, (2.33)

and the semiclassical approximation 1§ := a,e*>+/® solves (2.26) to the order

O(a?):

0 ) is. a?
P Hy )0 = —e « Aay (2.34)

(i o
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where H,, := fg‘:lAm + V(z).
To estimate the difference between the exact solution ¥, = ae and
the semiclassical approximation ¢5° := a,e*>*/®, we let U(t) := e~ *Hat/® he
SC

the propagator for (2.26). Writing U (—t)y5° as the integral of its derivative,
using

Sy /o

ia@tU(—t) ?C = U(—t)(za&t — Ha) ?C
and (2.34) and applying U(t) to the result, we obtain

t
Uty = | / Ul — )5/ © Aa)ds. (2.35)
0

o 2m

Taking the norm in (2.35) and using that || 5 f(s)ds|| < [y || f(s)||ds and that
U(t) is unitary yields

sC 1 ! a2
oy - vl < | [ Iy Aalas (2.36)

The last inequality, together with the relation 1; = U(t)yy and the fact that
[[Aay]] < oo, gives (2.31).
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3
Observables

Observables are the quantities that can be experimentally measured in a given
physical framework. In this chapter, we discuss the observables of quantum
mechanics.

3.1 The Position and Momentum Operators

We recall that in quantum mechanics, the state of a particle at time ¢ is
described by a wave function v (x,t). The probability distribution for the
position, x, of the particle, is |1(-,#)[?. Thus the mean value of the position
at time ¢ is given by [z|i(x,t)|*dz (note that this is a vector in R?). If we
define the coordinate multiplication operator

xj Y(x) — zi(x)

then the mean value of the j** component of the coordinate z in the state 1

iS <w, .Z‘]’lb>
Recall that the evolution state 1 (x,t) obeys the Schrodinger equation
ov
ih o = Hip. (3.1)
For ¢ (x,t) solving (3.1), we compute
d . . 1 1
g\ Tiv) = <w,§jw> + (v, z5) - (ihwaj@ + .z HY)
= (W, Hag) — (b, ; , HY) = (b, ) [H,a;)0)

where [A, B] := AB — BA is the commutator of A and B. (More about the

commutators later.) Since H = ffle +V, and A(avy) = 2 A 4+ 2V), we
find

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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i ih
leading to the equation
d 1 )
) = (V).

As before, we denote the operator —i2V; by p;. As well, we denote the mean
value (1), Ay) of an operator A in the state 1 by (A),. Then the above becomes

m (e = i) (32)

which is reminiscent of the definition of the classical momentum. We call the
operator p the momentum operator. In fact, p; is a self-adjoint operator on
L?(R3). (As usual, the precise statement is that there is a domain on which
pj is self-adjoint. Here the domain is just D(p;) = {¢ € L*(R?) | a?ﬁj?/) €
L*(R?).)

Using the Fourier transform, we compute the mean value of the momentum
operator

(030} = (G150 = (k) = [l

This, and similar computations, show that |1/A)(k:)|2 is the probability distribu-
tion for the particle momentum.

3.2 General Observables

Definition 3.1 An observable is a self-adjoint operator on the state space
L2(R3).

We have already met six observables: the position operators, z1,xs, x3, and
the momentum operators, p1, p2, p3 (combined into vector-observables z and
p). The Schrodinger operator,
2
H=- g A+V,
2m
is self-adjoint and therefore, by our definition, is an observable. But what is
the physical quantity it stands for (or ‘observes’)? We find the answer below.
In general, we interpret (A),, as the average of the observable A in the state
1. The reader is invited to derive the following equation for the evolution of
the mean value of an observable:

A = () 1H, Ay (33)
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Problem 3.2 Check that for any observable, A, and for any solution v of
the Schrodinger equation, Eq (3.3) holds.

Eq (3.3) is analogous to the classical Hamilton equation, C‘fta = {h,a}, for
a classical observable, a, i.e. a function on the phase space. Here {f,g} =
Z?Zl(gfj gfj - gjj é?lfj) is the Poisson bracket and h = h(x, k) is the classical
Hamiltonian with h(z(t), k(t)) giving the energy of a solution (x(t), k(¢)) (see
Section 4.1 and supplemental Section 4.7 for more details). For this reason,
H is interpreted as the observable of energy and is called the Hamiltonian
operator, or quantum Hamiltonian.

Now, we would like to apply (3.3) to the momentum operator, p = —ihV.
Simple computations give [A,p] = 0 and [V,p] = iAVV, so that ;[H,p] =
—VV and hence

L oide = (- (3.4)

This is a quantum mechanical mean-value version of Newton’s equation of
classical mechanics. Or, if we include Equation (3.2), we have a quantum
analogue of the classical Hamilton equations. Note also that, since —A2A =

3
Ip? (here |p|* = > =1 p3), we have

h? 1,
H=—  A+V=__1Ip"+V,
2m 2m

which is in an agreement with our interpretation of x and p as the observables
of the co-ordinate and momentum, respectively, and H, as a Hamiltonian
operator.

Next, we address the question: What is the probability, Proby, (A € £2),
that measured values of the physical observable represented by A in a state v
land in an interval {2 C R? As in the probability theory, this is given by the
expectation

Proby (A € 2) = (xa(A)), (3.5)

of the observable x(A), where x () is the characteristic function of the set
2 (ie. xpA) =1,if A € 2 and xn(A) = 0, if A ¢ £2) and the operator-
function x(A) can be defined according to the formula (2.20) and a limiting
procedure which we skip here. We call x(A) the characteristic function of
the operator A. This definition can be justified using spectral decompositions
of the type (25.53) of Section 25.11, but we will not go into this here.

Finally, by the analogy with above, we introduce the angular momentum
observable, L := (L1, Lo, L3), with L; = (z X p);. The operator-vector L can
be written as

L=2xXxnp.
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3.3 The Heisenberg Representation

The framework outlined up to this point is called the Schrédinger represen-
tation of quantum mechanics. Chronologically, quantum mechanics was first
formulated in the Heisenberg representation, which we now describe. For an
observable A, define

A(t) — eitH/hAefitH/h.

Let 1(t) be the solution of Schrédinger’s equation with initial condition g:
P(t) = e~ H/hyy  Since e~*H/" is unitary, we have, by simple computations
which are left as an exercise,

(A)ypry = (A(t))yo (3.6)
and d .
CA) = (1, A1) (3.7)

Problem 3.3 Prove equations (3.6) and (3.7).

This last equation is called the Heisenberg equation for the time evolution of
the observable A. In particular, taking x and p for A, we obtain the quantum
analogue of the Hamilton equations of classical mechanics:

mi(t) =p(t),  p(t) =—-VV(x(t)). (3.8)

In the Heisenberg representation, then, the state is fixed (at o), and the
observables evolve according to the Heisenberg equation. Of course, the
Schrodinger and Heisenberg representations are completely equivalent (by a
unitary transformation).

Remark 3.4 A note of caution: defining commutators is a subtle business.
We have to assume the set D(A) N D(H) is dense in L*(R3) and that A :
D(H)ND(A) — D(H) and H : D(H) N D(A) — D(A). Checking the last
two properties is cumbersome. To avoid this, we can choose to understand
equations involving commutators in the sense of expectations or quadratic
forms. For instance, we assume the set D(A) N D(H) is dense in L?(R3)
and interpret (3.7) as (3.3), for all ¥ € D(H) N D(A), or as % (i, Ag) =
(1, %[H, A]o), for all b, ¢ € D(H) N D(A), by defining

(,ilH, Alg) =i ((Hy, Ap) — (A, He)) ,

for any two self-adjoint operators and for all ¢, ¢ € D(A) N D(H).
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3.4 Conservation Laws

We say that an observable A (or, more precisely, the physical quantity repre-
sented by this observable) is conserved if its average, (A)y ), is independent
of t,

() = (Ap): (3.9)
for every 1 (t) which solves the Schrédinger equation
ihdpp = H. (3.10)

Differentiating relation (3.9) w.r. to and recalling (3.6)-(3.7), we conclude that
an observable A is conserved if and only if (1, [4, H]y) = 0, Vi), which in turn
implies' that A commutes with the Schrodinger operator H, i. e.

[A, H] = 0.

We consider several examples. Since obviously [H,H] = 0, we have
(H)y) = constant for any solution to (3.10), which is the mean-value version
of the conservation of energy, or H(t) = H.

As the second example, we take the obvious relation [1, H] = 0, which
gives the conservation of the total probability: (1)) = [|¢(t)||* = constant
for any solution to (3.10).

Furthermore, %[zj, H] = p; # 0, which says that the particle position is
never conserved, i.e. a quantum particle cannot be localized at a point.

The relation %[pj,H] = —0,,V # 0 implies that p; is conserved if and
only if V' is independent of x;. Taken for all j’s, this gives the first Newton’s
law: a particle will be in the state of the motion with a constant velocity as
long as no force is acting on it, i.e. VV(z) = 0.

Problem 3.5 Prove that (a) the momentum is conserved if and only if the
potential V(x) is constant; and (b) the angular momentum is conserved if
and only if the potential V(z) is spherically symmetric, i.e. V(Rx) = V() for
any rotation R in R? around the origin, i.e. V(z) = W (|z|) for some function
W (r) on the interval [0, c0).

Most of the conservation laws come from symmetries of physical systems.
First, an operator U on a Hilbert space H is called unitary if it preserves the
inner product: (U, U¢) = (1, ¢), for all 1, ¢ € H (see Definition 25.29). We
say that a unitary operator U is a symmetry of (3.10) if U maps D(H) into
itself and

! Showing this is actually not trivial. If B is a non-negative operator, then using
square roots one can show that (1, By) = 0 implies B = 0. If B is self-adjoint but
not necessary positive, then one can reduce the problem to proving the desired
property for the spectral projections of B, which are non-negative operators.
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1y is a solution to (3.10) — Ut is a solution to (3.10).

If U is a symmetry, then inverting U in the equation ih0; U, = HU; gives
10y = UL HU1;, which, together with the original Schrédinger equation,
(3.10), implies U ~*HU% = H1 for any v € D(H). Hence, if U is a symmetry,
then U commutes with H:

U'HU = H.

Most often symmetries are organized in continuous families which are, or
could be reduced to, one-parameter groups Us, s € R, of unitary operators.
This means that each Uy is a unitary operator, Ust is continuous in s, for
every 1, and

Up=1, U =Usy (3.11)

(cf. (2.13)-(2.14)). For a one-parameter group Us, one defines the generator
as the operator, A, defined by

A = idUgp|, (3.12)

=0’
for those v’s for which the derivative on the r.h.s exist. (Note that the defini-
tion above differs from the standard one by the factor ¢ and that Uy satisfies
the equation i0sUs = AUs.) Then (ignoring domain questions)

Us is a symmetry of (3.10) — A commutes with H ([H, A] = 0).

Indeed, the fact that U, is a symmetry implies that, after dropping i,
U;'HU; = H. Differentiating the last equation with respect to s at s = 0
and using (3.12), we arrive, after dropping ¢, at

[H, A] = 0.

(For the definition of the commutators, see Remark 3.4.)
Examples of one-parameter groups, which could serve as symmetry groups,
and their generators:

e Spatial translation: U™l : ¢)(z) — (x + se;), s € R, where e; :=
(1,0,0),e2 := (0,1,0), e3 := (0,0, 1), with generator ;p; = —iV,,.

e Spatial rotation: UM : ¢(z) — ((RI)~'z), where R! is the counter-
clockwise rotation around the j-axis by the angle s € [0, 27), with gener-

ator
1

h

e Gauge transformation: U828 : )(z) — e**1)(x), s € R, with generator i1.

Lj = (SC X (7’va))]

Problem 3.6 Show that the families, U1l /1ot 78auee defined above, are
one-parameter groups of unitary operators, find their generators and write the
differential equations for the groups.
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Hence the translational, rotational and gauge symmetries imply the con-
servation of momentum, angular momentum and probability, respectively.

The fact that L;’s are the generators of rotations justifies the term the
angular momentum operator for L = (L1, Lo, L3) = x X p.

We summarize a part of the discussion above as

e Time translation invariance (V is independent of ¢) = conservation of
energy

e Space translation invariance (V is independent of x) = conservation of
momentum

e Space rotation invariance (V' is rotation invariant, i.e. is a function of |z|)
= conservation of angular momentum

e Gauge invariance (invariance under the transformation ¢ — €*®1)) = con-
servation of probability.

Discussion. More generally, one can consider symmetries associated with
groups. In the last three examples these are the groups of translations and
rotations of R3, denoted T or R3, and O(3), respectively (forming together
the group of rigid motions of R?), and the group U(1) of complex numbers of
unit modulus, serving as a gauge group. (For particles with internal degrees
of freedom, specifically with a spin to be considered later on, the gauge group
is the group SU(m) of complex, unitary, m x m matrices, for an appropriate
m.)

We represent these groups by unitary operators on the state space L?(R3):
Ugransh: o (x) — ¢(z +y), y € R3,

Ut op(z) — (R ), Re O(3), (3.13)

and UM : o)(x) — e'p(x), e € U(1), for the spatial translations and
rotations and the gauge transformations. These operators satisfy
U;ranslU’Zl/ransl _ U;T;Sl and U]r%ot rc;t _ Ir%olgb/,
and similarly for U£*'°. The operators U™ and Ujy" give unitary represen-
tations of the groups of translations and rotations of R?, respectively (the first
one is commutative, or abelian, the second one is not). They can be written
as products of one parameter groups, so that the analysis relevant for us can
be reduced to the latter case.

Problem 3.7 Find the conditions under which the above groups are sym-
metry groups of the Schrédinger equation.

We will consider the group of rotations, O(3), in more detail. Note that
the rotations, R, are represented by orthogonal matrices (i.e. real matrices
satisfying RT R = 1) of determinant 1. The counter-clockwise rotations Ry
around the axis along a unit vector w by the angles 6 € [0,27) form a one-
parameter group, and its generator is given by
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w —
89‘9:01%9:0*@0 X .

Problem 3.8 (a) Prove the above statement. Hint: Prove that ﬁg‘GZOszx =
e; x x and use that w = Y wje;. (b) Show that operators (matrices) A; given
by Ajz :=e; x x satisfy the commutation relations

[A1, Ag] = A3, [A2, A3] = Ay, [A3, 41] = As. (3.14)
Now, 89|9:01/)(R§)"z) =ViY(z)  (wxz)=w-(xrx Vip(x)). Hence

ihdg|,_oUgs = —ihw - (x x V) =w- L, (3.15)
which proves one of the statements in Problem 3.6.
Furthermore, it is easy to see for H := ffle + V(z) that
rot—1 rot h2
Urp® HUg :—QmA—i—V(Rx). (3.16)

Problem 3.9 Prove the last relation.

Relations (3.15) and (3.16) imply the proof of statement (b) in Problem
3.9.

Unlike the components of the position and momentum operators, x; and

p;, the components of the angular momentum one do not mutually commute:

i

h

Here ¢*'™ is the Levi-Chivita symbol: €!?? = 1 and ™ changes sign under

the permutation of any two indices. This is related to the fact that Up* is

a representation of the group of rotations of R3 and, unlike the group of
translations, the group of rotations is non-abelian.

Eq. (3.17) implies )} L; are the generators of representation (3.13) of the

group SO(3). The vector space spanned by ithj’ equipped with the commu-

tator relation [+, ], is the representation on L?(R?) of the Lie algebra so(3) of
the group SO(3).

[Ly, L] = "™ L,,. (3.17)

3.5 Conserved Currents

With each conserved observable A and a state v, one can associate a density
and a current (of A in 9):

pa) = DAY, )= ) ((VH)AY — 9T AY).

These functions satisfy an equation, called (the differential form of) the con-
servation law, along any solution 9 (t) of the Schrédinger equation:
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Proposition 3.10 (Differential conservation laws) Let A be a conserved
observable, i.e. D(H) N D(A) is dense in L*(R3) and [H, A] = 0. If (t) is a
solution of the Schrédinger equation (3.1), then

Oepa(y(t)) = —divja(e(t)). (3.18)

Proof. We omit the arguments ¢ and 1 and use the Leibniz rule and Schrodinger
equation (3.10) to compute formally

Qupa = (D) AY + DAOY = o HYAY +9 ) AHY.

Since A and H commute, and since V' is real and therefore Z.lhvaw +
wi% V Ay = 0, this gives

ih - ih -
Oipa = — 9 A A + PAAY.
m 2m

By the Leibnitz rule, AypAy = div((Vep)Ay) — (Vi) - VAY and Y AAY =
div(¢pVAY) — (Vip) -V Asp, which implies 9ypa = 7 div(—(Vep) Ap+pV AY),
giving (3.18). O

Integrating equation (3.18) in « and using the Gauss theorem, one obtains
the global conservation law,

0, / pa((t)) = 0.

We illustrate the general result on the ‘trivial’ observable A = 1 which
gives the differential form of the conservation of probability. For A = 1, the

associated density p1(¢) = p(¢) and the current jq1 (¢) = j(¢) are p(¥)(z) ==
[(2)? and j(¢)(z) = [ Im(¢(z)Ve(z)). Then (3.18) gives the differential
form of the conservation of probability law:

OhlipJ? = —divj(s). (3.19)

This result shows how the probability distribution changes under the Schrédinger
equation, and provides the formula for the probability current:

J@)a) = " () V().
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4

Quantization

In this chapter, we discuss the procedure of passing from classical mechanics
to quantum mechanics. This is called “quantization” of a classical theory.

4.1 Quantization

To describe a quantization of classical mechanics, we start with the Hamilto-
nian formulation of classical mechanics (see supplemental Section 4.7 for more
details), where the basic objects are as follows:

1. The phase space (or state space): R2 x R3.

2. The Hamiltonian: a real function h(z,k) on R2 x R} (which gives the
energy of the classical system).

3. Classical observables: (real) functions on RZ x RY.

4. Poisson bracket: a bilinear form mapping each pair of classical observables,
f, g, to the observable (function)

3
of 99  0f Og
vt =% (o0 2 - .
jz:; 8kj al‘j al‘j 6/@
5. Canonically conjugate variables: co-ordinate functions, z;, k;, satisfying
{wi,ziy ={ki b} =05 {ki 25} = bij. (4.1)

6. Classical dynamics: Hamilton’s equations,

@ = {h,z}, k={h,k}. (4.2)

The corresponding fundamental objects in quantum mechanics are the follow-
ing:

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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1. The state space: L*(R3).

2. The quantum Hamiltonian: a Schrédinger operator, H = h(x,p) acting
on the state space L%(R?).

3. Quantum observables: (self-adjoint) operators on L?(R3).

4. Commutator: a bilinear form mapping each pair of operators acting on
L*(R3) into the commutator, }[-,-].

5. Canonically conjugate operators: co-ordinate operators x;, p; satisfying

i

h[pi,zj] = 0ij. (4.3)

6. The dynamics of the quantum system can be described by the Heisenberg
equations ' .
i 1
t= _[H )= _[H,pl.
= [, 1], p=[Hp]

The relations (4.3) are called the canonical commutation relations. To
quantize classical mechanics we pass from the canonically conjugate variables,
x;, ki, satisfying (4.1) to the canonically conjugate operators, z;, p;, i =
1,2, 3, satisfying (4.3):

Hence with classical observables f(z,k), we associate quantum observables
f(x,p). This is a fairly simple procedure if f(z,p) is a sum of a function of =
and a function of p, but rather subtle otherwise. It is explained in the next
section.
If the classical Hamiltonian function is h(z,k) = |k|?/2m + V(x), the
corresponding quantum Hamiltonian is the Schrédinger operator
H=hap) =" v == avvi
=h(z,p)=, T) =y x).
Similarly, we pass from the classical angular momentum, /; = (z X k);, to the
angular momentum operators, L; = (x X p);.

The following table provides a summary of the classical mechanical objects
and their quantized counterparts:
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Object CM QM
state R3 x R} and L?(R3) and
space Poisson bracket commutator
evolution path in path in
of state phase space L?(R3)
observable real function self-adjoint operator
on state space on state space
result of measuring deterministic probabilistic
observable
object determining Hamiltonian Hamiltonian (Schrodinger)
dynamics function operator
canonical functions operators
coordinates x and k x (mult.) and p (differ.)

Quantization of classical systems does not lead to a complete description of
quantum systems. As was noted in the previous chapter, quantum mechanical
particles might have also internal degrees of freedom, such as spin, which
have no classical counterparts and therefore cannot be obtained as a result
of quantization of a classical system. To take these degrees of freedom into
account one should modify ad hoc the quantization procedure above, or add
new quantization postulates as is done in the relativistic theory.

4.2 Quantization and Correspondence Principle

The correspondence between classical observables and quantum observables,

f(z, k) — f(z,p),

is a subtle one. It is easy to see that a classical observable f(z) is mapped under
quantization into the operator of multiplication by f(z), and an observable
g(k), into the operator g(p), defined for example using the Fourier transform
and the three-parameter translation group, e~ #'*/%:

g(p) := (2rh) 3/ /g(x)e_ip‘m/hdz

where ¢ is the inverse Fourier transform of ¢ (see Definition 2.18). However,
the following simple example shows the ambiguity of this correspondence for
more general functions of x and k. The function z-k = k-z could, for example,
be mapped into any of the following distinct operators:

1

o (@ ptp-).

Z-p, p-z,

This ambiguity can be resolved by requiring that the quantum observables
obtained by a quantization of real classical observables are self-adjoint (or
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at least symmetric) operators. This selects the symmetric term above, for
example. The corresponding quantization is called the Weyl quantization. In
this case the operator A = a(z,p) associated with the classical observable
a(x, k) is given by

A= (2rh)3 / / a(¢, ' )e' & P/ ey (4.5)

where ¢ is the Fourier transform of ¢ in # and the inverse Fourier transform
in k and therefore

a(z, k) = (2nh) ™3 / / a(g,n)elEemR/hgedy. (4.6)

Reversing the quantization procedure, one would like to show that classical
mechanics arises from quantum mechanics in the limit as h/(classical action)
— 0. Assume we have passed to physical units in which a typical classical
action in our system is 1, so that /A is now the ratio of the Planck constant to
the classical action. First one would like to show that a product of quantum
observables is given by a product of classical ones, e.g.

a(x, p)b(x, p) = (ab)(x,p) + O(h), (4.7)

and therefore the former can be identified with latter. Assuming that the
classical observables a and b satisfy [(|¢]+|n|)|a(&,n)|dédn < oo, and similarly
for b (this condition is considerably stronger than needed), one can easily prove
(4.7). Indeed, we use the Baker-Campbell-Hausdorff formula

efef = eA+B+é[A’B], (4.8)

provided [A, B] is a multiple of the identity, which can be verified by comput-
ing

9y(¢*4¢5B) = (A + " A Be~A) A 5B
=(A+ B+ /5 dre"™[A, Ble " )esAesB
=(A+B+ sFA, Bl)e*AesB.
Using (4.8), (4.5) and the relation [ -2 —n-p,& - — 7 -p| = hw, where
w:=¢-n0 —n-¢&, we compute for A :=a(z,p) and B := b(x, p),
AB = (2rh) ™" / - / a(&, b, e e P dgdnde' dy.  (4.9)

where @ := (£+&)-2—(n+n')-p. Now, we expand €™ = 1+0(|w|) and evaluate
the contribution of the first term using property 5 of the Fourier transform
given in Section 25.14. Together with the definition of the convolution (f *
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9)(x) = [za f(y)g(x — y)dy (see (25.56) of Section 25.14), this gives, after
changing the variables of integration as £ - & —¢&', n—n—1/,

(2mh) 6 / - / Q€ b, o )P e dnde! dnf
= (271'5’)76//(& * l;)(gﬂ’])ez(fa?*np)/hdgdn — ab.

The remainder is simply estimated by taking the absolute value under the
integral.

Under the stronger condition [(|¢|2+|n|?)|a(¢,n)|dédn < oo, one can prove
the stronger statement,

a(x, p)b(x,p) = (ab — ;h{a, bY)(x, p) + O(R?). (4.10)

To prove this, we expand € = 1+ iw +  (iw)* + O(|w|?) and use Properties
3 - 5 of the Fourier transform in Section 25.14, to evaluate the contribution
of 4w. This is done similarly to the first term above, once we write £a(£,n) =
—ih@(ﬁ, n), na(§,n) = ihV/;;L(f, 7n) and similarly for b. The remainder term
here is treated similarly to the remainder above. Equation (4.10) implies that
in the next order, the commutators give Poisson brackets:

ila(z,p), b(z,p)] = h{a, b} (z,p) + O(K?). (4.11)

Equation (4.11) allows one to connect the quantum and classical evolu-
tions. Indeed, let ¢; be the flow generated by the Hamilton equations (4.2),
i.e. the map ¢; : (xo,ko) — the solution of (4.2) with the initial condi-
tions (wo,ko) (see supplemental Section 4.7), and let afla = a o ¢, and
ai(A) := et/ Ae= /M be the evolutions of classical and quantum observ-
ables (a! is called the Liouville dynamics, and «a; is nothing but the Heisen-
berg dynamics.) Denote the Weyl quantization map given in (4.5) by @, so
that A = Q(a). One can show that for a certain class of classical observables
a, we have

@(Q(a)) = Q(af'a) + O(n), (4.12)
for t < Csuph\vp as h — 0. Given (4.11), a proof of (4.12) is fairly simple. We
give it here modulo one classical estimate. Using the Duhamel principle (i.e.
writing a_;(Q(af(a)))—Q(a) as the integral of derivative dsa_s(Q(a(a))) =
a—s([H, Qe (a))] — Q({h,af'(a)}))), we obtain

ar(A) — Qao¢y) = /0 ds ai_s(R(ao ¢s)), (4.13)
where R(a) := | [H, A] — Q({h,a}). Since [Jas(A)| = ||A]|, this gives

lae (A) = Qa0 ag)l| < /O ds||R(a o o). (4.14)
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Note that the full evolution a; drops out of the estimate. Using estimate
(4.11) for the remainder R(a) and an appropriate estimate for the classical
observable afa = a o ¢,, we arrive at (4.12).

In mathematics, operators obtained by a certain quantization rule from
functions f(z, k) satisfying certain estimates are called pseudodifferential op-
erators, while the functions themselves are called symbols. Differential opera-
tors with smooth coefficients, as well as certain integral and singular integral
operators are examples of pseudodifferential operators. The relation (4.11) is
one of the central statements coming from pseudodifferential calculus.

4.3 A Particle in an External Electro-magnetic Field

Here we apply the rules discussed in the previous sections to describe a quan-
tum particle moving in an external electro-magnetic field. Of course, if the
external field is purely electric, F, then it is a potential field, E = —V®, for
some & : R? — R, and it fits within the framework we have considered above
with V(z) = &(x).

Suppose, then, that both electric and magnetic fields, F and B, are present.
These are vector fields on R, which could be time-dependent: B, FE : R3*! —
R3. We know from the theory of electro-magnetism (Maxwell’s equations)
that these fields can be expressed in terms of vector and scalar potentials
A:R?>—R3 and & : R3 — R, via

E=-Vo—09,A, B =curld

(we are using units in which the speed of light, ¢, is equal to one; for more
details see Subsection 4.7). For simplicity, in what follows we assume that the
electric and magnetic fields E and B are time-independent.

It is shown in Subsection 4.7 that the classical Hamiltonian function for a
particle of charge e subject to the fields E and B is,

h(z, k) = an (k — eA(x))* + ed(x).

According to our general quantization procedure, we replace the classical
canonical variables x and k by the quantum canonical operators x and p.
The resulting Schrédinger operator is

1
H(A,®) = o (p—eA)? + e, (4.15)
acting on L?(R?). The self-adjointness of H(A,®) can be established by using

Kato’s inequality (see [73]).
We now consider the Schrodinger equation with this Hamiltonian:

ihdp = H(A, D). (4.16)
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It, like the Hamiltonian H (A, @), depends of the magnetic and electric poten-
tials A and @, rather than on the magnetic and electric fields B := curlA and
E := V@ (in the static case).

However, as we recall that in the theory of electro-magnetism, the vector
potential A is not uniquely determined by the magnetic field B. In fact, if we
add the gradient of any function x to A (a gauge transformation), we obtain
the same magnetic field B:

curl(A + Vy) = curlA = B.

Similar ambiguity exists for the electric potential @. This is distinct from the
classical mechanics where A and @ enter into the Newton’s equations only
through the magnetic and electric fields B := curlA and F := V®.

What saves the day is the gauge invariance of (4.16), which is its key
feature: if ¢ satisfies equation (4.16), then ¥, := e'ex/My satisfies

thoyy, = H(A+ VX, D+ 0ex) ¥y - (4.17)
This property follows from the relation

H(A+Vy,®) = /NH(A, d)e X/, (4.18)

Problem 4.1 Check that equation (4.18) holds.

Thus if A and /1 differ by a gradient vector-field Vy, then the operators
H(A,®) and H(A,®) are unitarily equivalent via the unitary map

1/) — eiex/hw

on L?(R3). Thus the two Hamiltonians are physically equivalent. Of course,
this is to be expected as A and A correspond to the same magnetic field.

One can impose restrictions (called gauge conditions) on the vector poten-
tial A in order to remove some, or all, of the freedom involved in the choice
of A. A common choice is divA = 0, known as the Coulomb gauge. By an ap-
propriate gauge transformation, the Coulomb gauge can always be achieved.

The gauge invariance of (4.16) seems to say that physically, the magnetic
potential does not matter, only the magnetic field is important. Indeed this is
so, but only in physical spaces which have, like R?, the special mathematical
property of being simply connected in the sense that any closed path can be
shrunk to a point; i.e. they have no holes. We return to this phenomenon in
Section 7.6 on the Aharonov-Bohm effect.
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4.4 Spin

Quantum mechanical particles may also have internal degrees of freedom,
which have no classical counterpart. Mathematically, this mean that the wave
functions ¥(z) take values not in C, but in a higher dimensional (complex)
space V (with dim¢V = n > 1). The state space in this case is L2(R3; V).
For V we take a finite-dimensional, complex inner-product space. (When we

want to be specific, we take V' = C™.) Then we have
L*R3V) = L*(R3;C) ® 1%
~ N~ 7 ~~

space of external degrees of freedom  SPace of internal degrees of freedom

Here, on the r.h.s. we have the tensor product of two Hilbert spaces, which
can be thought of as the space with a basis {¢;v;} given by products of
basis elements of each factor, equipped with the corresponding inner product
(Qv, Yw) = (@, 1) (v, w). It can be identified with the space of square integrable
functions with values in V' (x — ¢(x) € V) on the Lh.s..

Now the Schrédinger equation is invariant under a larger group of gauge
transformations, U$*&¢ : ¢)(x) — gip(z), g € U(n), where U(n) is a group of
complex, unitary, n X n matrices.

Consider the simplest non-trivial case n = 2, and restrict ourselves to the
subgroup SU(2) of U(2) with determinant one (the special unitary group).
The Lie algebra su(2) of the group SU(2) is the space of trace zero, anti-
hermitian (A* = —A) matrices acting on C?, equipped with the commutator.
We can choose a basis, Ay, Az, Ag, in su(2), satisfying the commutation rela-
tions

[A1, As] = Az, [A, A3] = Ay, [A3, A1] = As, (4.19)

which have already come up in (3.14) while considering the Lie algebra so(3)
of the group of rotations SO(3). In fact, the Lie algebras su(2) and so(3) are
isomorphic, while one can find a Lie group homomorphism SU(2) — SO(3),
with kernel {+1}; i.e., SU(2)/{£1} and SO(3) are Lie group isomorphic (see
Remark 4.4 below).

If we define the hermitian matrices S; := —ihA;, we obtain

[Sk, Si] = ihe™™8S,,, (4.20)

where, recall, €¥/™ is the Levi-Chivita symbol: €'?® = 1 and ¢*'™ changes sign
under permutation of any two indices. These are exactly the same relations
as for the angular momentum operators (3.17). Consequently, the observable
S = (51, 52,53) is thought of as internal angular momentum, and is called
the spin.

However, there is an important difference between the spin and angular
momentum observables. We will show later on in Theorem 6.28 that the op-
erator S? := > sz has eigenvalues A = A%r(r + 1), r = 0,3,1,5,2,..., of
multiplicity 2r + 1. We see that, unlike the angular momentum, the spin can
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take half-integer values. This means that if V is an eigenspace of S? with a
half-integer r, then the spin observables S;, j = 1,2, 3, acting on V' cannot be
represented by generators of rotations on L?(R?).

We say that a particle has spin r if and only if the internal spin space
V is an eigenspace, V., of S? (in some representation) with eigenvalue \ =
K?r(r+1). By Theorem 6.28, V; has dimension 2r+1and r € {0,3,1,3,2,...}.

As a basis in V., it is convenient to use a basis of the eigenvectors of the
third component, Ss, of the spin operator. We write elements of V,. in this
basis as ¥(x,s), s = —r,...,r, where 1(x, s) satisfies Sz)(x,s) = hs(z, s),
or as vectors ¥ (z) = (Y—,(x), ..., ¥, (z)), where each 1; belongs to the famil-
iar one-particle space L?(R?) = L?(R3;C), with the identification 1 (z,s) «
¥s(x). (Usually such functions are written as columns, but for typographical
simplicity we write them as rows.) This identifies V,. with the space C?"*! and
L?(R3C) ® V,. = L3(R3;V,), with L?(R3;C) ® C?" ! = L3(R3;C?>1).

For r = ], it is convenient to write S; as S; = gaj, where o; are the Pauli
matrices

01:<(1)(1)),02:(?_0i>,03:<(1)01). (4.21)

For r = ;, the spin operators S; act on V; as

511/1(3075) = h|5|¢($a _5)7 SQw(:Ea S) = _2h51/1(307 _S)a S3w($a S) = hﬂ/’(%s)

It is an experimental fact that all particles belong to one of the following
two groups: particles with integer spins, or bosons, and particles with half-
integer spins, or fermions. (The particles we are dealing with — electrons,
protons and neutrons — are fermions, with spin ;, while photons, which we
will deal with later, are bosons, with spin 1. Nuclei, though treated as point
particles, are composite objects whose spin could be either integer or half-

integer.)

Problem 4.2 1) Find the generators, r1, rq, r3, of the rotations, Ry(y),
Ra(p), R3(p), around the x1—, z2—, x3—axes. 2) Show that these generators
satisfy commutation relations (4.19).

As an example, consider the rotations R3(p) around the x3—axis, given by

cosy sinp 0
Rs(p) = | —sinp cosp 0 |, (4.22)
0 0 1

The generators of these rotations are given by r; := 0, R;(¢) ’sz' For Rs(yp),

we have
010

rg=|—-100|. (4.23)
001
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As we mentioned above, the algebra su(2) is isomorphic to the algebra of
the rotation group so(3). We can define this isomorphism, ¢ : so(3) — su(2),
starting with ¢(r;) = S; and then extending to the entire so(3) by linearity.

Problem 4.3 Show that the map ¢ : so(3) — su(2) defined above is an
algebra isomorphism.

Remark 4.4 Though the algebras so(3) and su(2) are isomorphic, the groups
SU(2) and SO(3) are not: there is a Lie group homomorphism, ¢ : SU(2) —
SO(3), s.t. ¢~1(1) = {£1}. Indeed, define the map h : R?* — { traceless
hermitian 2 x 2 matrices} by h, = Zj z;0; and define ¢ : v — R, where
R = ¢(u) solves the equation

hpz = Uth*a

for all x € R3. Using the equations hg, = uh,u* and deth, = —|z|?, we
compute
|Rz|? = —det hgy = —det hy, = |2|?,

giving |Rz| = |z|, i.e. R preserves the Euclidean norm |z|. Hence R is a
rotation of the space R3 and therefore is an element of the orthogonal group
O(3). One can show that ¢(u) has determinant 1, i.e. ¢(u) € SO(3), and
therefore ¢ : SU(2) — SO(3). To show that ¢ is a group homomorphism, we
use the equation hgr, = uh,u* to compute

(uu)hy (v )* = uu'h, (u')*u* = uhpu™ = hrpy.

Finally, since the transformation T,,h = uhu™ satisfies T,h = uhu* = T_,h,
we see that ¢ maps u and —u into the same element of SO(3).

The spin interacts with an external magnetic field. The energy of this
interaction has a form similar to that of an orbiting classical charge. For a
charge moving in a circular orbit, the classical energy of interaction with a
magnetic field B is —u - B(z), p:= g, [, where e and m are the charge and
mass of the particle and [ is its (classical) angular momentum. In quantum
mechanics, this interaction (in the case of spin r = é) is

(&

—u-B =
p- B(x), p 92m5,

where g is called the gyromagnetic ratio. Based on classical mechanics, one ex-
pects g = 1, but it turns out that g = 2 (plus small corrections, due to creation
and annihilation of photons out of and into the vacuum, if the electromagnetic
field is quantized).

4.5 Many-particle Systems

Now we consider a physical system consisting of n particles which interact
pairwise via the potentials V;(x; — x;), where x; is the position of the j-th
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particle. Examples of such systems include atoms or molecules — i.e., systems
consisting of electrons and nuclei interacting via Coulomb forces.

In classical mechanics such a system is described by the particle coordi-
nates, z; and momenta k;, j = 1,...,n, so that the classical state of the
system is given by the pair (z, k) where z = (z1,...,2,) and k = (k1, ..., k)
and the state space, also called the phase-space, of the system is R3" x R3",
or a subset thereof. The dynamics of this system is given by the classical
Hamiltonian function

|
2
A k) =2, I+ V@)
Jj=1
where m; is the mass of the j-th particle and V is the total potential of the
system, and the standard Poisson brackets

af 89 of 9
of

where 57 and aakf ~ are the gradients in z; and k;, respectively. Since in our
J J

case the particles interact only with each other and by two-body potentials

Vij(x; — x;), V is given by

= ; Z ‘/U(.Z‘l — mj). (424)
i#j
Quantizing this system in exactly the same way as the one-particle one,
we associate with particle coordinates x;, and momenta kj;, the quantum
coordinates xj, and momenta p; := —iiV,,, which are operators. And so
the classical Hamiltonian h(xz,k) leads to the Schrodinger operator H,
h(x,p), p= (ph s ,Pn), Le

Hy Z |pg|2 +V(2), (4.25)

acting on L2(R3"). This is the Schrédinger operator, or quantum Hamiltonian,
of the n—particle system.

Example 4.5 Consider a molecule with N electrons of mass m and charge
—e, and M nuclei of masses m; and charges Zje, j = 1,..., M. In this case,
the Schrédinger operator, H,,, is

Humol = Z Ip;|2+z |QJ +V(z,y) (4.26)

acting on L2(R3WV+M)) Here x = (zy,...,zy) are the electron coordinates,
y = (y1,...yum) are the nucleus coordinates, p; = —ihV;; is the momentum
of the j-th electron, q; = —ihV,, is the momentum of the j-th nucleus, and
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Z|1‘17$| Z|CE1

i#]

Z €2 Z (4.27)

- y] 175] |yz

is the sum of Coulomb interaction potentials between the electrons (the first
term on the r.h.s.), between the electrons and the nuclei (the second term),
and between the nuclei (the third term). For a neutral molecule, we have

M
ZZ]-:N
j=1

If M =1, the resulting system is called an atom, or Z-atom (Z = Z1).

4.6 Identical Particles

Quantum many-particle systems display a remarkable new feature. Unlike
in classical physics, identical particles (i.e., particles with the same masses,
charges and spins, or, more generally, which interact in the same way) in
quantum physics are indistinguishable. Assume we have n identical particles
(of spin 0). Classically, states of such a system are given by (x1, k1, ..., Zn, kn),
with the state space, also called the phase-space, being []] (R3 x R}) = R3" x
Rz". Naively, we might assume that the state space of the quantum system is

L*(R3",C) = @1 L*(R3,C), (4.28)

where the second term is the tensor product of n Hilbert spaces L?(R?, C), de-
fined as the Hilbert space spanned by the products of elements of orthonormal
bases in each L?(R3, C) (see Section 25.13 in the mathematical supplement for
a definition for abstract Hilbert spaces). However this is not so, as we explain
below.

The indistinguishability of the particles means that all probability distri-
butions which can be extracted from an n-particle wave function ¥ (z1, . .., x,)
should be invariant with respect to permutations of the coordinates, x;. To
illustrate this, consider bound states, which can be always taken to be real-
valued wave functions. Since |¥(z1, ..., z,)[? is invariant under permutations,
this implies that ¥(z1, ..., z,) is invariant under particle permutations, mod-
ulo a change of sign.

A permutation is a one-to-one and onto map 7 of {1,2,...,n} into itself,
and the collection of all permutations of n indices forms the symmetric group
S,. To a permutation 7, we associate a transformation of R3" (also denoted
by )

(X1, n) = (Tr(1)s o0 Tr(n) )
We consider the map of S, into unitary (i.e. preserving the inner product)
operators on L?(R3") defined by
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(Tr¥)(x) = ¥ (7 '),

with the property Ty, Ty, = Ty, (this is why we need 7—! on the r.h.s.),
called a (unitary) representation of S,,.

Let U(X) denote the space of unitary operators acting on a Hilbert space
X. For a group G, a representation T' : G — U(X) is called irreducible iff
X has no non-trivial proper subspace invariant under all Ty, g € G. The
dimension of T is the dimension of X.

There are exactly two one-dimensional irreducible representations of S,

and they are of special interest in the spinless case: one with ¥(x1,...,x,)
totally invariant under permutations, 1T,¥ = ¥ Vx € S,, and one with
(x1,...,2,) transforming as

T,W = (-1)*™w vr € S,,, (4.29)

where #(7) is the number of transpositions making up the permutation 7 (so
(—1)#(™) is the parity of m € S,, — see the end of this section for more details
on irreducible representations of S,,.)

The particles described by the wave functions of the first type are called
bosons and by the second type, fermions. Correspondingly, we have the fol-
lowing subspaces of L?(R3"):

HoE .= (w e L2(R?",C) | T,¥ =¥ V7 € S,}, (4.30)
Hil .= (W e LR, C) | T,¥ = (-1)#* v vr e S,} (4.31)

Including spin. To complete the picture, we have to take into account
particle spins. The one-particle space for a particle of spin r is

L*(R3 x {—r,...,7},C) = L*(R3 C**1), (4.32)

with wave functions of the form ¥(z,s) = (V_.(z),...,%.(z)). Assume we
have n identical particles of spin r. In this case, the state space is

L2 (RS, C2r+1)®n =172 (RSn, C(2r+1)n) (433)

(see the remark above, and Section 25.13 about tensor products), consisting
of functions which can be written as ¥(x1, s1,...,Zn, S,). Now, the operator
H,, acts on such functions.

The indistinguishability of the particles means that all probability distri-
butions which can be extracted from an n-particle wave function (4.33) should
be symmetric with respect to permutations of the coordinates and spins of
the identical particles. Since for bound states we can restrict ourselves to real
wave functions, this is equivalent to the property that ¥(x1, s1,...,Zy, Sp) is
invariant under such permutations, modulo a change of sign.

Recall that all elementary (and composite) particles are divided into two
groups: particles with half integer spins, called fermions (e.g. electrons, pro-
tons, and neutrons have spin 1/2), and particles with integer spins, called
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bosons (particles related to interactions). For bosons, the wave functions,
U(x1,81,---,%Tn, Sn), should be symmetric with respect to permutations of the
coordinates and spins of identical particles, and for fermions, antisymmetric.
In particular, the state space for fermions of spin é is

Hermi = {0 € L*(R®™,C*™) | T,¥ = (-1)*™w, ¥r € S,,} (4.34)

where, as above, 7 is a permutation of the n indices, 7 : (1,2,...,n) —
(7(1),7(2),...,m(n)), #(m) is the number of transpositions making up the
permutation 7, and

(Tﬂ'g/)(zlv S15.- 5 Tmy S’n) = u7(1'71'(1)7 Sr(1)s s L(n)s STr(n))

Below, we will write the space (4.31) as A_, L*(R3,C?).

Since the Hamiltonian H, does not act on the spin variables, by separa-
tion of variables, we may consider it acting on functions t(z1,...,z,) of the
coordinates only, which arise from (4.34) by, say, taking inner products in the
spin variables with functions of sy, ..., s,. What are the symmetry properties
of these functions with respect to permutations of the coordinates? To answer
this question one has to dip into the theory of representations of the symmet-
ric group S, (the group of permutations of n indices). We do not do so here,
but just formulate below the outcome of the theory. Here we summarize:

e for identical particles the state space is not L?(R3"), but rather a subspace
of it, defined by certain symmetry properties with respect to permutations
of the particles.

Now, we summarize relevant elements of the theory. Consider n fermions
of spin r. Denote by « partitions of the integer n into ordered positive integers
2r+l1> a1 > ag > - > ap > 1, a1 +as+- - -+ag = n. Denote the set of such
a’s by A,. These can be visualized as arrangements of n squares into k rows
containing i, s, ..., ar squares each, called Young diagrams. For example,
with n = 3:

In particular, for spin one half, r = %, we have one- and two-column Young

diagrams. To a Young diagram, one associates a Young tableau by filling in
squares with particles.

We associate with a given Young diagram «, the space H® of wave func-
tions which are symmetric with respect to permutations of particles in the
same row, and antisymmetric with respect to those in the same column, of
some tableau T' (e.g. a canonical one) associated with . One can show that
the subspaces H® are mutually orthogonal and satisfy

errmi = @aEATHa- (435)
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In technical terms, irreducible representations of the symmetric group S,
are in one-to-one correspondence with o € A,., and on the subspace H?, the
representation of S, is a multiple of the irreducible one labeled by «.

The spaces (4.30) and (4.31) correspond to the irreducible representations
of S, with the one-row and one-column Young diagrams, respectively. The
remaining subspaces H® correspond to fermions with higher spins.

Irreducible representations of S,, can be connected, via Weyl’s theory of
dual pairs of groups, to irreducible representations of SU(2) carried by the spin
space CCmtD7 and therefore determine the total spin of the corresponding
wave functions.

Remark 4.6 In dimension 2, the state spaces of n identical particles is clas-
sified not by irreducible representations of the permutation group Sy, but by
irreducible representations of the braid group B,. See [111, 112, 262] for re-
views, and a book with a collection of articles and commentary.

4.7 Supplement: Hamiltonian Formulation of Classical
Mechanics

In this supplement we discuss briefly the hamiltonian formulation of classical
mechanics. For more details and extensions see Mathematical Supplement 26.
The starting point here is the principle of minimal action: solutions of
physical equations minimize (more precisely, make stationary) certain func-
tionals, called action functionals. It is one of the basic principles of modern
physics. The action functional, S : ¢ — S(¢), is the integral of the form

S(¢) == /0 L(p(t), 6(t))dt, (4.36)

where L : X x V — R is a twice differentiable function, called a Lagrangian
function, or Lagrangian, V is a finite-dimensional inner-product vector space,
called the space of velocities, X is an open subset of V', called the position,
or configuration, space, and ¢(t) is a differentiable path in X.

The functional S(¢) is defined on the space of paths P, = {¢ €
CH[0,T); X) | #(0) = a,¢(T) = b}, for some a,b € X. We can write Pq
in the form Py = {po + ¢ | & € Po} = ¢o + Po, where ¢y is a fixed element
of Pg b, and Py := Po,0. Now, Py is a vector space and consequently P, p is an

10,2

affine space. For classical mechanics, L(z,v) = jmv? — V(z) : R® x R®* - R

and ¢(t) = z(t), and therefore the action functional is given by

T o
s@ = [ (J10F = Vie)a (4.37

The dynamics is given by critical points of this functional, and the dynam-
ical equation is the equation for critical points
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S'(¢) =0, (4.38)

called the Euler-Lagrange equation. Here S’(¢) is the differential or variational
derivative of S at ¢, defined as follows. Let V* be the space dual to V, i.e.
the space of bounded linear functions or functionals on V' (see Section 25.1).
The action of I € V* is denoted as (I,v). We define S’(¢) : [0,T] — V* by
the equation

| s@.cma = sl (4.3

where ¢y 1= ¢ + A&, for any & € Py.
For simplicity, let V' = R™, and denote by d4L and 0 ;L the gradients

of L(gb,gf)) in the variables ¢ and ¢, respectively. Using (4.36), we compute
4 S(px)|r=0 = foT (6¢L(¢)£ + 0y L(¢)€) dt. Integrating the first term on the
r.h.s. by parts and using that £(0) = ¢(T') = 0, we arrive at  S(éx)[r=0 =
ﬁ)(6%8L@»+@Lw»£@dtH$Sthﬂ:0ﬁmawgeﬂmmm
implies the equation

— 0:(0,L(,9)) + 05 L(¢,$) = 0 (4.40)

(see Section 26.2 for more details and generalizations). Applying this to the
classical mechanics action functional (4.37), we arrive at Newton’s equation
of Classical Mechanics:

mé = —VV ().
Suppose now that the dynamics of a system are determined by the action

principle, with a differentiable Lagrangian function/functional L : X xV — R
defined on a space X x V. We define the energy of a path ¢ as

oL .
= . -¢o— L.
energy (¢) 26 o
We have

Lemma 4.7 (Conservation of energy) If gi_)_is a critical path of the action
(4.36), then the energy is conserved, energy (¢) = const.

Proof. We compute

d . 27 . . 27,
(Ohamn) =0t )b

L) A2 90
oL - OL - OL .
t oo 05 %00
_(doL AL\
- <dsa¢3_8¢>)'¢'

Since for ¢, the expression on the right hand side vanishes, the result follows.
O
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We pass now to the new variables (x,v) — (z, k), where k, as a function
of x and v, is given by
k= 0,L(x,v). (4.41)

Note that k belongs to the space, V*, dual to V' (see Section 25.1). We assume
that the equation (4.41) has a unique solution for v (which holds if L is strictly
convex in the second variable, which means

L(z,sv+ (1 — s)v') < sL(z,v) + (1 — s)L(z,v"), Vs € (0,1), (4.42)

Vo € X, v,v’ € V, and it is guaranteed by the inequality d2L(x,v) > 0, Vo €
X, v € V). With this in mind, we express the energy in the new variables, as

h(xa k) = ((ka U) - L(xa 'U)) |v:6uL(z,v):k (4'43)

where the notation (-,-) stands for the coupling between V* and V (Sec-
tion 25.1). This defines the Hamiltonian function/functional, h : X x V* — R.

Theorem 4.8 If L(z,v) and h(x,k) are related by (4.43), then the Euler-
Lagrange equation (4.40) for the action (4.36) is equivalent to the equations
(called Hamilton’s equations)

& = Oph(z, k), k=—0,h(z, k). (4.44)

Proof. Assume (4.40) is satisfied. First, we note that the equations (4.43) and
(4.41) imply Oxh(z, k) = v + (k — Oy L(z,v))0kv = v = & and Iyh(z, k) =
=0 L(x,v) + (k — 0y L(z,v))0,v = —0; L(x,v). Now, the last equation and
the equations (4.40) and (4.41) imply k = —8,h(z, k), which gives (4.44).
Now, assuming (4.44), we obtain (4.40) from (4.41), O h(z, k) = —0,L(x, &)
and k = —8,h(z, k). O

Applying (4.43) to the classical mechanics Lagrangian, L(x,v) = mo® _ V(z),
we arrive at the classical Hamiltonian function

h(z, k) = an|k|2 +V (@), (4.45)

which leads to Hamilton’s equations & = 711 k, k= -0,V (z), which are equiv-
alent to Newton’s equations.

Another example of a Lagrangian is that for a classical relativistic particle
(in units with speed of light ¢ = 1):

L(z, &) = —my/1 — 22

(ds = /1 — &2 dt is the proper time of the particle.) The generalized mo-
mentum in this case is k¥ = 9,L(z,v) = ™, and the Hamiltonian is

V1-2
h(z, k) = \/|k|2 +m2.
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Problem 4.9 Prove this.

Next, we recognize that Hamilton’s equations (4.44) can be written as
Zr = {z, h}(20), ze = (x(t),k(t) € Z=X x V™, (4.46)

where now z; and k; together are thought of as a path in the phase space
Z, and for any pair f, g of differentiable functions on Z, {f.g} denotes the
function

{f,9y =Vaf -Vig—Vif-Vaug. (4.47)

The map (f,g) — {f,g}, given by (4.47), is a bilinear map, which has the
following properties: for any functions f, g, and h from Z to R,

1. {f, g9} = —{g, f} (skew-symmetry)
2. {149, h}} +{g.{h, f}} + {h,{f, g}} = O (the Jacobi identity)
5. {7.9h) = (/. g}h + 9{/.h}. (Leibniz rule)

Bilinear maps, (f,g) — {f,g}, having these properties, are called Poisson
brackets. The map (4.47) also obeys {f,g} =0 V g = f = 0. Poisson
brackets with the latter property are said to be non-degenerate. Note that a
space of smooth functions (or functionals), together with a Poisson bracket,
has the structure of a Lie Algebra.

The space Z together with a Poisson bracket on C*°(Z,R) is called a
Poisson space. A Hamiltonian system is a pair: a Poisson space, (Z, {-,}),
and a Hamiltonian function, h : Z — R. In this case Hamilton’s equations are
given by (4.46). Classical mechanics of one particle is a Hamiltonian system
with the phase space Z = R3 x R3, with bracket (4.47) and the Hamiltonian
(4.45).

Remark 4.10 Our definition of a Hamiltonian system differs from the stan-
dard one in using the Poisson bracket instead of a symplectic form. The reason
for using the Poisson bracket is its direct relation to the commutator.

Definition 4.11 Functions on a Poisson space, (Z, {-,-}), are called classical
observables.

The classical evolution of observables is given by f(z,t) = f(z¢), where z; is
the solution of (4.46) with the initial condition z. Note that f(z,t) solves the
equation

d
dtf(zvt) = {fv h}(Z,f).

with the initial condition f(z,0) = f(z). Conversely, a solution of this equation
with an initial condition f(z) is given by f(z,t) = f(z¢).

Problem 4.12 Prove this.
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The equation above implies that an observable f(z) is conserved or is a con-
stant of motion, i.e. f(z;) is independent of ¢, if and only if its Poisson bracket
with the Hamiltonian h vanishes: {f, h} = 0.

The map t — ¢, where ¢;(z) := z; and z; is the solution of (4.46) with the
initial condition z, is called the flow associated with the differential equation
(4.46).

Particle coupled to an external electro-magnetic field. As an applica-
tion of the above machinery, we consider a system of charges interacting with
an electro-magnetic field. Of course, if the external field is purely electric,
then it is a potential field, and fits within the framework we have considered
already.

Suppose, then, that a magnetic field B, and an electric field, F, are present,
B,E : R3t! — R3. The law of motion of a classical particle of mass m and
electric charge e is given by Newton’s equation with the Lorentz force,

mi(t) = eB(a(t), t) + 2:1: A B(x(t), 1). (4.48)

To find a hamiltonian formulation of this equation we first derive it from the
minimum action principle. We know from the theory of electro-magnetism
(Maxwell’s equations) that the electric and magnetic fields, £ and B, can be
expressed in terms of the vector potential A : R**! — R?, and the scalar
potential @ : R3 — R via

E=-Vo— 9,4, B=culA (4.49)
C

The action functional which gives (4.48) is given by

T
5@ = [ (197 = eat0)+ o Ae)) . (1.50)

Indeed, we find the Euler-Lagrange equation (see (4.40)) for this functional.
Using that L(¢, ¢) = '|¢]* — ed(¢) + ¢ - A(¢), we compute

O3L(6,6) = mb+ " A(@). 0sL(6,) = —eVe(6) = V(- A(9)).

Plug this into (4.40) and use the relations , A(¢) = D A(D)+(p-V)A(9), V(v-
A) — (v-V)A(p) = v AcurlA and (4.49) to obtain (4.48).

Now, the generalized momentum is & = ma + ¢A(x) and the classical
Hamiltonian function is ha ¢(z, k) = k- v — L(z, ’U)|md3:k72A(I)) which gives

hao(o, k) = (k= ©A@)? + e(x).

2m

Defining the Poisson bracket as in (4.47), we arrive at the hamiltonian formu-
lation for a particle of mass m and charge e moving in the external electric
and magnetic fields £ and B.
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Uncertainty Principle and Stability of Atoms
and Molecules

One of the fundamental implications of quantum theory is the uncertainty
principle. It states that certain pairs of physical quantities cannot be measured
simultaneously with arbitrary accuracy. Mathematically, it follows from the
fact that the corresponding observables do not commute. The key example
here is provided by the observables of position and momentum. They do not
commute, as seen from the commutation relation:

h[p,x] =1 (5.1)

(this is a matrix equation, meaning } [p;,zx] = 8;%). In this chapter, we es-

tablish precise mathematical statements of the uncertainty principle for the
position and momentum observables.

5.1 The Heisenberg Uncertainty Principle

We consider a particle in a state ¢ and think of the observables x and p
as random variables with probability distributions [4|? and |¢)|? respectively.
Recall that the means of =; and p; in the state ¢ (€ D(z;)ND(p;)) are (x;)y
and (p;)y, respectively. The dispersion of z; in the state ¢ is

(Azj)? = (@5 — (x5)9) )y

and the dispersion of p; is

(Ap;)? == (s — (j)w))w-

Theorem 5.1 (The Heisenberg uncertainty principle) For any state ¢ €
D(z;) N D(p;), .

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_5
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Proof. The basic ingredient is commutation relation (5.1). For notational sim-
plicity, we assume (z)y, = (p)y = 0. Note that for two self-adjoint operators
A, B, and ¢ € D(A) N D(B),

(i[A, B))y = —2Im (A, By). (5.3)

So assuming ¥ is normalized (||3|| = 1), and ¢ € D(z;) N D(p;), we obtain

L= (,9) = (@, [yl = — - Tm{pg,259)
2 2 2
< Plips )| < L lpsolllesll = - (Aps)(Asy)
This does it. [

What are the states which minimize the uncertainty, i.e. the Lh.s. of (5.2)?
Clearly, the states for which —Im(p;¢,z;9) = ||p;¥||||z;¢| would do this.
This equality is satisfied by states obeying the equation p;y = iux ;v for some
> 0. Solving the latter equation we obtain v, := Hj (7’:2)1/4 e~ X i /2h
for any p; > 0. Of course, shifting these states in coordinate and momentum

as
\1/4 )
Yyaue = | [ ( /7:;1) elig-atio=3 u;(z;—=y;)* /2)/h (5.4)
J

would give again states minimizing the uncertainty principle. These states
are called coherent states. They are obtained by scaling and translating the
Gaussian state ¢ := (wh)_3/4 e~171/2h and can be written as

Yyque = ei(q.erw)/hquﬁba (5.5)

where Ty, is the shift operator in coordinate and momentum: T, := ei(q'l_p'y)/h.
Note that

(Vyane> TiYyaue) = Yis (Pyaque» Pilyque) = G (5.6)
h

(Yyque, (¥ — yj)waquw> = 20’ (5.7)
hit

(Yyque, (0 — Qj)21/)qup> = 9

Problem 5.2 Prove (5.5) - (5.8).

5.2 A Refined Uncertainty Principle

The following result is related to the Heisenberg uncertainty principle.
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Theorem 5.3 (Refined uncertainty principle) On L*(R?),

1
—A> .
—Afz?

Recall that for operators A, B, we write A > 0if (¢, Ay) > 0 for all¢p € D(A),
and we write A > B if A — B > 0. So by the above statement, we mean
(W, (—A— 4|;|2 )1p) > 0 for ¢ in an appropriate dense subspace of D(—A). We

will prove it for 1 € C§°(RY).

Proof. We will ignore domain questions, leaving these as an exercise for the
reader. Compute

d
> illal "pilel Tt ay] = Z ilp, zj]l=| ™" = hdjx| ™

j=1

u

(d = space dimension = 3). Hence, using (5.3) again,
d
hd|ll| )P = =2 Im(|2| " pyla ]~ e, 250)
j=1

and therefore, using

_ _ _ _ . X
palel ™ = lal s+ [y el = ey i

we obtain

h(d = 2)|l|l=| 'y |* = —QImZ pﬂb,| |2

Now the Cauchy-Schwarz inequality implies
d
> st 03] < o) el
j=1

(prove this!), which together with the previous equality gives

hld = 2|[[lz] 7 9l1* < 200, [p*e) /2] .

Squaring this, and observing that |||z|~2[|? = (¥, |z|72¢) and (¥, |p|*y) =
h2 (¢, — Av) yields (for d > 3)

Idl

(W, —4y) > W )

which, for d = 3, implies the desired result. [
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5.3 Application: Stability of Atoms and Molecules

In classical mechanics, atoms and molecules are unstable: as the electrons orbit
the nuclei, they radiate away energy and fall onto the nuclei. The demonstra-
tion that this is not so in quantum mechanics was one of the first triumphs
of the theory.

The statement that a quantum system (with the particles interacting vial
Coulomb potentials) is stable with respect to collapse is expressed mathemat-
ically by the property that the Hamiltonian H (and therefore the energy),
is bounded from below. First we demonstrate the stability for the simplest
quantum system — the hydrogen-type ion. The latter is described by the
Schrodinger operator , ,

h e*Z

Hhya = QmA ||
on L?*(R3) (m and —e are the mass and charge of the electron respectively
and eZ is the charge of the nucleus). The refined uncertainty principle gives

Hpya > 877?'1'2 - \r\ The right hand side reaches its minimum at |x|~?
4me®Z/h? and so
2met 72
Hiaz=""0," . (5.9)

Thus, the energy of the hydrogen atom is bounded from below, and the elec-
tron does not collapse onto the nucleus.

Now we show how to extend the argument above to an arbitrary system of
electrons and nuclei, by considering for simplicity an atom with N electrons
and an infinitely heavy nucleus. According to Section 4.5, the Schrédinger
operator of this system is given by

N

FL2
=S =" A, - 5.10
t Z( om % Z |:Cz _ z]| (5.10)

I J|

acting on L?(R3*Y). Here m and —e are the electron mass and charge, x =
(z1,...,zn) are the electron coordinates, and the term Ziv(—GQZ) on the

T
r.h.s. is the sum of Coulomb interaction potentials between the elle(]‘,irons and
the nuclei (Ze is the charge of the nucleus) and the last term, between the
electrons. For a neutral atom, Z = N. For the moment, we ignore the fact
that the electrons are fermions.

To prove a lower bound on H,; we observe that the electron-electron inter-
action potential is positive and therefore we have the following lower bound
for Hy;:

Hat > Hndep, (5.11)

where H79P .= SN (— n Ay, — les |) Using, for each term on the r.h.s., the
bound (5.9), we obtain
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2m(e?Z)?
h? ’
This bound works but it is rather rough. First of all it ignores the electron-
electron repulsion, but most importantly, it ignores that the electrons are
fermions (see Section 4.6). In section 14.1, we show how to take into account
the second feature and how to improve on the first one.

Hey > —N (5.12)
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Spectrum and Dynamics

Given a quantum observable (a self-adjoint operator) A, what are the possi-
ble values A can take in various states of the system? The interpretation of
(¢, Ay) as mean value of the observable A in a state v, which is validated
by quantum experiments, leads to the answer. It is the spectrum of A. The
most important observable is the energy — the Schrodinger operator, H, of a
system. Hence the spectrum of H gives the possible values of the energy.

The goal of this chapter is to develop techniques for finding the spectra of
Schrodinger operators. A rough classification of the spectra is into discrete and
continuous (also called essential) components. Such a classification is related
to the space-time behaviour of solutions of the corresponding Schrodinger
equations. Thus our main thrust is toward describing these components. We
begin by presenting the general theory, and then proceed to applications. In
particular, we explain how the spectrum of a Schrodinger operator gives us
important information about the solutions of the Schrédinger equation. De-
tails about the general machinery are presented in Mathematical Supplement
25.

6.1 The Spectrum of an Operator

We begin by giving some key definitions and statements related to the spec-
trum. More details can be found in Section 25.8. (Note we will often omit the
identity operator 1 in expressions like A — z1.)

Definition 6.1 The spectrum of an operator A on a Hilbert space H is the
subset of C given by

o(A) :={Ae€C | A— Xisnot invertible (has no bounded inverse)}.

The complement of the spectrum of A in C is called the resolvent set of A:
p(A) := C\o(A). For A € p(A), the operator (A — \)~1, called the resolvent
of A, is well-defined and bounded.

The following exercise asks for the spectrum of our favorite operators.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_6
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Problem 6.2 Prove that as operators on L%(RY) (with their natural do-
mains),

1. o(1) = {1}.

2. o(p;) =R.

3. o(zj) =R.

4. o(V) = Ran(V), where V is the multiplication operator on L?(R?) by a
continuous function V(z) : R — C.

5. o(—A) =0, 00).

6. o(f(p)) = Ran(f), where f(p) := F~1fF with f(k) the multiplication
operator on L?(R4) by a continuous function f(k) : R¢ — C.

The following two results state important facts about the spectrum. They
are proved in Section 25.8.

Theorem 6.3 The spectrum o(A) C C is a closed set.

Theorem 6.4 The spectrum of a self-adjoint operator is real: A self-adjoint
= o(A) CR.

6.2 Spectrum and Measurement Outcomes

We saw in Section 3.2 that the postulates of quantum mechanics imply that
the probability that, in the state 1, the physical quantity corresponding to an
observable A is in a set (2 is given by Born’s rule

Proby(A € 2) = (¥, xo(A)). (6.1)

Here x2()) is the characteristic function of the set £2 (i.e. xo(A) =1,if A € 2
and xo(A) = 0, if A ¢ 2) and the operator xn(A) can be defined using an
operator calculus (see Section 25.11, Eq (25.43)). We define it in an important
special case below. Conclusion (6.1) is validated by quantum experiments.

For A self-adjoint, the operator x(A) is also self-adjoint. Motivated by
(6.1), we call it the probability observable. Mathematically, it is a projection,
i.e. it satisfies (see Exercise 6.5 below)

x2(4)? = xo(A). (6.2)

One can show, using the formula (25.43) for functions of operators given
in the Mathematical Supplement (we sketch the proof below), that

XQ(A) = X02no(A) (A)- (6-3)

This relation implies

X2(A) £0 & 2No(A) £ 0. (6.4)
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The latter property shows that the spectrum is equal to the set of all the
values the physical quantity represented by the observable A could take, or in
short

o(A) = {values of the physical quantity represented by A}. 6.5
(A4) ={ physical q y rep y

Due to the relation (6.1), the above equation suggests that o(A) can be
interpreted as the set of all possible values of the observable A. The most
important observable is the energy — the Schrodinger operator, H, of a system.
Hence the spectrum of H gives the possible values of the energy.

Now, we sketch a proof of (6.3). First, we recall from Section 25.11, Eq
(25.43), that for £2 C C with 02 C p(A), we use that xo(A) = ,., $.(z —

A)~tdz to define x(A) by the Cauchy integral

1
A) = z— A)"tdz, 6.6
o) =y F =) (6.6)
where v = 0f2. The integral here can be understood either as the Bochner
integral of vector-valued functions with values in a Banach space, i.e. as the
norm limit Riemann sum approximations, or in the weak sense:

boxalA)e) = o (6,4 -2) o)

i J,

for any 1, ¢ € H. Here we use the fact that the knowledge of (1), T¢) for all
and ¢ determines the operator T uniquely. We call x(A) the characteristic
function of the operator A. This definition coincides with all other definitions
for x(A).

Problem 6.5 Prove (6.2), or, more generally, that (f - g)(A) = f(A)g(A).

We claim that with this definition we have (6.3) (assuming for simplicity that
092 C p(A)). Indeed, if 2N (A) = 0, then the resolvent (A—z)~! is analytic in
2, and therefore by Cauchy’s theorem ﬁv (A—2)"tdz =0, and so xn(A) = 0.

One familiar reason for A — A not to be invertible, is that (A — A)y =0
has a non-zero solution, 1y € H. In this case we say that A is an eigenvalue of
A and v is called a corresponding eigenvector.

If ¢ is a normalized eigenvector of A with eigenvalue A, then the equation
(A—2)p = (A—2)1 implies (A—2)"1¢ = (A—2z) "4 for any z in the resolvent
set of A. This and definition (6.6) imply

xe(A)Y = xa(\Y,
which, together with definition (6.1) gives
Proby(Ae 2)=1if A€ and =0 if X\ ¢ 2. (6.7)

Hence measuring the corresponding physical observable in the state vy will
always give the same answer, A.
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Now consider a superposition ¥ = >, a;1); of several normalized eigen-
vectors ¢; of A, with eigenvalues \;. By Problem 6.6(2) below, these v; can
be chosen to be mutually orthogonal. Then by xn(A)Y; = xo(Xi); and the
orthonormality of the v;, we have

Proby(A € 2) = > |ai|* Proby, (A € £2),

which is consistent with an interpretation of the the coefficients a; as proba-
bility ampltudes.

Similar statements, though technically more complicated, could be made
about the essential spectra discussed below.

As a partial generalization of (6.7), we have that for any v € Rany o/ (A),
we have

Proby(A€2)=1if @' CQ and =0 if 2 N2=0. (6.8)

6.3 Classification of Spectra

We begin with the simplest type of spectrum. The discrete spectrum of an
operator A is

o4(A) = {X € C| X is an isolated eigenvalue of A with finite multiplicity}

(isolated meaning some neighbourhood of A is disjoint from the rest of o(A)).
Here the multiplicity of an eigenvalue A is the dimension of the eigenspace

NulllA-X):={veH | (A-Nv=0}

Problem 6.6 1. Show Null(A — \) is a vector space.
2. Show that if A is self-adjoint, eigenvectors of A corresponding to different
eigenvalues are orthogonal.

The rest of the spectrum is called the essential spectrum of the operator A:

Oess(A) == 0(A)\og(A).

Remark 6.7 Some authors may use the terms “point spectrum” and “contin-
uous spectrum” rather than (respectively) “discrete spectrum” and “essential
spectrum’.

Problem 6.8 For the following operators on L?(R?) (with their natural do-
mains), show that
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1. Uess(pj) = U(pj) = R’
2. Uess(zj) = (7(1']') =R;

)

3. Uess(*A) = U(fA) = [05 OO)
Hint: Show that these operators do not have discrete spectrum.

Problem 6.9 Show that if U : H — H is unitary, then o(U*AU) = o(A4),
0a(U*AU) = 04(A), and 04ss(U*AU) = 0c55(A).

Problem 6.10 Let A be a self-adjoint operator on H. If A is an accumulation
point of o(A), then A € o0¢ss(A). Hint: use the definition of the essential
spectrum, and the fact that the spectrum is a closed set.

For a self-adjoint operator A the sets {span of eigenfunctions of A} and
{span of eigenfunctions of A}, where

Wh={peH| @ w) =0 VweW},

are invariant under A in the sense of the definition

Definition 6.11 A subspace W C H of a Hilbert space H is invariant under
an operator A if Aw € W whenever w € W N D(A).

Problem 6.12 Assume A is a self-adjoint operator. Show that

1. If W is invariant under A, then so is W+;

2. The span, V, of the eigenfunctions of A, and its orthogonal complement,
VL, are invariant under A;

3. Suppose further that A has only finitely many eigenvalues, all of them
with finite multiplicity. Show that the restricted operator A|y has a purely
discrete spectrum;

4. Show that the restricted operator Al 1 has a purely essential spectrum.

The spaces {span of eigenfunctions of A} and {span of eigenfunctions of A}*+
is said to be the subspaces of the discrete and essential spectra of A.

6.4 Bound and Decaying States
We show how the classification of the spectrum introduced in the previous

section is related to the space-time behaviour of solutions of the Schrodinger
equation

o
ih . =H
ihop =HY
with given initial condition
¢|t:0 = ¢07

where H is a self-adjoint Schrédinger operator acting on L?(R3). Naturally,
we want to distinguish between states which are localized for all time, and
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those whose essential support moves off to infinity. We assume all functions
below are normalized.

Suppose first that ¥y € { span of eigenfunctions of H}. Then for any
€ > 0, there is an R such that

t

inf/ [V >1—e (6.9)
|z|<R

To see this, note that if Hiy = Ay, then e~ 'n' Py = e 1o, and so

2 _ 2 =0
/szW}' /|lele0|

as R — oo. Such a 1) is called a bound state, as it remains essentially localized
in space for all time. A proof of (6.9) in the general case is given at the end
of this section.

On the other hand, if

Yo € {span of eigenfunctions of H}*,

where W := {p € H | (¢h,w) =0 VY w € W}, then for all R,
/ o [Y[* =0 (6.10)

as t — 00, in the sense of ergodic mean. Convergence f(t) — 0 in ergodic
mean as t — oo means that

T
;/0 f@®)dt —0

as T — oo. This result is called the Ruelle theorem. We sketch the proof below
(see, eg, [73, 162] for a complete proof). Such a state, v, is called a decaying
state, as it eventually leaves any fixed ball in space.

We say that a system in a bound state is stable, while in a decaying state,
unstable. This notion differs from the notion of stability in dynamical systems.
Indeed, solutions of the Schrodinger equation are always dynamically orbitally
stable (see Section 14.1 for the relevant definitions). The notion of stability
here characterizes the space-time behaviour of the system, whether it stays
essentially in a bounded region of the space, or falls apart with fragments
departing from each other.

Now, we saw above that solutions of the Schodinger equation with initial
conditions in the discrete spectral subspace describe bound states, those in the
essential spectral subspace describe decaying states. Hence the spectral classi-
fication for a Schrodinger operator H leads to a space-time characterization of
the quantum mechanical evolution, 1) = e~*#*/"4)y. Namely, the classification
of the spectrum into discrete and essential parts corresponds to a classification
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of the dynamics into localized (bound) states and locally-decaying (scattering)
states.
Finally, we give proof of (6.9) and (6.10). Proof of equation (6.9) in the
general case: if
1o € { span of eigenfunctions of H},

then v can be written as ¢o = >, a;¢; where a; € C, Zj|aj|2 =1,
(we assume in what follows that |[1o] = 1) and {#;} is an orthonormal
set ((¥j,¢r) = 6;1) of eigenfunctions of H: Hy; = Aj1b;. We will assume
that the above sum has only a finite number of terms, say g = Zjvzl a;p;.

Otherwise an additional continuity argument is required below. The solution
b = e~ "t/ M)y can be written as

N

w _ Zeii)\jt/haﬁjw‘j-

j=1

Multiplying this equation by the characteristic function of the exterior of the
R—ball, |z| > R, taking the L?—norm and using the triangle inequality, we

obtain
1/2 N 1/2
2 < ; |2 . 6.11
([ we) < ;'“J'(/m'%' ) (6.11)

To estimate the second factor on the right hand side, for any € > 0, we choose

R such that for all j,
1/2
€
wit) <
</|z|2R ’ \/N

Using this estimate and applying the Cauchy-Schwarz inequality to the sum
on the right hand side of (6.11) and using that Z;il 1=Nand}_, la;? =1,

we obtain
1/2
(/ |1/1|2) <e
|z|>R

and so (6.9) follows. O

Sketch of proof of (6.10): in this proof we display the time dependence
as a subindex t. We suppose the potential V(x) is bounded, and so as a
multiplication operator ||[V| = ||V ||, and therefore V' > —||V||1. Since also
—A >0, the operator H is bounded below: H > —||V||1. Let A > ||[V]| + 1 so
that H + A > 1, and let ¢y := (H + Nty = e *H#*(H + X)tpo. Defining

Bi=(—A+ A\ (H+ N1, (6.12)

and using that B = 1 — V(H + A)~!, which shows that B is bounded, we see
that ¢ = (—A+ X\)"1B¢;. Let o denote the characteristic function of a set
2 C R? and let K (z,y) be the integral kernel of the operator yo(—A+\)71.
Using (6.12) and the notation K, (y) := K(x,y), we obtain that
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xotr = Xo(—A+A) ' Béy = (Ky, Béy) = (B* Ky, ¢r). (6.13)
We use the notation || - ||, for the L?—norm in the variable x and claim now
that
1 T
T/ dt|(B* Ky, )2 — 0, as T — oco. (6.14)
0

To prove this claim we use the fact that [ |K(z,y)*dzdy < oo to show that
(B*Ka, ¢0)| < | B* Kol gell < IIB*[I1E I (H + N)tholl € L*(dx)
(uniformly in ¢). Next, we want to prove that

1

V.
T

T

/ dt|(B*K,, ¢:)|* — 0, as T — oo. (6.15)
0

Then (6.14) follows from interchange of t— and z—integration on the Lh.s.

and the Lebesgue dominated convergence theorem.

The proof of (6.15) is a delicate one. First note that, since 1oL the eigen-
functions of H, so is ¢o := (H 4+ \)¢o (show this). Next, we write

|<f7 ¢t>|2 = <f ® .fTa ¢t & d_)t> = <f & f_lveiitL/hgbO o2 QBO> (616)

where L is an operator acting on H®H given by L := H®1—-1® H. The rela-
tion ¢pL (the eigenfunctions of H) implies that ¢g ® gL (the eigenfunctions
of H®1—1® H). Hence we can compute the time integral of the r.h.s.:

—iTL/h _

1 -
iy b (617

T

= €

T
| anso st o d = Lo ],
0

The delicate point here is to show that, for nice f and ¢g, the r.h.s. is well-
defined and is bounded by CT %, § > 0. We omit showing this here (this can
be done, for example. by using the spectral decomposition theorem, see [244]).
Then (6.15) holds, which completes the proof (since this shows that for any
bounded set 2 C R? we have that || xot:|| — 0, in the sense of ergodic mean,
as t — oo, which is equivalent to (6.10)). O

6.5 Spectra of Schrodinger Operators

We now want to address the question of how to characterize the essential
spectrum of a self-adjoint operator A. Is there a characterization of oess(A)
similar to that of o4(A) in terms of some kind of eigenvalue problem? In
particular, we address this question for Schrodinger operators. We begin with

Definition 6.13 Let A be an operator on L2(R?). A sequence {¢,,} C D(A)
is called a spreading sequence for A and A if
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1. ||[¢n] =1 for all n
2. for any bounded set B C R?, supp(¢,,) N B = () for n sufficiently large
3. I(A—=Np| — 0 as n — oco.

Clearly, if not for the second condition, a sequence consisting of a repeated
eigenfunction would fit this definition. The second condition implies that we
can choose a subsequence {¢/,} so that

suppy, C {|z| > Ry},

with R,, — oo. In what follows, we always assume that the sequence {t,,} has
this property.

As an example, a spreading sequence on L?(R3) for — ;L;A and any A > 0
is given by v, (z) := n=3/2f(|z|/n)e?**/" where f is a smooth (suitably
normalized) function s.t. f(z) =0 for [z| < 1, and ,} |k]* = A.

Problem 6.14 Show that the sequence constructed above is a spreading se-
2
quence for —J° A and A = ,! |k|%.

Theorem 6.15 (Weyl-Zhislin theorem) If H = —;;A—l—V is a Schrédinger
operator, with real potential V(x) which is continuous and bounded from be-
low, then

0ess(H) = {A | there is a spreading sequence for H and A}.

We sketch a proof of this result later.
Now, we describe the spectra of self-adjoint Schrodinger operators

h?
H=—-_ A+V.
2m
Our first result covers the case when the potential tends to zero at infinity.

Recall that we have proved in Section 2.2 that H is self-adjoint.

Theorem 6.16 Let V : R? — R be continuous, with V(z) — 0 as || — oc.
Then oess(H) = [0,00) (so H can have only negative isolated eigenvalues,
possibly accumulating at 0).

Proof. We have, by the triangle inequality,

h2
ICH = Nl = [Vl < lI(=,, A= X¥ull < I(H = A)tbnll + [Vpall.

Suppose {¢} is a spreading sequence. Then the term ||V,| goes to zero
as n — oo because V' goes to zero at infinity and {4, } is spreading. So A is

in the essential spectrum of H if and only if A € gess(— 25; A). We have (see

Problem 6.8) 0ess(— "

o Q) = 0ess(—A) = [0,00), and consequently oess(H) =
[0,00). O
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Problem 6.17 Extend Theorems 6.15 and 6.16 to real potentials V' (x) sat-
isfying (2.8).

The bottom of the essential spectrum (0 in the present case), is called the
ionization threshold, since above this energy the particle is no longer localized,
but moves freely.

Our next theorem covers confining potentials — that is, potentials which
increase to infinity with z. As we have mentioned in Section 2.2, Schrodinger
operators with such potentials are self-adjoint.

Theorem 6.18 Let V() be a continuous function on R satisfying V (z) > 0,
and V(z) — oo as |z|] — oo. Then o(H) consists of isolated eigenvalues
{An}52, with A, — 0o as n — oo. Moreover, the corresponding eigenfunctions
form an (orthonormal) basis in L?(R%).

Proof. Suppose A is in the essential spectrum of H, and let {¢,,} be a corre-
sponding spreading sequence. Then as n — oo,

2
0 {thn, (H = i) = Wb = o M)+ (i, Vi) — A

” J1ven+ [ Vigar -

2m

> inf Viy) — A — oo
~ yesupp(¥n) )

(because {1, } is spreading), which is a contradiction. Thus the essential spec-
trum is empty.

Now we show that H has an infinite number of eigenvalues, with finite
multiplicities, tending to +00. Suppose, on the contrary, that H has a finite
number of eigenvalues with finite multiplicities, and let f be a non-zero ele-
ment of L? which is orthogonal to all the eigenfunctions of H. Then, for any
z € C, the equation (H — z)1 = f has a unique solution v = (H — 2)~1f
in {span of eigenfunctions of H}*. The function (H — z)~!f is analytic in
z € C and satisfies ||(H — 2z) 7' f|| < |Im z|7!|| f||. Hence, by a straightforward
extension of the Liouville theorem, (H — z)~!f = 0, a contradiction. Since
the essential spectrum is empty, the eigenvalues have finite multiplicities and
cannot accumulate, and since H > 0, they must tend to 4+oco0. The above
argument shows also that the eigenfunctions of H form a basis. [

Problem 6.19 What are the essential spectra, and what are the possible
locations of the discrete spectra, of the following operators (justify your an-
swer):

(a) H=—1" A—10[z[? + ||,

(b) H=—["A—(1+|z[)"2

Sketch of the proof of Theorem 6.15. We will prove the theorem for
Schrédinger operators with Hg-bounded potentials V' — that is, potentials
satisfying the estimate (2.8).
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Let {¢} be a spreading sequence for H and )\, and let ¢,, = Hgg:igﬁ””.

Evidently, ||¢n| = 1. Since (H — )71 and ||(H — A, — 0,
we obtain that

_ Yn
Pn = (H- Nyl

I(H = X)™" ¢nl| — o0,

as n — o0o. Therefore (H — \)~! is unbounded, which implies that \ € o(H).
We will prove that A ¢ o4(H). Indeed, suppose on the contrary that
A € 04(H). Let M denote the eigenspace of A\. Then (H — ) is invertible on
M+ (show this). Let P and P+ be the orthogonal projections on M and M*,
respectively. (For the definition and properties of projection operators see Sec-
tion 25.7.) We have P+ P+ = 1. Since the sequence {1, } is spreading and the
operator P’ can be written as P =3, [¢;)(¢;|, where {¢,} is an orthonormal

basis in M = RanP, we have ||P1/Jn|| — 0 and therefore || P, || — 1. Hence
for the normalized sequence ;- IIPLw | we have that (H — \)y;- — 0 and
therefore (H — \) is not invertible on M~ a contradiction. Hence A ¢ oq(H)

and therefore A € 055 (H).

Suppose now that A\ € oess(H). Then there is a sequence ¢, with ||¢, || =1
and [[(H — \)"t¢,|| — oo. Let ¢, = ”(g ig 10 - We claim that for every
bounded set 2 we have that ||xow.|| — 0 as n — oo. Indeed, we can assume

without loss of generality that V' > 0, which implies that (H + 1) is invertible.
So
Xatn = Xa(=A+ 1) (=A+1)(H + 1) (H + 1)ty (6.18)

Now, we have
xa(-4+ 17 = [ Kot (6.19)
with K € L2(R? x R?).
Problem 6.20 Use properties of the Fourier transform to show that K (z,y) =
xo(x)G(x — y), where G(y) = C’GET‘ and C is a constant.
Define B := (—A +1)(H + 1)~!. The relation
B=1-V(H+1)} (6.20)

and the assumption that V is Hyp-bounded, imply that B is bounded. Using
this definition, and using that

Pn

HA D=7 314,

+ (A + 1)y, (6.21)

we obtain that
On
[(H = X) " onll

We consider the first term on the r.h.s.. We write this term as (A +
1)(Ky, Byy), where K,(y) := K(x,y). Since B is bounded, we have that

Xotn = xa(—A+1) ' BA+1)¢n+xo(-A+1)"'B (6.22)
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Vo, (K., Bi,) = (B*K,,,). If the vector B*K, were in the domain of
(H — \)~1, then we would have (K, By,) = ' (H—\)"'B*K,, ¢,,), where
rn = ||[(H — A\)"t¢,|| — oo, and therefore

1
Tn

Va, (K., Bib,) — 0. (6.23)

In general, B* K, might not be in the domain of (H — \)~!, but we can show
that the latter domain is dense and therefore B* K, can be approximated by
vectors from this domain: Ve > 0, there is f. such that |B*K, — f| <
€. Now, one can modify the argument above to show (6.23). (A different
argument showing (6.23) goes along the lines of the proof of Theorem 25.57
in the mathematical supplement.) Furthermore, since [ |K(z,y)[*dzdy < oo,
we have

(B*Ka, )| < | B*Koll|¢nll < |B*| Kall € L*(d).

Hence, by the Lebesgue dominated convergence theorem, we have, using the
notation || - ||, for the L?—norm in the variable z, that
[{Kz, BA+ 1)¢n)lle = [A+ 1|[(B* Kz, thn) || — 0. (6.24)

For the second term on the r.h.s. of (6.22), we use that B is bounded, to
obtain that

- Pn én
Ixe(-A+1)7'B _ =Bl 1, II—=0. (6.25)
I(H = X)~" ¢l [(H = X) "¢l
Thus we conclude that for any bounded set 2 C R3,
Ix2¥nll — 0. (6.26)

Let B(R) be a ball of radius R centered at the origin and let R, — oo
as m — oo. Since || xnt¢n| — 0 as n — oo for any bounded set {2 we have
that Ym, || xB(r,,)¥nl| — 0 as n — oo. Hence using a diagonal procedure and
passing to a subsequence, if necessary, we obtain that ||xp, ¥n| — 0, as n —
oo, for B, := B(R,,()) and some subsequence m(n), satisfying m(n) — oo,

as n — 0o. Let
(1 - XBn)’L/J’ﬂ/

== Xl

Evidently ||f.|| = 1 and supp(f,) N 2 = @ for all bounded {2 provided that
n is large (depending on {2, of course). To finish the proof it suffices to show
that

[(H = X) full = 0. (6.27)

To prove this relation, we compute (H — A\)(1 — xp,)n = (1 — x5, )(H —
AN — [H, xB, |¥n and [H, xB,] = —((2VxB, -V + Axsp, ). Therefore ||(H —
M@ =xB,)¥nll < 11 =x5,)(H =N tnl| +I[H, x5, J¢nl < I(1=x5)l(H—
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Mnl|+1(2Vxs, -V + Axs, )¥n| — 0, as n — oco. Since ||(1- x5, )¢l — 1,
(6.27) follows. Hence f,, is a spreading sequence for H and A. O

To conclude this section, we present a result on the spectra of Schrodinger
operators on bounded domains with Dirichlet boundary conditions.

Theorem 6.21 Let A be a parallelepiped in R?, and V a continuous function
on A. Then the Schrédinger operator H = —A+V, acting on the space L?(A)
with Dirichlet or periodic boundary conditions, has purely discrete spectrum,
accumulating at +ooc.

To be precise, the operator “H on L?(A) with Dirichlet boundary conditions”
should be understood as the unique self-adjoint extension of H from C§°(A).
This theorem is proved in Section 25.10.

6.6 Particle in a Periodic Potential

We consider a particle moving in a periodic potential. A primary example
of this situation is an electron moving in the potential created by ions or
atoms of a solid crystal lattice. Such a particle is described by a self-adjoint

Schrodinger operator

h2

H=—-_ A4V

2m
on L?(R3), with the potential V(z), having certain periodicity properties
which we now explain.

First, we identify the notion of physical crystal lattice with the mathemat-

ical (Bravais) lattice, £, which is defined as the subset of R® given by

L= {m151 + MmoSg + M3S3 | mi, Mg, M3 € Z}

for some three linearly independent vectors si, s, s3 € R3, called a basis of
L. A basis in £ is not unique.

We say V(zx) is periodic with respect to a lattice £ if V(z + s) = V(z)
for any s € £. This implies that the operator H commutes with the lattice
translations,

T.H=HT,, Vs e L, (6.28)
where Ty is the translation operator, given by Tsf(z) = f(z + s).
Problem 6.22 Show that Ts are unitary operators satisfying 1375 = T4 5.

Due to (6.28), the operator H can be decomposed into a direct fiber inte-
gral, as follows. First, let {2 be the lattice cell given by 2 := {z151 + 2252 +
2383 | 0 < 21,290,223 < 1}. Let L£* be the lattice dual to L, i.e. the lattice with
the basis s7, 53, 53, satisfying s} - s; = 0;;, and let £2* be a lattice cell in L£*.

Now, we define the Hilbert space H = L*(§2*, dk; L*(§2)) of vector func-
tions ¢ : 2* > k — i, € L3(2), with the standard inner product
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(Y, d) fﬁ dk(ir, d1) 12 (), where dk is the standard Lebesgue measure
on (2%, normahzed so that [,,. dk = 1. We call H the direct fiber integral,
denoted as

@
H= Hy.dk,
Q*
where Hj, := L?(2), for each k € 2%, while its elements are written as ¢ =

S Yndk.

Given operators Hy, k € 2%, acting on Hj, we define the operator
() — Hgyp(z) on H = f;‘; Hidk and denote it fga* Hidk, so that

S Hydk [ ndk = [5. Hypdk,
Define the operator U : L?(R?) — H on smooth functions with compact

support by the formula
=D X (OTw(x

teLl
where yx(t) = e** the character of £, i.e., a homomorphism from £ —
U(1) (see the remark below). We now have the following Bloch decomposition
result:

Proposition 6.23 The operator U extends uniquely to a unitary operator
and

52
UHU ' = | Hdk (6.29)
Q*

where Hy, k € (2%, is the restriction of operator H to Hj, with domain
consisting of vectors v € Hy, N H? satisfying the boundary conditions

Tiv(z) = xk(t)v(x), (6.30)
for the basis elements t = s1, S92, S3.

Proof. We begin by showing that U is an isometry on smooth functions with
compact support. Using Fubini’s theorem we calculate

||Uv||§{:/9 ol dk*/ /\Zxk 0T, o) de|dk

teLl

:/Q( Z Tyv(x)Tsv(2) /Q Xkl(t)Xk(S)dk’)dx

/ |Tyo(zx |2dz*/ |v(x)|?da.
[0}

teLl

Hence ||Uv||x = ||v|lx and U extends to an isometry on all of H. To show
that U is in fact a unitary operator we define U* : H — H by the formula

Ug(z+1t) = /{* Xk (t) gk (x)dk,
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for t € £ and = € §2. Straightforward calculations show that U* is the adjoint
of U and that it too is an isometry, proving that U is a unitary operator.

For (6.29), we need to first show that (Uv)y, is in the domain of Hy. For
(Uv)y, we have

Zxk $) Ty Tsv(x)

seLl
= Z Xk 8$)Tyysv(z)
seL
= xk(t) Y xi (t + ) Tepsv(x)
seLl
= Xk (t)(Uv)x(2).

Hence if v € D(H), then Uv € D(Hy). Next, we have that

(He(Uv)i)(x) =Y x; () HTw(x)
teL
*Zxk (t)T;Hv(x)
teL
= (UHv)k(x),

which establishes (6.29). O

Since the resolvents of the operators H and Hj are related as U(H —
y“lu—t fm x — 2) " tdk, we deduce that

Theorem 6.24

o(H)= | o(H). (6.31)

ke2*

Since {2 is compact, by Theorem 6.21, the spectra of Hy, are purely discrete,
say, {An(k)}. This shows that the spectrum of H is the union of the sets
{Mn (k) |k € 2}, called the bands. This is a key result in solid state physics.
Mathematically, it reduces the investigation of the essential spectrum of a pe-
riodic quantum hamiltonian to the eigenvalue problem (the Bloch eigenvalue
problem)

Hybw = XE)r, by € Hy. (6.32)

Remark: eigenvalue problem (6.32) involves boundary conditions (6.30). We
can define the Hilbert space H}, without reference to a specific fundamental cell
(which is not unique) and incorporating boundary conditions (6.30) directly.
Namely, we define

Hy = {’U € LIQOC(RB) | Tiv = Xk(t)v Vi € ‘C}v (633)

with an inner product that of L2(£2) for some fundamental cell 2.
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To connect the above theory with the Bloch theory of solid state physics,
we consider eigenvalue problem (6.32) for the hamiltonian Hj, on Hy,.

Since 1y, satisfy Ty, = xr(t)Yr Vt € L, we have that e~ Ty (x) is L-
periodic. Indeed, by the property of the exponentials, we have Tse ™%y, (z) =
e~ hr=iksT b (1) = e” Tk sy, (H)e*Syhp(x) = e Ty (z). Hence the
eigenfunctions 1, (x) have the representation

Pr(z) = e gy (x),

where ¢y (z) are L-periodic. This result is the celebrated Bloch theorem of
condensed matter physics.

Remark: equation (6.30) is an eigen-equation for the operators Ts.

Remark: the dual group to £ is the group consisting of all characters of
L, i.e., all homomorphisms from £ — U(1). Explicitly, for k € £2*, we have
the character y given by

xk(t) = et

Since xr+x (t) = xk(t), VK € L*, the dual group of L can be identified with
the fundamental cell, 2%, of L£*.

6.7 Angular Momentum

In this section we study the angular momentum operators (or angular mo-
mentum observables, or just angular momenta)

Ly = (@ xp);, (6.34)

where p = —iAV, as usual. The term is justified in Section 3.4 on conservation
laws, by observing that . L; are the generators of the rotation group SO(3).
They satisfy the commutation relations

[Li, Ly] = ihe®™ L,,. (6.35)

Here €¥'™ is the Levi-Chivita symbol: €!?® = 1 and €™ changes sign under
the permutation of any two indices.

Problem 6.25 Prove (6.35). (Hint: Use that [p;, x| = —ihd;;.)

We define the squared magnitude of the angular momentum, L? = L? +
L3 + L3. Note that L? commutes with Lj:

[L?, L] =0, VEk. (6.36)

Problem 6.26 Prove (6.36). (Hint: Use that [p;, x| = —ihd;;.)
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Furthermore, L? is a homogeneous degree zero operator, in the sense that
it commutes with the scalings 75 : 1(z) — A¥2¢(Ax), A > 0, and therefore
it does not act on the radial variable r = |x|.

Theorem 6.27 (a) The spectrum of the operator L? is purely discrete; (b)
it consists of isolated eigenvalues X = h2l(l + 1), where [ = 0,1,2,..., of the
multiplicities 21 + 1.

A proof of (a) is somewhat involved and we skip it here (see however the
remark after the proof).We will derive the proof of (b) from the following

Theorem 6.28 Let L; be operators satisfying the commutation relations
(6.35). Assume the operator L?> = L2 + L3 + L3 has purely discrete spec-
trum. Then this spectrum consists of the eigenvalues X = h2l(I + 1), where

=0, é, 1, 3,2, ..., of the multiplicities 21 + 1.

Proof (of Theorem 6.28). Let A be an eigenvalue of L? with eigenspace Vy. It
follows from (6.36) that the eigenspace V) is invariant under Ls, i.e. L3V C
Vy. (Indeed, if L2¢y\ = Mgy, then L2L3py = L3zL?¢y = ALp¢y.) Hence one
can choose a basis in V) consisting of common eigenfunctions ¢, , for these
operators:

L2ap = Adau, Ladru = pida -

(By choosing an arbitrary orthonormal basis in the finite dimensional subspace
V2, one can reduce this problem to one for matrices.)
We still would like to use the remaining operators Li, Lo and so we form
the combinations
Li = L1 + ’LL2 (637)

The virtue of these new operators is the following commutation relations,
which are easily checked:

[L27L:t] - 05 [L+7L*] - 2hL3a [L37L:t] = ihL:l: (638)

Problem 6.29 Prove (6.38). (Hint: Use that [p;, x| = —ihd;;.)

The last relation can be rewritten as LsL1+ = Ly (L3z4h) which shows that
L. are raising/lowering operators in the following sense: apply the operators
L to the eigenfunctions ¢y, and use L3¢y, = oy, and LsLy = Ly (Ls+h)
to obtain

L3Ligx, = Li(Lz£h)ox, = (nEth)dx .

Hence we see that the operators Ly raise/lower eigenvalues of Ls. More
precisely, assuming the eigenfunctions ¢, , are non-degenerate (correspond to
different eigenvalues), we have Ly, = Cdx u+n, for some constants C.

Next, we claim that p? < A, for given \. Indeed, we use L? = L3+ L3+ L3 >
L3 to conclude that u2 = (¢x ., L3dr,) < (dxpu, L26x,.) = A Furthermore,
since Ly = —Lg, if p is an eigenvalue of L3 on V), then so is —pu.
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Denote p, := max{|u| : given A}. Then by the definition of p, and the
raising/lowering property of the operators Ly, we find that

Lidx+u, =0.

Next, we use Ly Ly = L+ L3 & hL3 to obtain the following relation between
the operators L?, Ly and Ls:

L?=LyL:FhLs+ L3. (6.39)

Taking the expectation of this equation in the eigenfunction ¢ _,, , and using
that L_¢x _,, =0, we find

A= <¢/\,7u* ) L2¢/\,7u*> = <¢>\,7u*7 (*hLS + L§)¢A,fﬂ*> = hp, + Mf-

This gives A\ = ps (i« + h). If we denote p, = hl, then A = h2[(l + 1).

Finally, since, using the raising operator L, we can go from ¢y ., to
¢, in an integer number of steps, we conclude that 2u. /h is a nonnegative
integer, s = hl, | € %Z‘“. For each [, the index m runs through the values
m = —1,...,l. Hence the multiplicity of the eigenvalue A = h2I(I + 1) of the
operator L2 is 21 + 1.

Proof (of Theorem 6.27(b).). To prove statement (b), it remains to show that
only integer [I’s are realized now. To this end, we note that we can solve the
eigenvalue problem for Lj easily by using spherical coordinates (r,8,¢), in
which L3 = h0y, to obtain L3e™™? = hme'™?, so that u = hm, where m must
be an integer. So we have shown that every eigenvalue A of L? is of the form
A=h2(l+1), with { =0,1,..., and has multiplicity 2 + 1.

This proof allows one to construct all eigenfunctions of L2, by solving the
equation L_¢y _,, = 0, for A\ = h?l(l + 1) and p, = hl, and then using the
raising operator L, to obtain all other eigenfunctions with the same [. (In
spherical co-ordinates, we have Ly = he®'®(£0y + i cot 00,).)

Thus we determined completely the eigenvalues of the operators L? and Ls:
A = h2l(I+1) and g = hm, where m, | € Z and m = —I,...,l. Denote the joint
eigenfunction of the operators L? and Ls, corresponding to the eigenvalues
A= h2(l+1) and p = hm, by Y,"(0, ¢):

L2Y™ = RPI(1+1)Y;™,  L3Y;™ = hmY™. (6.40)

The functions Y, (6, ¢) are the celebrated spherical harmonics. We know it
is of the form Y;™ (0, ¢) = Y;"(0)e"™?, m € Z, where Y;™(0) is an eigenfunction
of L? L2Y™(0) = k(I + 1)Y;"(#). More precisely,

Ylk(9,</>) = clkPl‘k‘(cos(H))eik(b (6.41)

where [ = 0,1,..; k € {-=l,-1l+1,...,1 = 1,1}; ci is a constant; and the
Legendre function Plk can be written as
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(1 —u?)k? d

Fi(u) = o Caw

YR (u? — 1)1, (6.42)

This completes our excursion into the spectral theory of the operator L2.

Problem 6.30 Show that in the spherical coordinates (r, 6, ¢),

L2(f(r)g(0,¢)) = —f(r)Aeg(0,¢),

where Ag is the Laplace-Beltrami operator on S?, given in spherical coordi-

nates (6, ¢), by

1 0, . 0 1 0?
A2 = i) 00O gp) sin?() 0¢?”
One could interpret Ay, as a quantum hamiltonian of a ‘free’ particle on
the sphere.
Using the Weyl criterion of essential spectrum and the fact that the sphere
S? is a compact space, one can show that A has purely discrete spectrum.
Above, we found this spectrum explicitly using commutation relations, i.e.
purely algebraic methods.



®

Check for
updates

7

Special Cases and Extensions

In this chapter we consider several specific quantum systems which either
fall outside of the general theory considered in Chapter 6, or are accessible
to explicit computations providing the desired results. The results presented
below not only illustrate some of the general arguments presented above, but
also form a basis for our intuition about quantum behaviour.

7.1 The Square Well and Torus

The Square Well

We consider a one-dimensional potential well of finite depth Vj, and width a
(see Fig. 7.1).

V(x)

—-a/2 a2

-V

[¢]

Fig. 7.1. The finite well.

The determination of the discrete and essential spectra is straightforward,
and is left as an exercise.

Problem 7.1 Show

1. 0ess(H) = [0, 00)
2. Ud(H) - (*Vo,())

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_7
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3. the equations for the eigenvalues F, for =V < F < 0, are

ktan(ak/2) = K kcot(ak/2) = - K

2mE 2m(E + V)
h= \/ o S \/ h?

If we shift the well upward as Hy, := H + Vp, then we can take the limit

as Vy — oo to obtain the quantum hamiltonian H., of a particle in an infinite
well. In three dimensions, the potential of the infinite well can be thought of

as W
VW{&?Z;W

where W := [0, L]> C R3. This means we take ¢ = 0 outside W, and that we
impose Dirichlet boundary conditions

Ylow =0 (7.1)

where

on the wave function inside W. It is a simple matter to solve the eigenvalue
equation
h2
- AYp=F 7.2
o AY=EY (72)

in W with the boundary condition (7.1), using the method of separation of
variables. Doing so, we obtain eigenvalues (energy levels)

B2 S
En ~ omL? Z
with corresponding eigenfunctions (bound states)

dnlw) = [Lsin(""7*)

j=1

for each integer triple n = (n1,n2, n3), n; > 1. We see that the eigenvalue E,
occurs with degeneracy equal to #{(m1,m2,m3)| > m3 = 3 n3}. We remark

that the ground-state (lowest) energy E(; 11y = ‘;’Zj ’er is non-degenerate.

The Torus

Now we consider a particle on a torus, say T? = R3/LZ3, and with no ex-
ternal potential, V' = 0. This corresponds to considering the Schrodinger
operator —;;A in the cube W = [0, L]? (or any other fundamental cell of
the lattice LZ3), with periodic boundary conditions. Solving the eigenvalue
equation (7.2) with boundary conditions
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w(x)|93j:0 = 1/)(x)|a:j:L
6w/6xk|$j:0 = 8¢/8$k|zj:u

for all j, k, leads to (separation of variables again) eigenfunctions

27 T, )

o= {2

J=1
with eigenvalues
271'2FL2
 mL? an,
for nj > 0. The ground state energy, F(,0) = 0 is non-degenerate, with

eigenfunction g 9,0) = 1. The spacing between energy levels is greater than
for the infinite well, and the degeneracy is higher.

Problem 7.2 Determine the spectrum of x, and the eigenvalues of p, on
L?(W) with periodic boundary conditions. Challenge: show that p has no
essential spectrum (hint — use the Fourier transform for periodic functions).

7.2 Motion in a Spherically Symmetric Potential

We consider a particle moving in a potential which is spherically symmetric,
i.e. V = V/(|z|) depends only on r = |z|. Then the corresponding Schrédinger

operator is
2

H= f;mA+V(|z|), (7.4)

acting on the Hilbert space L?(R3).

If V(r) — 0 as r — oo, then from Section 6.5, we know that H is self-
adjoint and has essential spectrum filling in the half-line [0, 00). Hence the
discrete spectrum, if it exists, is negative with only one possible accumulation
point at 0. Our goal here is to use the spherical symmetry of V' to reduce the
eigenvalue problem for (7.4) to a problem in the radial variable r = |z, only;
i.e. an ODE problem.

Because the potential is spherically symmetric, the Schrodinger operator H
commutes with rotations and, consequently, with their generators, the angular
momenta

L= (m X p)j? (7'5)

where p = —iAV as usual. Hence the angular momentum is conserved.

The squared magnitude of the angular momentum operator L? = L? +
L3 + L% also commutes with H. Furthermore, L? is a homogeneous degree
zero operator in the sense that it commutes with the scalings 75! : ¢(z) —
A3/24(Ax), A > 0, and therefore it does not act on the radial variable = |z|.
Indeed, if we introduce spherical coordinates (r, 0, ¢), where
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x1 = rsin(f) cos(p), xo =rsin(f)sin(¢p), x3 =rcos(d),

0<60<m 0<¢<2m, then L? acts only on the angles (0, ¢). A straightfor-
ward computation gives

— A = —R2A, + 12 L? (7.6)
T

where A, is the radial Laplacian, acting only on the radial variable r = |z|,
given by
10 ,0 0?2 20

Ar = r20r 8, o o O (7.7)

Problem 7.3 Prove (7.6). (Hint: Compute L? = L% + L3 + L% as follows.
L? = (z2p3 — 23p2)*+ cyclic permutations = (wap3)? + (23p2)? — Tapsw3ps —
x3paTap3+ cyclic permutations = r2p? — > :c?p? =D i PiTiT P+, pjz?pj.
This gives L? = r?p? + (p- x)(x - p), from which one can easily derive (7.6).)

Problem 7.4 Show that in spherical coordinates (r,0,¢) the Laplacian
becomes

A=A, + 12AQ
T

where A, is the radial Laplacian introduced in (7.7), and Ay, is the Laplace-
Beltrami operator on S?, given in spherical coordinates by

1 0 0 1 92
Ag = in(6 .
2= gin(o) o0 "0 gg) sin?(6) 9¢?

We now return to our original problem - the eigenvalue problem for the
spherically symmetric Schrodinger operator, (7.4). In view of (7.6) and the
fact that L? commutes with A, and H, we seek eigenfunctions of H in the
separated-variables form

W(r,0,¢) = R(r)Y}*(0,¢)

where Y}* is an eigenfunction of L? corresponding to the eigenvalue hl(l + 1)
(see (6.40)), a spherical harmonic. Plugging this into the eigenvalue equation
H1 = E1, we obtain

h? I(1+1)

(. [-A-+ 2 ]+ V(r)R=ER. (7.8)

2m
Usually, one cannot solve this equation explicitly with exception of a very few
cases. The Schrodinger operator of the hydrogen atom is one of these cases,
to which we now proceed.
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7.3 The Hydrogen Atom

A hydrogen atom consists of a proton and an electron, interacting via a
Coulomb force law. Let us make the simplifying assumption that the nucleus
(the proton) is infinitely heavy, and so does not move. We also consider more
generally the hydrogen-type atom, or ion, with nucleus of charge eZ, where e
is the charge of the proton, and —e that of the electron. Placing the nucleus
at the origin, we have the electron moving under the influence of the external
(Coulomb) potential V(x) = —Ze?/|x|. The appropriate Schrédinger operator
is therefore

: (7.9)

acting on the Hilbert space L?(IR?). In Section 13.1 we will see how to reduce
the problem of the more realistic hydrogen atom - when the nucleus has a
finite mass (a two-body problem) - to the problem studied here.

As usual, we want to study the spectrum of H. The first step is to invoke
Theorems 2.9 and 6.16 and Problem 6.17 to conclude that H is self-adjoint
and has essential spectrum filling in the half-line [0, c0). Our goal, then, is to
find the bound-states (eigenfunctions) and bound-state energies (eigenvalues).
It is a remarkable fact that we can find these explicitly. Indeed, aside from the
infinite well, the only multi-dimensional potentials for which the Schrodinger
eigenvalue problem can be solved explicitly are the harmonic oscillator and
the Coulomb potential.

Because the Coulomb potential is spherically symmetric (depends only on
r = |z|), the results of the previous section can be applied to the Schrodinger
operator (7.9). It is a remarkable fact that, in this case, we can solve the equa-
tion (7.8) explicitly and find the eigenvalues explicitly. Indeed, aside from the
infinite well, the only multi-dimensional potentials for which the Schrodinger
eigenvalue problem can be solved explicitly are the harmonic oscillator and
the Coulomb potential.

For the Coulomb potential, the equation (7.8) reads

h? I(1+1)
[_AT + 2

2m r

( ] —¢e*Z/r)R = ER. (7.10)

Eq. (7.10) is an ordinary differential equation (ODE) and is well-studied (see,
eg, [186]). Without going into details, we remark that one can show (by power-
series methods) that (7.10) has square-integrable solutions only for

e?Z [-m

= 1 2,...}.
n 5\ eg e{l+1,1+2,...}

The corresponding eigenfunctions, R,,; are of the form

Rnl(r) = pleip/QFnl(p)
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where p = 27;1222 r, and F,; is a polynomial.
In full, then, the solutions of the eigenvalue problem Hv = Ev are

1/)(7’a9a¢) = Rnl(r)}/lk(ead))
where
1=0,1,2,...; ke{-l,—-l+1,....0}; ne{l+1,1+2,...}

and the eigenvalues are

(7.11)

n?’

me*Z2\ 1
E (:En):—( o2 )

So we see that the hydrogen atom has an infinite number of bound states
below the essential spectrum (which starts at zero), which accumulate at zero
(this result is obtained in Section 8.3 by a general technique, without solving
the eigenvalue problem). The ground state energy, attained when | = k =
0,n =1, is By = —me*Z?/2h%. An easy count finds the degeneracy of the
energy level E,, to be

n—1

> o@I+1)=n" (7.12)

=0

Finally, we note that the expression (7.11) is in agreement with the em-
pirical formula (“Balmer series”)
1 1
2 2)'

TLf n;

AE = R(

Here 1 < ny < n; are integers labeling the final and initial states of the atom

in a radiation process, R is a constant, and AFE is the difference of the two
energy levels. This formula predates quantum mechanics, and was based on
measurements of absorption and emission spectra.

7.4 The Harmonic Oscillator
The Hamiltonian of the quantum harmonic oscillator in r dimensions is

h? I & oo
Hh0:72mA+2m;wi:ci,
1=

acting on the space L?(R"). By Theorem 6.18, o(H) consists of isolated eigen-
values, increasing to infinity. We will solve the eigenvalue problem explicitly
for this operator.
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Theorem 7.5 The spectrum of Hy, is

O'(H}w) = {zr:hwz(nl—i— 1/2) | n; = 0,1,2,...}.

i=1

To prove this result, we derive a representation of the operator H which
facilitates its spectral analysis. It also prepares us for a similar technique
we will encounter in the more complex situation of second quantization and
quantum electrodynamics (see Chapters 20 and 21). We introduce the creation
and annthilation operators

1 1

(mwjz; +ip;) and aj :=

= 2mhs, (mwjz; —ip;). (7.13)

aj'

These operators are adjoint of each other (for the definition of the operator
adjoint to a given operator see Definition 25.23) and they satisfy the commu-
tation relation

[a;, aj] = 6i;. (7.14)

Using that H = Y0 | ( — W2 4 ymw?z?), the Hamiltonian H can be

=1 2m T x4
re-written in terms of a; and a;’s as follows:

T
. 1
Hy,o = Zhw (ai a; + 2) . (7.15)
i=1
We say that this expression is in normal form because a* appears to the left

of a. Now, we are ready to prove Theorem 7.5.

Proof (of Theorem 7.5). First we find the ground state and ground state
energy of Hp,. We define the particle number operators

. *
N; :=aja,

so that, by the expression (7.15),
Hy, = ihwi(Ni + 1)
i=1 2"

Now, because a} is the adjoint of a;, N; are non-negative, IN; > 0:

(v, Nivy) = laiv|* = 0

for any v. Therefore the ¢ with the smallest eigenvalue, Y ;_; ;hwz (i.e. the

one that minimizes the average energy, (¢, Hpot)), satisfies N;¢» = 0, Vi,
which holds if and only if a;2) = 0 Vi. These equations,

a;) = (mw;z; + ho/0x;)Y = 0,

1
\/Qmﬁwi
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can be easily solved, giving the unique (up to a multiplicative constant which
we denote ¢) family of solutions

Voi () := ce” /20

We choose ¢ to have 1; normalized as [|1)o;|| = 1 which gives ¢ := (2rmhw;)~ /4.

To find the (normalized) ground state of Hy,, we have to multiply these func-
tions to obtain
Yo 1= H(Qﬂmhwi)il/zleim Limy i /2h, (7.16)

i=1

This is the ground state of Hj,, with the ground state energy > ., éﬁwl
To find the exited states we observe that (7.14) imply that the operators
N; satisfy the relations

Niai = (J,Z(]Vz - 1), (717)
N;af = af(N; + 1). (7.18)

The commutation relation (7.18) implies N;(af)"™ = (a})™(N;+n), which gives
N;a*po = a1 and in general

Ni(ai)" o = ni(ai)"¢o.
Thus ¢,, = (af)™y is an eigenfunction of N; with eigenvalue n; and
therefore ¢n = [[;_;(a})™ ¢y is an eigenfunction of Hp, with eigenvalue
Sty hwi(ni + ).
Problem 7.6 Show that ||¢n|* = |c|* ]i_, n;!. Hint: write
lénll* = (Yo, [Ti—; (ai)™ (a})™i1)o), then pull the a;’s through the a}’s (includ-
ing the necessary commutators) until they hit ¢y and annihilate it.

So ¢ =[], \/:”! (@)™ o, n := (nq,...,n,), is a normalized eigenfunction
of Hp, with eigenvalue y_;_; hw;(n; +1/2).

We now show that these are the only eigenfunctions. To simplify the
notation we do this in dimension 1, i.e. for » = 1. It follows from the
commutation relation (7.17) that Na™ = a™(N — n) (this is adjoint of
N(a*)™ = (a*)"(N +n)). Hence if ¢ is any eigenfunction of N with eigenvalue
A > 0, then

Na™p = (A —m)a™ . (7.19)
If we choose m so that A —m < 0 we get a contradiction to N > 0 unless
a™) = 0. Let j be the largest integer s.t. a’+y) # 0 and a1y = aal?yy = 0.
This implies
al ) = ey (7.20)
where ¢ # 0 is a constant. Hence by Ny = 0, (7.20) and (7.19), we have
0 = Na’yp = (A — j)a’+p and therefore A = j. Thus v corresponds to the
eigenvalue j. If 4 is not proportional to 1/;, then we can choose it to satisfy
(1,1;) = 0. However, by a/1) = cipg and 1; = (a*)71)g, we have that (1, 1;) =
(a7, o) = c||1o]|? # 0, a contradiction. So we are done.
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In the proof we obtained the following result

Theorem 7.7 The eigenfunctions of the operator Hy, corresponding to the
eigenvalues Y., hw;(n; +1/2) | n; =0,1,2,..., are

T

Yo = [[(1/V/ni) (@)™ o, mi=(n1,...,n,), (7.21)

=1

with o given in (7.16) and af the first order differential operators defined in
(7.13).

Remark 7.8 One can extend the last part of the proof above to show that
any function f € L*(R") can be written as

F) =Y entn=eal] ) @000

n n

Hence the set {1y, } form an orthonormal basis in L?(R") and the space L?(R")
is isometric to the space F(") := ©nzoClhym, where Cf . is equal to {0} for
n = 0and to C"/S, for n > 1. Here S, is the symmetric group of permutations

of n indices.

Remark 7.9 Since v is positive and normalized, [ g = 1, the operator U :
f — g - f maps unitarily the space L?(R", d"z) into the space L*(R", ¢2d"z).
Under this map the operator Hy, is mapped into L := UHU ! acting on the
space L*(R",13d"z). We compute

. i
L= ; W=, On, +wjaj) s, (7.22)

The operator L, with A = 1, 2m = 1, is the generator of the Ornstein-
Uhlenbeck stochastic process (see [135]).

Problem 7.10 Find the ground state energy of the ideal quantum gas in R3,
with the Schrédinger operator given by (7.56), with potential U(y) = |y|?,
for (a) n = 27 identical spinless fermions and (b) n = 12 bosons (in terms of
the one-particle energies).

7.5 A Particle in a Constant Magnetic Field

Consider a charged quantum particle moving in a constant magnetic field, B,
with no electric field present. According to (4.15), the quantum Hamiltonian
of such a system is
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H(A) = an (p—eA)?, (7.23)
acting on L?(R?), where A is the vector potential of the magnetic field B and
therefore satisfies
curlA = B. (7.24)
Recall that the corresponding Schrodinger equation has the gauge symmetry
H(A+Vx) = "X/ (A)eiex/, (7.25)
We fix the gauge by choosing a special solution of equation (7.24). A
possible choice for A is
Al(x) = ;B X . (7.26)

If, we chose the x3 axis along B so that B = (0,0,b), then A’ becomes A’(z) =
5(7502, x1,0). Another possibility, again supposing B = (0,0, b), is

A" (z) = b(—x2,0,0). (7.27)

Problem 7.11 Check that both (7.26) and (7.27) yield the magnetic field B,
and that the two are gauge-equivalent.

Note that if the magnetic field is directed along the z3 axis, i.e. B =
(0,0,b), then H(A) is of the form

1
H(A)=Ha+, pj, (7.28)

where the operator H 4 acts only on the variables x1 and x5 and is of the form

Z —ed)? =—_ Ay, (7.29)
T 2m

where Ay 1= V4 V4, with V4 := V—ieA/k, on R2. We say that the magnetic

field is perpendicular to the plane (i.e. along the x3—direction).

Problem 7.12 Prove (7.28) - (7.29).

The spectrum of the operator H(A) in (7.28) can be found by separation of
variables:
o(H(A)) = o(Ha) + [0, 00),

where [0, 00) is the spectrum of 21 p3. Thus it suffices to find the spectrum of
m
Hy.

From now on we deal with the operator H4 in 2D, acting only on the vari-
ables z; and zg. Let wyp := ff; denote the cyclotron frequency (the frequency
of the classical circular motion of a particle of charge e in a constant magnetic
field of magnitude b). We have
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Theorem 7.13 The spectrum of Ha consists of the eigenvalues
1
hwb(n+2), n=0,1,.... (7.30)

with infinite multiplicity. (These eigenvalues are called Landau levels.)

Proof. We may introduce the harmonic oscillator annihilation and creation
operators, o and o, with

o= h[(VA)l + i(VA)g], o = FL[—(VA)1 + i(VA)g], (7.31)

where V4 := V —i7 A(x). These operators satisfy the standard commutation
relations:

[a, ] = 2ehcurl A = 2beh. (7.32)

Indeed, 512 [a,a*] = [(VA)l,i(VA)g] + [i(VA)g, —(VA)l] = 22(81142 - 62141).
The operator H 4 can be expressed in terms of these operators as

1
Hy = o (o« + beh). (7.33)
Indeed, za*a = —(Va)? — (Va) — i[(Va)1,(Va)2] = —Aa — be/h. The

the argument used above for the standard harmonic oscillator shows that the
spectrum of H 4 consist of the eigenvalues (7.30).

Problem 7.14 Prove (7.32), (7.33) and that (7.30) are the eigenvalues of
Hy.

Now, we show that the eigenvalues (7.30) have infinite multiplicities. First,
we note that the gauges (7.26) and (7.27) become

A(z) = ;bxi, 2= (—a31), A'(2) = b(—22,0).  (7.34)

We find the eigenfunctions of the operator Ha/, with A’ given in (7.34). First
we write the annihilation operator, «, given in (7.31), explicitly as

= b = 1
a =2h0 + 262, 0:= 2(8I1 +i0z,), 2= a1 + ixo. (7.35)
Next, a straightforward computation shows that

b

e %9 + 42z>e*2%\2\2 =d. (7.36)

Problem 7.15 Prove (7.35) and (7.36).
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Hence ¢ solves the equation a¢ = 0 iff f(z) = ei’§|z|2¢> solves the equation
df = 0. The latter equation implies that f is a holomorphic function. Hence

. . : h
.the eigenspace of the operator H 4/ corresponding to the lowest eigenvalue "3*
is

Vo = {f(z)eilbz‘z‘2 : f is a holomorphic function s.t.

F(z)em = e L2(R2)). (7.37)

Vb is the eigenspace corresponding to the lowest eigenvalue h;”’ . It is called
the zeroth Landau level subspace. Higher Landau level subspaces are obtained
by applying powers of the creation operator a* to Vj: the eigenspace corre-
sponding to the eigenvalue fiwy(n + é),n > 1, the nth Landau level, is given
by

Vn = (Oé*)nVO.

Clearly, all these subspaces are infinite dimensional. This completes the proof
of Theorem 7.13

To find a convenient basis in the infinite dimensional space Vj, we use the
creation and annihilation operators

Bi=nh[(ma)1 —i(ma)e], B = h[—(ma)1 —i(ma)2], (7.38)
where m4 :=V + ng(x) = V4. We can compute as before

B = 2h0 + bez, B* = —2h0 +

, be... (7.39)

2

Problem 7.16 Prove (7.39), that [3, 3*] = 2beh and that «,a* and 3, 5*
commute mutually.

Now, the equations atyyg = 0 and By = 0 have the solution ¥y := e*Z§|Z|2,
unique up to multiplicative constant. Applying (5*)™ to this solution, one
generates an orthogonal basis in V5. An orthogonal basis in V,, is given by
(B )™(a*)"po,m =0,1,....

The elements, 1y, := (8*)™ 1, m = 0,1,..., of the basis in V; are eigen-
functions of the angular momentum operator

Ly = ZT1p2 — T2P1-

Problem 7.17 Prove this. Hint: show that (a) a*a — 3*8 = —2ebLs, (b) in
the z variables Ly = h(z0 — 20), (¢) ¥m = emz™1)o, for some ¢,,. The last
two properties give L3, = hmi,,.
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Problem 7.18 Show that Schrédinger operator H4 in the first gauge in
(7.34) is of the form

1
2% (23 + x3) — ebLs)] (7.40)

1
Hy=, i+t

2m

where L3 = x1p2 — xop; is the third component of the angular momentum
operator. For the second gauge, the corresponding Schrodinger operator is

1
Hyn = 2m[(pl + ebra)? + p3]. (7.41)

To analyze H 4, we apply the Fourier transform to only the first variable
(z1 + k1). This results in the unitarily equivalent operator

- 1 mw? 1
Hyw = 2 b kp)? 7.42
ar=g Prt (@2t k) (7.42)
where, recall, wy = emb is the cyclotron frequency, and k; acts as a multi-

plication operator. We see that H4~ acts as a harmonic oscillator (centred
at 7er k1) in the variable x2, and as a multiplication operator in k;. In the
following problem you are asked to determine the spectrum of this operator.

Problem 7.19

1. Show (7.41) and (7.42), and use (7.42) to prove directly that the energy
levels of H» are given by (7.30).
2. Show that the corresponding eigenfunctions are of the form

Voo (1, 22) = (2mh)~1/2 / ek f (k) (0 4 Ky Jeb)dky

where ¢,, is the nth eigenfunction of the harmonic oscillator and f is an
arbitrary function from L?(R).

Problem 7.20 Let A be a vector potential with zero magnetic field, curlA =
0. Show that H(A) is unitarily equivalent to H(A = 0), i.e. there is a unitary
operator U s.t. H(A) = U*H(A = 0)U. (Hint: Show that there is a function x
s.t. A = Vyx and that the gauge transformation, ¢ (z) — eiX(I)w(:U) provides
the desired unitary operator.

To conclude this subsection, we consider the simple but instructive case of
a particle on a flat torus, say

T = RQ/,C, L= {m1L1€1 + moloes : my,mg € Z} for some Ly, Ly > 0,

with no external electrostatic potential, V' = 0, and with a constant vector
potential, A = (A1, A2). The corresponding Schrédinger operator is still (7.23),
acting on
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L*(T?) == {¢ € Ljte(R?) 1 ¥(z + Lie;) = ¢(2), i =1,2}

(or on L%(£2), where (2 is a fundamental cell of £, with the domain H?(2),
with the boundary conditions (7.3)). Here e; := (1,0), ez := (0, 1). Since B =
curl4 = 0, on L?(R?) the Schrédinger operator (7.23) with such an A is gauge
equivalent to the one without the vector potential, i.e. H(A = 0) = ,! |p|*.
But not on the torus. The gauge transformation,

U(x) — (),

which removes A on L?(R?) (see Problem 7.20), does not leave L?(T?) invari-
ant. Hence, though the magnetic field corresponding to A is zero, B = curl4 =
0, the operator H(A) is not unitary equivalent to H(A = 0). In particular,
the spectrum of H(A) depends on A: it is straightforward to check that the
eigenvalues are

1 <~ 27k 2 2
En(4) =, ;( L ) (nj —@5/%0)",
for n; > 0, where @, := A;L; and @ := 2?.

Thus even for zero magnetic field, the vector potential, which is classically
irrelevent, affects the Schrédinger operator. This surprising result is due to
the subtle topology of the torus. T? is not a simply connected space: one could
draw two (classes of) loops on T? which cannot be contracted to points (or to
each other), say, v1(¢t) := (L1t,0) and ~2(¢) := (0, Lat),0 < t < 1 (remember
that for each 4, the points and ~;(0), and v;(1) are identified by taking the
quotient by £). Topologically, T? is equivalent to a hollow donut in R® and
the loops above, to the loops around the two ‘holes’ of the donut. Assuming
that the magnetic field B is confined to these holes, we see that though it is
zero on the donut’s surface, its vector potential cannot be gauged away. But
what really matters are the magnetic fluxes through the holes, * [ D, B ’, where
D; is a cross-section of the i-th hole, which, by the Stokes theorem, are

/ Ai = Aij = ¢j-
oD;

Only when these fluxes are integers times the ‘flux quantum’ @y does the
vector potential A have no effect on the spectrum of H(A).

Remark 7.21 Mathematically, A is a flat connection on a line bundle over
the torus T? (see e.g. [83]) and ei®i are holonomies for this connection (cf.
Section 7.6).

7.6 Aharonov-Bohm Effect

Consider a charged quantum particle in 2 dimensions moving in external elec-
tric and magnetic fields with the potentials V' and A, respectively. Let H(A)
denote the corresponding Schrodinger operator, i.e.
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FL2
HA)=—-_ A V
(4) om DA TV
where, recall —h2A, = (—ihV — eA)?. Furthermore, we assume that V is

radially symmetric, V (z) = U(|x|), and A is of the form!
Az) = f(jz|)zt/|z|?, xt = (—x, 11). (7.43)

Note that divA = 0, and B = curlA = 2g + rg’, where g(r) := f(r)/r%
(Indeed, curlA = 29 + (z121/r + 22w2/7)g’ = 29 + rg’.) The operator H(A)
with A and V specified above will be denoted by Hy.

The computation above implies that, for f(r) = b (a constant), the
magnetic field is B = 27bdy, with 27b = the total flux of B through R?:
fR2 B = 27b.

Using that (p — eA)? = [p|> — 2eA - p + |eA|?, where, recall, p :== —ihV,
and passing to polar co-ordinates, (r,6), we find that

(—ihV — eA)® = —12A, + :2 (1202 + 2e £ (r)(ihdy) + €2 12(r)

1.
= KA, + 2 (ihdp + ef(r))?,

where A, is the radial Laplacian, A, := i&«r&«. Using this, we obtain
“om o (100 + ¢ F)2+U(r).

Expanding in a Fourier series, ¥(r,0) = >, -, Y (r)e’™? and using separa-
tion of variables, we see that

Hf = @meZHf,m;

where Hyp i= — 1" Av+ 1 (=hm + ef(r))? + U(r). This yields

T 2m 2mr?
o(Hy) = Umo(Hym).
Thus, writing f(r) = ZO" we have Hy = Hy_poje = OmezHa,m, where

h? h?
Hoa,m = Ar +

2m 2mr? (m —a)* + U(r).

We see that H,, is periodic in a: at each period, every H, ,, in the decompo-
sition Hy, = ®mezHq m moves one step down resulting in

Heoy1 = Hag.

! The vector field A(z) is said to be spherically equivariant in the sense that it
satisfies the equation A(gz) = gA(z) for any g € O(2).
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(The corresponding eigenvalues move accordingly, which is referred to in the
literature as the spectral flow.)

The general theory developed in Section 6.5 (with the caveat that special
care be taken of the singular potential 272; (m — «)?), implies that the spec-
trum of H,, consists of: the continuum [0, c0) and possibly, depending on U (r),
negative eigenvalues, if U(r) — 0 as r — oo; and of isolated eigenvalues with
finite multiplicities accumulating at oo, if U(r) — oo as r — oo. Clearly, these
eigenvalues depend on the magnetic flux [ B = 2wha/e, even though there
is no magnetic field in the physical space R?/{0} in which particle moves.
Moreover, one can show that in the first case, the quantities characterizing
the essential spectrum, such as the scattering matrix, also depend on a.

Mathematically, this is not surprising as the space R?/{0} is not sim-
ply connected (it has a ‘hole’ at x = 0) and there are vector fields A, with
zero magnetic fields, which are not gauge equivalent to 0 (flat connections in
mathematical language). Such vector potentials are called topological vector
potentials, and the corresponding fluxes (in the ambient space), topological
fluxes.

Note that we have already encountered the effect of the topology of the
physical space on the properties of Schrédinger operators at the end of Section
7.5, where we considered the movement of a particle on a torus with a constant
vector potential having zero magnetic field.

The set-up above can be generalized to several topological fluxes: H, =
H(A), a:=(ai,...,q) for A given by

T

Alz) =Y hj (& = a;) (7.44)

- | —a;|?’

where, recall, 2+ := (—x9,71), with the magnetic field given by B =
21" 3™, ;6,,. (One can also take individual vector potentials in different
gauges.) In this case, the operator H, does not decompose into one-dimensional
ones, but the conclusions reached above about the spectrum of H, still hold
for H,. Furthermore, H, is periodic in each a;:

Ha-i—ei = ch

where {e;} is the standard basis in R". In particular, we can think of « as
varying in the standard flat torus T" :=R"/Z".

Remark 7.22 The structure of the Aharonov-Bohm magnetic potential (7.43)
with f(r) = ha/e, or (7.44), is especially simple in the complex representation.
For this, we go from the real vector variable x = (21, 2) to the complex one
z = x1 +ix2 and from the real vector potential A = (A1, A2) to the complex
function A®:= A; —iAz. Then, e.g. (7.43), with f(r) = hia/e, becomes

Al(z) = —(ha/e)i/ . (7.45)
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7.7 Linearized Ginzburg-Landau Equations of
Superconductivity

One of the greatest achievements in condensed matter physics is A.A. Abrikosov’s
discovery of vortex lattice solutions of the Ginzburg-Landau theory of super-
conductivity (Abrikosov was awarded the Nobel prize for this discovery). We
formulate the key mathematical problem of Abrikosov’s paper.

Let £ be a Bravais lattice in R?; i.e. for some basis {wy,ws} in R?,

2
L= {a:Zmiwi:mi €Z}.

i=1

Let Ay stand for the covariant Laplacian defined as Ay := (V — iA4)2. The
Abrikosov problem can be formulated as the eigenvalue problem

—Agtp = K2, (7.46)

where A is a vector potential of a constant external magnetic field b, curlA = b,
k > 0 is a material constant (different for different materials) and v is a twice
differentiable function satisfying

Y(x+s) = eigS(”;)z/J(x), (7.47)

for some functions gs € C?(R%; R) and each s € £. We can fix the gauge as

b b
Alw) = jot, gulw) = s ot (7.48)
where 21 = (—29,21) for x = (21, 22), and c, satisfies

1
Cs+t — Cs — Ct — 2bs/\ﬁ € 27,

(For more details and for the relation of the Abrikosov problem to equations
on line bundles see [268].)
Let {2 be a fundamental cell 2 of the lattice £, say

2 1 1
.= Zaiwi|—2<ai§2 .
i=1

(7.47)-(7.48) are consistent with the fact that v is a single valued function
if and only if the magnetic flux, b|f2|, through the fundamental cell §2 is
quantized:

b|f2| = 2mn, (7.49)

2 A fundamental cell of £ C C is a subset £2 C C such that (i) 2N (R2+s) =0 Vs €
L/{0} and (ii) Usecf2 = C. (The second property says that {2 tessellates C.)
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for some integer n. (Performing translations by s and then by ¢ should lead to
the same value as by ¢ and then by s. For more details see Supplement 7.9.)
This is the celebrated quantization condition.

To finish the formulation of the eigenvalue problem (7.46)-(7.47), we have
to define the space on which A4 acts, and its domain. We define L2 (R?) to
be the space of locally L? functions satisfying the gauge-periodicity condition
(7.47)-(7.48). It becomes a Hilbert space under the inner product of L?(£2) for
an arbitrary fundamental cell {2 of the lattice £. We consider the eigenvalue
problem (7.46)- (7.47) on the corresponding Sobolev space HZ. (R?) of index
2.

A key step in proving the existence of Abrikosov vortex lattice solutions
is the following

Theorem 7.23 The values of b for which the problem (7.46)- (7.47), with
the quantization condition b|{2| = 27n, has a non-trivial solution, are b =
k?/(2k +1), k= 0,1,2,---. Furthermore, for the largest value b = k2, it has
exactly n linearly independent solutions.

Proof. One can show that the operator Ay with domain HZ  (R?) is self-
adjoint. We denote it by H. By Theorem 7.13, with & = 1,m = 1/2 and
e = 1, the spectrum of H is given by

o(H)={(2k+1)b: k=0,1,2,...}.
Moreover, the eigenspace of the lowest eigenvalue satisfies
Null(H — b) = Null a. (7.50)

Now, identifying x € R? with z = x; +izs € C, the arguments of the proof of
Theorem 7.13 imply that

Null & = {t)(2) := f(z)e 41l | fis holomorphic,  satisfies (7.47)-(7.48)}.
(7.51)

Hence we look for ¢(z) in the form
P(z) = ei(zz_lzlz)@(z), (7.52)

where O(z) is an entire function, and v satisfies (7.47)-(7.48).

Viewing L as a subset of C, and using the rotation symmetry, if necessary,
we can assume that £ has a basis of the form {r,r7}, where r is a positive
real number and 7 € C,Im7 > 0.3 Setting r = 1 (by rescaling) and taking
¢r = ¢ = 0, the quasiperiodicity (7.47)-(7.48) of ¢ transfers to © as follows:

3 We identify = € R? with z = 1 +iz2 € C, and view L as a subset of C. Then set
T = TT, for a basis r,r’. Although the basis is not unique, the value of 7 is, and it
is used that as a characterization of the shape of the lattice. Using the rotation
symmetry we can assume that if £ has as a basis {r,r7 }, where r is a positive
real number and 7 € C,Im7 > 0.
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O(z+1) =06(2), (7.53a)
O(z + 1) = e~ 2Tz =TT 4), (7.53b)

To complete the proof, we now need to show that the space of analytic
functions which satisfy these relations form a vector space of dimension n. The
first relation ensures that @ has an absolutely convergent Fourier expansion
of the form

oo

Q(Z): Z CkeZTrikz.

k=—o0
The second relation, on the other hand, leads to a relation for the coefficients
of the expansion:

Chogn = einw'reriﬂ"er. (754)

That means such functions are determined solely by the values of cg,...,cn_1,
and therefore form an n-dimensional vector space. This completes the proof
of Theorem 7.23.

Problem 7.24 Prove (7.53) and (7.54).

Holomorphic functions satisfying (7.53) are called the theta functions. The
proof implies also the form of the corresponding eigenfunctions: (7.52).

Historical Remark. Abrikosov found the vortex lattice solutions solutions us-
ing the linearized Ginzburg-Landau equations, and taking into account the
nonlinearity in the first order of perturbation theory. For this, he considered
the eigenvalue problem (7.46)- (7.47) in the case n = 1. In this case, the
space (7.50) is one-dimensional and spanned by the function (setting b = 1
for simplicity)

[o%S) k—1
W= e;jacz(acﬁ-iacz) E Ck€2wik(zl+i12), Cp = cetkmT H eiZmut (755)

k=—o0 m=1

This is the leading approximation to the Abrikosov lattice solution ([6]). The
normalization coefficient ¢ cannot be found from the linear theory and is
obtained by taking into account nonlinear terms by perturbation theory (see
[294] and references therein for a rigorous treatment and [146, 267] for a
review).

7.8 Ideal Quantum Gas and Ground States of Atoms

Consider a system of N identical particles not interacting with each other in
an external potential U(z). It is called the ideal quantum gas. The Schrodinger
operator for such a system is
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N

Higas = Z(—:mAmj +U(xy)). (7.56)

Jj=1

Assume the Schrodinger operator 725; A, + U(z) has an isolated eigenvalue
at the bottom of its spectrum — the ground state energy. In this case, so does
Higas and, for bosons, its ground state and ground state energy are given by
@(1‘1, c. ,l‘n) = ¢1(l‘1) .. .¢)1(1‘N), and

EN) = Ney, (7.57)

igas

respectively, where where ¢(x) and e; are a ground state and the ground
state energy of the Schrédinger operator — 2571 Ay +U(x).

Problem 7.25 Prove the above statement.

On the other hand, for spinless fermions, for N > 2, the ground state
of the operator Hig,s cannot be given by the product Hf[ o1(zj). A little
contemplation shows that it is given by the anti-symmetric product,

N
N bi(z5),

of N bound states, ¢;(x), of the operator Higas, corresponding to the N low-
est energies ey, ..., ey, counting multiplicities. In this case, the ground state
energy, EN)

igas’

of Higas is given by

N

Ei(ggs) = Z €j

1

Problem 7.26 Prove the above statement.

This is, in general a much higher number. For example, for non-degenerate
eigenvalues converging quickly to 0, this number remains O(1) for large N.

Now we consider the most important case of spin ; Recall that the state
space of a system of N fermions of spin é is given by (4.31),

N
Hpermi = [\(L*(R®) @ C?). (7.58)

Hence, after separation of spin variables and for V > 2, the ground state of
2
the operator Higas 1= Zf[(f M Ay, +U(zy)) is given by the anti-symmetric

product,
N/2

I\ (B25-1(25-1) b2 (225)),

1
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(if N is even) of & bound states, ¢;(z), corresponding to the & lowest ener-

gies, say E1,..., En/s. (The case of N odd requires a slight modification.) In
this case, the ground state energy of Hig,s is given by El(gas) =2 Zf[/ 2 Ej, so
that

N/2

Higas > 2 Z Ej. (7.59)
1

Now we apply the above analysis to an estimation of the ground state
energies of atoms. We have shown in Subsection 5.3 that the Schrodinger
operator, H,;, of the atom (or ion) with N electrons and an infinitely heavy
nucleus of the charge Ze is estimated from below as

Hay > H,, (7.60)
where HE, & := 21 (=5 As, — |6IZ| ). The latter operator is the quantum
J

Hamiltonian of the ideal gas of N electrons in the external potential — | |
created by the nucleus. If we ignore the fact that the electrons are fermions,

then we have according to (7.60), (7.57) and (7.11),

2m(e?Z)?

Hat Z -N h2

(7.61)

Now, we estimate H,; from below using the fact that the electrons are
fermions. Then by (7.60) and (7.59), Hat > H{,, > 22?7:/12 E;, where the E;
are given by (7.11). To estimate the r.h.s. we should take into account the
multiplicities of the eigenvalues. We relabel {E;,j =1,2,...} as {Egm, m =
1,2,...,mpk = 1,2,...}, with Ej ,, distinct for different k, and equal for
the same k. Thus N independent particles, in the 1owest energy state, occupy

the K lowest energy levels of the operator — i Ay — where K is defined

2m |a:| ’

by Z{( my = N/2. The corresponding energy of Higas is

K

El(gas = 2kaEk mis with ka = N/2
k=1

We know from (7.11) and (7.12) that Ej ,, — mghf k=2 with the multiplicities

my, = k2. Then the previous two equations yield K ~ N'/3 and
EN) © _7°K ~ —Z>N'/3,

For large N, this gives a much higher number than the one on the r.h.s. of
(7.61).

Note that it is easy to give a realistic estimate of the sum 2 ZIN E;, when
_2h7i Ay — emz However, if one wants
to obtain a more realistic estimate on the ground state energy of (5.10),

E; are the eigenvalues of the operator
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then one should not throw away the electron repulsion. To keep the problem
manageable, one replaces it by some mean field term (see Section 14.1). In

N
this case we want to bound ) ? E;, where E; are eigenvalues of the effective
one-particle operator containing the mean-field potential. This is substantially
more difficult ,and to do this, one uses the Lieb-Thirring inequalities.

Problem 7.27 Find the ground state energy of Higss (in terms of the one-
particle energies) for (a) 11 identical fermions of spin 3/2 on the subspace
corresponding to a Young diagram with with columns of lengths 4,4, 2, 1; (b)
17 identical fermions of spin 1/2 on the subspace corresponding to a Young
diagram with with columns of lengths 10, 7.

7.9 Supplement: £—equivariant functions

Consider the two dimensional Bravais lattice £ = {mw1 + nwa : m,n € Z},
where (w1, ws) is some basis in R2. A function ¥ and a vector field A are said
to be L—equivariant if and only if there are differentiable functions, g, : R? —
R, s€ L, s.t.*

U(z +s) = e 9@ (z) and A(z + s) = A(x) + Vgs(z), Vs e L. (7.62)
Since T8 is a group, the family of functions gs should satisfy
gs+t(z) — gs(z +t) — gi(x) € 27Z, s, t € L. (7.63)

This can be seen by evaluating the effect of translation by s+t in two different
ways (as U((x +t) + s) and ¥(z + (t + 8))).
We list some important properties of gs:

o If (¥, A) satisfy (7.62) with g,(z), then T7*"9¢(¥, A) satisfies (7.62) with
gs(x) — gL(x), where
gs(x) = gs(x) + x(x + 5) = x(x). (7.64)

e The following functions satisfy (7.63):

b
25/\:I:—|—cs, (7.65)

where b satisfies the flux quantization relation b|2| € 27Z and c; are
numbers satisfying

go(x) =

1
Cott — Cs — Cp — 2bs At € 2n. (7.66)

* Eq. (7.62) implies that g,(z) = f;o As(y)dy, for some g, where As(z) := A(z +
s) — A(x). Since curlds(z) = curlA(z + s) — curlA(z) = 0 Vs € L, the integral
f;o As(y)dy is independent of the path between xo and z. For a constant magnetic
field vector potential A’(z) = bz", where z* = (—z2,71), this gives gi(z) =
s A @ + cs, where ¢, is a constant of integration (cf. (7.65) below).
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e Every exponential g5 satisfying the cocycle condition (7.63) is equivalent
to the exponential (7.65) with (7.66).

e The exponentials g, satisfying the cocycle condition (7.63) are classified
by the irreducible representation of the group of lattice translations.

Indeed, the first and second statements are straightforward. For the third
property, which was shown by A. Weil and generalized by R. Gunning, we
refer to [144].

We show that under (7.62) the flux of the magnetic field is quantized:

/ curld € 27Z. (7.67)
Q

Indeed, let, as above, {2 be a fundamental cell of the lattice £. Take 2 :=
{Zf aiw; : —3 < a; < 5 }. We compute, by Stokes” theorem

/curlA:/ A.
I7) a0

Breaking the integral on the r.h.s. into the integrals over the four sides of
the parallelogram (2 and using that due to (7.62), the sum of integrals over
parallel sides give gu, (w1) — guw, (0) and gq,, (0) — gu, (w2), which yields [,, A =
Gun (W1) — G (0) — (g, (w2) — guy (0)). By (7.63), this implies (7.67).

If we plug A(x) from (7.48) into this formula, we find the flux quantization
relation

b|2| =2mn, n€Z.
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Bound States and Variational Principle

In this chapter we develop powerful techniques for proving existence of bound
states (eigenfunctions) corresponding to isolated eigenvalues. We also give
estimates of their number.

8.1 Variational Characterization of Eigenvalues

We consider, for the moment, a self-adjoint operator H, acting on a Hilbert
space H. The main result of this chapter is the following important charac-
terization of eigenvalues of H in terms of the minimization problem for the
“energy” functional (v, H1).

Theorem 8.1 (1) The Ritz variational principle:

inf ,HY) =info(H).
YED(H), IWH:lW) v) (H)
(2) The left hand side has a minimizer v if and only if HY = A\, with
A:=info(H).
(3) If there is a ¢ € D(H) (called a test function) with ||| = 1 and

(¥, HY) < inf 0ess(H),
then H has at least one eigenvalue below its essential spectrum.

As an example application of this theorem, we consider the bound state prob-
lem for the Hydrogen atom. The Schrédinger operator for the Hydrogen atom
is

h2 2

H=-_"A-"F

2m ||
acting on the Hilbert space L?(R3) (see Section 5.3). Take the (normalized)
test function (z) = \/p3/me 2| for some p > 0 to be specified later and
compute (passing to spherical coordinates)

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_8


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59562-3_8&domain=pdf

104 8 Bound States and Variational Principle

b = A /| I

3 00
= S u 47T/ e"WR2dr — e 2H 47T/ e~ dy.
2m s 0 m 0

To compute the above integrals, note

o] d2 [e’e}
/ e~ r2dy = ) / e “dr
0 da? Jg
oo d oo
/ e *rdr = — / e”*dr.
0 da Jy

Since [;°e™*dr = a7, we find [[ e r2dr = 207%, and [T e rdr =
a~2. Substituting these expressions with a = 2y into the formula for (¢, Hy),
we obtain

and

2

K
(W, Hy) =, 1" =€’

The right hand side has a minimum at p = me?/h?, which is equal to

<1/Ja Hw>|,u:m62/h2 = 9p2
Since oess(H) = [0,00) (according to Theorem 6.16, which can be extended
to cover singular potentials like the Coulomb potential — see Problem 6.17
in Section 6.5) we conclude that H has negative eigenvalues, and the lowest
negative eigenvalue, A1, satisfies the estimate

me4

A< —
L=""9p2

This should be compared with the lower bound

2me*

A > — B2

found in Section 5.3.

The rest of this section is devoted to the proof of this theorem and a
generalization. We begin with some useful characterizations of operators in
terms of their spectra.

Theorem 8.2 Let H be a self-adjoint operator with o(H) C [a,00). Then
H >a (ie. (u,Hu) > al|lu||? for all w € D(H)).

Proof. Without loss of generality, we can assume a = 0 (otherwise we can
consider H — al instead of H). First we suppose H is bounded (we will pass
to the unbounded case later). If b > 2||H||, then the operator (H + b)~!
positive, as follows from the Neumann series
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(H+b) ' =b'A+b"H) P =b""> (b
7=0

(see (25.42)). For all A > 0, the operator (H + A)~! is bounded, self-adjoint,
and differentiable in A (in fact it is analytic — see Section 25.9). Compute

0
oA

Hence for any 0 < ¢ < b,

(H+N)'=—-(H+)N"?<0,

b
(H+¢) ' =(H+0b)! +/ (H +X\)"2d\

and therefore (H +¢)~! > (H +b)~ > 0. Now any u € D(H) can be written
in the form u = (H + ¢)~!v for some v € H (show this). Since

(u, (H + c)u) = (v, (H +¢)"'v) >0

for any ¢ > 0, we conclude that (u, Hu) > 0 for all u € D(H), as claimed.

In order to pass to unbounded operators, we proceed as follows. Let ¢ > 0
and A := (H +¢)~!, a bounded operator since —c ¢ o(H). For any X\ # 0, we
have

A+ A= (H+co) VA= XAXH+e) Y H+c+ 2. (8.1)
Hence for A > 0, the operator A + X is invertible, and so o(A) C [0,00) (in
fact, one can see from (8.1) that A + ) is also invertible if A < —¢~1, and
so o(A) C [0,¢7Y]). By the proof above, A := (H + ¢)~! > 0. Repeating the
argument at the end of this proof, we find that H + ¢ > 0. Since the latter is
true for any ¢ > 0, we conclude that H > 0. [J.

Theorem 8.3 Let S(v) := (¢, HY) for ¢ € D(H) with ||¢| = 1. Then
inf o(H) = inf S. Moreover, A := inf o(H) is an eigenvalue of H if and only if
there is a minimizer for S(v) among ¢ € D(H) with the constraint ||| = 1.

Proof. As in the proof of Lemma 25.21, we compute, for v € D(H) and z € R
satisfying z < inf S =: p,
I(H = 21)¢1* = ((H - 21)¢, (H — 21)y)

I(H = )9 l” +2(1 = 2)(0, (H = p)b) + [ = 2|2 ||9]%.
(8.2)

Since (¢, (H — p)) > 0, this gives

I(H = 2)]l = | = 2[[[¢]]- (8.3)

As in the proof of Lemma 25.21, this shows that the operator H — z1 is
invertible and therefore z ¢ o(H). Therefore inf S < inf o(H). Now let A :=
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inf o(H). By Theorem 8.2, (1, Hy)) > \||||? for any v € D(H). Hence inf S >
A =info(H), and therefore inf S = inf o(H) as required.

Now if A = info(H) is an eigenvalue of H, with normalized eigenvector
19, then

S(to) = (Yo, Hipo) = A = inf 5,
and therefore 1)y is a minimizer of S. On the other hand, if ¥y is a minimizer
of S, among ¢ € D(H), ||¢|| = 1, then it satisfies the Euler-Lagrange equation
(see Section 26.5)
S'(¥o) = 2X¢o

for some A. Since S’(¢) = 2H (see again Section 26.5), this means that g
is an eigenvector of H with eigenvalue A. Moreover,

S(%o) = (tho, Hibo) = A[thol* = A.

Since S(¢9) = inf S = inf o(H), we conclude that A\ = inf o(H) is an eigen-
value of H (with eigenvector ). O

Proof. of Theorem 8.1: Theorem 8.3 gives the proof of the first two parts of
the theorem — the Ritz variational principle: for any ¢ € D(H),

(6, H) > \ = inf o(H)

and equality holds iff Hy = A\i.

To obtain the third part of the theorem, stating that if we can find ¢ with
[l = 1 and (3, HY) < inf oes5(H) then we know that H has at least one
eigenvalue below its essential spectrum, we note that, by Theorem 8.3,

info(H)=inf S < (¢, HY) < inf 055 (H),
so A = inf o(H) must be an (isolated) eigenvalue of H. [
The variational principle above can be extended to higher eigenvalues.

Theorem 8.4 (Min-max principle) The operator H has at least n eigen-
values (counting multiplicities) below inf o.ss (H) if and only if A, < inf o.55(H),
where the number ), is given by

Ap = inf max (1, Hap). (8.4)

{XCD(H) | dim X=n} {yeX | [[4[=1}

In this case, the n-th eigenvalue (labeled in non-decreasing order) is exactly
An.

Sketch of proof. We prove only the “if” part of the theorem. The easier “only
if” part is left as an exercise. We proceed by induction. For n = 1, the state-
ment coincides with that of Theorem 8.3. Now assume that the “if” statement
holds for n < m—1, and we will prove it for n = m. By the induction assump-
tion, the operator H has at least m — 1 eigenvalues, A1, ..., A\,—1 (counting
multiplicities), all < info.ss(H). We show that H has at least m eigenval-
ues. Let V,,_1 denote the subspace spanned by the (normalized) eigenvectors
U1, ..., ¥m—1, corresponding to Ay, ..., A\p,—1. Then
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1. the subspace Vj,_1, and its orthogonal complement, V.-, are invariant
under the operator H, and
2. the spectrum of the restriction, H |VL71, of H to the invariant subspace

VT‘VJL_—l is U(H)\{Al, ey Amfl}.
Problem 8.5 Prove statements 1 and 2.

Now apply Theorem 8.3 to the operator H |VL71 to obtain

in (, HY) = inf{o(HN\ {1, ..., Amo1}}. (8.5)
{beV,t_,nD(H) | [[4]=1}

On the other hand, let X be any m-dimensional subspace of D(H). There
exists ¢ € X such that ¢ L V,,_1, and ||¢]| = 1. We have

(¢, Ho) > inf (v, HY).

-~ {veVa_\nD(H) | ll¥ll=1}

m—1

Hence for any such X

(Y, Hy) > inf (v, HY)

max >
{vex | lvll=1} {YeVi_,nDH) | ly[=1}

m—1

and therefore A, defined by (8.4) obeys

Am > inf ¥, Hip). 8.6
{weVt_,ND(H) || ||w||:1}< ) (8:6)

Since A, < inf oess(H) by assumption, and due to (8.5), we have
A= inf{o(H)\{\,. .., Am_1}} < inf oo (H) (8.7)
is the m-th eigenvalue of H. Moreover, Equations (8.5)-(8.7) imply that A,, >
/
A 'Now we show that A\, < A/ . Let 1, be a normalized eigenvector corre-

sponding to X/, and let V,,, = span{vn,...,¥m}. Then

Am < max JHY) = N
h ¢€Vm,||w||:1<1/) v

Hence A\, = A,,. Thus we have shown that H has at least m eigenval-
ues (counting multiplicities) < inf o.ss(H), and these eigenvalues are given
by (8.4). O

This theorem implies that if we find an n-dimensional subspace X, such
that
Un = sup (Y, HyY) <info.ss(H),
peX,|lv|=1
then H has at least n eigenvalues less than inf o.ss(H), and the largest of
these eigenvalues satisfies the bound
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An < .

This result will be used in Section 8.3.
There is another formulation of the min-max (more precisely sup-inf) prin-
ciple, in which Equation 8.4 is replaced by the equation

Ap = sup inf (i, H1p).

(XCD(H) | dim X—=n} {peX L | [l¥]=1}

A proof of this theorem is similar to the proof above.

The following useful statement is a simple consequence of the min-max
principle. Suppose A and B are self-adjoint operators with A < B. Denote
the j-th eigenvalue of A below its essential spectrum (if it exists) by A;(A)
(and similarly for B). Suppose also that the eigenvectors of B corresponding
to the eigenvalues A1 (B), ..., A;(B) lie in D(A). Then \;j(A) < A;(B). To see
this, let V; denote the span of the first j eigenvectors of B, and observe that
maX{wevj|”wH:1}<d),Bi/)> = /\j(B) Since V] C D(A), (84) gives

Aji(4) < max (¢, A)

= {wev; | llvl=1}
< max , By) = X\ (B).
= {yev; | nwnzl}w v =X(B)

Another useful criterion for finding eigenvalues of self-adjoint operators
goes as follows. If for some A € R and € > 0, there is a function ¥ € D(A)
such that

(A =Xl < e[y, (8.8)
then the operator A has spectrum in the interval [A — e, A+ €]:

ac(AYNA—¢, A+¢€| #0D.
To prove this statement we use the inequality
I(A = 2)7H < [dist(z, 0(4)] 7

for z € p(A), which extends the inequality (25.11). For a proof of this in-
equality see [162, 244]. Now if A has no spectrum in [A — e, A+ €], i.e. if
[A—€, A+¢€ C p(A), then

_ 1
Ia-n7<

which contradicts (8.8), since (8.8) implies ||@| < €|[(A — N\)"t¢| for ¢ :=
(4— A
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8.2 Exponential Decay of Bound States

Consider the Schrodinger operator H = fQFiA + V with the potential V :
R? — R which is continuous and decays V (z) — 0 as |z| — oo. Recall that H
is self-adjoint and its essential spectrum, o.ss(H), fills in the semi-axis [0, c0).
hence the spectrum on the negative axis consists of isolated eigenvalues of
finite multiplicities.

Theorem 8.6 If H has a bound state, ¢(z), with an energy E' < 0 (i.e. below
the ionization threshold 0), then ¢ (z) satisfies the exponential bound

/|w($)|262allldx < 00, Ya < V—E. (8.9)

Proof. Let J be a real, bounded, smooth function supported in {|z| > R}. By
the condition on the potential V| there is € = ¢(R) — 0, as R — o0, s.t.

JHJ > —eJ?. (8.10)
We assume now that V.J is supported in {R < |z| < 2R}. Let f be a bounded

twice differentiable, positive function and define Hy := e/ He™/. We compute

h2
Hf:H—2m[|Vf|2—Vf~V—v-Vf]. (8.11)

Then (H; — E)® = 0, where @ := ¢/W¥, and therefore (Hy — E)J® = [Hy, J]®.
On the other hand, by (8.11) and (8.10) and the fact that the operator Vf -
V + V- Vf is anti-self-adjoint, we have
h? 9
Re(J®, (H; — E)J®) = (JO,(H — ) [Vf]*~ E)J®)
m
> 8] J2||*.

where § := —e— F — ;‘:ﬂ SUD,cqupp 7 |Vf1?. Then the last two equations imply,
8|1J2|* < Re(JO, (Hy — E)JP) < || Jo|||[[Hy, J)2].

Now we take for f a sequence of bounded functions approximating (1 +
|22)!/2, with a < \/—F. Taking the limit in the last inequality gives (8.9). O

8.3 Number of Bound States
Let H = — QFZA + V(x) be a Schrédinger operator acting on L?(R3). Assume
V(z) — 0 as |x| — oco. In this section, we address the questions

e Does H have any bound states?
e If so, how many bound states does it have?



110 8 Bound States and Variational Principle

We begin with a very simple example. Suppose that V(z) > 0. Clearly
H > 0, and so H certainly has no negative eigenvalues. On the other hand,
Oess(H) = [0,00) by Theorem 6.16. So H has no isolated eigenvalues.

The next example is physically clear, but mathematically more subtle:

If z-VV(x)<0, ie. V(z)is repulsive,
then H has no eigenvalues.
Let us assume here that V is twice differentiable, and that V' (x), together

with «- VV(z), vanish as |x| — co. The proof of the above statement is based
on the following wvirial relation: define the self-adjoint operator

1
A= 2(x-p+p-x).

This operator is the generator of a one-parameter group of unitary transfor-
mations called dilations:

() = X2 ( )

for @ € R. Let us show formally (i.e. ignoring domain issues) that if ¢ is an
eigenfunction of H, then

(,i[H, AJy) = 0. (8.12)

Letting A be the eigenvalue corresponding to v, and using (5.3), we have

(0, ilH, AJg) = (4, i[H = A, Ap) = =2Im((H — N, Ay).
Since (H — A\)y = 0, (8.12) follows.

On the other hand, a simple computation (left as an exercise) yields

i[H, A Z—ZA—.Z‘-VV(,T). (8.13)

Therefore i[H, A] > — hm2 A by the repulsivity condition on V'(x), which implies

h2
(il Aly) >[IV >0,

a contradiction to (8.12). Thus the operator H, with V(z) satisfying x -
VV (z) < 0 has no eigenvalues.

Problem 8.7 Show (8.13).

We turn our attention now from a situation where there are no bound
states, to one where there are many. In particular, we will prove that the

Schrodinger operator
h? q
H=—-_ A-

14
2m |z] (8.14)
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with ¢ > 0, has an infinite number of bound states. The potential V(z) =
—q/|z| is called the (attractive) Coulomb potential. For appropriate ¢, the
operator H describes either the the Hydrogen atom, or a one-electron ion. In
Section 7.3, we went further, solving the eigenvalue problem for H exactly,
finding explicit expressions for the eigenfunctions and (infinitely many) eigen-
values. Nevertheless, it is useful to be able to prove the existence of infinitely
many bound states using an argument that does not rely on the explicit solv-
ability of the eigenvalue problem.

We would first like to apply Theorem 6.16 to locate the essential spectrum.
However, the fact that the Coulomb potential is singular at the origin is a
possible obstacle. In fact, Theorem 6.16 can be extended to cover this case
(see Problem 6.17 and, eg, [73]), and we may conclude that H is self-adjoint,
with essential spectrum equal to the half-line [0, c0).

To prove that the operator (8.14) has an infinite number of negative eigen-
values, we will construct an infinite sequence of normalized, mutually orthog-
onal test functions, u, (), such that

(Un, Huy,) < 0. (8.15)

The “min-max principle” (described in Section 8.1) then implies that H has
an infinite number of eigenvalues.

We begin by choosing a single function, w(z), which is smooth, and which
satisfies

|ul[=1 and supp(u) C{zeR*|1<|z]<2}.
Then we set u,(z) := n=32u(n"1z) for n = 1,2,4,8, .. ..
Problem 8.8 Show that {(t,, un) = Omn, and that (u,,, Hu,) = 0 if m # n.

Given the results of the exercise, it remains to show (8.15) for n sufficiently
large. Indeed, changing variables to y = n~'x, we compute

2
(Un, Huy) = 2hm /|Vun(:c)|2d:c—q/ |i||un(z)|2d:c
= [vuwPay - [} wwray
2m vl
<0

for n sufficiently large, as the second term — the potential term — prevails for
large n. Thus we have proved that the operator (8.14) has an infinite number
of negative eigenvalues.

With this example in mind, we address the question of whether the

Schrodinger operator
FLZ
H=—-_ A4V
2m + V(@)
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has a finite (including possibly 0) or infinite number of negative eigenvalues.
Assume V(x) behaves at infinity as

V(z) =clz| for |z| sufficiently large (8.16)

for some constant c. We test the operator H on the functions u,(z) con-
structed above. It is left as an exercise to show that, as above, (t;,, Hu,) =0
for m # n, and

(s Hty) <0 if a<2andec<0
e >0 otherwise

for n sufficiently large.
Problem 8.9 Prove these last two statements.

Let X, be the n-dimensional subspace spanned by the functions wy,, . . ., Um+n,
for m sufficiently large. The results of Problems 8.8 and 8.9 imply that

sup (¢, Hp) < 0
YEXn,|lY|l=1

for all n, provided @ < 2 and ¢ < 0. Invoking the min-max principle again,
we see that if & < 2 and ¢ < 0, then the operator H has an infinite number
of bound states.

It is shown below that H has only a finite number of bound states if a > 2.
The borderline for the question of the number of eigenvalues is given by the
inequality

1
—A>
~ Afz)?

(the Uncertainty Principle — see Section 5.2). This inequality shows that the

2
kinetic term ffmA dominates at oo if a > 2, or if & = 2 and QEZLC > fi.

Otherwise, the potential term favouring eigenvalues wins out. This simple
intuition notwithstanding, there is presently no physically motivated proof of
the finiteness of the discrete spectrum for o > 2. The proof presented below
uses mathematical ingenuity rather than physical intuition.

We now prove finiteness of the number of eigenvalues for a > 2. To simplify
the argument slightly, we assume the potential V' (z) is non-positive and denote
U(z) := =V (z) > 0. Let A < 0 be an eigenvalue of H with eigenfunction ¢.
The eigenvalue equation (H — A)¢ = 0 can be re-written as

h2
( QmA Ao =Ug.

Since A < 0 is in the resolvent set of the operator —;;A, we can invert
(— ;;A — A) to obtain
h2

0=~y A=NUs,
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the homogeneous Lippmann-Schwinger equation. By introducing the new func-
tion v := U'/2¢, this equation can be further re-written to read v = K(\)v
where the operator K(\) is defined as

h?

K(\) = U1/2(—2m

A—N)"UY2,
We can summarize the above derivation as follows:
A<O0EVH < 1EV K\

and so
#A<O|ANEVH}=#{A<0|1EV K(\)}. (8.17)

The next step is to prove that
#{AN<O0|1EVKN}=#{vr>1|v EV K(0)}. (8.18)

To prove (8.18), we begin by showing that

0
K(\ A< 1
o\ (A) >0V A<0 (8.19)
and
K(\) —0 as A — —o0. (8.20)
Writing

n? —1771/2
A= NTU2)

(6. K(N)9) = (U9, (-
and differentiating with respect to A, we obtain

2

0 2~ A 2y
8>\<¢5K()‘)¢>_<U1 2¢7( 2mA )‘) 2U1 2¢>

A= N2> 0

m

which proves (8.19). To establish (8.20), we need to derive the integral kernel

of the operator K (). Using the fact that the operator (f;”;A —A)7! has
integral kernel

A2 m 7\/27‘@\)\\ _
A=\ -1 _ h2 |z—y|
2m ) @) 2rh?|x — y|6

(—
(see Equation (25.57)), we find that the integral kernel for K()) is
KOy =U@)2, 7 oV i) e
’ 2nh?|x — y|

(see Section 25.3). Using the estimate
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1/2
i< ([, Ky
X

(see again Section 25.3), we obtain

<
= 27h? |z — y|?

h?

Now we show that the relations (8.19) and (8.20) imply (8.18). By (8.20),
for all A sufficiently negative, all of the eigenvalues of K ()) are less than 1.
By (8.19), the eigenvalues, v, (\), of K(\) increase monotonically with .
Hence if vy (Ap) = 1 for some A, < 0, then v, (0) > vp, (Ap,) = 1. Similarly,
if v, (0) > 1, then there is a A, < 0 such that v, (A,) = 1. In other words,
there is a one-to-one correspondence between the eigenvalues v,,(0) of K (0)
which are greater than 1, and the points A, at which some eigenvalue v, (\)
crosses 1 (see Fig. 8.1).

Since exp(—\/le’\‘ |z —y|) — 0 as A\ — —o0o, Equation (8.20) follows.

1
A
Fig. 8.1. Eigenvalues of K ().
Thus (8.18) follows.
The relations (8.17) and (8.18) imply
#{A<0 | AEVH}=#{r>1 | v EV K(0)}. (8.21)

The quantity on the left hand side of (8.21) is what we would like to
estimate, while the quantity on the right hand side is what we can estimate.
Indeed, we have

1/2
#{v>1| vEVK(0) = 3 1< > Vo,
um>1,1/mEVK(O) l/m>1,umEVK(0)
1/2
2 2\ 1/2
< X wm]  =(r(K(0))
Vm EV K (0)

(8.22)
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(see Section 25.11 for the definition of tr, the trace). On the other hand (see
Section 25.3),

tr(K(O)Q):/|K(0)(z,y)|2dzdy:( " )Q/U(z)U(y)dzdy (8.23)

27h? |z —y|?

Collecting equations (8.21)- (8.23) and recalling that V(z) = —U(x), we ob-
tain

#{A<0 | \EVH}< h2 (/ Vi (|2)|d dy)l/Q.

Under our assumption (8.16) on the potential V (z), with a > 2,

V(x
/l d:z:dy<oo

so that the number of negative eigenvalues of the operator H is finite. This is
the fact we set out to prove.

The argument used above (Equation (8.21) in particular) is called the
Birman-Schwinger principle, and the operator K (\) is the Birman-Schwinger
operator.
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Scattering States

In this chapter we study scattering states in a little more detail. As we saw in
Section 6.4, scattering states are solutions of the time-dependent Schrédinger
equation

o

ot

with initial condition orthogonal to all eigenfunctions of H:

ih" = Hy (9.1)

Pli=o = Yo € Hyy (9.2)

where Hp, := span{ eigenfunctions of H} is the subspace of bound states of
H.

We will have to make a more precise assumption on the potential V'(z) en-
tering the Schrodinger operator H = — ;L:L A+V (x): we assume, for simplicity,
that

05V ()] < O + Jzf) =+l (9-3)

for |a] < 2 and for some p > 0 (and C a constant). The notation needs a little
explanation: « is a multi-index o = (a1, a2, a3) with each a; a non-negative

integer, |a| = Z?Zl a;, and

3

oy =[] o

j=1

The question we want to address is what is the asymptotic behaviour of
the solution ¢ = e~ /M)y of (9.1)-(9.2) as t — oc. First observe that (6.10)
shows that ¢ moves away from any bounded region of space as ¢ — co. Hence,
since

V(z)—0 as |z| — oo, (9.4)

we expect that the influence of the potential V(z) diminishes as t — oco. Thus
the following question arises: does the evolution ¢ approach a free evolution,

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_9
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say ¢ = e~ ot/hg. where Hy = f;;A, for some ¢g € L?(R3), as t — oo?
Put differently, given ¢y € Hi-, is there ¢y € L*(R?) such that

||e_th/h1P0 _ €_iH0t/h¢O|| —0 (95)

as t — oo? This (or a modification of this question discussed below) is the
problem of asymptotic completeness. It is the central problem of mathematical
scattering theory. It conjectures that all the possible free motions, together
with the bound state motions, form a complete set of possibilities for the
asymptotic behaviour of solutions of time-dependent Schrédinger equations.

There are two principal cases depending on the decay rate, i, of the po-
tential V(z) (more precisely, the decay rate, u+ 1, of the force —VV (z)), and
it is only in the first of these cases that the asymptotic completeness property
formulated above holds. We now discuss these cases in turn.

9.1 Short-range Interactions: p > 1

In this case, asymptotic completeness can be proved under condition (9.3). We
can reformulate the asymptotic completeness property by defining the wave
operator, 2T:
+ 4 Tipn iHE/R—iHot/R
N%¢: tlirgoe e ¢. (9.6)

Below we will show that under the condition (9.3) with p > 1, the limit exists
for any ¢ € L?(R3). Further, the operator 2% is an isometry:

127l = ll¢ll (9.7)
Indeed, (9.6) implies
12¢ 6]l = lim [t/ ot/ g = g
since the operators e?1*/ and e~"ot/" are isometries.

The existence of the wave operator 27 means that given a free evolution
e~ Hot/M g there is a full evolution e~*t/"4py such that (9.5) holds. To see
this, note that since e**/" is an isometry, (9.5) can be re-written as

o — ett/Me=iHot/hgy 1 — 0
as t — 0o, which is equivalent to the relation

Yo = 2% ¢o. (9.8)

Thus the existence of the wave operator 27 is equivalent to the existence of
scattering states — i.e. states e ~*H*/"4)y for which (9.5) holds for some ¢p.
We have
Ran(2") C Hy.
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Indeed, for any ¢g € L2(R3) and g € H, such that Hg = \g, we have

(9. 2 60) = Jim (g, /e 0t/ M) = Tim (e 11/ g, 1Mot/ )
— t{% el/\t/h<g, e—zHot/h¢0>.
There is a general theorem implying that the right hand side here is zero, but
we will prove it directly. Recalling expression (2.23) for the action of the free
evolution operator e~ *Hot/"" e find

—iHot/h omint\ _ o\ _im|e—y|?/(2ht)
(9,€ bo) = ] al@e do(y)dydx
R3 JR?

m

and therefore, if ¢g and g are integrable functions, i.e.,

/ |do(z)|dx < oo and / lg(x)|dr < o0,
R3 R3

i 2mht —3/2
(g, “fot/%ows( ) / ] / 60l
m R3 R3

and thus the right hand side of (9.9) vanishes. For general ¢y and g the result
is obtained by continuity. This argument can also be extended to cover the
case where ¢ is a linear combination of eigenfunctions.

We can similarly define the wave operator {2~ describing the asymptotic
behaviour as ¢ — —oo:

we have

0 ¢ = i iHt/h,—iHot/h 4

¢:= lim oHH/Rem it

This operator maps free states e~ “H0t/"¢q into states e~*1*/"4)y which ap-
proach these free states as ¢ — —oo. We have (in an appropriate sense)

HOQ* = OF H,,. (9.10)

Indeed, by changing variables, we can obtain the following intertwining rela-

tions
e~ iHt/hx _ F —iHot/h (9.11)

Differentiating these relations at ¢ = 0, we obtain 9.10.
Let H,. := Ranf2T, the set of scattering states. We have shown that
Hse C Hﬁ-. The property of asymptotic completeness states that

Hse = Hﬁ‘ or Hp ® RanHs. = L* (RB)

i.e., that the scattering states and bound states span the entire state space
L?(R3). We will prove this property under some restrictive conditions below.
One can also define the scattering operator
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S =020
which maps asymptotic states at ¢t = —oo into asymptotic states at t = oo:
SR —
SHYE

Fig.9.1. S: ¢p_ — ¢4
Equations (9.11) and (9.10) imply e~ ot/ g = Se=iHot/h and

HoS = SHo.

The property of asymptotic completeness implies that the Hamiltonian H
restricted to the invariant subspace Hﬁ‘ is unitarily equivalent to the free
Hamiltonian Hy:

H = QO Hy2*" on Hi.

Let £2%(z,y) be the integral kernels of the operators 2%, and let ¢* (z, k)
denote their Fourier transforms with respect to the second variable, y. Equa-
tion (9.10) implies that

k|

Hy*(x, k) = o

VE(z, k). (9.12)

In other words, ¥*(z,k) are generalized eigenfunctions of the operator H,
with eigenvalue |k|?/2m. These generalized eigenfunctions are of the form

’l/]j:(.r,kf) _ e:tik~a: +O< 1 )

||

as |z| — oo (see, eg., [302, 246]). They are called scattering eigenfunctions of
H.

Problem 9.1 Prove relation (9.12).

9.2 Long-range Interactions: p <1

In this case, the relation (9.5) must be modified to read
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||€th/h¢o o efz'S(t)d)O” =0

as t — oo, where for J < p < 1, the operator-family S(t) is defined to be
S(t) = S(p,t), where the function S(k,t) satisfies the equation

;ﬂhﬂﬂdm+v<;m)

Here Hy(k) = ,b |k|? is the classical free Hamiltonian function. The oper-
ator S(p,t) is defined according to the rules described in Section 4.2. Note
that in this equation, the coordinate z in the potential V' (z) is replaced by
its free, classical expression, 7}Ikt. With this modification, the asymptotic
completeness property can again be established under assumption (9.3) with
5 <p <1 For0< pu<1,the expression for the operator-family S(t) is more
complicated (see [77]). As in the short-range case, one can introduce modified
wave operators and investigate their properties (see the references given in
Chapter 27).

9.3 Wave Operators

As promised, we prove the existence and completeness of the wave operators
0% To simplify the proof, we impose a somewhat stronger condition on the
potential: V(z) € L?(R3). Below, we also make use of the space

L%Wp:&wmﬁa6|/‘mmmx<m}

R3

Theorem 9.2 If V € L?(R3), then the wave operators £2F, introduced for-
mally above, exist.

Proof. Denote 2! := etflte~iot (we drop the h in what follows, just to sim-
plify the notation). Since || 2| < const, uniformly in ¢ (in fact, |2t = 1), it
suffices to prove the existence of the limit (9.6) (and similarly for ¢ — —o0) on
functions ¢ € L%(R3) N L' (R3) (the existence of the limit for ¢ € L? will then
follow by approximating ¢ by elements of the dense subspace L? N L!). For
t > t', we write the vector-function 2t¢ — Qt/¢> as the integral of its derivative:

t
Qtp— OV = dgw@.
! dS

Using the relation & e'® = iHe', and similarly for e=*#0* (see Chapter 2),
we find

y 5 — iHesze—zHos + esz(_iHO)e—zHos _ ,iesz‘/e—zHos7
S
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as H — Hy = V. Since |e!f%|| = 1, and using the Minkowski inequality
I 6()ds] < [ 16(3)]ds (see eg. [106]), we have

2% - 2ol < [ Vet g, (9.13)
t
We estimate the integrand as follows:
veritosolt = [ V(@) (e50) (o) da
< swp | (e 10%0) @) [ V()P

yielding _ _
Ve 05|l < [[V ]|z sup (e 0%¢) (a")].

Finally, recalling the bound (see (2.24))

[(emitosing) ()] < (277?15)

from Section 2.4, we obtain

—3/2

/ ()| d (9.14)

Ve Hosg|| < (const)s™/*| V| 2| »
and so

/ [Vemtosg||ds < (const)|[V|p2ll¢ll -
1

This shows that the right hand side in (9.13) vanishes as t’,¢ — co. In other
words, for any sequence t; — oo, {2 ¢} is a Cauchy sequence, and so {£2¢}
converges as t — oo. Convergence for t — —oo is proved in the same way. [J

Finally, as promised, we prove asymptotic completeness in a special case.

Theorem 9.3 Assume V € L>® N L! with ||V| L=~ and ||V z: sufficiently
small. Then Ran{2; = H. Consequently, H; is empty, and asymptotic com-
pleteness holds.

Proof. We begin by proving that for any ¢ € L' N L2, e~#H1) has some decay
in time, as measured in the || - || L24 1, norm, which is defined by

1 lzorzee = inf Clgllze +[Alloe).

In fact, we claim

e Hap|| o poe < (const)(1+ [t])3/2, (9.15)
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To show this, set M(t) 1= supgc (1 + [8)3/2le " H e[| 24 1. Writing, as
above,

S
. _ d . _
estgefstw o ’L/) _ / p el’l’Hoef’LTdeT
0 T
and applying e *Ho we arrive at the Duhamel formula
S
efius _ efing,L/) o Z/ 67i(57T)H0V€7i5H¢dS.
0
We estimate as follows:
le™ [l o re < e ™| 2y 1o +/ le= =D HOY e T Hap|| e dr
0

+ / ||efi(sf'r)H0 Vefi'erHdeT.
s—1

Using (9.14) as above, together with Holder’s inequality, we find
le™ " ]| 2y e < (const)[(1+ |s)) 2|l Lrre

s—1
+/ |S*T|73/2||V||L10L2||€7“-H’I7D||L2+Lood7'
0

+/ ||V||L20L°°||€_iTHw||L2+LxdT]

-1
<(const)[(1+ |s|) 2@l rnze + IV | Linpe M (s)I(s)],

where I(s) = 05_1 s = 7|73/2(1 + |7|)73/2dr + [7_ (14 |7|)=3/%d7, and so
multiplying through by (14 |s|)?/2, and taking supremum over s < ¢ and using
Supg<s<; 1(s) < (const), we find

M(t) < (const) [[[¢llrnz2 + [VilLinzee M ()] (9.16)

Thus if [|V||p1nLe is sufficiently small (so that (const)||V || pinne < 1/2, say),
(9.16) implies M (t) < (const) for all ¢, and so (9.15) holds.

Now denote W (t) := etHote=Ht and, as above, write
t . .
W(t) —W(t') = z/ eHosye=iHs g,

t/

Using Hélder again, for ¢ € L' N L? we find
t .
(W (t) = W{E)llz> < /t IVlizznz=lle™ |l 124 L~ ds

t
< (const)/ (14 |s))~%%ds — 0
t/
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as t > t' — oo. Hence {W(¢)1} is a Cauchy sequence in L?, and therefore
lim; oo W ()9 exists for all ¢ € L' N L2. Since the operator W (¢) is bounded
uniformly in ¢, this limit exists for all ¥ € L2.

Denote Wi := lims—, 100 W(t)yp. We want to show that 2. W, = 1,
Wiy =1 and Wy = 5. Indeed, since 2+ = s — lim e'fte~Hol and W, =
s — lim e*fote =t we have that 2. Wy = s — lim e?Hte—"HotgiHotg—iHt — 7
and similarly for the other relations. The relation 2. W, = 1 implies that
Ranf2. = H, i.e., {21 is unitary. This implies the asymptotic completeness.

9.4 Appendix: The Potential Step and Square Well

Potential step. In the one-dimensional case one can say much more about
scattering process. In particular, one can introduce very useful reflection and
transmission coefficients as illustrated in the example of the one-dimensional

potential
. Vo x>0
Viw) = { 0 2<0

with Vy > 0. Consider the “eigenvalue” problem

h2
- W'+ Vip = Ep. (9.17)
2m
We put the term eigenvalue in quotation marks because we will allow solutions,
wp, which are not L2-functions. Solving this eigenvalue problem separately in
the two different regions gives us a general solution of the form

m

Cetk1e 4 De—ikiz (h2k1 =E-Vy) x>0 '

2m

1/) B {Aeikoz +Be—ikoz (thg — E) <0

There are no bound states (L? solutions), but we can say something about
the scattering states.

Suppose 0 < E < Vp, and take ki = iK where K = /(2m/h2)(Vy — E) >
0. Then for a bounded solution, we require D = 0. Imposing the condition
that ¥ be continuously differentiable at 0, that is

Ylo— = Plo+, O/ 0x|o— = 0 /0o,
leads to the equations
A+ B=C, iko(A— B) = —KC.

After some manipulation, we find that

B ky—iK
A ko +iK’
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or making the dependence on the energy E explicit,

B VE-iyVy—E
A VE+iyV—-E
Similarly, if £ > V{, we obtain

B VE-JE-V,
A VE+VE-Vy

and
2

1

= 2B —Vo - 2WEVE — Vyl?
0

R(E) := ‘B

A

(R(E) is called the reflection coefficient). In particular, if E;,OV“ < 1, then

E-V,
R(E)zl—zl\/ Vi 0

and almost all of the wave is reflected. This is in spite of the fact that the
energy of the particle lies above the barrier. In classical mechanics, the particle
would pass over the barrier.

The square well. We consider the “eigenvalue” problem, Hy = FE,
for the square well potential defined in Section 7.1, and for positive energies
E > 0. The “eigenvalue” equation is given by the same expression (9.17), but
we do not expect this equation to have L? solutions, i.e. bound states. So we
look for bounded solutions which converge to plane waves as * — £o0o. Such
solutions were called scattering states above.

Consider the situation where a plane wave ¥, (z) = Ae™** is incoming
from the left. Then on the left of the well, ¢ is a superposition of incoming
and reflected plane waves:

Y = Ae™™ + AB(E)e™** 1< —a/2
while on the right of the well, ¢ is an outgoing (transmitted) plane wave:

Y = AC(E)e*®=2) 1> qa/2.

Problem 9.4 Show that
C(E) = [cos(ka) —i - sin(ka)]™*

where
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This implies
2 —1
T(E):=|CE)?*=|1 0 in?(ak

(T'(E) is the transmission coefficient) which is sketched in Fig. 9.2.

|
/

\\,/'

Fig. 9.2. Transmission coefficient.

We see that at the energies satisfying sin(ka) = 0, i.e.
n’m?h?
0, n=12...

E=-V
o+t 2ma?

T(F) has maxima (T (E) = 1) which are called resonances. The corresponding
values of E are the resonance energies. We remark that for large n these are
approximately equal to the energy levels of the infinite well of the same width.
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Existence of Atoms and Molecules

In this chapter we prove existence of stationary, well localized and stable
states of atoms and, in a certain approximation, molecules. These are the
lowest energy states, and their existence means that our quantum systems
exist as well-localized objects, and do not disintegrate into fragments under
sufficiently small perturbations.

General many-body systems are considered in Chapter 13.

10.1 Essential Spectra of Atoms and Molecules

Recall from Section 4.5 that a molecule with IV electrons of mass m and charge
—e, and M nuclei of masses m; and charges Zje, j = 1,..., M, is described
by the Schrédinger operator

N h2 M h2
Hypot = — A, — A, +V(z, 10.1
172 g B T 2 gy B TV W) (10.1)
acting on L?,, (R®NFM)) Here L2, (R*WVFM)) is a symmetry subspace of
L2(R3N+M)) reflecting the fact that electrons and some of the nuclei are

identical particles, = (21,...,2n) and y = (y1,...ya) are the electron and
nucleus coordinates, respectively, and

e%Z; Z
Z o T s ; - (102

the sum of Coulomb interaction potentials between the electrons (the first
term on the r.h.s.), between the electrons and the nuclei (the second term),
and between the nuclei (the third term). (See Section 4.5.) For a neutral

molecule, we have
M
S 7-x
j=1

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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If M =1, the resulting system is called an atom, or Z-atom (Z = Z7). In the
case of atoms, the last term in (10.2) is absent.

Since nuclei are much heavier than electrons, in the leading approximation
one can suppose that the nuclei are frozen at their positions. (For a more
precise statement and discussion of this point see Section 12.1 below.) One
then considers, instead of (10.1), the Schrédinger operator

N FL2

Hﬁo(y) = - Z QmAzj + V($, y) (103)

acting in L2, (R3N), the positions y € R3 of the nuclei appearing as pa-
rameters. This is called the Born-Oppenheimer approximation. It plays a fun-
damental role in quantum chemistry, where most computations are done with
the operator HEC(y). We discuss the justification of this approximation in
Section 12.2.

Theorem 10.1 (Kato theorem) The operators H,,,; and HEC (y) are self-
adjoint and bounded below.

Proof. The fact that the operators H,,,; and H ﬁo (y) are bounded below was
shown in Section 5.3. Next, to fix ideas we prove the self-adjointness for H,,q;
only. The self-adjointness for HEP(y) is proven similarly. As in Problem 2.8
we have
1
|ws — ]
1

lzi — 5l

1
< )
[ vl <al, Anvl+blvl,

. (10.4)
vl <all,, Avl+b9l,

with @ > 0 arbitrary and b depending on a and for all ¢ € D(Hy), where
Hy = — Ziv Qin Ay — Zi\/j 251_ij. (Prove this. Hint: Pick the variable x;
and follow the instructions in Problem 2.8, then integrate over the rest of the

variables.) Let V be given in (10.2). Then the last two estimates imply
IVl < allHogp|| + bl[4| (10.5)

with a > 0 arbitrary and b depending on a. By Theorem 2.9, this implies that
the operator H,,,; is self-adjoint. [J

To simplify the exposition, in what follows we consider only atoms and
molecules with fixed (infinitely heavy) nuclei and denote the corresponding
quantum Hamiltonians by Hpy. Thus Hy is equal to H ﬁo(y), where in the
case of atoms (M = 1) y = y; is set to 0. For atoms the assumption of fixed
nuclei is a minor one and can be easily removed; for molecules, it is a crucial
one. A rigorous existence theory for molecules, apart from hydrogen, still does
not exist.

We begin with the HVZ theorem describing the essential spectra of atoms
and Born-Oppenheimer (BO) molecules.
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Theorem 10.2 (HVZ theorem for atoms and BO molecules) o..s(Hy)
= [Xn,0), where Xy = inf o(Hn_1).

This theorem is a special case of the general HVZ theorem proven in Chapter
13, so we omit its proof. The energy X'y = inf o(Hpy_1) is called the ionization
threshold. To obtain o.ss(Hy) we take one of the electrons to infinity and let
it move freely there. The rest of the atom is placed in the ground state, so
that the energy of the atom is

1
Energy = Xn + . |k|* Vk (10.6)
2m

where k is the momentum of the electron which is placed at infinity. Varying
|k| from 0 to co we see that (10.6) ranges over [Xn, 00). For molecules with
mobile nuclei, the bottom of the essential spectrum is likely below its ion-
ization threshold. However, the theorem above would imply the existence of
bound states of Hp,r, with m/minm; sufficiently small, likely smaller then
it is for real molecules (see Section 12.1).

10.2 Bound States of Atoms and BO Molecules

Are atoms or BO molecules stable? To answer this question we have to deter-
mine whether Hy has at least one bound state.

Theorem 10.3 For N < Z+ 1, Hy has infinite number of eigenvalues below
its ionization threshold X'y = inf o(Hy—1). Bound states, %(\;) (1,22, ., TN),

of Hy, with energies E](\j) < XY, satisfy the exponential bound

[ @ < oo, va < 5w - EQ. 0

Proof. To simplify the exposition, we assume the ground states, if they exist,
are unique. In the case without statistics, i.e. on the entire L?(R3Y), this is
not hard to prove (see [247]). In the case with statistics, this is not known
and is, probably, not true. However, a generalization of the proof below to the
case of multiple ground states is straightforward.

We prove this theorem by induction in N. (This is strictly speaking not
necessary, but is convenient.) We have shown already that it holds for the
hydrogen atom, i.e. N = 1. Assume now it holds for kK < N — 1 and prove
it for kK = N. Let ¥n_1(x1,22,...,£Nn—1) be the normalized ground state of
Hpy_1 with the ground state energy En_1 < En—_o.

First, for simplicity, we ignore the statistics and consider Hy on the entire
space L?(R3Y). We use the variational principle with the test function

¢ =Un_1(x1,...,an-1)f(zN), (10.8)

where f € L*(R®), ||f|| = 1. Using that Hy = Hy—1 — J° Ay + Iy, with
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e e“Z
I = E — 10.9
N(‘r) P |xz*1'N| |1'N|, ( )

and Hy_1¥Yn_1 = En_1¥N_1, we obtain

2

Hy¢ = (En-1 +IN)¢>+‘I/N—1(—2mAmN)f. (10.10)
This implies that
h?
(¢ Hno) = En—r +{fi =, Af) + (¢, IN9). (10.11)

By the exponential bound (10.7) for Oy _1, i.e. [|¥n_1(z)[2e2?ldz < oo, for
any a < En_o — En_1, it follows that

{(In—1, (In(2) = In(28))¥N-1) L2@v )| < (const)|zn |72,

where In(zn) := In(2)|s;—0 vi- Observe that In(xy) = —¢/|xn|, where ¢ :=
(Z — N + 1)€?, which implies

q const

10.12
ol T Jan (10.12)

<wN71; IN(Z')WN—1>L2(RN71) < —

which, in turn, together with (10.11) and ||¢|| = 1, gives

2

N O G T
L2(R3

I ET N E
Let f € C§°(R?) and satisfy | f|| =1 and
supp(f) C {znx €R® | 1 < |zn] <2}
Then the functions
fn(xN):n_3/2f(n_1:UN), n=1248, ...,

are orthonormal, and have disjoint supports. Thus the corresponding trial
states ¢n(2) = Un_1(21, ..., tn—1) fn(rn) satisly (dn, Hydm) = 0 for n # m,
and i

(6ns (Hy = Zn)ga) < =1 42, <0,

forey = [ ‘i‘ |f(x)|*dz and some positive constant ca, if n is sufficiently large.
Using this one can show that Hy possesses infinitely many discrete eigenvalues
below the threshold Xy.

Taking into account statistics. Now we show how to modify the proof

: : : Ny ._
above to the case of spinless fermions, i.e. for the state space Liym(Rg’ ) =
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AYL?(R®). (The fact that electrons have spin J can be accommodated simi-
larly.) As before, let Sy be the group of permutations of N indices and define
the anti-symmetrization projection

P]ég/— NI Z )W xﬁ(l),...,mﬁ(N))

' TESN

where, recall, #(7) is the number of transpositions making up the permutation
7 ((=1)#(7) is the parity of m € Sx). We replace the test function (10.8) by
the function ¢ = P& (Un_1 @ f)/| P4 (@y_1 ® f)|. This gives ¢ := 37 | ¢V

where, with the normalization constant c,

(b(j) = iCWN_l(QL‘l, ey Lj—15 Ljgly oeny ,CL‘N)f(.Z‘]) (1013)
Let Ij =", me—m |IZ| We take fo(z) = o f(az) with ||f|| = 1 and

denote by ¢, and gba the corresponding test functions. Then we have, for

i 7,

3
(6D, 60| < @ (10.14)
(o) [e3% ~ N’

and, similarly,
3

6.0 A+ L)) £
o om J J @ ~ N
For a — 0, (10.14) implies that the normalization constant ¢ in (10.13) is

c= 0O jN). Then the equation (10.15) implies

(10.15)

h2
(o Hyba) < Exoy (fas (= Av= ) fa) + O(@*N).

Hence (go, Hyoa) < Ex—1,if a < b and a < (f, 4 /)/(f,~ [ Af). This
proves the existence of the ground state energy for Hy VN.
Finally, the bound (10.7) is a special case of the general exponential bound

for many-body bound states given in Theorem 13.7, Section 13.6 (see also
Theorem 8.6 of Section 8.2). [

Problem 10.4 Go over the proof above and, where necessary, fill in the de-
tails.

A more refined estimate of (¢, In¢) (replacing (10.12)). Consider the
one-electron density

:/|¢N(y,:cg,...,:cN)|2d:c2...d:cN. (10.16)

Assume that for any N, py(y) is spherically symmetric. Then we have a bound
considerably stronger than (10.12):
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(6, In¢) < — (Z =N +1)e (10.17)
lzn]
Indeed, we write (¢, In¢) = (f, W f) where
W(mN) = /IN|47N—1($1, ...,xN_1)|2dN_1x. (10.18)
We compute
Wian) = (N —1)e2 [ P10y ¢4 (10.19)

|z —an|  |on|

where py_1(21) = f |Wn_1|2dxs...dzy—1. Tt is not hard to show that py_; is
spherically symmetric. Hence we have by Newton’s theorem

pN-1(y)dy 1
/ Wy _ pN_l(y)der/ pN-1(y)dy.

g [y—anl 2N Jiyician) wllex] Y]

(10.20)
Using that [ pn_1(y)dy = 1, this can be estimated as
_ d 1 1

/ pN-1(y)dy < o1 (y)dy = _ (10.21)

r y—an| 7 |on| Jrs [z

(Moreover, px—1(z) = O(e™*1*l) = [, pn-1(y)dy =1+ O(e~*lx1),)
The equations (10.18) - (10.21) imply (10.17).

Remark 10.5 The accumulation of eigenvalues at X'y can be studied by
similar arguments. Consider trial wave functions, ¢, constructed as above,
with fum(zn) a hydrogen atom eigenfunction of energy —n~2 (in suitable
units). Then one can show

(Hyx — Ep)énm|| < (const) n=¢

for some a > 3, where E,, = ¥ — n~2. This implies that Hy has groups
of eigenvalues close to FE, compared to the spacing E,11 — F, as n — o0
(Rydberg states). This analysis can be easily extended to take into account
the particle statistics.

Problem 10.6 Show that the Schrodinger operator describing the Helium
atom with infinitely heavy nucleus has at least one discrete eigenvalue (isolated
eigenvalue of finite multiplicity).

10.3 Open Problems

Though atoms and molecules have been studied since the advent of quantum
mechanics, there are many open problems in their rigorous theory. We mention
here three of these problems:
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1. Existence of molecules.

2. Non-existence of negative atomic ions with more than a few (two?) extra
electrons.

3. Uniqueness or non-uniqueness of the ground states.

It is easy to prove the uniqueness of the ground states on the entire space, say
L?(R3N), however there are no techniques available to deal with the fermionic
subspace (see Section 4.5).
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11
Perturbation Theory: Feshbach-Schur Method

As we have seen, many basic questions of quantum dynamics can be reduced
to finding and characterizing the spectrum of the appropriate Schrodinger
operator. Though this task, known as spectral analysis, is much simpler than
the task of analyzing the dynamics directly, it is far from trivial. The problem
can be greatly simplified if the Schrédinger operator H under consideration is
very close an operator Hy whose spectrum we already know. In other words,
the operator H is of the form H = H,;, where

H, = Hy + kW, (11.1)

Hy is an operator at least part of whose spectrum is well understood, « is a
small parameter called the coupling constant, and W is an operator, called
the perturbation. (All the operators here are assumed to be self-adjoint.)

If the operator W is bounded relative to Hp, say in the sense that D(Hy) C
D(W) and

Wl < cl| Houl| + ¢|lull

11.2
for some ¢,¢ >0, forall uw € D(Hy), (11.2)

then the “standard” perturbation theory applies, and allows us to find or
estimate eigenvalues of H,, (see [247, 176, 162]).

In this chapter, we describe a powerful technique which allows us to es-
timate eigenvalues of H,, even in cases where W is not bounded in terms of
Hy. This is important in applications. We consider several examples of appli-
cations of this method, one of which is the hydrogen atom in a weak constant
magnetic field B. Combining the expressions derived in Sections 7.3 and 7.5,
we see that the Schrédinger operator for such an atom is

1 e?

Hp := (p—eA)? —

11.3
2m ’ ( )

||
where e < 0 denotes the electron charge, and we have kept units in which
the speed of light is ¢ = 1. Recall that the vector potential A is related to
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the magnetic field B by B = V x A. In the notation of Section 7.5, Hg =
H(A, —e?/|z|). Expanding the square in (11.3), we find

Hp = Hy+ Wpg (11.4)

where Hy = ,} p? — €?/|z| is the Schrédinger operator of the hydrogen atom
(see Section 7.3), and

le]

2
€ 2
Wg A-p+ 2m|A| . (11.5)

T m
Here we have assumed the gauge condition V - A = 0. The small parameter s
here is the strength, |B|, of the magnetic field.

Now we know from Section 7.3 that the operator Hy has a series of eigen-

values .
me 1
E, =— <2h2) 2’ n=12,...

as well as continuous spectrum in [0,00). One would expect that for weak
magnetic fields B, the operator Hp has eigenvalues E'g ,, close to Ey,, at least
for the few smallest E,’s. This is not so obvious as it might seem at first
glance, since the perturbation Wg is not bounded relative to Hy — i.e., (11.2)
does not hold for any ¢ and ¢/, small or large. (The perturbation (11.5) grows
in z: take for example A := 123(—1132,301,0).) The method we present below
does show rigorously that such eigenvalues exist, though we will make only
formal computations of Ep ;.

Two other examples, one we present below and a third, in the next chapter,
display different physical phenomena, which conceptually and technically are
considerably more complicated.

11.1 The Feshbach-Schur Method

Before returning to our perturbation problem, we state a general result used
below, which allows us to reduce a perturbation problem on a large space to
one on a small space. (For some motivating discussion see Appendix 12.7.)
Let P and P be orthogonal projections (i.e. P,P are self-adjoint, P? = P,
and P? = P) on a separable Hilbert space X, satisfying P + P = 1. Let
H be a self-adjoint operator on X. We assume that RanP C D(H), that
Hp := PHP |g,,p is invertible, and

IRs| < oo, |IPHRp|| < oo and |RpHP| < oo, (11.6)
where Rp = ]5]-[]?31]5, We define the operator
Fp(H):=P(H — HRpH)P [Ranp - (11.7)

We call Fp the Feshbach-Schur map. The key result for us is the following:
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Theorem 11.1 Assume (11.6) hold. Then the operators H and Fp(H) are
isospectral at 0, in the sense that

(a) 0 € o(H) <= 0 € o(Fp(H)),
(b) Hip =0 <= Fp(H)p =0

where ¢ and ¢ are related by ¢ = Py and ¢ = Q¢, with the (bounded)
operator @) given by
Q=Q(H):=P—RpHP. (11.8)

A proof of this theorem is given in an appendix, Section 11.4. Moreover, under
the conditions above,

H isself-adjoint =  Fp(H) is self-adjoint. (11.9)

The latter property is an example of transmission properties of the Feshbach-
Schur map.

Now we return to our general perturbation problem. Thus we consider a
family, H.,x > 0, of self-adjoint operators of the form (11.1). Assume the
operator Hy has an isolated eigenvalue \g of finite multiplicity. Let P be the
orthogonal projection onto the eigenspace Null(Hy — Ag) spanned by all the
eigenfunctions of Hy corresponding to the eigenvalue g, and let P := 1 — P.

We apply Theorem 11.1 to the family of operators H = H, — X\ for some
X close to Ao, with the projections P and P defined as above. Observe that

)\GO’d(H,{) < OEO'd(H,QfA), (1110)

and that Fp(H, — \), if it is well-defined, is a family of m x m matrices, where
m is the multiplicity of the eigenvalue g of the operator Hy (indeed, P is
a rank-m projection — i.e., dim RanP = m). Thus the perturbation problem
reduces the problem of finding an eigenvalue (and an eigenfunction) of an
(infinite-dimensional) operator H, to the problem of finding the values A for
which

0€o(Fp(Hy—N).

Such values are called singular values of the family Fp(H, — ).

We need to discuss the problem of finding singular values of the family
Fp(H, — X) of matrices, but first we address the issue of defining Fp(H, — A).
Write

Hp = Hop + kW5,

where we are using the notation Ag := QAQ [rang. Assume the operators
W and Hj satisfy the conditions

WP and PW are bounded, (11.11)

PH,P — )y isinvertibleon RanP for |x| < k. (11.12)

(If Hy and W are self-adjoint and if WP is bounded, then so is PW.) Since
PH,P = xkPW P, the condition (11.6) is satisfied for H,— A, with X sufficiently
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close to Ao, and therefore Fp(H, — A) is well-defined. (In this case, Rp =
P(HP - A)ilpa HI:’ = PH.P rRanP')

The operator Hyp := PHyP [g.,p has no spectrum near \g. The same
is true, as can be readily verified, for the operator Hp = H,p + kPW P
for |k| sufficiently small, if the operator W is bounded relative to Hy in the
sense (11.2). Otherwise, justifying the assumption (11.12) is a delicate matter,
and is done on a case-by-case basis. For the examples of the hydrogen atom in a
weak constant magnetic field, and of a particle system in a weak time-periodic
(electric) field, we address this question below. Under the assumptions above,
conditions (11.6) hold. Consequently, the operator Fp(H, — ) is well-defined
for A close to \g.

Now let’s compute the operator Fp(H,, — A\). We write it as the sum of
three terms

Fp(H, —\) = Hp — s*U(\) — A (11.13)
where Hp := PH, P [Ranp and

U()\) == PWRAWP [Ranp, with R(\) = P(PH.P—X\)"'P. (11.14)

The matrix family U(A) is called the level shift operator. Since PHy = HoP =
AP and PP = 0, we have

PHoP = \oP, PHP =xPWP, PHP = xPWP.
These relations yield
Fp(Hy — \) = iWp — 62U(N) + Ao — \. (11.15)
Theorem 11.1 and equations (11.10) and (11.15) imply the relation
N€oy(H,) <= A= X € aa(kWp — KU(N).

Note that the operator on the right itself depends on the spectral parameter
A. Expanding the resolvent

R\) = P(Hyp — Mo+ EWp+ g —N)'P
in a Neumann series in kWp 4+ Ao — A we obtain
R(\) = Ro + O(|s| + X = o)
where Ry = P(Hyp — \o) ! P. Consequently,
U(A) =Uo + O([5] + [A = o)

where Uy := PW RyW P [Ranp. Therefore any eigenvalue A, of H,, sufficiently
close to A\g has the form

Ao = Xo + kg + O(|6[%)
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where p, € 04(Wp — kUp). Similarly, we can obtain expressions for A\, to any
order in k. Observe that if Ag is a simple eigenvalue (i.e. of multiplicity one)
of Hy, with normalized eigenfunction vy, then Wp and Uy are just the real
numbers (g, Wbg) and (Wb, RyW1hg), and we have

As = Ao + Ko, Wtbo) + £*(Wtbo, RoWeho) + O(|[*). (11.16)

Our next step is to examine the structure of the quadratic term in more de-
tail. Suppose that the operator Hj is self-adjoint and has isolated eigenvalues
Aj, 7 =0,1,..., counting multiplicities, with

Aj < infoess(Hp).

Let {¢;} be corresponding normalized eigenfunctions, and let Py, be the
rank-one orthogonal projections onto these eigenfunctions:

Py, = 95)(jl,  or Py, f = (b, ).

Then we have -
P= Z ij + Pess
J#0
where Pegs := 1= j Py, is the projection onto the essential spectral subspace
of Hy. Then we can write

(PW ko, RoPWebo) = > (105, Weko)[*(Aj — Xo) ™"
70 (11.17)

+ <PessW1/}07 (HO,ess - AO)ilpesszO>

where Ho css := PessHoPess is the essential spectral part of the operator Hy.
Now we can interpret the coefficient (109, W1pg) in (11.16) as due to a direct
interaction of the bound state 1y with itself, the term |(1);, W1o)|*(A; —Xo) ™!
as due to the interaction of 1y with itself via the bound state 1;, and the last
term in (11.17) as due to the interaction of 1y with itself via the essential
spectral states of Hy.

In conclusion of this section we sketch a proof of an extension of the central
theorem of perturbation theory

Theorem 11.2 Assume (11.11) hold, the operator Hy has an isolated eigen-
value, Ao, of a finite multiplicity, m, and there is ko > 0 s.t. (11.12) holds.
Then for |x| sufficiently small the operator H, has eigenvalues AD near Ao
of the total multiplicity equal to m. Moreover, if H,; is self-adjoint, then the
eigenvalues AY have the expansions of the form (11.16) - (11.17).

Sketch of proof. For |X — Xo| < [[(PHxP — X\o)~*|| 7!, the operator PH,P — X
is invertible on RanP and therefore, due to (11.11), Fp()) exist. Moreover,

the eigenvalues, )\,(f), of H, near )y, if they exist, are also eigenvalues of
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Fp()\,(f)). Let vj(\, k) be the eigenvalues of Fp(A) (remember that, though
we do not display this, the latter operator depends on ). To simplify the
exposition, assume they are simple. The general case is treated similarly. Then
the eigenvalues )\,(f) must solve the equation

A= l/i()\, H).

To show that this equation has a unique solution for x sufficiently small and
this solution is close to A\g, we observe that, due to (11.15), v;(\, k) is a
differentiable function, Ao = v;(X0,0), [¥i(A, k) — Xo| S K and Ov;(A k) =
O(k). Therefore by the implicit function theorem, the equation A = v;(\, k)
has a unique solution, )\,(f), and this solution satisfies A = Ao+ O(k). Proving
the expansions of the form (11.16) - (11.17) follows the arguments leading to
this expansion. [J

As was mentioned above, the condition (11.12) is satisfied if W is Ho—
bounded (show this). It also holds if Hy is self-adjoint and W is non-negative
and either )\g is the ground state energy or we take for P the orthogonal
projection on the eigenspace corresponding to the eigenvalues < Ag. In the
next chapter we consider the celebrated Born-Oppenheimer approximation,
for which no condition of the theorem above holds, but which still can be
handled by the present technique. This little discussion indicates the power
of the method.

11.2 The Zeeman Effect

We can apply the theory developed above to compute the energy levels of the
Schrodinger operator of a hydrogen atom in a weak homogeneous magnetic
field (the Zeeman effect). Recall that for any magnetic field this operator is
given by the expression (11.4)- (11.5). For a constant magnetic field B, we
can choose the vector potential to be A(z) = 3B x z (see Equation (7.26)).
Then the perturbation Wp can be re-written as

Wg=kB-L+ T;HQ(B X z)2

where L := x x p is the operator of angular momentum (see Section (7.2)),
K= 2‘1 |B|, and B := |B|~!B. Thus & is a small parameter in our problem.

Let A\p = E, be the n-th energy level of the Hydrogen atom Schrédinger
operator Hy. One can show that if A is close to Ag, then the operator Hgp has
no spectrum near Ao, and therefore the Feshbach-Schur operator Fp(Hpg — \)
is well-defined. We will not do this here, but mention only that this follows
from the inequality (Hyp — Ao) " 'Wg(Hyp — Xo) ™! > —ck on RanP, for some
uniform ¢ > 0 and for k sufficiently small. The idea of a proof of the latter
inequality is that (Hy,p — \g)~! controls p entering Wp through L and z
entering W through L is controlled by the positive term ™ x?(B x x)2.
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We compute formally the perturbation expansion for the eigenvalue A\, =
E,, p of the operator Hp near the eigenvalue \g = E,, of the operator Hy. This
computation is slightly more complicated than the corresponding computation
in the abstract case considered above, since our perturbation is of the form

Wg = Wi + FGQWQ

where Wy := B - L and Wy := ’;(B x x)?, rather than of the form xW
considered above.
First, we take the x3-axis to be in the direction of the magnetic field vector
B, so that Wi = Lg (see Section 7.2) and Wy = 7'r? | where 73 = 2§ + 23.
Second, since the operator Hy is invariant under rotations, we know that

L commutes with P:
[L, P] =0,

and therefore
PWgP = k*PWyP, and PWpgP = k>2PW,P.

Third, by the results of Section 7.3, the projection P on the eigenspace
corresponding to the eigenvalue F,, is given by

n—1 1
= § E nlk
1=0 k=—1

where P = [nik) (Ynik|, and i (z) = Rui(r)Y*(0, ¢) is the normalized
eigenfunction derived in Section 7.3. Since L3t = hknk, this gives

n—1 1
PWiP =" hkPu (11.18)

1=0 k=—1
and

min(l,l")

PWy P Z Z [Unik) (Ynir k| (Vnikes n;?"f_?/)nl/k). (11.19)

1,I'=0 k=— min(l,l')
Proceeding as in the abstract case, we find that E,, p — E,, is an eigenvalue of
kPW1P + k*(PWoP 4+ —PW,RyW1P) + O(|s|?). (11.20)
Thus for n # 1, we have in the leading order
En.p = En + pu|Blk+ O(|B),

where 1 := |e|h/2m is the Bohr magneton, for k= —1l,...,land 1 =0,...,n—
1. Thus the magnetic field lifts the degeneracy of the energy levels in the
direction of the angular momentum. This is called the Zeeman effect.
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For the ground state energy E,—1, the term linear in x vanishes and the
expansion yields

me? 2-2 4 5
Eip=F + 3 |B|*7* +a(e| B|)* + O(|B|”)

where

2

_ m _ -
7’2:/|~T|2|¢100|2 and a= 4 (rf 100, P(Hyp — Eo) ™' Pr3 thi00)-

Here we have used spherical coordinates to simplify the first integral.

11.3 Time-Dependent Perturbations

Our second example is an atom placed in a spatially localized but time-
periodic electric field. We write the total Schrédinger operator as in (11.1):

H, = Hy + kW,

where Hj is the Schrodinger operator of an atom, or, to fix ideas, a one-particle

Schrodinger operator
2

h
HO = 72mA + V(ZL')

with V(x) continuous and decaying to zero as || — oo as in Theorem 6.16,
so that oess(Hp) = [0,00). (Of course, for an atom, the potential V(z) has
singularities, but the analysis below can be easily generalized to this case.)
We also suppose Hy has discrete eigenvalues I; < 0 with corresponding nor-
malized eigenfunctions ¢;(x), j = 0,1,.... The perturbation W = W(z, ) is
assumed to be smooth, vanishing as |z| — oo, and time-periodic with period
T =72,

Si;)lce the perturbation W depends on time, so does the operator H,, =
H,(t), and the spectrum of H,; (at each moment of time) does not tell us much
about the dynamics — that is, the solution of the time-dependent Schrodinger
equation

oL

ot

So we have to deal with this equation directly. The question we address is what
happens to the bound states ¥;(z,t) := ¢, (z)e " Eit/m of the unperturbed
equation

o

ot
when the perturbation KW (z,t) is “switched on”? More precisely, are there
time-(quasi) periodic solutions ¥ j(x,t) of (11.21) which are L? functions of
x, and such that ¢, ; — 1; as £ — 0 in, say, the L?(R3)-norm? If so, then we

i = H(t). (11.21)

i = Hy
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would like to find an approximate expression for such solutions. If not, what
are the descendants of ¢;(z,t)?

We fix j and consider the perturbation theory for the j-th state v;(z,1).
We look for a solution to (11.21) of the form

Ui (1) = G,y (w, t)e” Frat/l (11.22)

where the function ¢, ; is time-periodic with period T, and L? in z, and
with ¢, ; — ¢; (in the L?-sense) and E,; — E; as £ — 0. Plugging the
expression (11.22) into (11.21), we find the equation for ¢y ;:

(H,(t) — ihgt — Eyj)¢=0. (11.23)

We look for solutions of this equation in the space L?(R™ x St) where St
is the circle of circumference T' — i.e., we assume that the function ¢(zx,t) is
periodic in ¢ with period T', and satisfies

/OT / (e, t)Pdadt < oc.

Thus we can treat Equation (11.23) as an eigenvalue equation for the operator

K, :=H.(t) — ihgt on L*(R™ x Sr).

We call this operator the Bloch-Floquet Hamiltonian, since the general ap-
proach we describe here, of reducing the time-dependent problem (11.21) to
an eigenvalue problem on a larger space, follows the outlines of the theory
laid out in parallel by F. Bloch in solid state physics and by Floquet in math-
ematics.

Thus our task is to find out whether the operator K, on L?(R™ x St) has
an eigenvalue F ; close to the eigenvalue E; of the operator Hy. Since & is
assumed to be small, we treat this as a perturbation problem:

K, = Ko + xW.

We begin by examining the spectrum of the operator Ky := Hy — ihgt on
L*(R™ x Sr). Using the facts that

Oess (HO) = [0; OO) and Ud(HO) = {EJ}?IZO

and, on L?(St),

0 L0 o0
o (zﬁat) =04 (zhat> ={hwn} ___,

where, recall, w = 2w /T (see Section 7.1), and separation of variables, we find
that
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o0

Uess(KO) = U [hwnvoo)

n=—oo

and
opp(Ko) ={hwn+E,, |In€Z, m=0,1,...}.

Here 0, denotes the full set of eigenvalues (including non-isolated ones). Thus
the essential spectrum of Ky fills the entire real axis R, and the eigenvalues
of Ko (which are infinite in number) lie on top of the essential spectrum,
or, as it is said, are embedded in the essential spectrum. The eigenfunctions
corresponding to the eigenvalues E,,, = E,, + fiwn are given by

Ymn (2, 1) 1= qu(:n)e_i“"t.

Note that the F;’s themselves are eigenvalues of Ky, with eigenfunctions
Yio(x) = ¢;(x):
Kotpjo = Ejijo.

Now we apply the Feshbach projection method to the operator Ky + kW
in order to find its eigenvalues near F;. Let us assume, for simplicity, that £
is a simple eigenvalue of Hy (for example, j = 0 and Ej is the ground state
energy), and that

(in other words, that there is no “accidental” degeneracy in the spectrum of
Ky). As the projection P we use the orthogonal rank-one projection onto the

eigenspace of Ky, spanned by the eigenfunction ;g = ¢; , corresponding to
the eigenvalue E;, that is P = [1j0)(¢jo|- Then we will find from (11.16) the
expansion for the desired eigenvalue E ;:

Eyj = E; + kEj1 + K°Ej2 + O(k®) (11.24)
where
Ej1 = ((¥jo0, Wibjo))

and _ o
Ejo := ((PW1)j0, RoPW1pjo)).

Here, recall that P =1 — P and Ry = P(PKoP — E; —i0)~'P, and ((-)) is
used to denote the inner product in the space L?(R" x St):

()= [ ' [ vaar

Notice that we inserted —:0 into the resolvent above. This was not there in
our previous discussion of the Feshbach perturbation theory, and the reason
for it will become apparent shortly.
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Let P, = Py,,, be the rank-one orthogonal projections onto the eigen-
functions ,, of the operator Ky. Then

Pess ::]—_men

defines the projection onto the essential spectral subspace of K. Thus

P=Py and P= Y Ppp+ P
(m.m)#(3,0)

By the definition of the inner product we have
Eji = (¢5, Wog;)

where Wy (z) := fo (x,t)dt, and the inner product on the right is the
L?(R™) inner product

Now we compute the third term on the right hand side of (11.24) — that
is, the coefficient of k2. It can be written as (see (11.17))

[{{mn, Wibjo))|? 5
B = ;‘0) B+ (PessWibso, RoPessWhyo)). (11.25)
m,n Js

By the definition of the ,,’s, we have

(s Wibjo)) = / (s W (06,06t = (G Wad)) (1126

where W, is the n-th Fourier coefficient of W:

T .
= / W (t)e™ ™ dt.
0

This simplifies the expression of the first term on the right hand side of (11.25).
Now we analyze the second term. By separation of variables,

Pess:ZPe}SIg@P

n

where PHo is the projection onto the essential spectral subspace of the oper-
Py =1~ prm,

ator Hy,
and P, is the projection onto the eigenfunction e~*" of the operator id/0t.
Inserting this into the last term in (11.25), and using

ng@@inij:/ PIoW (t)p e dt = PHSW, ¢,

ess ess
0
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and

<<PH()f ® efiwnt Ro(PHOf ® efiwnt)»

€SS €ss

<PHOf7 (HOess hwn — E *’LO) 1PHOf>,

€ss €ess

where Hyess := HoP 2o, we find

<<PessW1/)j07 ROPesszjO»
Z (PoW,aoj, (Hoess — hwn — E; —i0) " PIoW, ¢;).

Substituting (11.26) and (11.27) into (11.25), we obtain

(D, W) [?
Ej =
72 Z By +hun - E;
(m,n)#(5,0) (11.27)

Z (PHoOW,L¢j, (Hoess — Ej — hwn — i0) " PIOW,¢;).

Thus we have obtained detailed expressions for the first and second order
coefficients in the expansion of Ej; ; in k. Now let’s analyze the expression for
E; > alittle further. Start with the well-known formula

/Oo T 43 = 1 /Oo T gy

_Oo)\+7/0 e—0t OO>\+’L€

_pv / o (;\)d)\—Qm' / TS

where PV ffooo denotes the principal value of the singular integral, defined by

v [ wm (1))

and §(\) denotes the Dirac delta function (centred at zero). Thus we find that
Ejo is a complex number of the form

Ejy = EfY —iI},

whose real part, EJ , is the sum of the first term on the right hand side
of (11.27) and the real part (or principal value) of the second term. The
imaginary part is —I;, where

F = 27'('2 Pe};[an¢]7 HOess - mn - ) ess "¢J>

The last expression is known as the Fermi golden rule. Since §()\) > 0, we
have I' > 0. Then for “generic” perturbations (that is, barring an accident),
we expect
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Fj > 0.
This means that for x sufficiently small, F ; is a complex number of the form
E, ;= EFS —ir’I; + O(k°)

where Ef; =Kk +/€2Eﬁ§. This suggests that for generic perturbations, and
for k sufficiently small, the operator K has no eigenvalues near E;. So what
happened to the eigenvalue E; of K (or Hy)? It is apparently unstable under
small generic perturbations. But does it just disappear without a trace, or is
something left behind? It turns out that the eigenvalue E; of Hy (or Ky) gives
rise to a resonance of Hy (or Kj). A theory of resonances is briefly described
in Chapter 17. The method of complex deformations indicated there, together
with the Feshbach method described in this section, can be used to establish
the existence of resonance ’eigenvalues’ E ; born out of E; (see [73] and
references therein). The number — Im E,, ; is called the width of the resonance
at By j, and T, ; :== h(—Im E, ;)~! gives the lifetime of the resonance. The
Fermi golden rule gives the leading order of the resonance width

~ImE, ; = s’} + O(k%)

(in fact O(k3) can be replaced by O(x*)).

A physical interpretation of the phenomenon of instability of bound states
under time-periodic perturbations is that an atom in a photon field becomes
unstable, as photons of sufficiently high energy can break it up. This photo-
electric effect was predicted by Einstein in 1905. To develop a consistent theory
of the photoelectric effect, one has to use the quantized electro-magnetic field
(or Maxwell equations) given in Chapter 21.

11.4 Appendix: Proof of Theorem 11.1

First, in addition to (11.8), we define the operator
Q% =Q*(H):= P — PHRp. (11.28)

The operators P, Q and Q# have the following properties:

NullQ NNullH’ = {0},  NullP N NullH = {0}, (11.29)
HQ = PH', (11.30)
Q"H = H'P, (11.31)

where H' = Fp(H). We prove relations (11.29) - (11.31). The second relation
in (11.29) is shown in Proposition 11.3, while the first one follows from the
inequality

1Qul|* = [|Pull® + | Rp HPul[* > || Pul®
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In the first equality, we used the fact that the projections P and P are or-
thogonal.

Now we prove relations (11.30) - (11.31). Using the definition of Q(H), we
transform

HQ=HP—-HPH,'PHP
=PHP+ PHP - PHPH,'PHP — PHPH;'PHP
=PHP - PHPH;'PHP
= PFp(H).

(11.32)

Next, we have
Q*H = PH — PHPH,'PH
= PHP+ PHP - PHPH;'PHP — PHPH;'PHP
=PHP - PHPH;'PHP
= Fp(H)P.
This completes the proof of (11.29) - (11.31).

Proposition 11.3 Assume conditions (11.6) are satisfied. Then (11.29) -
(11.31) imply that 0 € o(H) = 0 € o(H') (the part of property (a) which is
crucial for us). Moreover, we have NullP N NullH = {0}.

Proof. Let 0 € p(H'). Then we can solve the equation H'P = Q¥ H for P to
obtain

P=H"Q*H . (11.33)
The equation P + P = 1 and the definition Hp = PH P imply
P=PH,'PHP = PH,'(PH — PHP) . (11.34)

Substituting expression (11.33) for P into the r.h.s., we find
P=PH; (P~ PHPH''Q*)H .
Adding this to Equation (11.33) multiplied from the left by P, and using
P+ P =1, yields
1= [PH;'P— PH;'PHPH'™ Q¥ + PH''Q*| H.

Since by our conditions PH ngpH P is bounded, the expression in the square
brackets represents a bounded operator. Hence H has a bounded inverse. So
0 € p(H). This proves the first statement.

The second statement follows from the relation

1=QP+RpH , (11.35)

which, in turn, is implied by Equation (11.34) and the relation P + P = 1.
Indeed, applying (11.35) to a vector ¢ € NullP N NullH, we obtain ¢ =
QP+ RpHp=0.0
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Now we proceed directly to the proof of Theorem 11.1. Statement (b)
follows from relations (11.29)-(11.30). Proposition 11.3 implies that 0 € p(H)
if 0 € p(H'), where H' := Fp(H), which is half of statement (a). Conversely,
suppose 0 € p(H). The fact that 0 € p(H') follows from the relation

H '=pPH'P (11.36)
which we set out to prove now. We have by definition
H'PH™'P=PHPH 'P—-PHPH;'PHPH'P
=PH(1-P)H'P—PHPH,;'PH(1—P)H'P
=P.
Similarly one shows that PH~!PH’ = P. Hence H' has the bounded inverse
PH™'P.

So we have shown that 0 € p(H) < 0 € p(Fp(H)), which is equivalent to
0Oco(H) = 0co(Fp(H)). O
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Born-Oppenheimer Approximation and
Adiabatic Dynamics

In this chapter, we discuss the Born-Oppenheimer approximation of molecular
physics. This approximation lies at the foundation of quantum chemistry. It
gave rise to adiabatic theory (see Section 12.5) in quantum mechanics and to
multiscale analysis in mathematics and physics. It also led to the theory of
geometrical phases discussed in Section 12.6. We begin with the stationary
theory and then present informally the time-dependent one.

12.1 Problem and Heuristics

We consider a molecule with IV electrons and M nuclei of masses myq, ..., mys.
Its state space is a symmetry subspace L, (R0 of L2(R3NFM)) and
its Schrédinger operator, acting on Lgym(R3(N +M)) is given, in units such
that A=1and ¢ =1, by

N M

1 1
Hmol - — § 2mA$] - § 2mj ij + V(fﬂ,y) (121)
1 1

Here x = (21,...,2n) and y = (y1,...,yn) are the electron and nuclear
coordinates, and V (x, y) is the sum of Coulomb interaction potentials between
the electrons, between the electrons and the nuclei, and between the nuclei
(see (10.2)).

As we know, the evolution of the molecule is described by the time-
dependent Schrédinger equation (SE)

0 = HyoW, (12.2)

with U(z,y,t) € H>(R3WV+M) vt € R,

A key fact here is that nuclei are much heavier than electrons and therefore
much slower. Consequently, the electrons adjust almost instantaneously to the
positions of the nuclei (‘slave’ to the nuclei) and prefer to be in the state of

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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lowest possible energy, i.e. the ground state, of the electronic Schrodinger
operator.

Thus, in the first step, one supposes that the nuclei are frozen at their
positions and considers, instead of (12.1), the electronic Schrédinger operator

N

Hel(y) = Z Q;LAZJ + V($, y) (12'3)

This is the adiabatic regime. The operator He(y), called the Born-Oppenheimer
Hamiltonian, acts on a symmetry subspace L2, (R*Y) of L?(R*") and de-
pends on the coordinates, y, of the nuclei, as parameters, and therefore its
eigenvalues are functions of y, as well.

In the second step, the ground state energy, E(y), of He(y) is considered
as the potential (interaction) energy of the nuclear motion. Replacing He(y)

in (12.1) by its ground state energy, F(y), leads to the nuclear Hamiltonian

M
1
Hppel == — Z om, Ay, + E(y). (12.4)
1

where E = E(y) is the operator of multiplication by the function E(y). One
expects that the eigenvalues of Hy ) give a good approximation to eigenvalues
of Hpo and that the dynamics generated by (12.4) approximates the true
dynamics of nuclei under exact evolution (12.2).

Minimizing the ground state energy, E(y), of the operator He(y) with
respect to y gives the equilibrium positions of the nuclei, i.e. the shape of the
molecule. This provides key information for quantum chemistry.

To proceed to our analysis, we use a rescaling to pass to dimensionless
variables so that m; become the ratios of nuclear masses to the electronic
one. The small parameter in our problem is

k:=1/minm;,
J

which depending on the nuclei varies from =~ 1/1836 to ~ 1,/367000.

12.2 Stationary Born-Oppenheimer Approximation

In the stationary Born-Oppenheimer approximation, eigenvalues of molecular
Hamiltonian (12.1) are approximated by eigenvalues of the nuclear Hamilto-
nian (12.4). To justify this, we use the Feshbach - Schur method (see Chapter
11).

Assume for simplicity that the ground state energy, E(y), of the elec-
tronic Hamiltonian, H(y), is non-degenerate (which is not hard to prove
on L*(R3*N) but is not known and might be, in certain cases, false on



12.2 Stationary Born-Oppenheimer Approximation 153

L2,,,(R3Y)), and denote the corresponding normalized ground state by ), (x):
Ha(y)y = E(y)y.

Also, for technical reasons, we modify the original Hamiltonian by replac-
ing the point nuclear charges by smeared ones. (This is often done in physical
and computational literature. In technical jargon, the smeared charges are
called form-factors.) This replaces the singular Coulomb interaction potential
V(x,y) in (12.3) by a potential which is differentiable as many times as the
form-factors are. This will be used in the proof. We keep the same notation
H(y) = Hq(y) for the modified Hamiltonian.

The main result of this section is the following

Theorem 12.1 [Born-Oppenheimer approzimation] To second order, O(k?),
the ground state enerqy, Eqg, of Hpor s the ground state energy of the operator

Heﬁ:: Hyyel + v, (12.5)

acting on L2(R3M), where H,y is given in (12.4) and v = O(k) is an operator
given by

M
1 2
= ) 12.
v El 5 j/|Vy]1/1y| dz, (12.6)

if 1y is real, as for (12.3), and by (12.29) below, if v, is complez, as in the
case when a magnetic field is present. In the latter case, the operator H g in
(12.5) can be written as

M

1
He =~ (Vy, —i45)" + E(y) + 79, (12.7)

2m;

where Aj := {1y, Vy,¥y), with, recall, (-,-) standing for the L?-inner product
in the x variable, and U is given by ¥ = Zi\/l o P, Vy, 1ty |12

Proof. As was mentioned above, we use the Feshbach - Schur method to prove
this result. Recall that in this method, given a quantum Hamiltonian, H, we
pick a projection P so that the Feshbach-Schur map Fp is defined on H — A
and maps the latter operator to a simpler one.

Let P be an orthogonal projection and P+ = 1— P. Introduce the notation
H+ = PLHP!L. Assume

(a) The operator H- — ) is invertible;
(b) The operator

U()\) ;= PHPH(H* - \)"'PtHP (12.8)

is well defined.
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The Feshbach-Schur method, as applied to the quantum Hamiltonian H,
states that if Conditions (a) and (b) are satisfied, then the Feshbach-Schur
map

Fp(H = \) = (PHP = U(\)|ranp (12.9)
is well defined and
A eigenvalue of H <= X\ eigenvalue of Fp(H — ). (12.10)

Moreover, the eigenfunctions of H and Fp(H — \) corresponding to the eigen-
value A\ are connected as

HYy=Xp <& Fp(H—No=\o, (12.11)

where ¢, 1) are related by the following equations ¢ = P, 1 = Q(\)¢p. Here
the family of operators Q()) is defined as Q(\) = P — P-(H+ —\)"'PLHP.

Recall that v, (z) denotes the non-degenerate ground state, Hei(y)v, =
E(y)vy, of He(y), normalized as [ [¢y(z)[*dz = 1. We define P to be the
orthogonal projection

(PT)(z, ) = ¥y () / by (@)F (2, y)de. (12.12)

Problem 12.2 Check that P is an orthogonal projection. Note that it has
infinite rank.

Remark 12.3 In the previous applications of the Feshbach-Schur method,
the projection P was related to an isolated eigenvalue of some ‘unperturbed’
operator Hy. In this section, P is the spectral projection for the band of the
spectrum {E(y) : y € R*M} which might be only partially isolated.

The analysis of Chapter 10 shows that the function E(y) increases as
ly| — oo. Hence it has a minimum A, := min, E(y). (The corresponding
minimum points - there could be several of those - determine the shape of the
molecule.)

We apply the Feshbach - Schur map with projection (12.12) to Hyor — A,
with the spectral parameter A\ close to A..

Before we proceed, we introduce a useful concept and notation. For a fam-
ily, {A(y)}, of operators, A(y), acting on the space L?(R3") (or a symmetry
subspace thereof), we define the fiber integral, f® A(y)dy, as the operator on
L?(R3WVAM)) acting as !

! We identify vectors ¥ € L*(R*™+M)) as vector-functions y € R3M
Y(y) € L*(R®N), where (y)(z) = W(z,y), and denote ¥ = [P o(y)dy :

TE Ay)dy [©d(y)dy = [© Aly)p(y)dy.
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(&)
([ Aty 0)(w.0) = (AP0 @)

In particular, the operator P defined in (12.12) can be written as the fiber
integral [ © P(y)dy, where P(y) are the orthogonal projections on the ground
state eigenspaces for the operators He(y). Moreover, using the fiber integral
we can define the electronic Hamiltonian on the entire space L2(R3(N+M)) a5

S5}
Hy ::/ He (y)dy. (12.13)

With this notation and by (12.1), the molecular Hamiltonian can be written
as
Hmol - Hel + Tnucly (1214)

where, recall, H is given in (12.13) and Tyhye) := — Ziw 272ij.
J
Furthermore, given two fiber integral operators f@ A(y)dy and f® B(y)dy,
their product is also a fiber integral given by

D @ (&)
/A(y)dy/ B(y)dy=/ A(y)B(y)dy. (12.15)

Below, we use that for twice differentiable form-factors, i.e. for twice dif-
ferentiable potentials V' (z,y) in (12.3), we have the estimate

[0yl <O, af <2, (12.16)

for some constant C'. This can be shown by using perturbation theory, which
we omit here.

Let E’(y) be the first excited state energy of H(y) above E(y) (i.e.
E'(y) > E(y) Yy) and let P(y) := 1 — P(y). Then min, E’(y) > min, E(y) =:
A«. Next, Eq (12.14) and the relations Ty > 0 and (12.15) imply

52}
pHmolpZ HelpZ/ Hel(y)p(y)dy

> /69 E'(y)P(y)dy > \.P. (12.17)

Therefore, for A close to s, Hp := P(Hpmot — A\) P [ganp is invertible, giving
condition (a).

To show that condition (b) above also holds, we first observe that, by the
definition of Rp, we have PHp,oRp = E(y)PRp = 0. Together with the
above, this gives

PHpoiRp = PTuaRp. (12.18)

To show that PT,,.Rp is a bounded operator, we use a refined version of
inequality (12.17) in which one keeps the term T}, to obtain
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PHpoP > HaP > MNP + PTyye P (12.19)

Next, since PRy, = 0, we have PT,,qRp = [P, Thua)Rp. Furthermore, to
simplify the notation, we set 2m; = 1 for all j, so that Tyya = —4,. With
this, we compute [P, Tyue] = 2(VyP)Vy + (4, P). The operators (V,P) and
(A, P) are bounded, so it remains to show that the operator V, R is bounded.
To this end, we write

IVyRp¥||* = (RpW, = A, Rp¥) < |[Rp¥|||PA,PR Y|

and use that, by inequality (12.19) and our convention —A, = Ty, the
operator AyPRP is bounded, which implies that so is V,R,. Hence by
the above, the operator (12.18) is bounded. The latter implies that so is
RpHpotP = (PHyoRp)*. This proves condition (b) above.

Problem 12.4 Fill in details in the arguments above.

Thus for A close to s, Fp(Hmo — A) is well defined and according to
(12.10),

A E Ud(Hmol) ~— 0¢ Ud(FP(Hmol — )\)), (12.20)

with the corresponding eigenfunctions related accordingly.

Now, remember by the decomposition (12.9) of the Feshbach-Schur oper-
ator we have to compute the terms Hp := PHP [granp and U()), defined in
(23.8). We begin with PH P. Using decomposition (12.14) and the eigenequa-
tion He(y), = E(y)iy, we compute for ¥(z,y) € H?(R3N+M))

(Hma P¥)(z,y) = [wy(x)Hnucl + W}f(y) (12.21)

where, recall, Hyuel := Thuel + E(y) (see (12.4)), f(y) := [y (z)¥(z,y)dz, so
that P¥ =, f, and, recall, W is a family of differential operators in y, with
coefficients depending on = and y, given by

W= [Thuel, Uy (2)]. (12.22)

Problem 12.5 Show (12.21). Hint: use the decomposition H,,o; = Hel+Thuel
of the molecular Hamiltonian (12.1), where (Ha%)(z,y) = (Ha(y)? (-, v))(z),
and the eigen-equation Hei(y)Yy = E(y)y.

Eqn (12.21) implies for any ¥ € H2(R3N+M))
PHmole = "/)y(Hnucl + v)fv (1223)

where f is as above and v the differential operator in the variable y given by

V= Re/wy(x)Wd:E = /wy(x)[Tnud,z/Jy(x)]dx. (12.24)
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To compute the operator v, we first evaluate the commutator in (12.22)
to find

M

1
Z (Vi ¥y) - Vi, + Vg, - (Vy,0)). (12.25)

T 2mJ

Using that 4,V =V, 1, — (Vy,;4,), find furthermore that

M

1
==Y o (@5 Vs + V05 = /|vijy|2dz) (12.26)
1 J

where a; := (¢, Vy, 1), with (-,-) standing for the L?-inner product in the
x variable. We see that v = O(k).

Note that RanP can be identified with L?(R?) and therefore the operator
PH,,0 P on RanP, with Hyye + v on L2(R3).

Now we consider the term U()), defined in (12.8). Using (12.21) and P =
1 — P, we compute P(H,,, — \)P¥ = PWPV = K f, where K is the first
order differential operator given by K := PW = W — v. This expression and
definition (23.8) show that the U—term is formally of the order O(x?) and
is of the form U(A)¥ = ¢,w(N)f, where the operator w()) acts on L?(R3M)
and is given by

w(A) = (W = 0)tby, P (Hpor = A) T PH(W = 0)thy), (12.27)

where the inner product is taken in the variable z. (Note that due (12.25),
w(A) involves derivatives in y up to the second order, it is a second order
integro-differential operator.) Hence we obtain that the ground state energy,
Ey, of H,,,; is the ground state energy of the operator

Hnucl +v+w

with w := w(FEy), acting on L%(R3M). Since w(Ey) = O(k?), this gives Theo-
rem 12.1, with v given in (12.26).

If 4, real, then a; = V, (¢, 1,) and therefore a; = 0, due to the normal-
ization [ |¢,|?dx = 1, which gives

M
1 2
v = 21: om, /|vijy| dz. (12.28)

This gives the first part of Theorem 12.1.
In general, for 1, complex, (12.7) is equivalent to (12.5) with v given by

M
1 ~
v=-= ; 2mj (ajvyg‘ + vyja’j + a? + U)a (12.29)

where, recall, a; := (1, Vy,4,) and © is given by
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Z [P, Vy, 10y |1 (12.30)

1

To prove (12.29), we note that (12.26) can be rewritten as (12.29), with o is
given by

M
1 -

Now, we show that this ¢ is equal the one in (12.30). To this end, we insert
the partition of unity P+ P = 1, where P = (¢, - )1y, into [ |V, ¢, [Pda =
(Vy, ¥y, Vy,1y) to obtain

/ [V, ¥y 2dz = (Vy, by, (P + P)Vy,1by). (12.32)
Using the definition of P, we find

<vijyapvijy> = <vyﬂ/’vay><¢ya vyﬂ/’y>- (12-33)
Since <Vy]7/1yﬂ/)y> = Vyj <1/’y,¢y> - <7/Jyvvyﬂ/’y> and Vyj <1/’y,1/1y> = 07 thiS

gives
(Vy,y, PVy;0by) = *a?- (12.34)

Using that Pi, = 0 and therefore PV, ¢, = [P,V, ], the P-part of can
rewritten as

<vijy’vajwy> = H[Pa vyg]wy||2

This equation together with (12.32), shows that the expressions on the r.h.s.
of (12.30) and (12.31) are equal, which proves (12.7).

The excited states of H,,,; come from excited states of Hyye +v and from
bound states of the operator obtained by projecting onto the exited states of

Hel(y)-

Remark 12.6 In the previous applications of the Feshbach-Schur method,
the projection P was related to an isolated eigenvalue of some ‘unperturbed’
operator Hy. In this section, P is the spectral projection for the band of the
spectrum {E(y) : y € R?*M}, which might be only partially isolated.

Beyond the Born-Oppenheimer Approximation. We recall (12.20)
and define
Huual(A) := Fp(Hmol — A) + AP.

Then
A€ Ud(Hmol) — A€ O'd(Hnucl(A))v
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Let 6 be the gap between the ground state energy, E(y), of Hy(y) and the
rest of its spectrum. Then, for A < E(y) — §/2, the operator Hy,q(A) acts on
L?(R3M) and is of the form

M
1
Hnucl(A) = Z ey ij + En(:% >‘)a
j=1""

where, recall, k := 1/ min; m; and E,(y, ) can be computed to any order of
K, €.g. in the second order we have

E.( )\):E()Jri ! /|V Yy [2dz + O(K?)
kY, Y . 2m,; y; Yy )

with O(k?) standing for a non-local operator of the indicated order in x,
differentiable in A, with derivatives of the same order in x (but maybe non-
uniform in y). The leading term in the energy E, (y, A) gives the operator Hyyel
defined in (12.4). The energy E,(y,\) can be used to define the interaction
energy in all orders as

We(y) := Ex(y) — E(00), (12.35)

where E,(y) solves the equation A = E,;(y, \). It is worth remembering how-
ever that Fx(y,\), and therefore W (y), are not potentials anymore.

12.3 Complex v, and Gauge Fields

If 4y is not real, as is the case when magnetic fields are present, then we have
shown that the operator Heg in (12.5) can be written as (12.7), which gives
the effective time-independent Schrédinger equation

M
1
Hewf =Ef,  Hew=-)_, (Vy, —id)" +E(y) +7, (12.36)
1 J

where, recall, A; := (1), Vy,1b,), with (-, -) standing for the L?-inner product
in the z variable, and & = 31 oo, 112, V180 1%

Gauge invariance. Under the transformation f(y,t) — eX®) f(y, t), Py(x) —
e’iX(y)wy(z), the function ¥go(x,y,t) := ¥y(x)f(y,t) is not changed. How-
ever, the vector potential A, := (¢, V1, ), changes as

Ay, — Ay + Vx(y).

Thus an effective equation for f should be invariant under the gauge trans-
formation

fy) = X f(y), Ay = Ay + Ix(y), (12.37)
As can be easily checked (12.36) is indeed invariant under (12.37).
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Problem 12.7 Prove that (12.36) is invariant under the gauge transforma-
tions (12.37).

Remark 12.8 (Degenerate eigenvalues) If the eigenvalue E(y) is degen-
erate, then A(y) := i(tpy, dy1, ), takes values in the k x k-matrices, where k is
the degeneracy of E(y).2 In this case, Eq (12.36) is invariant under the gauge
transformation

fw) = 9w fy), Aly) — 9()AW)gy) ™" + dg(y)g(y) ™ (12.38)

where g(y) € U(k),Vy € R¥. Hence A(y) transforms as a Yang-Mills gauge
field, or a U(k)—connection.

12.4 Time-dependent Born-Oppenheimer Approximation

We present a heuristic discussion of the time-dependent Born-Oppenheimer
approximation. We look for the solution ¥ to the time-dependent Schrodinger
equation (12.2) in the form

W(l‘,y, t) ~ WBO(‘% yvt) = wy(‘r)f(yvt)

We call the functions ¥po(z,y,t), f € L?*(R*M), the Born-Oppenheimer
states. Now, as in the Dirac-Frenkel theory (see e.g. [216] and references
therein), projecting the time-dependent Schrodinger equation (12.2) on the
manifold of the Born-Oppenheimer states, we arrive the effective time-dependent
Schrodinger equation

iatWBO = PHmoleOa (1239)

where P is the projection defined in (12.12). Using that ¥go = P¥p0, so that
PHpotWs0 = PHmo PPo and relation (12.23), we find the equation for f:

i0yf = Hegrf, Hest = Toua + E + v, (12.40)

where v is the operator given by (12.26), or (12.29). Moreover, if 1, is real,
then v is the operator of multiplication by the function (12.6), and, if 1, is
complex,  then the effective Hamiltonian Heg in (12.40) is given by (12.7),
ie.

M

1 . -
Heg:=—Y_ om, Vo —iA;)* + E(y) + 0. (12.41)
1

Using a time-dependent version of the Feshbach-Schur method of Section
12.2, as in [225], would give the exact effective quantum hamiltonian

2 We can also consider P to be a projection onto several eigenspaces. In this case,
k is the total dimension of the eigenspaces considered.
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L = Huua + v+ w, (12.42)

with w a time-dependent differential operator, acting on L?(R3*M), of the
order O(x?), so that the original time-dependent Schrédinger equation would
be equivalent to the effective one.

Remark 12.9 (The effective action) The (effective) Lagrangian for the
effective quantum Hamiltonian (12.41), with 7 = 1 and m = 1, is Leg =
591> + 9 A(y) — E. (Indeed, we compute p- 9 — Legtlp=g+a = [p- 5 — 5|9|* —
U A(y) + E]lp=y+a = 3|p— A]* + E.) Let Lgeom := § - A(y). Using this in the
path integral representation of the propagator, we obtain the factor

eiSseom — i [A _ o7

12.5 Adiabatic Motion

As was mentioned in the introduction to this chapter, heavy nuclei move
relatively slowly and in the Born-Oppenheimer approximation we fix them in
their positions. The next step would be to let them move but take advantage
of their slow motion. In this section, we explore the slow, or adiabatic, motion
in an abstract context and at the end discuss application of the results to
molecular dynamics.

In its original context of thermodynamics, the notion of adiabatic evolution
describes a slow dynamics for which at every moment of time the evolving
state is approximately a stationary one, but with a possibly different set of
parameters. Below, we formulate this statement rigorously in the context of
quantum mechanics.

Let Hs,s € R, be a one-parameter family of Schrodinger operators and
consider the adiabatic (slow) evolution

i€dsys = Hoyg,  Yi—o = do, (12.43)

with a small parameter e (incorporating the Planck constant i) quantifying
the adiabaticity.

Assume H, have isolated, simple eigenvalues E,. We expect that, if the
initial condition ¢q is an eigenvector of Hy with the eigenvalue Ey, then, for
e sufficiently small, the solution ¢ is close to an instantaneous eigenvector
¢s with the eigenvalue Es. The next result justifies this. Since even simple
eigenvectors are defined up to a phase, we pick normalized eigenvectors:

¢s € Null(H, — Ej). (12.44)

A family H of operators is said to be differentiable in the resolvent sense iff
its resolvent (H, — z)~! is differentiable, as a family of bounded operators, for
some z in each connected component of the resolvent set.
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Theorem 12.10 [Adiabatic theorem] Assume Hg is (k + 1)-times differen-
tiable in the resolvent sense. Then there are phases 7ys s.t.

P = = Erdr/) g 4 O(F) as € — 0. (12.45)

s =

We discuss the phases e’ in the next section. Another formulation of the
adiabatic regime is to consider the normal evolution for a slowly varying family
of quantum Hamiltonians, say, H,,,, with 7 large:

ihOW] = Hyy W7, Wl = ¢o. (12.46)

Rescaling (12.46) by setting s := t/7 and ¢S = @I, where € := h/7T, we
obtain (12.43). Then Theorem 12.10 implies

-
Ul, — ¢s as T — oo.

Next, we reformulate Theorem 12.10 in a convenient and important way.
Let U(s,r) be the propagator generated by Hj/e (see Section 25.6, Theorem
25.32) and U.(s) = Uc(s,0), so that ¢S = Uc(s)5_,. It satisfies the equation

i€dsUc(s) = HsU(s), Uc(s =0) = 1. (12.47)

Let Ps; be the orthogonal projection onto Null(Hys — Ey). Note that, unlike
eigenvectors, eigenprojections are defined uniquely. We define the adiabatic
hamiltonian

H? :=ie[P,, P,] + E, (12.48)

S

and let U (s,r) be the propagator generated by the hamiltonian H? /e i.e.
the two-parameter family of bounded operators satisfying the initial value
problem (see (25.30) - (25.31))

0
i€ UAs,r) = H*U (s,r), U(r,r)=1. (12.49)
s
Let U2 (s) = UA(s,0). The following (adiabatic) theorem implies Theorem
12.10:

Theorem 12.11 Assume H is (k + 1)-times differentiable in the resolvent
sense. Then we have

Ud(s)Py = UA(s)Py + O(€"). (12.50)

A proof of Theorem 12.11 is given in Section 12.8. It is based on the Feshbach
- Schur approach described in Section 11.1 (with the orthogonal projection
P,). However, unlike Chapter 11, we apply to it to a time-dependent problem,
specifically, to Eq. (12.47). Using this approach we derive the equation

Fp,(Ks,e)PsUc(s) =0, (12.51)
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where Fp,(Ks,) is the Feshbach - Schur map, with the projection P, (cf.
(11.7)), applied to the operator K. := H,; — ieds acting on s-dependent

vectors. Using the Duhamel principle and the notation Py := 1 — P, we
rewrite equation (12.51) as (see (12.72)-(12.73) of Section 12.8)

P,U.(s) = U*(s,0)Py (12.52)

+/ﬂmﬁ@maﬁﬁ/¥ﬂ@mwéﬂau@, (12.53)
0 0

where UA(s,r) is the propagator generated by the hamiltonian HZ? :=
ie[PS,PS] + H,, with H, := P,H,P,, and estimate the second term on the
r.h.s., (12.53), using integration by parts. (In Section 11.3, we came close to
this but then used Floquet theory (and the Fourier transform) to convert the
time-dependent problem to a time-independent one.)

The next proposition reveals a key property of the adiabatic propagator
UA(s,7):
Proposition 12.12 The (adiabatic) evolution UA(s,r) has the intertwining
property

UA(s,r)P. = P,UA(s,7). (12.54)

Proof. Using that the propagator UA(s,r) satisfies the differential equation
(12.49) and using the similar equation for U2 (s, )™, we find

0
0s

where By := —[PS, P,]Ps + Ps [PS, P+ P,. Next, relations P;P, Py, = 0 and

(UeA(s7 7“)_1PSU€A(57 r)) = UEA(S, r)_lBSUEA(s7 r), (12.55)

P, = P,P, + PP,

(by differentiating Ps = P?) imply that Bs = 0. Using this in (12.55) and in-
tegrating the latter equation in s from r to s, we find U2 (s, 7) "' P,UA(s,7) =

P,, which gives (12.54). . O

Remark 12.13 Because of the Coulomb singularity, in the Born-Oppenheimer
case, the family H(y) = Heq(y) is not differentiable, but only Hélder continu-
ous with an arbitrary exponent less than 1. One can extend Theorems 12.10
and 12.11 to fractional derivatives and show that in the Born-Oppenheimer
case, Theorems 12.10 and 12.11 hold for any k < 1. (Presumably, for curves
whose velocity vector fields do not move the Coulomb singularities (the Hun-
ziker vector fields) Theorems 12.10 and 12.11 hold for any k.)

For physical and computational reasons, one often replaces the point nu-
clear charges by smeared ones (in technical jargon, introduces form-factors).
Then the corresponding potential, which is differentiable as many times as the
form-factors are, replaces the interaction potential V(z,y) in (12.3). In this
case, the family H(y) = Hq (y) is differentiable the same number of times.
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12.6 Geometrical Phases

We begin with the adiabatic dynamics given by the time-dependent Schrodinger
equation (12.43), which we reproduce here

iy = Hobh, Vo = do. (12.56)
Then the adiabatic theorem of Section 12.5 (see Theorem 12.10) says that

s — s € Null(H), as € — 0. (12.57)

S

Recall that we have chosen normalized basis vectors ¢, in the eigenspaces
Null(Hy — Es), see (12.44).

Proposition 12.14 v, of Theorem 12.10 and 1 of (12.57) are given by
by = oitva—J* Erdr/e)g 0s7s = (s, ¢S> (12.58)

Proof. Introduce ¥, := ¢’ J Brdr/eyyand WE = et " Erdr/cype We show first
that (s, ¥s) = 0. Indeed,

(W, W,) = 1111})(&05,@;} = 1in(1)<1/)s, —ie Y(H, — E,)¥¢)

= lim ((H, — Ea)s, —ie 1) = 0.
Since ¥ and ¢, belong to Null(Hs — E5) and are normalized, ¥, = Usos,
where Uy is a complex number of unit modulus (U (1)-factor) defined by this
expression. We compute

0 = (T, ) = UsU7 + (05, s).
Since Us is unitary (UF = U; 1), this equation can be rewritten as
Us = (s, 6)Us, (12.59)
which can be solved as Us = e with 7, given by (12.58). O

Let Y be a parameter space (R®*™, or a surface therein for the nuclear co-
ordinates in the Born-Oppenheimer approximation, or a torus if y describes
magnetic fluxes as in the integer quantum Hall effect, see [25]). We consider
a family H(y),y € Y, of Schrodinger operators. Assume Vy € Y, the oper-
ator H(y) has an isolated, simple eigenvalue E(y) and fix a corresponding
normalized eigenfunction, ¢(y).

We consider a curve C' C Y parametrized by y(s), s € [0,1] and the time-
dependent Schrodinger equation (12.56), with

H, .= H(y(s)), (12.60)
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with the initial condition s—o = ¢(0) € Null(H(0) — E(0)). The adiabatic
theorem implies that ¢S — ¢, € Null(Hs; — Es), Es = E(y(s)), as € — 0.
By replacing H(y) with H(y) — E(y), we may assume E(y) = 0. Then by
Proposition 12.14, 1y = "5 ¢(y(s)), for v, (5) = s given by (12.58). We call
11 the adiabatic transport of ¢(0) € Null(H(0) — F(0)) along C.

If C is a loop, then we have y(0) = y(1). Since E(y) and therefore E; are
simple eigenvalues, this gives

1 = ey, (12.61)

where y¢ = v,(1). By (12.58), we have

Dsvy(s) = 1(0(y(5)), Dy () = iy (s)), Vydly(s))) - §(s)-

We introduce the vector field
Ay = i(d(y), Vyo(y))- (12.62)

Then Jsvy(s) = Ay(s) - 9(s). For a loop C, we can write v,1) = fol Ayis) -
y(s)ds = [ Ay, and therefore

WC:/Ay. (12.63)
c

Geometric interpretation. A better way to think about A, is as a co-
vector, or a one-form, i.e.

Ay = i(d(y), dyd(y)),

where d is the differential (exterior derivative) in y. Note that if ¢(y) —
e~ XW¢(y), then A, — Ay+dx(y). Hence A, could be viewed as a connection
one-form on the vector (line) bundle, E, over Y, with the fibers being the
eigenspaces

Fy == Null(H(y) — E(y))

(or the associated frame bundle over Y with the fibers F, := {¢ € Null(H (y)—
E(y)) : ||| = 1}). In the physics literature it is called the Berry (hermitian)
connection.

The curvature (‘magnetic field’) of A is given by F4 := dA. By Stokes’

theorem, we have
e [ [,
S S

where S is a surface spanning C, i.e. 05 = C.
If S is a 2 dimensional torus, as in the case of the integer quantum Hall
effect (see [20]), then the flux of the curvature F4 over S is quantized:

/ Fyq =4mcey,
S
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where ¢; is the first Chern number of the bundle F over S.2 It turns out Fiu
is proportional to the Hall conductivity in the integer quantum Hall effect
(IQHE), see [20, 25].There the surface S is a 2-torus spanned by the magnetic
fluxes through the ‘holes’ (see the last paragraph of Subsection 7.5 and Subsec-
tion 7.6). Hence the above relation states that the Hall conductivity averaged
over all fluxes is quantized (and proportional the first Chern number).

If the eigenvalues E(y) are degenerate, then A, is a matrix-valued (con-
nection) one-form on the vector bundle, E, over Y with the fibers F, =
Null(H (y) — E(y)) (or the associated frame bundle, F, over Y with the fibers
F, consisting of orthonormal k-frames (ordered bases) (é1(y), ..., ¢r(y)) in
Null(H (y) — E(y)), where r := dim Null(H (y) — E(y))).

Considering the adiabatic evolution along the path y(s) parametrizing a
curve C and letting H, := H(y(s)), we see from Eq (12.54) that UA(s,r) can
be viewed as a parallel transport on the frame bundle F along C. Moreover,
A is the connection related to this parallel transport.

Furthermore, solving Schrodinger equation (12.56) with quantum Hamil-
tonian (12.60) along a loop gives the map g — 11 of the fiber F, =
Null(H(y) — E(y)) into itself. This is the holonomy, Uc, of the connection
A. If the eigenvalues E(y) are non-degenerate, then Ugs = e'Je4v. In the
degenerate case, we have, instead,

Ug = Pe'Jo A, (12.64)

where Pe’Jc 4 stands for the ‘time-ordered exponential. (This is the Wilson
loop, see [300] and the paragraph around (12.38) for more discussion.)

Remark 12.15 If P(y) is the orthogonal projection onto Null(H (y) — E(y)),
then the covariant derivative, or connection, on the vector bundle F is given
by

V= P(y)dy =dy — [dyP(y),P(y)],

where d,, is the exterior derivative on Y. If {¢;(y)} is an orthonormal basis in

RanP(y), so that P(y) = >, (¢;(y)){(¢;(y)| and 3_; f;(y)¢;(y) € RanP(y),
where f;(y) are functions of just y, then, due to the relation [d, P(y), P(y)] =

dyP(y)P(y), the last formula becomes (cf. (12.62))

VY i) = D (dy f3(9)8i + (6i(y), dyd; (W) f5() i ()
J ij
3 This is a special case of the Chern-Weil theory. A 2 dimensional torus can be
identified with a fundamental domain of a lattice £. In this case A is defined on
R? as an L-equivariant one-form in the sense of (7.62), i.e. it satisfies

Az + 5) = A(z) + Vxs(@),

for any s € £ and for some functions xs(x). For more details see Section 7.9.
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12.7 Appendix: Projecting-out Procedure

Let H be a Hilbert space, and P a projection on H (i.e. an operator satisfying
P? = P). Let A be an operator acting on H. Then PAP is an operator acting
on Ran(P): i.e. PAP : H — Ran(P) and consequently PAP : Ran(P) —
Ran(P).

The simplest example is when P is a rank-one projection: P = |¢)(¢| for
some ¢ € H, ||¢]| = 1. Here we have used Dirac’s bra-ket notation

[O)(@] : ¥ — p(, 1))

Then PAP = (¢, Ap)P acts on Ran(P) = {z¢ | z € C} as multiplication
by the complex number (¢, A¢). This example can be easily generalized to a
finite-rank projection, say P = """, |¢;)(¢:| where {¢,} is an orthonormal set
in H. In this case the number (¢, A¢) is replaced by the matrix ((¢;, Ap;))i;-

For another typical example, take H = L?(R) and take P to be multiplica-
tion of the Fourier transform by the characteristic function, xr, of an interval
ICR:

(Ph@) = 20 [ fd = 2m 2 [ et i,
o I
where f(k) = (2r)~1/2 [ e f(x)dx is the Fourier transform of f. P is a
projection since x7 = x;. For a given operator A on H, the operator PAP
(assuming it is well-defined) maps functions whose Fourier transforms are
supported on [ into functions of the same type.

Of interest to us is the following situation: the projection P acts on a space
H=H,®Hs as P = P; ®1, where P; is a rank-one projection on Hi, say
Py = |é1){¢1], with ¢ € Hy. If A is an operator on H, then the operator
PAP is of the form

PAP =1® As

where As is an operator on Hy which can formally be written as Ay =

(b1, A1), -

12.8 Appendix: Proof of Theorem 12.11

Applying the projections Ps and P, :=1- Ps to equation (12.47) and using
Pyieds Py = —iePsPsPs and PsiedsPs = iePsP;Ps, we find (the Feshbach -
Schur splitting)
P.K, P,Uc(s) = —ieP,P,P,U(s), (12.65)
P.K, .P,U(s) = ieP; P,P,U.(s). (12.66)

We compute the operators PsK, P, and PSKMPS. First, we differen-
tiate the relation P, = PS2 and using the notation Ps := 9;Ps to obtain
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I?SI_DS JIPSPS = PS and similarly for P,. These relations imply PSPSPS =0and
P,P; P, = 0, which give

Psasps = (as - [PS)PS])PS) psasps = (as - [PS)PS])pS'

Observe that the operator i[Ps, Py] is self-adjoint. Using these relations, we
compute

P,K, P, = (ieds — HM)P,, (12.67)
P.K, P, = (ied, — H*)P,, (12.68)

where, recall, HA = ie[PS,PS] + Hy and HA = ie[PS,PS] + H,, with H, :=
P,;H,Ps. Combining Eqgs (12.65) and (12.67), we find

(ieds — HY)P,U (s) = —ieP, Py P,U.(s). (12.69)
Using now the Duhamel formula, we find*

P.U.(s) = U*(s,0) Py f/ UA(s,r) PP, P.U(r)dr, (12.70)
0

where, recall, UA(s,r) is the propagator generated by the hamiltonian HA.
Treating (12.66) similarly, we arrive at

P,U.(s) = U*(s,0) Py f/ UA(s,r) PP, P.U(r)dr, (12.71)
0

where U2 (s,r) is the propagator generated by the hamiltonian HA. Plugging
(12.71) into (12.70), we find

P,U.(s) = U?(s,0)Py + R, (12.72)
where R is given by
R, = / drU (s, r)PTPTPT/ dtU2 (r, t)P, P, P,U(t). (12.73)
0 0

4 The Duhamel formula could be rephrased as Ps;Uc(s) = U2 (s,0)Py + (i€ds —
H SA)AVVPSU.'6 (s) (the sum of homogeneous and inhomogeneous solutions), with
W := —iePs Ps and

(ieds — H) 7V f(s) = (ie)_l/ U2 (s,r) f(r)dr.
0

To prove the last relation, we use that U2 (s,r) is defined by the initial value
problem (ieds — H})UZ(s,7) = 0 and U2 (r,r) = 1. Hence

(i€ds — H:‘)(ie)_1 /OS U:‘(s,r)f(r)dr = (0s /OS)UEA(S,r)f(r)dr = f(s).
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Lemma 12.16
Rs; = O(e). (12.74)

Proof. Using definition (12.73), the fact that U#(s, r) commutes with PP, =
—[Ps, Ps] P, and the notation G.(t) := PP, P,U.(t), we rewrite the expression
for R, as

Rs:/ drPTPT/ dtVA(s,r,1)G(t), (12.75)
0 0

where VA(s,r,t) = UA(s,r)UA(r,t). To extract e from this expression, we
integrate by parts. First, we notice that because of the gap condition, F, is in
the resolvent set of H” and the operator H# — E,. is invertible. Next, using
the equation (ied, — H? + E,.)V.A(s,r,t) = 0, we derive the formula

‘/CA(S,T,t) = (H? 7ET)_17:€8T‘/5A(557’515)7 (1276)

Since the operator family H/ is differentiable in the resolvent sense, the pro-
jections P, and the resolvent (H? — E,.)~! are twice differentiable. Using the
formula above and integrating by parts, we find

R, = /0 drP, P, /0 QA — B,)Yied, VA(s, r 1)G.(1)
= ie[P.P,(HA — E,)7! /0 dtV A (s, )Ge(D)]]Z; (12.77)
— e /O drd,(P.P,(H* — ET)—l)/OT dtVA (s, m,t)Ge(2) (12.78)
— e / drP, P.(H? — E,.)7YVA(s,r,7)Ge(r). (12.79)
0

Now, we use that (H? — E,)~! is uniformly bounded. Hence estimating the
expressions on the r.h.s. of the above relation gives (12.74).

Relations (12.72) and (12.74) imply
P,U.(5) = U?(s,0)Py + O(e). (12.80)
Next, we claim that
PU(s) = U2 (s,r)Py + O(e). (12.81)
Indeed, combining (12.71) with (12.80) gives

P,U.(s5) = U*(s,0)Py — R, + O(e), (12.82)

€

with P.P,P, = [P, P,)P,, we write R., as

where R, := fos UA(s,r) PP, P.UA(r,0) Pydr. Using that UA(s,r) commutes
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s —_ — .
R, = / VA(s, )P, P.Podr, (12.83)
0

UA(s,r)UA(r,0). Next, using the equation i€d, VA (s, r) =

where ‘7€A_(S r) =
— E,.), we derive the formula

VA (s, (H

VA(s,r) = ie(0.VA(s,r))(HY — E,) L. (12.84)

Using the formula above and integrating the r.h.s. of (12.83) by parts, we find

R, = ie/ (0,VA(s,r))(HA — E,) "' P, P, Pydr
0
= ie[VA(s,r)(H — ET)_lpTPTPOHZi;

- ie/ VA(s,7)0,(HA — E.) "' P, P,) Pydr. (12.85)
0

Again, using that 0™ (H* — E,)"',m = 0,1, is uniformly bounded and
OrP.,n =0,1,2, are bounded, we estimate the expressions on the r.h.s. of the
above relation to obtain R, = O(e), which yields (12.81). Combining (12.80)
and (12.81) gives (12.50) for k = 1. For a general k > 1, one integrates (12.83)
by parts k times. O

Discussion. Consider the operator K . := ie0; — H, acting on s-dependent
functions. Eq (12.69), with (12.71), can be rewritten

Fp, (Ky)P.Uc(s) =0, (12.86)

where Fp, (K, ) is the Feshbach - Schur map, with the projection Py (cf.
(11.7)), applied to the operator K .. Indeed, according to (11.13) - (11.14),
we have

Fp, (K5,6) = [PSKS,GPS - WPs] IRanP, (12.87)

W := Py(ieds)R(ieds)Ps, R = Py(P;K,  P;) ' Ps. (12.88)

This exactly (12.69), with (12.71) as can be seen from (12.67), (12.68) and
the relation

(ieds — HM) 7L f(s) = (ie) ™ /S UA(s,r) f(r)dr. (12.89)
0
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General Theory of Many-particle Systems

In this chapter, we extend the concepts developed in the previous chapters to
many-particle systems. Specifically, we consider a physical system consisting
of N particles of masses my, ..., my which interact pairwise via the potentials
Vij(x; — x;), where x; is the position of the j-th particle. Examples of such
systems include atoms or molecules — i.e., systems consisting of electrons and
nuclei interacting via Coulomb forces. They were considered in Chapter 10.

13.1 Many-particle Schrodinger Operators

Recall from Section 4.1 that quantizing a system of n particles of masses
mi,...,my interacting via pair potentials Vj;(x; — z;), we arrive at the
Schrédinger operator (quantum Hamiltonian)

Hy Z pj+V) (13.1)

acting on L*(R3"). Here p; := —ihV,, and V is the total potential of the
system, given in this case by

= ;Zvij(:ci — ;). (13.2)

i#j

A key example of a many-body Schrodinger operator, that of a molecule, was
given in (4.26), Section 4.1.
As in Theorem 10.1, one can show that if the pair potentials V;; satisfy
the condition
Vi; € L*(R3) + L>=(R?)

(i.e. each Vj; can be represented as the sum of an L? function and an L™
function) then the operator H, is self-adjoint and bounded below. Indeed, the
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above conditions imply that the potential V' (z) satisfies the inequality (2.8),
with Ho == Y27, Q%vp? and a < 1. Observe that the Coulomb potentials
J

Vij(y) = eiejly| ! satisfy this condition:
I~ =yl ey - e,

for example, with |y|~'e~1¥ € L2(R3) and |y|~*(1 — e~1¥l) € L>=(R3). After
this one proceeds exactly as in the proof of Theorem 10.1.

The spectral analysis of the operator H,, for n > 3 is much more delicate
than that of the one-body Hamiltonians we have mostly considered so far. (We
will show shortly that for n = 2, the operator H,, is reduced to a one-body
Hamiltonian.) We are faced with the following issues:

identical particle symmetries

separation of the center-of-mass motion

complicated behaviour of the potential V' (x) at infinity in the configuration
space R3".

In Section 4.5 we commented on the first issue. In the subsequent sections,
we will deal with the last two issues in some detail. In the remainder of
this section, we comment briefly on them. In what follows, we shall assume
Vij(x) — 0 as |z| — oo, though for many considerations this condition is not
required.

Separation of the centre-of-mass motion. The Schrodinger operator (13.1)
commutes with the operator of total translation of the system

Th:w(zla"'vx’n)Hw(z1+h’a"'7xn+h’)

and one can show that, as a result, its spectrum is purely essential. So in
order to obtain interesting spectral information about our system, we have to
remove this translational invariance (“break” it). One way of doing this is by
fixing the centre of mass of the system at, say, the origin:

n
E m;x; = 0.
j=1

We will describe a general mathematical procedure for fixing the centre
of mass below, but first will show how to do it in the case of two particles
(n = 2). In this case, we change the particle variables as follows:

mix1 + maoXa (13.3)

L1, L2 — Y =T1 —T2,2 =
my + mg
Here y is the coordinate of the relative position of the two particles, and z is
the coordinate of their centre of mass. Using this change of variables in the
two-particle Schrodinger operator
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1 1
3 2m2p3 + V(r1 — x2)

acting on L?(R%), we arrive easily at the operator

~ 1 1
Hy=_ p’ P*4+V
2 2Mp + oM +V(y)
where p = —ihV,, P = —ihV,, p = """ (the reduced mass), and M =

m1+my (the total mass). In fact, it can be shown that Hs and Hy are unitarily
equivalent, with the equivalence given by a unitary realization of the change
of coordinates (13.3).

The point now is that one can separate variables in the operator Hs. In
formal language, this means that H, can be written in the form

]~{2:H®1+1®H0M

on L*(R%) = L? (Ri) ® L*(R3) where

1
H=_p*+V

o Pt ()

acts on L*(R?), and :
Hoy =, P?
CM = oar

acts on L?(R3) (see the mathematical supplement, Section 25.13, for a de-
scription of the tensor product, ®). Clearly H and Hg s are the Schrodinger
operators of the relative motion of the particles, and of their centre of mass
motion, respectively. It is equally clear that of interest for us is H, and not
He . Note that H has the form of a one-particle Schrédinger operator with
external potential V(y). All the analysis we developed for such operators is
applicable now to H.

Behaviour of V(x) at infinity. The second issue mentioned above arises
from the geometry of the potential (13.2). The point is that V(z) does not
vanish as * — oo in certain directions, namely in those directions where
x; = x; for at least one pair i # j (we assume here that V;;(0) # 0). This
property is responsible for most of the peculiarities of many-body behaviour.
In particular, the spectral analysis of Chapter 6 does not work in the many-
body case, and must be modified in significant ways by taking into account
the geometry of many-body systems.

13.2 Separation of the Centre-of-mass Motion

This section is devoted to a description of a general method for separating the
centre-of-mass motion of a many-body system. After applying this method,
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one is left with a many-body system whose centre-of-mass is fixed at the
origin.

We begin by equipping the n-body configuration space R3" with the inner-
product

(z,y) = Zmiiﬂi “Yi (13.4)
i=1

where my,...,m, are the masses of the n particles, and z; - y; is the usual
dot-product in R3. Next, we introduce the orthogonal subspaces

Xo={zeR™ | Y m; =0} (13.5)
=1
and
X+t i={zeR* | z;=x; V ij} (13.6)

of R3". Recall that orthogonality (X 1 X~) means (z,y) = 0 for any = € X,
y € X+ To see that X 1 X, suppose z € X, and y € X . Since y; =y for
all j, we have

n n
(z,y) = Zmizi “Yi = Y1 Zmizi =0
y=1 y=1

by the definition of X. We recall here the definition of the direct sum of
subspaces.

Definition 13.1 If V;, V5 are orthogonal subspaces of a vector space, V', with
an inner product, then V; & V5 denotes the subspace
Vi@ Va:={v1 +vs | v1 €Vi,vg € Va}.
Problem 13.2 Show that
R =X@X" . (13.7)

X is the configuration space of internal motion of the n-particle system,
and X is the configuration space of the centre-of-mass motion of this system.
The relation (13.7) implies that

LA(R3") = L*(X) @ L*(X ) (13.8)

(see Section 25.13 for an explanation of the tensor product, ®).
Let A denote the Laplacian on R?*Y in the metric determined by (13.4),
ie.
n

1

A= -
Z m; A ’
J=1
Under the decomposition (13.8), the Laplacian decomposes as
A=Ax®1x:+1x@Ax: (13.9)

where 1x and 1x, are the identity operators on L?(X) and L?(X") respec-
tively (see again Section 25.13).
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Problem 13.3 Show that Ay. = Al/[
1 n
M Zj:l mjxj.

Let mx be the orthogonal projection operator from R3" to X (see Sec-
tion 25.7 for background on projections). Explicitly,

Aygy where M =377 mjand zon =

1 n
(Txx)i =2i — __y ijzj. (13.10)
Zj:l mj =1

Problem 13.4 Show that (13.10) is the orthogonal projection operator from
R3” to X. Find the orthogonal projection operator, mx. , from R3" to X .

Equation (13.10) implies that
(rxx)i — (Txx); = x5 — ;.
Hence the many-body potential (4.24) satisfies
Viz) =V(rxx). (13.11)

Equations (13.9) and (13.11) imply that the operator H,, given in (13.1) can
be decomposed as
H,=H®1lx.+1x@Tcm (13.12)

where )

h
H=— 9 AX + V(JS)
is the Hamiltonian of the internal motion of the system, and

FL2
TCM = — 2 AxL

is the Hamiltonian of the motion of its centre-of-mass. Equation (13.12) is
the centre-of-mass separation formula, and H is called the Hamiltonian in the
centre-of-mass frame. It is a self-adjoint operator under the assumptions on
the potentials mentioned above. It is the main object of study in many-body
theory.

13.3 Break-ups

Here we describe the kinematics of the break-up of an n-body system into non-
interacting systems. First we introduce the notion of a cluster decomposition

a:{Cl...Cs}

for some s < n. The C; are non-empty, disjoint subsets of the set {1,...,n},
whose union yields the whole set:
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S

Uaci=1,....n}

j=1

The subsets C; are called clusters. An example of a cluster decomposition for
n = 3 is a = {(12),(3)}. The number of clusters, s, in the decomposition a
will be denoted by #(a).

There is only one cluster decomposition with #(a) = 1, and one with
#(a) = n. In the first case, the decomposition consists of a single cluster

a={(1...n)},

and in the second case the clusters are single particles:

a={1)...(n)}

In the first case the system is not broken up at all, while in the second case
it is broken into the smallest possible fragments.
To each cluster decomposition, a, we associate the intercluster potential

L(z) == Y Vij(wi — ),

(i5)Za

where the notation (ij) ¢ a signifies that the indices ¢ and j belong to different
clusters in the decomposition a. Similarly, we associate to a the intracluster
potential
Va(z) = Y Vijlwi — )
(ij)Ca

where (ij) C a signifies that ¢ and j belong to the same cluster in a. Thus
I, (x) (resp. Vo (z)) is the sum of the potentials between particles from different
(resp. the same) clusters of a.

The Hamiltonian of a decoupled system (in the total centre-of-mass frame)
corresponding to a cluster decomposition, a, is

h2
H, = — 9 Ax + Vo (2)

acting on L?(X). For a = {C},...,Cs}, the Hamiltonian H, describes s non-
interacting sub-systems Ci,...,Cs. For s = 1, H, = H, and for s = N,
H, = —52 Ax. The operators H, are also self-adjoint. Note that

H=H,+1,. (13.13)

If s > 1, then the system commutes with relative translations of the clus-
ters C1...C4:
ThHa = HaTh7

for h € X satisfying
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Here
Ty :’lﬂ(l‘l,...,l‘n) —>’Lﬂ(l‘1 —l—hl,...,l‘N-i-hn)

for h = (h1,...,hy). As a result, one can show that the spectrum of H, is
purely essential. This is due to the fact that the clusters in a move freely.
One can separate the centre-of-mass motions of the clusters C; ... Cs in a and
establish a decomposition for H, similar to that for H, (equation (13.12));
we will do this later.

13.4 The HVZ Theorem

In this section we formulate and prove the key theorem in the mathematical
theory of n-body systems — the HVZ theorem. The letters here are the initials
of W. Hunziker, C. van Winter, and G.M. Zhislin. This theorem identifies the
location of the essential spectrum of the many-body Hamiltonian, H.

Theorem 13.5 (HVZ Theorem) We have
Uess(H) = [Z,OO),

where
Y = min X, with Yo :=min(o(Hy)).
#(a)>1
Note that X' is the minimal energy needed to break the system into indepen-
dent parts.

Proof. We begin by showing that o(H,) C o(H) for #(a) > 1. Suppose
A\ € o(H,). Then for any & > 0, there is ¢ € L?(X) with [[1|| = 1, such that
[(Ho—AN)|| < e. Let h € X satisfy h; = h; if (ij) C a, and h; # h; otherwise.
For s > 0, let T, be the operator of coordinate translation by sh. Note that
Tsp is an isometry. As remarked in the previous section, T, commutes with
H,, and so

|(Ho = NTartpl] = [ Ton(Ha = 6] < .

On the other hand, HTs,Y — H,Tsptp as s — oo, because the translation
T,p, separates the clusters in a as s — oo. So for s sufficiently large, ||(H —
MNTsn|| < e. Since € > 0 is arbitrary, and ||Tspt|| = ||| = 1, we see
A€ o(H).

So we have shown o(H,) C o(H). As we remarked earlier, H, has purely
essential spectrum. In other words, o(H,) = [X4,00). Thus we have shown
[X,00) C o(H).

It remains to prove that oess(H) C [X,00). To do this, we introduce a
“partition of unity”, i.e., a family {j,} of smooth functions on X, indexed by
all cluster decompositions, a, with #(a) > 1, such that
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> i@ =1 (13.14)
#(a)>1

We can use {j,} to decompose H into pieces which are localized in the sup-
ports of the j,, plus an error term:

R -
H= Z JaH ja — Z 9 |v]a|2' (13'15)
#(a)>1 #(a)>1
Indeed, summing the identity
[jav [jaa H]] = ng + H]i - 2jaHja

over a, and using (13.14), we obtain the relation known as the IMS formula
(see [73])

H= 3 GaHio+ ylielior H)).

#(a)>1
Computing [ja, [ja, H]] = —h?|Vj,|? finishes the proof of (13.15).
Now we construct an appropriate partition of unity, namely one satisfying
min |z; —xg| >elz| for |z| > 1,z € supp(ja) (13.16)
(Jk)Za

for some £ > 0. Indeed, the sets
Se={zeX | |z|=1; |z —zx| >0V (jk) £ a}

form an open cover of the unit sphere, S, of X (i.e., S, are open sets and S C
(U, Sa)- For each a, let x, be a smooth function supported in S, and equal to
1 in a slightly smaller set (such that these smaller sets still cover S). Then the
functions j, := xa/(3. x2)/? form a partition of unity on S, with supp(j,) C
Se. In fact, (13.16) holds (with |z| = 1), because supp(j,) is compact. We
extend j,(x) to all of X by setting j,(x) := jo(z/|x|) for |z| > 1, and for
|z|] < 1, choosing any smooth extension of j,(z) which preserves (13.15).
Thus the partition {j,} satisfies

Ja(Ax) = jo(z) for Jz|>1,A>1 (13.17)
as well as (13.16). By (13.17),
|Vja(x)]> =0 as |z| — oo.

By (13.16),
ja(H - Ha)ja = jaIaja — 0 as |JE| — Q.

Returning to (13.15), we conclude that

H= Y joHujo+K
#(a)>1
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where K is multiplication operator vanishing at infinity. An argument similar
to the proof of the second part Theorem 6.16 shows that

Uess(H) = Oess Z jaHaja
#(a)>1

Since H > (inf o(H))1 for any self-adjoint operator, H, we see

<w7jaHajaw> = <ja1/J,Hja1/J>
> Yol jatll? > Zall9l?

for any ¢ € X (note Xy <0). Thus joHaja > Yo, and therefore Y~ joHajo >
X, yielding oess(D°, jaHaja) C [X,00), and consequently o (H) C [X, 00).
This completes the proof of the HVZ theorem. [J

13.5 Intra- vs. Inter-cluster Motion

As was mentioned in Section 13.3, the Hamiltonians H, describing the system
broken up into non-interacting clusters have purely essential spectra. This
is due to the fact that the clusters in the decomposition move freely. To
understand the finer structure of many-body spectra, we have to separate
the centre-of-mass motion of the clusters, as we did with the centre-of-mass
motion of the entire system. Proceeding as in Section 13.2, we define the
subspaces

Xt ={zxeX | ijacj:O v i}

JEC;

and

Xo={zeX | z; =x; if (i) Ca}.

Problem 13.6 Show that these subspaces are mutually orthogonal (X* L
X,) and span X:
X=X"® X,. (13.18)

X® is the subspace of internal motion of the particles within the clusters
of the decomposition a, and X, is the subspace of the centre-of-mass motion
of the clusters of a. As before, (13.18) leads to the decomposition

L2(X) = LA(X%) @ L*(X,)
of L?(X) and the related decomposition of the Laplacian on X:

Ax = Axa ®1x, +1xa ®Axa
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where Axa and Ay, are the Laplacians on the spaces X® and X, (or L?(X?%)
and L?(X,)) in the metric (13.4). Again, if mxa is the orthogonal projection
from X to X?, then

Va(z) = Vo(rxax)

and consequently we have the decomposition
H,=H*°®1x, +1x.« ® Ty, (13.19)

where )

h
H* = — 9 AXa +Va(1')
is the Hamiltonian of the internal motion of the particles in the clusters of
2
a, and T, = th Axa is the Hamiltonian of the centre-of-mass motion of the
clusters in a.

Applying the HVZ theorem inductively, we arrive at the following repre-
sentation of the essential spectrum of H:

Oess (H) = U [)‘7 00)7

AeT(H)
where the discrete set 7(H), called the threshold set of H, is defined as
r(H) = |J oaE™) |0},
#(a)>1

the union of the discrete spectra of the break-up Hamiltonians and zero. The
points of 7(H) are called the thresholds. Thus one can think of the essential
spectrum of a many-body Hamiltonian H (in the centre-of-mass frame) as a
union of branches starting at its thresholds and extending to infinity.

13.6 Exponential Decay of Bound States

Theorem 13.7 If H has a bound state, ¥(x), with an energy E < X' (i.e.
below the ionization threshold X', see Theorem 13.5), then W¥(x) satisfies the
exponential bound

/|w(z)|262a‘f‘dz <00, Ya < VX - E. (13.20)

Proof. Let J be a real, bounded, smooth function supported in {|z| > R}.
Proceeding as in the prove of the HVZ theorem above, we show that there is
e=¢€(R) — 0, as R — o0, s.t.

JHJT > (X —¢€)J% (13.21)
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Denote by Vx the gradient on the space (13.5) with the metric (13.4). We
assume now that Vx.J is supported in {R < |z| < 2R}. Let f be a bounded
twice differentiable, positive function and define Hy := efHe=f. We compute

FL2
Hp=H- [Vxf>=Vxf-Vx—Vx-Vxf] (13.22)

Then (Hy — E)® = 0, where ¢ := ¢/ ¥, and therefore (H; — E)J® = [H;, J]®.
On the other hand, by (13.22) and (13.21) and the fact that the operator
Vxf -Vx + Vx - -Vxf is anti-self-adjoint, we have

h2
Re(J®, (Hy — E)J®) = (J&,(H — ' [Vx | — E)J®)
> 6|| 9.

where 6 := X — € — E — SUD,cqupp J 2’22 |Vx f|?>. Then the last two equations
imply

8|lJ|* < Re(J®, (Hy — E)JD) < ||JO||[Hy, J]®|.
Now we take for f a sequence of bounded functions approximating (1 +
|z|2)Y/2, with o < /¥ — E. Taking the limit in the last inequality gives
(13.20). O

13.7 Remarks on Discrete Spectrum

For n = 2, the results in Section 8.3, show that the discrete spectrum of H is
finite if the potential V' (z) is “short-range”, whereas a “long-range” attractive
potential produces an infinite number of bound states. The borderline be-
tween short- and long-range potentials is marked by the asymptotic behaviour
V(x) ~ |z|72 as |x| — oo (which is different than the borderline asymptotic
behaviour of |x|~! which we encountered in scattering theory in Chapter 9).
For n > 2, however, the question of whether o4(H) is finite or infinite cannot
be answered solely in terms of the asymptotic fall-off of the intercluster po-
tentials, I,(z); the nature of the threshold X' at the bottom of the essential
spectrum plays a decisive role.

Now we comment on bound states of molecules with mobile nuclei. We
restrict our attention to the case where X' is a two-cluster threshold. This
means that for energy X and slightly above, the system can only disintegrate
into two bound clusters, Cy and Cs. This fits the case of molecules with
dynamic nuclei which break up into atoms or stable ions. However, our next
assumption, that the lowest energy break-ups originate from charged clusters
(having, of course, opposite total charges), is not realistic.

Ignoring particle statistics, the disintegration of the system into the clus-
ters corresponding to a partition a can be represented by a product wave
function
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¢(x) = ¥ () f(za), (13.23)

where ¥ is the eigenfunction of H* with eigenvalue X, H*WY = YV and z, and
% denote the components of = along the subspaces X, and X* respectively.
Here f is chosen so that (f,T,f) is arbitrarily small. The condition that X is
a two-cluster threshold means that X' is a discrete eigenvalue of H®, and as a
consequence it can be shown that ¥(z?®) decays exponentially as |z%| — oo:

@ ()] < (const)e™ 1" (13.24)

for some o > 0. Using states of the form (13.23) as trial states to make
(¢, Hp) < X, we can show the existence of an infinite number of bound states,
provided that the lowest energy break-ups originate from charged clusters (of
opposite total charges). This means that the intercluster potential

€€
L@= 2

i€Ch,keCs v

satisfies (3 ;cc, €)(D rec, €k) < 0. Using the exponential bound (13.24), it
follows that

(6, (Ta(2) = Ta(2a))d) L2 (x| < (const)|za| 2.

Observe that I,(z,) = —q/|zs| with ¢ > 0. Since H = H*®1,+1°T, + 1,
(see (13.13) and (13.19)) and H*¢ = X'¢, the last inequality implies

0.1 = 2)0) < (. (T.— |1+ (conste ) 1)

|%al L2(X,) .

As in Section 8.3, we let f € C5°(R?) satisfy || f|| = 1 and
supp(f) C {za | 1 < |zal <2}.
Then the functions
fel(ze) = k732 f (k1 y), k=1,2,4,8,...

are orthonormal, and have disjoint supports. Thus the corresponding trial
states ¢ () = ¥(a®) fr(xq) satisty (¢, Hpp) = 0 for k # m, and

1
+ (const)

(Pr, (H — X)) < —(const)q p2 <

0
k )

for some positive constants, if n is sufficiently large. We can now apply the
min-max principle (see Section 8.1) to conclude that H possesses infinitely
many discrete eigenvalues below the threshold X
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13.8 Scattering States

Unlike in the one-body case, the many-body evolution 1) = e~/ be-
haves asymptotically as a superposition of several (possibly infinitely many)
free evolutions, corresponding to different scenarios of the scattering problem.
These scenarios, called scattering channels, can be described as follows. For
a given scattering channel, the system is broken into non-interacting clusters
C1,...,Cs corresponding to some cluster decomposition a, and its motion in
each cluster is restricted to a cluster bound state. (If a given decomposition
contains a cluster for which the cluster Hamiltonian has no bound state, then
this cluster decomposition does not participate in the formation of scattering
channels.) In other words, a scattering channel is specified by a pair (a,m),
where a is a cluster decomposition such that the operator H® has some discrete
spectrum, and m labels the the eigenfunction ¥*™ of H® (we suppose that
for fixed a, the 9™ are chosen orthonormal). The evolution in the channel
(a,m) is determined by the pair

(Ha,mz Ha,m)
where Hg m = ¢¥*™ @ L?(X,) is the channel Hilbert space, and
Hyn o= Ho[n,, = E*™ + T,

where E*™ is the eigenvalue of H* corresponding to the eigenfunction ¥*™.
Thus the channel evolution is given by

efiHa,mt/h(wa,m ® f)

for f € L*(X,).

As in the one-body case (see Chapter 9), the existence and asymptotic
form of scattering states for ¢ — oo depends crucially of the rate at which the
potentials tend to zero for large separations. We suppose that the intercluster

potentials satisfy
', (x) < (const)|xz|; 1ol (13.25)

as |z|q, — 0o, for |a| < 2. Here |z|, is the intercluster distance, i.e.

|z]q == min |z; — x|
(jk)Za
As in the one-body case, 1 = 1 marks the borderline between short-range
and long-range systems, for which the scattering theory is quite different.

Short-range systems: p > 1. In this case, for a given scattering channel,
(a,m), the wave operator

Q-ﬁ-

iHt /B, —iHamt/h
(a,m

)= s-limy_, o€
can be shown to exist on Hg . The proof is similar to that for the one-body
case (see Chapter 9). This wave operator maps free channel evolutions to full
evolutions: setting
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Y= -Q(a m)(wa’m ® f),

we have _ _
eszt/hi/) _ esza,mt/h(wa,m ® f)

as t — o0o. The wave operator Qj m 18 an isometry from H, », to H. Moreover,
the ranges H, ,, := Ran(£2], ) satisfy

H;mJ_H;_n if a#b or m#n
which follows from the fact that

thm <e_iH“’mt/h(’L/Ja’m ® f),e_iHb’"t/h(wb’n ®g)> =0

— 00

if @ # b or m # n. Therefore, the outgoing scattering states form a closed
subspace

H* —@w C LA(X).

Under the condition (13.25) with p > 1, it has been proved that the property
of asymptotic completeness holds — i.e., that HT = L?(X) (see Chapter 27 for
references). In other words, as t — oo, every state approaches a superposition
of channel evolutions and bound states (the bound states are the channel with
#(a) = 1).

Long-range systems: p < 1. As in the one-body case, it is necessary to

modify the form of the channel evolutions in the long-range case. The evolution
e~ Hamt/h with H, ,, = \*™ + T, is replaced by

e*iHa,mt/hfiaa,t(pa)

where p, = —ihV xa. Here oy, +(p,) is an adiabatic phase, arising from the fact
that classically, the clusters are located at z, = pot(1 + O(t™#)) as t — oo.
The modification oy ¢(pa), whose precise form we will not give here, is similar
to that for the one-body case (see Chapter 9). We refer the interested reader
to the references listed in Chapter 27 for further details. We remark only that
with this modification in place, the existence of the (modified) wave operators,
and asymptotic completeness, have been proved for y not too small.
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Self-consistent Approximations

Even for a few particles the Schrédinger equation is prohibitively difficult
to solve. Hence it is important to have approximations which work in vari-
ous regimes. One such approximation, which has a nice unifying theme and
connects to large areas of physics and mathematics, is the one approximat-
ing solutions of n-particle Schrodinger equations by products of n one-particle
functions (i.e. functions of 3 variables). This results in a single nonlinear equa-
tion in 3 variables, or several coupled such equations. The trade-off here is
the number of dimensions for the nonlinearity. This method, which goes un-
der different names, e.g. the mean-field or self-consistent approximation, is
especially effective when the number of particles, n, is sufficiently large.

14.1 Hartree, Hartree-Fock and Gross-Pitaevski
equations

For simplicity we consider a system of n identical, spinless bosons. It is
straightforward to include spin. To extend our treatment to fermions requires
a simple additional step (see discussion below). The Hamiltonian of the sys-
tem of n bosons of mass m, interacting with each other and moving in an
external potential V is

he, + v(x; — ), (14.1)

where hy = f;”; A, 4V (x), acting on the state space @7 L?(R?), d = 1,2, 3.
Here v is the interaction potential, and ) is the symmetric tensor product.
As we know, the quantum evolution is given by the Schrédinger equation
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This is an equation in 3n + 1 variables, x1, ..., z, and ¢, and it is not a simple
matter to understand properties of its solutions. We give a heuristic derivation
of the mean-field approximation for this equation. A rigorous derivation is
sketched in Section 20.6. First, we observe that the potential experienced by
the i-th particle is

W(x;) =V (z;) +Z T — xj).
J#i

Assuming v(0) is finite, it can be re-written, modulo the constant term v(0),
which we neglect, as W(x;) = V(z;) + (v x p™*)(x;). Here, recall, f * g
denotes the convolution of the functions f and g, and p™“"° stands for the
(operator of) microscopic density of the n particles, defined by

PO (2, 1) 1= Zé(z —xj).

Note that the average quantum-mechanical (QM) density in the state ¥ is
<W, pmiCTo((E, t)@> _ pQM (x, t)

where p@M (z,t) :==n [ | ¥(z, 22, ..., 2y, t) |? dzs...dz,, the one-particle den-
sity in the quantum state V.

In the mean-field theory, we replace p™¥"°(z, t) with a continuous function,
pME (z,t), which is supposed to be close to the average quantum-mechanical
density, p%M(z,t), and which is to be determined later. Consequently, it is
assumed that the potential experienced by the ¢-th particle is

WHME () := V(i) + (v pM7) (22).

Thus, in this approximation, the state ¢ (z,t) of the i-th particle is a solution
of the following one-pzjrticle Schrodinger equation ihégf = (h+ v pME Y
where, recall, h = — ' A, + V(). Of course, the integral of p™(x,t) is
equal to the total number of particles f s pMiCTO(z t)d:c = n. We require that

R
the same should be true for p™ fRd p dr = n. We normalize

the one-particle state, ¥(x,t), in the same way

/ [(z,t)|*dz = n. (14.2)
RS

Consider a situation in which we expect all the particles to be in the same
state 1. Then it is natural to take p™ ¥ (z,t) = |1(x,t)|?. In this case v solves
the nonlinear equation

o
ot

This nonlinear evolution equation is called the Hartree equation (HE).

ih " = (h+v*[]*)p. (14.3)
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If the inter-particle interaction, v, is significant only at very short distances
(one says that v is very short range, which technically can be quantified by
assuming that the “particle scattering length” a is small), we can replace
v(x) — 4rad(x), and Equation (14.3) becomes

oy
ot
(with the normalization (14.2)). This equation is called the Gross-Pitaevski
equation (GPE) or nonlinear Schrédinger equation. It is a mean-field ap-
proximation to the original quantum problem for a system of n bosons. The
Gross-Pitaevski equation is widely used in the theory of superfluidity, and in
the theory of Bose-Einstein condensation (see Appendix 14.2).
Reconstruction of solutions to the n-particle Schrodinger equation,

ih hap + 4maly| e (14.4)

ih = HaW, W—g = @7 (14.5)

How do solutions of (HE) or (GPE) relate to solutions of the original many-
body Schrédinger equation (14.5)? It is shown rigorously (see [90, 91, 238])
that the solution of equation (14.5) satisfies, in some weak sense and and in
an appropriate regime of n — oo and a — 0 with ndwa =: X fixed,

U -1y —0

where v satisfies, depending on the limiting regime, either (HE) or (GPE) with
initial condition . For the mean-field regime (replacing for the moment v
by gv) of n — oo and g — 0, with ng fixed, we have (HE) (see [159, 134, 117,
123, 33, 34]).

It is not obvious how to extend the mean-field argument above to fermions.
To do this, we explore another way to derive formally the Hartree equation
from the n-particle Schrodinger one. It goes as follows. For complex i, we
define d;E(¢Y) = (dy, + idy,)E(Y), where ¢ = 1h1 + ithp and call the critical
point equation d;E€(u.) = 0 the Euler-Lagrange equation. Now, observe

Proposition 14.1 The Schriodinger equation is the Euler-Lagrange equation
for stationary points of the action functional

S(W) = /{ — RIm(W, W) — (¥, H, W) }dt, (14.6)

The proof is an exercise in the standard variational calculus — see Chapter 26
for material on variational calculus. We sketch it here:

Proof (Sketch of proof). We write S(¥) := — [ [ W AWdzxdt, where A := ihd;+
H,. We consider S(¥) as a functional of ¥ and ¥, S(¥) = S(¥,¥) and
differentiate it in ¥ along ¢ € C§°(R? x R). We obtain

38)\‘/\:0//(@4-)\5)141[/://514@

Since ¢ € C5°(RY x R) is arbitrary, this gives the Schrodinger equation (14.5).



188 14 Self-consistent Approximations

Problem 14.2 Review the basic facts of variational calculus.

Now, for bosons, we consider the the action functional (14.6) the space
(not linear!)

{7 =y |y e H'(R)}, (14.7)

where (®71)) is the function of 3n variables defined by (®7v)(x1, ..., zp) =
Y(x1)..0(xy). A simple computation gives

Proposition 14.3 Let Sy (v) := n=tS(®W) (‘H’ stands for Hartree), with
|¥]] =1, and w := (n — 1)v. Then we have
= [ [ A= nm. o) - 9ol - Vi

- ;|¢|2w * [¢]? }da. (14.8)

Recall that the regime in which w := (n — 1)v = O(1) is called the mean-field
regime.

Proof. First, we compute (¥, 0,¥) for ¥ := ®71). Denote ¢; := 1(x;). The
relation 0:W = 3, ([ ];..; ¥5) 0¥ gives

7, 0:2) Z/H% [T o =3 w1 b [ o,
J#i
=l [ Gow
Similarly, for ¥ := ®7, we compute

n

0,3 (= Ay, + V(1)) Z/ (Va0 + V() ])

i=1

onwn” 2 / Vi 4+ V() [0 )

= 2D / (V9P +V(@)oP)

Finally, we compute the particle pair interaction terms

@y St - 2wy =, 3 [CI] 1Pleotas = )1,

i#£] i#£] k#4,j
=, S [ [ Pote: - )l
i#]

— = [ [ p@Poe - )l

Collecting the terms above and using that v = (n — 1)w, we arrive at (14.8).
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The Euler-Lagrange equation for stationary points of the action functional
(14.8) considered on the first set of functions is

0
ih 5? = (h+w* [¢]* ). (14.9)
Here we assume the normalization ||+|| = 1. This nonlinear evolution equation

is called the Hartree equation (HE). It is convenient to pass to the normaliza-
tion ||¢|| = n — 1 = n, which leads to the equation

P

ih ot

= (h+v* [¢*), (14.10)
where hy, = —A, + V().

It is relatively easy to extend this approach to fermions. For (spinless)
fermions, we consider the action S(¥) on the following function space

where A1), := det[t;(x;)] is the determinant of the n x n matrix [¢;(x;)]. It
is called the Slater determinant. Then the Euler-Lagrange equation for S(¥)
on the latter set gives a system of nonlinear, coupled evolution equations

0, i
i gy = (ke D i)y = 3 (v s idy)o (14.12)

for the unknowns 1, ..., %,. This systems plays the same role for fermions as
the Hartree equation does for bosons. It is called the Hartree-Fock equations

Finally, we mention another closely related nonlinear equation: the Ginzburg-
Landau equations of superconductivity.

Properties of (HE), (HFE) and (GPE). The Hartree and Gross-Pitaevski
equations have the following general features

1. For space dimensions d = 2, 3 and assuming v is positive definite, (HE) and
(HFE) have solutions globally in time; for (GPE) solutions exist globally
(in time) if @ > 0, but blow-up for certain initial conditions in finite time
ifa <0.

2. (HE), (HFE) and (GPE) are Hamiltonian systems (see Section 20.6).

3. (HE), (HFE) and (GPE) are invariant under the gauge transformations,

U(w) — e P(z), a €R,

and, for v = 0, the translations, ¥(x) — ¥ (z+y), y € R, and the Galilean
transformations, v € R3,

b(x) — T ),
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4. (HFE) is invariant under time-independent unitary transformations of

{1/)15 ceey wn}
5. The energy, F(¢), and the number of particles, N(¢), (see below) are

conserved quantities. Moreover, (HFE) conserves the inner products,
The fourth item shows that the natural object for (HFE) is the subspace
spanned by {t;}, or the corresponding projection v := 3. |¢;)(¢;|. Then
(HFE) can be rewritten as an equation for ~:

=[h 14.13
i =) (1413)
where h(7y) := h 4 v * py — ex(y), with py(x,t) :== y(z,z,t) = 3, [¢i(z, t)]?
and ex(y) is the operator with the integral kernel ex(v)(z,y,t) = v(z —

)Y@,y t) = 32 (% * ;). (We write ex(y) as ex(y) = v#ty.) Here A(z,y)
stands for the integral kernel of an operator A.

This can be extended to arbitrary non-negative, trace-class operators (i.e.
density operators v, see Section 18.1). We address this in Section 18.6.

To fix ideas, we will hereafter discuss mainly (GPE). For (HE) and (HFE)
the results should be appropriately modified. For (GPE) the energy functional
is

h?
B = [ {0 IV + VIeP + 2malul' | o

The number of particles for (GPE) and (HE) is given by

S ALRE

while for (HFE), by N(¢)) := 3, [gs [¢i|*dz. Note that the energy and number
of particle conservation laws are related to the time-translational and gauge
symmetries of the equations, respectively.

The above notions of the energy and number of particles are related to
corresponding notions in the original microscopic system. Indeed, let ¥ :=

\/1” ®7 9. Then
w0, By = B@) +0())

where E (1)) is the energy for (HE) and

/l@l‘l,..., | del d-rn /|¢ |2 dz.

The notion of bound state can be extended to the nonlinear setting as
follows. The bound states are stationary solutions of (HE) or (GPE) of the
form

U@, t) = dpu(w)e™
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where the profile ¢, (z) is in H?(R?®). Note that the profile ¢,,(z) satisfies the
stationary Gross-Pitaevski equation:

hé + 4rma|p|*p = —huo (14.14)

(we consider here (GPE) only). Thus we can think of the parameter —u as a
nonlinear eigenvalue.

A ground state is a bound state such that the profile ¢,,(x) minimizes the
energy for a fixed number of particles:

¢, minimizes E(y) under N(¢)=mn

(see Chapter 26 which deals with variational, and in particular minimiza-
tion problems). Thus the nonlinear eigenvalue u arises as a Lagrange multi-
plier from this constrained minimization problem. In Statistical Mechanics p
is called the chemical potential (the energy needed to add one more parti-
cle/atom, see Section 20.7).

Remark 14.4 1. Mathematically, the ground state can be also defined as a
stationary solution with a positive (up to a constant phase factor) profile,
Y(x,t) = ¢, (x)e™ with ¢, (x) > 0. Let 6(u) := ||¢,||*. Then we have (see
[142])

§'(u) >0 = ¢, minimizes E(¢) under N(¢) = n.

2. The Lagrange multiplier theorem in Section 26.5 implies that the ground
state profile ¢,, is a critical point of the functional

Eu () == E(¢) + huN ().
In fact, ¢, is a minimizer of this functional under the condition N(¢) = n.

If ¢,, is the ground state of (GPE), then ®7¢,, is close to the ground state
of the n—body Hamiltonian describing the Bose-Einstein condensate (see [74]
for a review, and [209, 210] and the Appendix below for rigorous results).

It is known that for natural classes of nonlinearities and potentials V'(x)
there is a ground state. Three cases of special interest are

1. h:= —;‘;A + V() has a ground state, and 27'n|a| < 1
2. V has a minimum, 3%'nlal > 1, and a < 0
3. V(z) = o0 as |z| — oo (i.e. V() is confining) and a > 0.

(The first and third cases are straightforward and the second case requires
some work [105, 234, 11].)

Stability. We discuss now the important issue of stability of stationary
solutions under small perturbations. Namely, we want to know how solutions
of our equation with initial conditions close to a stationary state (i.e. small
perturbations of ¢,,(x)) behave. Do these solutions stay close to the stationary
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state in question, do they converge to it, or do they depart from it? This is
obviously a central question. This issue appeared implicitly in Section 6.4 (and
in a stronger formulation in Chapter 9) but has not been explicitly articulated
yet. This is because the situation in the linear case that we have dealt with
so far is rather straightforward. On the other hand, in the nonlinear case,
stability questions are subtle and difficult, and play a central role.

We say that a stationary solution, ¢, (z)e'*!, is orbitally (respectively,
asymptotically) stable if for all initial conditions sufficiently close to ¢,,(x)e™™
(for some constant a@ € R), the solutions of the evolution equation under
consideration stay close (respectively, converge in an appropriate norm) to a
nearby stationary solution (times a phase factor), ¢, (z)e’* 7). Here 1/
is usually close to u, and the phase 3 depends on time, t. The phase factors
come from the fact that our equations have gauge symmetry: if ¥(z,t) is a
solution, then so is e*@i(x,t) for any constant o € R. One should modify
the statement above if other symmetries are present. The notion of orbital
stability generalizes the classical notion of Lyapunov stability, well-known in
the theory of dynamical systems, to systems with symmetries.

For the linear Schrédinger equation, all bound states, as well as station-
ary states corresponding to embedded eigenvalues, are orbitally stable. But
they are not asymptotically stable in general. For most nonlinear evolution
equations in unbounded domains, the majority of states are not even Lya-
punov/orbitally stable.

For (GPE), if V — o0 as |z| — oo (i.e. V is confining), the ground states
are orbitally stable, but not asymptotically stable. If V' — 0 as |z| — oo,
the ground states can be proved to be asymptotically stable in some cases
(see [277, 293, 145, 127, 128, 72] and references therein).

14.2 Appendix: BEC at T=0

In this appendix we consider briefly the phenomenon of Bose-Einstein con-
densation, predicted by Einstein in 1925 on the basis of analysis of ideal bose
gases and experimentally discovered 70 years later in 1995 in real gases by
two groups, one led by Wieman and Cornell at Boulder, and another by Ket-
terle at MIT. The Gross-Pitaevskii equation arises in the description of this
phenomenon. We concentrate on zero temperature.

First we consider a system of n non-interacting bosons in an exter-
nal potential V. The state space of such a system is the Hilbert space
®rL*(RY), d=1,2,3, and the Hamiltonian operator is

n

Hy:=> ( QFL;A% + V(:ci)) :

j=1

(acting on ®FL?(RY)). By separation of variables, the lowest energy for
this Hamiltonian is ney, where eg is the lowest energy for the one-particle
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Schrédinger operator — 25; A, 4+ V(x). The corresponding eigenfunction — the
ground state of H,, — is given by ®7¢o, where ¢g is the ground state of the
operator _2h; A, + V(). And that’s it — at zero temperature, and in the
ground state, all particles are in the same state ¢!

Now we consider a system of n interacting bosons subject to an external
potential V| which is described by the Hamiltonian
- h? 1
H, = Z ( QmAzi + V(:cz)) + 5 Zv(:cz —z;),

1 i#£]

J

acting on the Hilbert space @7 L?(RY). Here v is the potential of interaction
between the particles. Let &, o(x1,...,xy) be a ground state of H,,. How do
we tell if in this state all (or the majority of) the particles are individually in
some one- particle state, say ¢g?

To begin with we would like to describe, say, the coordinate or momentum
distributions for a single particle. To extract one-particle information from
@, 0, we use the information reduction principle elucidated in Section 19.1:
we pass to density operators (@, 0 — Ps, , = the rank 1 orthogonal projection
on the state @, o) and contract (n—1)—particle degrees of freedom. This leads
to the one-particle density operator:

71 =Trpn-1Ps,
where Tr,_; is the trace over n — 1 of the 3 dimensional coordinates (see
Section 19.1). The one-particle density matrix satisfies

¢ 0<p <l
o Tryf=1
o Pno =10 =1 = P,

Let Ay > A2 > ---A; > --- be the eigenvalues of +,, counting their mul-
tiplicities, and let x1, X2, - Xj, - be corresponding eigenfunctions. We have
the spectral decomposition

W?ZZAjPXja Z)\jzl
j=1 j=1

(see Mathematical Supplement, Section 25.11).The eigenvalues \; are inter-
preted as the probabilities for a single particle to be in the states x;.

The Penrose-Onsager criterion of BEC says that the property of the
ground state @, o of the Hamiltonian H,,

max eigenvalue of vi' — 1 as n — oo (POC)
corresponds to 100% condensation. The criterion (POC) implies

Mm—=—PFP,—0 a n—oo
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so that for large n, almost all the particles are in the single state xi.

A rigorous proof of BEC in the Gross-Pitaevski limit, in which the number
of particles n — oo and the scattering length a — 0, so that na =: A\/(4n) is
fixed, is given in [207] (see also [209]). Moreover, they show that in the trace
norm,

’y? - P¢§P —0

where ¢G* is the Gross-Pitaevski ground state. They also prove convergence
for the ground state energies.
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The Feynman Path Integral

In this chapter, we derive a convenient representation for the integral ker-
nel of the Schrédinger evolution operator, e~ #H/" This representation, the
“Feynman path integral”, will provide us with a heuristic but effective tool for
investigating the connection between quantum and classical mechanics. This
investigation will be undertaken in the next section.

15.1 The Feynman Path Integral

Consider a particle in R? described by a self-adjoint Schrédinger operator

h2
H=- A+ V(x).

Recall that the dynamics of such a particle is given by the Schrodinger equa-

tion
o
ot

Recall also that the solution to this equation, with the initial condition ¢|t—g =
1o, is given in terms of the evolution operator U(t) := e~ /" ag

¥ = U(t)vo.

Our goal in this section is to understand the evolution operator U(t) =
e~ *Ht/h by finding a convenient representation of its integral kernel. We denote
the integral kernel of U(t) by Ui(y,z) (also called the propagator from x to
Y)-

A representation of the exponential of a sum of operators is provided by
the Trotter product formula (Theorem 15.2) which is explained in Section 15.3
at the end of this chapter. The Trotter product formula says that

i = Hap.

—i i(h2t A .
e iHt/h _ ez( S A=Vt)/h _ S‘hmnaooKz

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_15
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where K,, := e2mn3e~ ' . Let K,,(x,y) be the integral kernel of the operator
K,,. Then by Propos1t10n 25.12,

Ui(y,r) = lim /"'/Kn(yvxnfl)"'Kn(x%xl)Kn(zlaz)dznfl"'dl'l-

(15.1)
Now (see Section 25.3)
Kn (y7 x) = egﬁﬁ (y7 x)ei iVﬁ(g)t
since V, and hence e~*V¥/"" is a multiplication operator (check this).
Using the expression (2.23), and plugging into (15.1) gives us
2miht —nd/2
Ui(y,x) = hm/ /ZS /h<m > dry---dr,_1

n—oo
where

= S (mnfzrss — 2l2/2t = V(@esa)t/n)

k=0

with z9g = z, z, = y. Define the piecewise linear function ¢, such that

dn(0) =z, pp(t/n) =x1, -+, dn(t) =y (see Fig. 15.1).

o

| | |
tn 20n° °°  (n~n t

S

Fig. 15.1. Piecewise linear function.

Then

s w((k+1)t/n n(kt/n)|?
Z{W + 1)t/n) — ¢n(kt/n)|

2(t/n)? ~ V(on((k + 1)t/n))} tn,

k=0

Note that S,, is a Riemann sum for the classical action

ﬂ@ﬂéﬁ@@@ﬁwaw}@
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of the path ¢,,. So we have shown

Uiy, z) = lim iSn/ﬁD% (15.2)
where Py, , is the (n — 1)-dimensional space of paths ¢, with ¢,(0) = z,
¢n(t) = y, and which are linear on the intervals (kt/n, (k + 1)t/n) for k =
0,1,...,n—1, and D¢, = (?TMt)=nd/2q¢, (t/n)- - dpn((n — 1)t/n).
Heuristically, as n — oo ¢, approaches a general path, ¢, from z to y (in
time t), and S;, — S(¢). Thus we write

Uiy, z) = / eS@t/hpg, (15.3)
P

z,y,t

Here P, 4 is a space of paths from x to y, defined as

t -
Poys = {6:10,1] — R / 0P < oo, $(0) =z, (1) =y).

This is the Feynman path integral. It is not really an integral, but a formal
expression whose meaning is given by (15.2). Useful results are obtained non-
rigorously by treating it formally as an integral. Answers we get this way are
intelligent guesses which must be justified by rigorous tools.

Note that Py, , is an (n — 1)- dimensional sub-family of the infinite-
dimensional space P, 4 ;. It satisfies P, y . C P2 .t and lim,, Pﬁyﬁt =FPryt
in some sense. We call such subspaces finite dimensional approximations
of Pyt In (non-rigorous) computations, it is often useful to use finite-
dimensional approximations to the path space other than the polygonal one
above.

We can construct more general finite-dimensional approximations as fol-
lows. Fix a function ¢,y € Py, ;. Then

Py oyt = buy + Po,0,t-
Note Py 0, is a Hilbert space. Choose an orthonormal basis {£;} in Py o and
define
Pél,o,t ‘= Sspan {gj}?
and
Pry = by + ooy
Then P;', ; is a finite dimensional approximation of P, , +. Typical choices of

¢zy and {5]} are

1. ¢y is piecewise linear and {{;} are “splines”. This gives the polygonal
approximation introduced above.
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2. ¢gy is a classical path (a critical point of the action functional S(¢))
and {&;} are eigenfunctions of the Hessian of S at ¢4, (these notions are
described in the Supplement on the calculus of variations, Chapter 26).
In this case, if n € Fg'y;, then we can represent it as

n
n= Za’]éﬂ
j=1

and we have

. —d/2 n n
2mith 2mn  |m
oo= (") (T3 e

j=1

It is reasonable to expect that if

lim eis(¢’t)/hD¢
n—oo Pczl,y,t

exists, then it is independent of the finite-dimensional approximation, P, ,,
that we choose.

Problem 15.1

1. Compute (using (15.3) and a finite-dimensional approximation of the path
space) U, for
a) V(z) =0 (free particle)
b) V(z) = médz 22 (harmonic oscillator in dimension d = 1).
2. Derive a path integral representation for the integral kernel of e=#H/"
3. Use the previous result to find a path integral representation for Z(3) :=

tr e"#H/" (hint: you should arrive at the expression (16.11)).

15.2 Generalizations of the Path Integral

Here we mention briefly two extensions of the Feynman path integral we have
just introduced.

1. Phase-space path integral:

Uiy, z) = ez‘fJ(éw—Hw,vr))/thﬂDﬂ

/Pm,y,,, x anything

where Dr is the path measure, normalized as

/ef;'fg Il e — 1
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(in QM, d3p = d®p/(27)3/?). To derive this representation, we use the
Trotter product formula, the expression e *H a1 — ieH for € small, and
the symbolic (pseudodifferential) composition formula. Unlike the rep-
resentation [ e"/" D¢, this formula holds also for more complicated H,
which are not quadratic in p !

2. A particle in a vector potential A(z). In this case, the Hamiltonian is

1

g (7= €A@) + V(2)

H(z,p) =
and the Lagrangian is
. m .o .

L(z, i) = o &7~ V(z) + ex - Ax).

The propagator still has the representation

Uiy, ) = / 5@/ pg,
P

T,y,t

but with
$0) = [ o.dyis= [ (6 -vionas+e [ aw)- das

Since A(z) does not commute with V in general, care should be exercised
in computing a finite-dimensional approximation: one should take

> A(;(%’ + xi11)) - (Tig1 — @)
Z ;(A(xi) + A(@it1)) - (Tip1 — 35)

and not

ZA(JSZ) . (SCZ'+1 — 1'1) or ZA(zerl) . (.TiJrl — SCz)

15.3 Mathematical Supplement: the Trotter Product
Formula

Let A, B, and A+ B be self-adjoint operators on a Hilbert space H. If [A, B] #
0, then e (A+B) £ ¢i4¢iB in general. But we do have the following.

Theorem 15.2 (Trotter product formula) Let either A and B be bounded,
or A, B, and A + B be self-adjoint and bounded from below. Then for
Re(N) <0,

nlingo(e/\ netn )"

AATB) _
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Remark 15.3 The convergence here is in the sense of the strong operator
topology. For operators A, and A on a Hilbert space H, such that D(A4,,) =
D(A), A,, — A in the strong operator topology (written s-lim,, oA, = A)
iff |Any — Ay|| — 0 for all ¢p € D(A). For bounded operators, we can take
norm convergence. In the formula above, we used a uniform decomposition of
the interval [0, 1]. The formula still holds for a non-uniform decomposition.

Proof for A,B bounded: We can assume X = 1. Let S,, = e(A+B)/" and T, =

eA/meB/m Now by “telescoping”,
St =8" T, Sty T, T
n—1
=3 TH(Sn —Tn)Sp k!
k=0
o
n—1
157 =Tl < D ITall*lSn = Tallll S+
k=0
n—1
< D ax(|Tull, 18a )" 180 — Tl
k=0
< nelAl+IBI 1Sn — Tl
Using a power series expansion, we see ||S, — T,,|| = O(1/n?) and so ||S? —

" — 0asn— oco. O
A proof for unbounded operators can be found in [244].



®

Check for
updates

16

Semi-classical Analysis

In this chapter we investigate some key quantum quantities — such as quantum
energy levels — as i/ (typical classical action)— 0. We hope that asymptotics
of these quantities can be expressed in terms of relevant classical quantities.
This is called semi-classical (or semi-classical) analysis. To do this, we use the
Feynman path integral representation of the evolution operator (propagator)
e~ Ht/T_ This representation provides a non-rigorous but highly effective tool,
as the path integral is expressed directly in terms of the key classical quantity
— the classical action.

The heuristic power of path integrals is that when treated as usual conver-
gent integrals, they lead to meaningful and, as it turns out, correct answers.
Thus to obtain a “semi-classical approximation”, we apply the method of sta-
tionary phase. Recall that the (ordinary) method of stationary phase expands
the integral in question in terms of the values of the integrand at the criti-
cal points of the phase, divided by the square root of the determinant of the
Hessian of the phase at those critical points. The difference here is that the
phase — the classical action — is not a function of several variables, but rather
a “functional”, which (roughly speaking) is a function of an infinite number of
variables, or a function on paths. Critical points of the classical action are the
classical paths (solutions of Newton’s equation) and the Hessians are differen-
tial operators. Thus we need some new pieces of mathematics: determinants
of operators and elements of the calculus of variations. These are presented
in supplementary Section 25.12 and Chapter 26 respectively.

Below we consider a particle in R? described by a Schrédinger operator

FL2
H=-, As+V(). (16.1)
We want to pass to physical units in which a typical classical action in our
system is 1, so that A is now the ratio of the Planck constant to the classical
action, so that the regime we are interested in is the one for which i — 0. Let
L be a length scale for the potential, and g its size. So roughly, g = sup,, |V ()]
and L = g(sup, |[VV (x)|)~!. Re-scaling the variable as * — 2’ = 2/ L, we find

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_16
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H = gH’ where
/2

H' = =g B V@)
where V/(z') = g7'V(La') and I'/Vm' = h/(L\/mg). Now the potential
V'(z') is essentially of unit size and varies on a unit length scale. The param-
eter 7’ is dimensionless. If h//v/m’ < 1, we can consider it a small parameter.
As an example suppose V() is of the order 100me*/h?, where me*/h? is
twice the ionization energy of the ground state of the hydrogen atom, and
varies on the scale of the Bohr radius (of the hydrogen atom) L = h%/(me?).
Then 7’ /v/m/ = 1/10. In the expansions we carry out below, we always have
in mind the operator H’ and the dimensionless parameter i’ with the primes
omitted; that is, we think of (16.1) in dimensionless variables.

16.1 Semi-classical Asymptotics of the Propagator

The path integral (15.3) has the form of oscillatory integrals extensively stud-
ied in physics and mathematics. One uses the method of stationary phase in
order to derive asymptotic expressions for such integrals. It is natural, then, to
apply (formally) this method — with small parameter 7 — to the path integral,
in order to derive a semi-classical expression for the Schrodinger propagator
e_”H/h(y, x). We do this below. But first, we quickly review the basics of the
method of stationary phase (in the finite-dimensional setting, of course).

The stationary phase method. We would like to determine the asymp-
totics of oscillatory integrals of the form

/ewww¢
Rd

as h — 0 (here ¢ is a finite dimensional variable). The basic idea is that as
h — 0, the integrand is highly oscillating and yields a small contribution,
except where V.S(¢) = 0 (i.e., critical points). We now make this idea more
precise. Set

I(h):= | f(@)eDMdg

where f € C5°(RY) and S is smooth, and consider two cases:

Theorem 16.1 (stationary phase method) 1. If supp(f) contains no crit-
ical points of S, then

I(hy=0(Y) V N as h—D0.

2. If supp(f) contains precisely one non-degenerate critical point of S, i.e.

VS(#) = 0 and the matrix of second derivatives S”(¢) is invertible, then
as h — 0,
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I(h) = (2ch)¥?| det 8" (§)| /%€ T sgn(S" () f($)e’* P/ 1 + O(n)]
(16.2)
where for a matrix A, sgn(A) denotes the number of positive eigenvalues
minus the number of negative ones.

Proof. To prove the first statement, define the operator

__h VS(¢)

T ivsR

Note that Le?®(®)/n = ¢iS(@)/h and that for smooth functions f and g,

_ T
y ngdw—/Rd(L g

where

T _7771 . VS
L= =09 | gspd]

So for any positive integer N,
10| =1 [ FOLYes@ o) =| [ (LN floners @ ag)
R4 Rd
< (const)h™,

establishing the first statement.

Turning to the second statement, suppose supp(f) contains only one criti-
cal point, ¢ of S, which is non-degenerate. We begin with a formal calculation,
and then explain how to make it rigorous. Writing ¢ — ¢ = v/fior, we obtain

S(6)/h=S5(B)/h+ ya’S" () + O(Vla[*). (16.3)
So
I(h) = BA/20i8(8)/h flo+ \/ha)eiaTS”(@a/QeiO(\/hla\B)da.
-
Now we use the formula
lim et S"@)/2q0 = (271) /2 [det S”(B)]7Y/2. (16.4)

We can derive this expression by analytically continuing f e—aa”S"a from
Re(a) > 0, though the integral is not absolutely convergent. Some care is
needed in choosing the right branch of the square root function. An unam-
biguous expression for the right hand side is

(27T)d/2| det S//(a))|—1/26i7r‘sgn(5'”(qg))/4
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Using f(¢ + Vo) = f(¢) + O(Vh), yields (16.2). Though this computation
shows what is going on, it is not rigorous, since the integral in the remainder
diverges.

A more careful computation is based on the Fourier transform, and pro-
ceeds as follows. First, as a replacement for (16.3), we use the fact, known
as the Morse Lemma, that there is a change of variables which makes S(¢)
quadratic near ¢. More precisely, there exists a smooth function @ : R4 — R¢
with @(¢) = ¢, DP(¢) = 1, and

S(B(6) = S(6) + (6~ §)7S"(5)(6 — )

for ¢ in a sufficiently small ball, B.(¢), around ¢. A proof of this can be found

n [92], for example. By the first statement of Theorem 16.1, we can assume
that (supp f) C Bs(¢) with § small enough so that ®~1(Bs(¢)) C Be(¢). Then
we have

10 = [ @@ rap= [ (@) do Day)dy
Bs(4) 1(Bs(4))

= eis(é)/h/ ei(y—¢)TS”(¢)(y—¢)/(2h)f(@(y))| det DP(y)|dy
1(Bs ()

= i5(0)/h / et 8" (9)2/(2h) £ (P($ + x))| det DD(B + z)|da.
P=1(B(0))

Now we use the Plancherel formula
[ an@rds = [ a@b-¢as
R R
together with the fact (see Section 25.14) that for an invertible symmetric

matrix A,

(eizTAz/(Qh))”(g) _ hd/2| detAl—1/26iwsgn(,4)/4e—mgTA*15/2,
to obtain

I(h) = k2| det S"(q})|—1/261'#8971(5”(<23)/4ei5(¢3)/h/ e (ST (@) T/ 2 _g)qe
Rd
— B2 det 87 () 2T S BASSEN [ (14 O(hle (-,
R4
where b( ) = f(@(¢ + z))|det DB($ + z)|X|z|<s- Finally, observing that

f]R'i €)d¢ = (2m)¥2b(0) = (2m)4/2 f($), we arrive at the second statement
of Theorem 16.1.

Now we would like to formally apply the method outlined above to the
infinite-dimensional integral (15.3). To this end, we simply plug the path in-
tegral expression (15.3) into the stationary phase expansion formula (16.2).
The result is



16.1 Semi-classical Asymptotics of the Propagator 205

e—th/h(y7x) _ / elS(¢)/hD¢
Pa:,y,t

= 3 M(det S(6) 72D+ O(Vh)) (16.5)

é cp of s

where Mg is a normalization constant, and the sum is taken over all critical
points, ¢, of the action S(¢), going from x to y in time ¢. Critical points and
Hessians of functionals are discussed in the mathematical supplement, Chap-
ter 26. Note that the Hessian S”(¢) is a differential operator. The problems
of how to define and compute determinants of Hessians are discussed in the
mathematical supplement Section 25.12.

We will determine M := Mgz, assuming it is independent of ¢ and V. For

V =0, we know the kernel of the propagator explicitly (see (2.23)):
e_iHOt/h(y, 1,) _ (27”-ht/m)—d/2€im\m—y\2/2ht.

So in particular, e 0!/ (3 ) = (2riht/m)~%2. Now the right-hand side of
the expression (16.5) for e=®*Ho/"(z y) is (to leading order in f)

M(det 56/(¢0))—1/26i50(¢0)/h

where the unique critical point is ¢g(s) = x + (y — x)s/t. Thus Sp(dg) =
mly —x|?/2t, and S{/(¢9) = —md?, an operator acting on functions satisfying
Dirichlet boundary conditions.

Comparison thus gives us

M = (det(—md?))Y/?(2miht /m)~/?

and therefore

—iHt/h _ 2mith\ " [ det(—mo?)\'/? iS(3)/h
i = Y (P) () eSO o)
écCp s
(16.6)
as i — 0. This is precisely the semi-classical expression we were looking for.
We now give a “semi-rigorous” derivation of this expression. We assume
for simplicity that S has only one critical point, ¢, going from = to y in
time ¢. Let {€;}52, be an orthonormal basis of eigenfunctions of S”(¢) acting
on L*([0,t]) with zero boundary conditions (the eigenfunctions of such an
operator are complete — see the remark in Section 25.11). So S”(¢)¢; = p;&;
for eigenvalues p;. For the n-th order finite dimensional approximation to
the space of paths in the path integral, we take the n-dimensional space of
functions of the form

o™ = ¢+ Z a;&;
j=1

with a; € R. Expanding S (¢(™) around ¢ gives
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S(6) = 5(@) + , (6.5"(3)8) + O(€)

where

=0 — = a¢;.
j=1

We also have

D¢™ =, ﬁ da;

j=1

(C), some constant). Now using the fact that

5 SU Z aza] &,S” ZM] a;,

7,j=1

we have

/ S@)/h p(n) Z (iS(@)/h / i S 2(1 | O(g? [R))Cuda
() z—sy

(as in Section 16.1, the integrals here are not absolutely convergent). Setting
bj := a;//h this becomes

hn/QCneiS(q;)/h / eizujb?/Q(l + O(b3\/h))dnb
which is (see (16.4))
C(2mih)"?(det(S" ()|, ) /25D (1 4 O(V'h))
where F,, := {37 a;&;} so that det(S”(¢)|r,) = [I} ;- To avoid determining
the constants C), arising in the “measure” D¢, we compare again with the

free (V = 0) propagator. Taking a ratio gives us

—iHt/h SE\n /2 "er —1/2,iS(¢)/h
eIINyx) _ y Cal2mi) (At (S (@), )P
CTrt) 2 s Co(2mib) 2 (det(—mE]r, )12

which reproduces (16.6).

16.2 Semi-classical Asymptotics of Green’s Function

Definition 16.2 Green’s function Ga(z,y,z) of an operator A is (A4 —
2)71(y, x), the integral kernel of the resolvent (A — z)~1.
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For A self-adjoint,
(A - Z)—l _ ) /OO e—iAt/h—H'zt/hdt
h Jo

converges if Im(z) > 0. Taking z = F + ie (F real, € > 0 small), and letting
€ — 0, we define

(A—E—i0) " (y,2) = ;L/ = IAR(y ) TB Ry,
0

Note that the —i0 prescription is essential only for F € o.s5(A), while for
E € R\0ess(A), it gives the same result as the +i0 prescription. Here we are
interested in the second case, and so we drop the —i0 from the notation.

The above formula, together with our semi-classical expression (16.6) for
the propagator e *Ht/"_vyields in the leading order as i — 0

(H—-E)~ / Z K61(5(¢)+Et)/hdt
® Geps

where the sum is taken over the critical paths, ¢, from z to y in time ¢, and

Kom () (R
¢ \2rith det S”(9) '
We would like to use the stationary phase approximation again, but this time

in the variable ¢. Denote by t = #(z,y, E) the critical points of the phase
S(¢) + Et. They satisfy the equation

95(6)/0t = -

The path wg = ¢|;—; is a classical path at energy E (see Lemma 16.13 of
Section 16.5). Introduce the notation So(x,y,t) := S(¢) for a classical path
going from z to y in time ¢. Then the stationary phase formula gives (in the
leading order as h — 0)

_ i ;
(H = B)(y,2) = | 3 DYzeenlm, (16.7)

wWE

where the sum is taken over classical paths going from x to y at energy E.
Here we have used the notation DY.2 := K, (2mih)1/2(9%8,/0t?)~1/2|,_; and
we have defined W, (z,y, E) := (So(z,y,t)+ Et)|;—z (so W, is the Legendre
transform of Sy in the variable t).

Lemma 16.3

H _( 1 a2so>d1d [82%,3 PW,, W, 0°W.,

omih Ot2 oxdy OE?  0x0E OydE (16.8)
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Proof. We just sketch the proof. The first step is to establish
det(—md?) my —4 9?5
=(- det 16.9
det(S" (w)) ( t ) ¢ 0x0y (16.9)

(we drop the subscript F for ease of notation). To see this, we use the fact
that if for an operator A we denote by J4 the d x d matrix solving AJ = 0
(the Jacobi equation) with J(0) = 0 and J(0) = 1, then (see (25.54))
det(fm(?g) _ det meé)? (t)
det(S"(w)) — det Jgn(w)(t)
Next, we use
1 925\
- J " t ==
m"° @ () (6x6y)

(Equation (16.13) of Section 16.5), and for the free classical path ¢ = = +

(y —x)(s/t),
o= ()

to arrive at (16.9).
We can then show that

2 92 —d
det 0°Sp 045y
Oxdy ot? -

equals the determinant on the right hand side in equation (16.8) (see the
appendix to this section for details). O

We will show in Section 16.5 (see Lemma 16.14) that the function W,
(the action at energy F) satisfies the Hamilton-Jacobi equation

oW,
hz,— _“F)=E.
(e, =752
Differentiating this equation with respect to y gives
oh 0*W,,,, —0
ok oxoy

and we see that the matrix (9?W,,,/0x0y) has a zero-eigenvalue. Thus its
determinant is zero. So if d = 1, (16.8) yields

02 W,,, O*W.,,

Doy = —
£ 0xO0E 0OyoFE

(d=1). (16.10)

Formula (16.7), together with (16.8) or (16.10), is our desired semi-classical
expression for Green’s function (H — E)~(y, z).
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16.2.1 Appendix

Proposition 16.4 At t = ¢,

ot [0S0 —925\* dot [P Wer Wy 9 Wy W,
N Oxdy OFE? 0x0E 0yOoE |’

dxdy - ot?

Proof. We drop the subscripts from Sy and W,, to simplify the notation.
Differentiating W = S + Et|;—7 with respect to z, we obtain

8W_8S+858t+E8t
dr ~ Ox Ot Oz oz’

which due to the relation 0S/0t = —F gives

ow a8
ox Oz’
Similarly,
ow oS and ow .
dy Oy oF 7~

This last equation, together with 95/9¢t = —F yields

oew ot (9287
OE?  OE ot?

Furthermore,

9*S W n 0’W OF ot
Oxdy Ox0y O0xOE Ot Oy
_9%S [ *W 0*°W n 0*W 82W]
ot? 0zx0y OE?  0xOF OEdy

and the result follows. [J

16.3 Bohr-Sommerfeld Semi-classical Quantization

In this section we derive a semi-classical expression for the eigenvalues (energy
levels) of the Schrédinger operator H = —;;A + V. We use the Green’s
function expansion (16.7) from the last chapter. For simplicity, we will assume
d=1.

Application of the expression (16.7) requires a study of the classical paths
at fixed energy. Consider the trajectories from x to y at energy E. We can
write them (using informal notation) as

On = ¢:cy +na
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where « is a periodic trajectory (from y to y) of minimal period, at the energy
E, while ¢, is one of the four “primitive” paths from x to y at energy F,
sketched in Fig. 16.1.

V(x)_
@/ E
4 j

Fig. 16.1. Primitive paths at energy E.

V()
N

X y

All these paths are treated in the same way, so we consider only one, say
the shortest one. The space time picture of ¢, in this case is sketched in

Fig. 16.2.
t

|
T

|
X y 0,

Fig. 16.2. Turning points of ¢,,.

For this path we compute
Wy, =Wy +nl
where ¢ = ¢, and
I= /t L(a, &)ds + Et.
0
But « is a critical path so its energy is conserved (see Lemma 4.7)

ZLaQ +V()=E

and so ]
I:/{md2—E}+Et:/k-dx,
0 «

where k(s) = ma(s) and dz = &(s)ds.



16.4 Semi-classical Asymptotics for the Ground State Energy 211

Let w be a classical path at energy E, and let us determine D,,. We will
show later (see (16.18) and Lemma 16.9) that

ow,  0S
0n = g =t = ~k(O)|—t = F/2m(E ~ V(2))
and oW, oS
0 = oo e = KOl = £v/2m(E = V(y)).
Differentiating these relations with respect to £ and using (16.10), we obtain
D, = — m’
k(z)k(y)

At a turning point xo, k(z9) = 0 and k changes sign (we think about k(x) as
a multi-valued function, or a function on the Riemann surface of \/z, so at a
turning point /k(z) crosses to a different sheet of the Riemann surface).

Because k changes sign at each of the two turning points of the periodic
trajectory, we conclude that

1/2 1/2 n
DY? =D)*(~1)m.

So our semi-classical expression (16.7) for Green’s function Gg(y, x) is

Goly,z) = iNexp[i(W¢/ﬁ+n [;_L/Qk-d:cw} 1

n=0
1

_ N Wk
Ne 1— ei(fa k-dz/h—1)

(N is a constant). We conclude that as i — 0, Gg(y, z) has poles (and hence
H has eigenvalues) when

/k ~dr =27h(j +1/2)

for an integer j. This is the Bohr-Sommerfeld semi-classical quantization con-
dition (for d = 1). It is an expression for the quantum energy levels (the
energy E appears in the left hand side through the periodic path a at energy
E), which uses purely classical data!

Problem 16.5 Show that for the harmonic oscillator potential, the Bohr-
Sommerfeld condition gives all of the energy levels exactly.

16.4 Semi-classical Asymptotics for the Ground State
Energy

Here we derive a semi-classical expression for the ground state energy (the
lowest eigenvalue) of the Schrédinger operator H = — QE;AJr V when V(z) —
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o0 as |z| — oo (as fast as some power of |z|, say); i.e., V(z) is a confining
potential.

We first define a couple of quantities which are familiar from statistical
mechanics (see Chapter 18 for details and discussions).

Definition 16.6 The partition function, Z((3), at inverse temperature 3 > 0
is
Z(B) = tr e PH

(the trace is well-defined since o(H) = { £, }§° with E,, — oo sufficiently fast).

Definition 16.7 The free energy, F, is

F(B) == ;W Z(9).

The free energy is a useful quantity for us here because of the following
connection with the ground state energy of the Schrodinger operator H:

lim F(8) = Eo.

ﬂHOO

This is the Feynman-Kac theorem of Section 18.3.

Our goal is to find the semi-classical asymptotics for Ey by deriving an
asymptotic expression for Z(8) from a path integral.

As we have seen (Problem 15.1), the path integral expression for Z () is

Z(t/h) = / e 3@)/h D (16.11)
¢ a path of period ~

where S.(¢) = foﬁ{ s |§|2 4+ V(¢)} (note that this is not the usual action - the
potential enters with the opposite sign).

Remark 16.8 The path integral appearing in (16.11) can be rigorously de-
fined. We refer the reader to [272, 135, 245] for details.

Mimicking the procedure we used for the Schrédinger propagator (i.e., the
stationary phase method, which in the present context is called the Laplace
method), we see that the semi-classical expression for Z(7/h) is

Z(1/h) =~ > NBY/2e=Sc(w)/h (16.12)
minimal paths w

(N a constant) where by a minimal path, we mean a path minimizing S., and

where
det Sf(wo)

“ 7 det 87 (w)

with Sp(¢) = fOT(m/2)|¢3|2. A critical path for S, is a classical path for the
inverted potential —V. We specialize to d = 1 for simplicity, and we assume V'
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has only one minimum, at zo. Then the minimal path is w(s) = z( (a constant
path), and
S (w) = —md2 + V" (x0).

Because ¢ minimizes V, V" (z¢) > 0 and we write V" (x) = mw?. Then using
the method (25.54) of computing ratios of determinants (see Section 25.12

below), we easily obtain
2wt

ewT — e—WwT '

B, =

Also, S (w) = 7V (xp). In this way, we arrive at the leading-order expression
F(r/h) = V(zo) + w/2+ O(1/7)
as i — 0. Letting 8 = 7/h — oo and using the Feynman-Kac formula, we
obtain
1

EO ~ V(ZL'()) + 27?w
which is the desired asymptotic (as i — 0) expression for the ground state
energy. It is equal to the classical ground state energy, V (zg), plus the ground
state of the harmonic oscillator with frequency \/ V'"(xg)/m. This suggests

that the low energy excitation spectrum of a particle in the potential V' (z) is
the low energy spectrum of this harmonic oscillator.

16.5 Mathematical Supplement: The Action of the
Critical Path

In this section we consider the situation of Example 26.1 no. 6, and its special
case, Example 26.1 no. 5. Thus we set

X ={p € C'([0,4;R™) | $(0) =z, $(t) = y},
and

5(6) = / L($(s). d(s))ds.

Suppose ¢ is a critical path for S with #(0) = z and ¢(t) = y. We will
denote the action of ¢ by So(z,y,t) := S(¢) (the action from x to y in time
t).

Recall that the momentum at time s, is k(s) := (OL/3¢)(d(s), 4(s)).

Lemma 16.9 We have
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Proof. Again, we specialize to L = m|$|?/2 — V(¢). Using the chain rule and
integration by parts, we find

Aﬂévaxzi/{w£~8&®xfiﬂdéw8$ﬁhﬁﬁ
(/{ - VV(B)) - 05/0x} +m - 03/0zl}

which, since ¢ is a critical point, (9¢/0x)(t) = 0, and (9¢/0x)(0) = 1, is
just —m@(0) = —k(0), as claimed. The corresponding statement for 9.So/dy
is proved in the same way, using (9¢/9y)(0) = 0, and (9¢/y)(t) = 1. O

This lemma implies 9k(0)/0y = —9*So(x,y,t)/0xdy. On the other hand,
for L = 7|62 — V(9), 9k(0)/dy = (9/OK(0)) = m.J=1 (1) (as m(Dy/Ok(0))

is the derivative of the classical path ¢ at ¢ with respect to the initial velocity
k(0)/m = $(0)). This gives

62SO($5 Y, t)

_ —1
oy = mJ 7L (t) (16.13)

which establishes the following result:

8250 (z,y,
( o(ayt))

Proposition 16.10 If y is a conjugate point to x then det 0.

The following exercise illustrates this result for the example of the classical
harmonic oscillator.

Problem 16.11 Consider the one-dimensional harmonic oscillator, whose
. 2
Lagrangian is L = 7 ¢* — " ¢*. Compute

So(z,y,t) = [(z® + y?) cos(wt) — 2xy)

w
2sin(wt)

and so compute
w

925, t)/0x0y = — .
O(x7ya )/ oy sin wt
Note that this is infinite for ¢ = nm/w for all integers n. Thus the points
¢(nm/w) are conjugate to ¢(0).

Lemma 16.12 (Hamilton-Jacobi equation) The action Sy(x,y,t) satis-
fies the Hamilton-Jacobi equation

0S0/0t = —h(y, 0S0/0y) (16.14)
where h is the classical Hamiltonian function associated with L.

Proof. The integrands below depend on s (as well as the parameters x,y, and
t), and qb denotes 9¢/ds. Since Sy = fo (o, qb )ds, we have
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8S()/0t = L(, &)|s—t + /0 t(aL/an - 0¢/0t + OL/9¢ - 9¢/dt)ds
= L(}, })|s=t + OL/D¢ - g/ Ot|5=h
+ /0 t(aL/an — d/ds(DL/d¢)) - D)0t

Since ¢(s) =y + qg(t)(s — 1)+ O((s — t)?) (here we used ¢(t) = y), we have
9
ot

Using this, the fact that ¢ is a critical point of S, and 9¢/0t|s—¢ = 0, we find

ozt = — ().

05(3)/0t = —((L/99) - ¢ — L($, $))] st
— —h(, OL/OY)| o=t

Since ¢|s—¢ = y and, by Lemma 16.9, (8L/8¢§)|S:t = 05y/0y, the result
follows. [

We want to pass from a time-dependent to a time-independent picture of
classical motion. We perform a Legendre transform on the function Sy(z,y,t)
to obtain the function Wy (x,y, E) via

W&(l‘, Y, E) = (So(l‘, Y, t) + Et)lt:BSO/atsz- (16.15)
We denote by ¢ = #(z,y, E), solutions of
0So/0t),—; = —E. (16.16)

There may be many such solutions, so in the notation Wg, we record the
classical path ¢ we are concerned with (for which ¢(0) = z, () = Y)-

Note that by the definition of the Hamilton function, gg -9 — L =
h(o, gi), and from the energy conservation law (see Lemma 4.7 of Section

4.7) (gi p— L) |s—g is constant, and therefore

oL .
(aq'b '¢L> lo=3 = E-

By (16.15), Wy(z,y,E) = [

o (L(o(s), qg(s)) + E)ds and therefore we have

t I -
0 J¢ ¢

where [; k- dx := fot k(s) gZ;(s)ds and, recall, k(s) = 8L/8<,'b|¢:qg.
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Lemma 16.13 ¢|,_; is a classical path at energy E.

Proof. By the Hamilton-Jacobi equation (16.14) and the conservation of en-
ergy (Lemma 4.7), ¢|,—f is a classical path with energy —9So(z,y,t)/0t|;=z,
which, by (16.16), is just E. O

Lemma 16.14 W; satisfies the Hamilton-Jacobi equation
h(z,—0W3/0x) = E. (16.17)
Proof. Using (16.16) and Lemma 16.9, we compute

oWz S S ot 98
¢ _ 95 0 = "%, = —k(0). (16.18)

o0~ or =TT Uy TEl=Tg, = g,
So by conservation of energy, £ = h(z, k(0)) = h(z, —0Wz/0z). O

+E)

16.6 Appendix: Connection to Geodesics

The next theorem gives a geometric reinterpretation of classical motion.
We consider a classical particle in R¢ with a potential V(z). Recall the
notation f(z)4 := max(f(x),0).

Theorem 16.15 (Jacobi theorem) The classical trajectory of a particle at
an energy FE is a geodesic in the Riemannian metric

(u,v)y =2(F =V (2))4u-v

(where u - v is the inner product in R™) on the set {x € R"|V(z) < E} (the
classically allowed region).

Proof. By the conservation of energy (Lemma 4.7), a classical path ¢ has a
fixed energy F = m|¢;|2/2 + V(¢). Hence ¢ is a critical point of the action
S(¢) = f(m|¢|2/27V.(¢))ds among paths in M := {¢ | m|.¢)|2/2+V(¢) = E}.
Using the relation m|¢|?/2 + V(¢) = E, we can write m|¢|?/2 — V(¢) as

m|*/2 = V(§) = m|g]* = m\/2(E — V(9))/m|g|.
Hence ¢ is a critical point of the functional
L(9) = [ mldlV/2(E - V(0))/mds
on M. This functional gives the length of the path in the metric above.
On the other hand, we can re-parameterize any path with V(¢) < E so

that it satisfies m|}|?/2 + V(¢) = E. Indeed, replacing ¢(s) with ¢(A(s)), we
note [p(N)|2 = (A(s))?|d(A(s))|?. We must solve
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2 E—-V((As)))

QO =0 bae)p

which we can re-write as

SO 2
0 VE= V() a

which can be solved. Since the functional L(¢) is invariant under reparame-
terizations (if A = a(s), @ > 0, then |¢(s)|ds = |q§()\)|862‘ gid)\ = |¢3()\)|d)\2,
if ¢ is a critical point of L(¢), then so are different reparameterizations of ¢,
and in particular the one, ¢, with the energy E. This ¢ is also a critical point
of L(¢) on M, and, by the above, a critical point of S(¢) at energy E. Thus
classical paths are geodesics up to re-parameterization (so they coincide as

curves). O

Problem 16.16 Check that the Euler-Lagrange equation for critical points
of L(¢) on M yields Newton’s equation.
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Resonances

The notion of a resonance is a key notion in quantum physics. It refers to a
metastable state — i.e., to a state which behaves like a stationary (bound)
state for a long time interval, but which eventually breaks up. In other words,
the resonances are states of the essential spectrum (i.e. scattering states),
which for a long time behave as if they were bound states. In fact, the notion
of a bound state is an idealization: most of the states which are (taken to
be) bound states in certain models, turn out to be resonance states in a more
realistic description of the system.

In this chapter, we sketch briefly the mathematical theory of resonance
states and apply it to the analysis of the important physical phenomenon
of tunneling, on which we illustrate some of the mathematics and physics
involved. In Chapter 23, we apply the resonance theory to the problem of
radiation.

17.1 Complex Deformation and Resonances

In this section we introduce the powerful tool of complex deformations, which
allows for an efficient way to define resonances. We begin with a definition.

Definition 17.1 A family of operators, H(6), for 6 in a complex disk {|6] <
e}, will be called a complex deformation of H if H(0) = H, H(#) is analytic
in {|0] < €}, and H(0) is an analytic continuation of the family

H(O)=U(®)"'HU(H) (17.1)

for 6 € R, where U(0), 6 € R, is a one-parameter unitary group, leaving the
domain of H invariant.

(We say that the family H(6) of unbounded operators is analytic iff all H(0)
have the same domain, D, for every ¢ € D, the family of vectors H(6)y is
analytic and the family (H(0) — z)~! of bounded operators is analytic, as long
as the spectrum of H(0) stays away from z.)

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_17
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For Schrédinger operators, H := f;”:nA + V(z), acting on L?(R?), the
choice of the family H(#) depends on analytic properties of the potentials
V(z). The simplest and most important choice is provided by the notion of
dilatation analyticity. Let U(6) be the one-parameter group of dilatations:

U(0) : () — P2 x)

for ¢» € L?(R?). This is a unitary implementation of the rescaling x + e’z for
6 € R and is the key example of a one-parameter unitary group U () used for
complex deformation. We compute

h?

U@O)'HU () = 6*2"(72m

A) + V(elx). (17.2)
Assume the family § — V(e’z) has an analytic continuation into a complex
disk {|f| < €} as operators from the Sobolev space H?(R%) to L?(R?) (the
corresponding potentials are called dilatation analytic). Then the family on the
r.hs. of (17.2) is analytic in {|6] < €} and therefore is a complex deformation,

H(0), of H.
As an example of the above procedure we consider the complex deforma-
tion of the hydrogen atom Hamiltonian Hyyg, := — 27171A — |Z‘|:
h? a
Hyyarg =€ 20(— " A)—e? .
hydrg = €7 2m )—e ||
hydr

Let e, be the eigenvalues of the hydrogen atom. Then the spectrum of this
deformation is
o(Huyaro) = {7} Ue™2000, 00).

In general, one can show that:

1) The real eigenvalues of Hy, Imf > 0, coincide with eigenvalues of H
and complex eigenvalues of Hg, Imf > 0, lie in the complex half-plane C~;

2) The complex eigenvalues of Hy, Imf > 0, are locally independent of 6.
The typical spectrum of Hg, Imf > 0, is shown in Fig. 17.1

SpecH

J’ Y

CAY

Spec Hy

e’_'_‘}z ™~ ™

Fig. 17.1. Typical spectrum of Hy.

We call complex eigenvalues of Hy, with Imf > 0, the resonances of H.
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Often resonances arise as a result of perturbation of eigenvalues embedded
into the essential (continuous) spectrum; that is, when the operator H is of
the form H = Hy+ kW, where Hj is a self-adjoint operator with an eigenvalue
Ao embedded in its essential spectrum, W is a symmetric operator and  is a
small real parameter (coupling constant). This happens, for example, for an
atom in a constant electric field (the Stark effect).

Another example is the problem of time-periodic perturbations, we con-
sidered in Section 11.3. There the isolated eigenvalues E, of the unperturbed
operator Hy lead to the eigenvalues, F,,,, of the unperturbed Bloch-Floquet
Hamiltonian Ky embedded into the essential spectrum of K. The computa-
tions of Section 11.3 suggest that they turn into resonance eigenvalues, Fymp,
of the perturbed operator, K. (In Section 11.3 we considered only the case
of n = 0.) This can be proved rigorously by using the complex deformation
theory above, which allows also to derive the expansions (11.24) and (11.27).
We explain this briefly. Apply the complex deformation with the dilatation
group to the Bloch-Floquet Hamiltonian K to obtain, as in (17.2),

U0) ' K.U(0) :== Hyuo(t) — ihaat on L*(R™ x Sr).
Here, for € R, H,g := Hop +rWpy(t), Hog = —e=%¢ ;;A—FV(e‘gx), Wo(t) :=
W (elz,t). If the potentials V(x) and W (x,t) are dilatation analytic in the
sense of the definition above, then the family on the r.h.s. which we denote
K9 can be continued analytically into a neighbourhood {|6] < €}. Again, the
spectrum of Ky can be easily computed:

Oess (KOG) = U hwn + 6_21m9[0, OO)

n=—oo

plus the collection of the eigenvalues E,,, = E,, + hiwn, n € Z, m =0,1,...,
where, recall, w = 27 /T, T is the time-period of W, and E,, are the eigenval-
ues of Hy. Now, barring an accidental degeneracy (i.e. E,,, = fiwn’ for some
m,n,n’), the eigenvalues E,,, = E,, + hwn are isolated and have finite multi-
plicity. The application of the Feshbach-Schur map becomes a standard affair
and gives, for k sufficiently small, the eigenvalues, Fy,, of K,y emerging from
E,n. (Here we assumed for simplicity that the eigenvalues FE,, are of multi-
plicity one.) These eigenvalues are, in general, complex, and, as we saw above,
are independent of 0 and in general have negative imaginary parts, Im F, ;.
They can be computed by the perturbation expansion (11.16) - (11.17) to give
(11.24) and (11.27).

Resonances as poles. We know from Section 25.9 of the mathematical
supplement that the resolvent (H — z)~! of the Hamiltonian H is analytic
away from its spectrum. One can show that H has an isolated eigenvalue at
a point zp iff matrix elements of the resolvent (H — z)~! have a pole at zo.
Similar to eigenvalues, we would like to characterize the resonances in terms
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of poles of matrix elements of the resolvent (H — z)~!. To this end we have
to go beyond the spectral analysis of H. Let Wy = Up¥, etc., for § € R and
z € C*. Use the unitarity of Uy for real 6, to obtain

(@, (H —2)7'8) = (W5, (Hy — =)' y). (17.3)

Assume now that for a dense set of ¥’s and @’s (say, D, defined below), ¥y and
@y have analytic continuations into a complex neighbourhood of 8 = 0, and
continue the r.h.s of (17.3) analytically, first in 6 into the upper half-plane,
and then in z across the continuous spectrum (the Combes argument). This
meromorphic continuation has the following properties:

e The real eigenvalues of Hy give real poles of the r.h.s. of (17.3) and there-
fore they are the eigenvalues of H.

e The complex eigenvalues of Hy are poles of the meromorphic continuation
of the Lh.s. of (17.3) across the spectrum of H onto the second Riemann
sheet.

The complex poles manifest themselves physically as bumps in the scattering
cross-section or poles in the scattering matrix.
An example of the dense set D mentioned above is given by

D := | Ran(x|7|<d)- (17.4)

a>0

Here T is the self-adjoint generator of the one-parameter group Uy, 6 € R.
(It is not hard to show that it is dense: Vi) € H, X|7|<s¥ — ¢, as a — 00.)

Resonance states as metastable states. While bound states are sta-
tionary solutions of the Schrodinger equation, one expects that resonance
eigenvalues lead to almost stationary, long-living solutions. This is proven,
so far, only for resonances arising from a perturbation of bound states with
eigenvalues embedded into the essential (continuous) spectrum. In this case,
for initial condition ¥ localized in a small energy interval around the unper-
turbed eigenvalue, A, or a small perturbation of the corresponding eigenfunc-
tion ¢,, one shows that the solutions, 1 = e~ *#t/M4) of the time-dependent
Schrodinger equation, ihdy) = H, are of the form

7/) = eiiz*t/héb* + Oloc(tia) + OrES(“B)a (17-5)

for some z. € C™, z, = A + O(k), and o > 0 (depending on 1g). These are
metastable states with resonance eigenvalue z, € C~. Here & is the perturba-
tion parameter (the coupling constant) and the error term O (t~%) satisfies,
for some v > 0,

(X +[2]) 7" Ooc (™) < C17°.

Eqn (17.5) implies that the negative of the imaginary part of the resonance
eigenvalue, —Imz,, called the resonance width, gives the decay probability per
unit time, and (—Imz,)~!, can be interpreted as the life-time of the resonance.
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17.2 Tunneling and Resonances

Consider a particle in a potential V(z), of the form shown in Fig. 17.2; i.e.,
V(z) has a local minimum at some point zg, and V(z¢) > limsup,_, ., V (),
for x in some cone, say.

If V(z) —» —o0 as * — oo (in some cone of directions), then the corre-
sponding Schrodinger operator, H, is not bounded from below.

"would be V(x

"
bound state tunnels under barrier

L escape to oo

Fig. 17.2. Unstable potential.

If the barrier is very thick, then a particle initially located in the well
spends lots of time there, and behaves as if it were a bound state. However,
it eventually tunnels through the barrier (quantum tunneling) and escapes to
infinity. Thus the state of the particle is a scattering state. It is intuitively
reasonable that

1. the energy of the resonance ~ the energy of a bound state in the well
2. the resonance lifetime is determined by the barrier thickness and height,
and A.

Since the resonances are very close to bound states if the barrier is large or
B is small (there is no tunneling in classical mechanics), we try to mimic our
semi-classical treatment of the ground state (Section 16.4). But right away we
run into a problem: if V(z) 4 oo as © — oo in some directions, then

Z(B) = Tre PH = .

The paradigm for this problem is the divergence of the integral

Z()\):/ e’ /24q
0

for A < 0. However, we can define this integral by an analytic continuation.
Z()) is well-defined for Re(A) > 0, and it can be continued analytically into
A € R~ as follows. Move A from Re(A) > 0 into Re(A\) < 0, at the same time
deforming the contour of integration in such a way that Re(Aa?) > 0 (see
Fig. 17.3).
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A
/
f\/ _—
o

Fig. 17.3. Contour deformation.

Of course, in this particular case we know the result:

=) (2

for A < 0 (which is purely imaginary!).

There is a powerful method of rotating the contour which is applicable
much beyond the simple integral we consider. It goes as follows. For 6 € R,
we change variables via a = e~?b. This gives

Z(A):e’(’/ e 2y, (17.6)
0

The integral here is convergent and analytic in 6 as long as
Re(Ae™2) > 0. (17.7)

We continue it analytically in # and ), preserving this condition. In particular,
for A € R™, we should have 7/4 < Im(0) < 37 /4.

Now observe that the right hand side of (17.6) is independent of 6. Indeed,
it is analytic in 6 as long as (17.7) holds, and is independent of Re(6) since the
latter can be changed without changing the integral, by changing the variable
of integration (b — e~?'b, @ € R). Thus we have constructed an analytic
continuation of Z(\) with Re(A) > 0 into a region with Re(\) < 0. In fact,
we have continued this function onto the second Riemann sheet!

Finally, we define Z(\), for A < 0, by (17.6) with 6 obeying (17.7).

17.3 The Free Resonance Energy

With a bit of wisdom gained, we return to the problem of defining the partition
function Z(B) and free energy F(8) (see Definitions 16.6) in the case when
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V(x) 4 00, as © — 00, in some directions (or more precisely, sup,cp V(z) <
oo for some cone I').
Assume that we can construct a complex deformation, H(0), of H, such
that
Z(8) = Tre PHO) < (17.8)

for Im(¢) > 0, or more generally for |0] < ¢, Im(f) > 0. ( Let, for example,
V(z) = —Ca3 for x > 0 and = 0 for # < 0. Then V(ez) = —Ce3%23 for
r>0and =0 for z < 0. Take § = —in/3. Then V(e?z) = Cx® is positive
for > 0. In fact, it is not a simple matter to define the exponential e~ ()
rigorously — see [269]. Below we will deal formally with e=## (%) assuming it
has all the properties which can be derived from the power series expression
for the exponential.)

Proposition 17.2 If Tre #7(®) < o for § € 2 C {|A] < ¢}, then Tre A7)
is independent of 6.

Proof. e~ PH(®) is analytic in {|0] < ¢}, and satisfies
e BHO+s) — U(s)flefﬂH(e)U(s)

for s € R. This last relation can be derived using the expression H (0 + s) =
U(s)"tH(0)U(s) (which follows from (17.1)) and a power series expansion of
the exponential (or Equation (25.43)). By cyclicity of the trace (Tr(AB) =
Te(BA)),

Tre AHOF) — Tye—PHO),
Hence Tre=## () is independent of Re(#), and so is independent of 6. ]

If there is a complex deformation, H(6), of H, such that (17.8) holds,
we call Z(83) = tre PHO) an adiabatic partition function for H, and F(p) =
—(1/B8)In Z(B) the resonance free energy for H. We interpret

E(B) := Re F(B)
as the resonance energy at the temperature 1/,
I(g) == —ImF(3)

as the resonance decay probability per unit time (or resonance width) at the
temperature 1/0, and

as the resonance lifetime at the temperature 1/3. The resonance eigenvalue
for zero temperature is given by

zr = E, — il = ﬁlim F(p).
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Usually, |Im Z(8)| < |Re Z(3)|. Hence,
B() = ReF(5) ~ In(Re Z(5))

and

1 Im Z(B) 1Im Z(5)
I'pB)=—ImF(B)=_Imln(l+1 ~ .
) D= g0+ T pe 25)) © g Re 2(9)
In fact, one can show that for 1E <« t < I'"', where AFE is the average gap
between eigenvalues of H(0) ( 4, gives a time scale for H),

e~ /Py — et/ Myyo 4+ small

if ¢ lies near E, in the spectral decomposition of H (see [269, 125]). Note

that
e—zth/h _ e—FTt/he—zErt/h

exhibits exponential decay at the (slow) rate I.. This is consistent with our
picture of a resonance as a metastable state.

Remark 17.3 The example given after Definition 17.1 does not lead to a
unique self-adjoint Schrédinger operator H = —;”;A + V(x). Presumably,
F(p) is independent of the self-adjoint extension chosen. For a large class of
self-adjoint Schrodinger operators, Condition (17.8) does not hold, and the
trace has to be regularized (see [269]). In such a case, the potential can be
modified at infinity in such a way that for the modified potential, Condi-
tion (17.8) holds. We expect that such a modification can be chosen so that
it leads to a sufficiently small error in the tunneling probabilities. In any
case, the results we discuss below (which are obtained by applying another
non-rigorous technique — path integrals) coincide with those given by more
involved rigorous analysis, wherever the latter is possible.

17.4 Instantons

To compute Z(f3) for the potential sketched in Fig. 17.2, we proceed as in
the ground state problem; we represent Z(f3) formally as a path integral, and
then derive the formal semi-classical expansion (see (16.12)):

Z(r/h) =Y NBl2eSct)/h

(as usual, we ignore the factor (1 + O(v/h))). The sum is taken over criti-
cal points w of the “action” S.(¢), of period 7. N is a normalization factor
independent of w and H, and

~det SY (wo)

B, =
det S” (w)
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where the operators S”(w) and S{(wo) are defined on L?([0,7]) with zero
boundary conditions. Now w is a periodic classical path in imaginary time (or
in the inverted potential —V(z)), with period 7, which we take large (see
Fig. 17.4).

V(x)

"bounce"
static

\

Fig. 17.4. Paths in inverted potential.

Two periodic solutions of arbitrarily large period are
ws(s)=0
(the subscript “s” for “static”) and
wp(s):0— a0

(“b” for “bounce”). The solution wy is called an instanton or “bounce”. Since
ws is a minimum of V', V"’ (w;) > 0, and so

S () = 02 + 2
where 22 = V" (0). We computed earlier

B _ Qr 2071
“s 7 sinh(27) T €T

for 7 large. Moreover, Se(ws) = 0. We will show later (Section 17.6) that

et s\
Bl/2 _ —-1/2 e b 17.
s =T, det S} (wo) (17.9)

where

Sp = Se(wp) = / k-dx

wh

is the action of the “bounce”, and
det = A := det(A| Nyl 4y ) (17.10)

is the determinant of A restricted to the orthogonal complement of the null
space, NullA, of A. Collecting these results, we have (for large 7)
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he?

h
E~— InReZ)~
Tn(e) 2

and

L oan -1/2
N_FLIHIZ Nhsil/Q |det SG(L«J[)” e—Sb/h
TReZ b det S (ws) '

So the probability of decay of the state inside the well, per unit time, is
I' = (const)e™%/"

where Sy = Sc(wp) is the action of the instanton (which equals the length
of the minimal geodesic in the Agmon metric ds? = (V(z) — E),dx?). This
explains the sensitivity of the lifetimes of unstable nuclei to small variations
of the parameters (for example, isotopes with different masses can have very
different lifetimes).
Finally, we note that
eQT

det 8" (w,) ~ )
€ e(w) 29

17.5 Positive Temperatures

Here we consider quantum tunneling at positive temperatures (7' = 3~ > 0).
We use the same approach as above, but let the parameter 5 be any positive
number. Now we have to consider all three critical paths of period 7 = if
(see Fig. 17.5): w1 = ws = Tmin, we, and w3 = Tyaz, Where wo is a classical
periodic trajectory in the potential —V (x) of period 7 = Ap.

V(x) 0)
N 3

o,

\
\ .

Fig. 17.5. Paths of period 7.

Since V"' (Zmin) > 0, wy is a minimal trajectory. As we will see, wy is a
saddle point of Morse index 1 (see Section 26.4). Finally, V" (zmas) < 0, and
so ws is also a saddle point. For k =1, 3,

Se(wg) = V(wg)T
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and for k = 2, 3,
Se(wl) < Se(wk).

The semi-classical expression for the decay probability works out to be

1 —S(w —S(w
FZ*TBMI (Im B,,e92)/" 4 Tm B, e =5/,

Through which trajectory, ws or ws, does the tunneling take place? ws
corresponds to a thermally driven escape (due to thermal fluctuations), and
ws corresponds to a quantum tunneling escape. If 7 is very small (large tem-
perature), the transition occurs through ws, as only ws can have arbitrarily
small period. On the other hand, if 7 is very large (small temperature), wo
sits close to the bottom of the well, and one can show that Se(w2) < Se(ws).
In this case, the transition occurs through ws.

There is a critical value of 7, 7. ~ 27/ 2pnar where 22, = —V"(Zmaz),
at which a transition occurs; the transition is between the situations in which
decay is due to tunneling, and in which it is due to thermal fluctuations. (Note
that for 7 < 7., the decay rate differs from I" by the factor 727 (see [8])).
This transition can take place either continuously or discontinuously, depend-
ing on whether the energy of the periodic classical trajectory in the inverted
potential —V'(z) depends on its period continuously or discontinuously. In
the first case, as temperature decreases below 1/7, (i.e. 7 increases above 7.)
the tunneling trajectory bifurcates from ws and slips down the barrier (see
Fig. 17.6). For 7 < 7, tunneling takes place through ws.

[\}'ump for
T< T,

Fig. 17.6. Continuous transition.

In the second case (see Fig. 17.7), there are no closed trajectories with
period > 7., so the transition is discontinuous: decay jumps from ws to a
trajectory at the bottom of the barrier.

jump
for
T< OO

no trajectories

for
T>T,
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Fig. 17.7. Discontinuous transition.
Thus for intermediate temperatures, the nature of decay depends radically on

the geometry of the barrier.

The results above support the following physical picture of the tunnel-
ing process. With the Boltzmann probability (const)e™®/T the particle is at
an energy level E. The probability of tunneling from an energy level E is
(const)e™%#/" where Sg is the action of the minimal path at energy E. The
probability of this process is (const)eiE/ T=Se/M Thus the total probability
of tunneling is

(CODSt)/eiE/TfsE/h ~ (const)eFo/T=5Eo /b

where Ej solves the stationary point equation

0 (E S E) 1 10Sge

OE'T ~ h’ T hOE
Here —0Sg/OF is the period of the trajectory under the barrier at the energy
level —E, and Sg, + hEy/T is the action of a particle (in imaginary time) at
energy Fy corresponding to the period /T = .

=0.

17.6 Pre-exponential Factor for the Bounce

The bounce solution, wy, presents some subtleties. Since wy breaks the trans-
lational symmetry of S.(¢), W is a zero-mode of S (wp):

Sé'(wb)w'b =0.

To establish this fact, simply differentiate the equation 9S.(wp) = 0 with
respect to s and use the fact that S” = 925, (see Section 26.3).
As a result, we have two problems:

1. S”(wp) has a zero eigenvalue, so formally
[det S” (wp)]~"/? = (const) / e~ (&SI @)O/2hpe — o (17.11)

2. Wp has one zero (see Fig. 17.8), and so the Sturm-Liouville theory (from
the study of ordinary differential equations) tells us that, in fact, S (ws)
has exactly one negative eigenvalue.

O

~_
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Fig. 17.8.

This gives a second reason for the integral (17.11) to diverge.

To illustrate these divergences, we change variables. Let {{;} be an or-
thonormal basis of eigenfunctions of S (wy) with eigenvalues Ay, in increasing
order. For ¢ near wy, write ¢ = wp + £ with

§= ar.
k=0

Then -
Se(é) ~ .S’e(wb) + Z )\kai.
0

But A\g < 0 and A\; = 0, hence we have two divergent integrals:

o0 2
/ e %5/ da; = 0o
— 00

for j = 0,1. We already know that we can define the first integral by an
analytic continuation to be

0o —-1/2
/ e=R0ad /2 g 2Xo _
oo mh

The second integral, correctly treated, is shown to contribute (see the following
section)

20 —1/2

wh

S, 2 /2 (17.12)

where Sy is the action of the “bounce”, S.(wp). Hence
/ e=S@/h o, B o= Se/h
near wy

where

det™ 57w\
Bl/2 _ 871/2 e b
wp =TTy det S (wo)

(this is (17.9)) and det™ is defined in (17.10).

17.7 Contribution of the Zero-mode

The virial theorem of classical mechanics gives

Sb = Se(wb) == /u}bQ.
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Define the normalized zero eigenfunction

51 = S;l/wa.
Then
((Ub + 0151)(8) = (Ub(S) + ClSl:l/wa(s) ~ (Ub(S + 015;1/2)-
Hence
¢~ wp(s+ 01551/2) T Z nn
n#l
and therefore
Hdcn =8, %ds [ den.
n#1l

Integrating in s from 0 to t gives (17.12).

17.8 Bohr-Sommerfeld Quantization for Resonances

The goal of this section is to derive a semi-classical formula for the resonance
eigenvalues of a Schrédinger operator with a tunneling potential. We proceed
by analogy with the treatment of a confining potential in Section 16.3 which
led to the Bohr-Sommerfeld quantization rule.

As in the rest of this chapter, we consider a tunneling potential of the form
sketched in Fig. 17.9.

V(x) ? | (real)

0, (complex)

classically forbidden

Fig. 17.9. Resonance potential.

The path-integral expression for Green’s function of H is, as in Sec-
tion 16.2,

Gu(E,y,z) / / SO HEN/h D gt (17.13)

We seek critical points (because, as always, we wish to apply the method of
stationary phase) which are closed trajectories (z = y) at the fixed energy E.
The trajectories in phase space are shown in Fig. 17.10.
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Fig. 17.10. Phase portrait.

At energy F, phase space is partitioned into classically allowed, and clas-
sically forbidden regions. Classical trajectories at energy E are shown in
Fig. 17.11.

p| classically allowed

A

n \ X
KT/clajsically forbidden

Fig. 17.11. Phase portrait at fixed energy.

If we complexify the phase space
RxR—CxC

then the phase space at a fixed energy E becomes connected as shown in
Fig. 17.12.

Re(p)

N7 71T

Im(p)

Fig. 17.12. Complexified phase space at fixed energy.

Thus, in addition to real paths, ¢(s), we consider complex paths of the
form a(o) = 9(—io). Setting t = —iT, the action for such a path is

S(a,=in) = [ (=4 = V()(-i)do = iA(.7),

where
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T m -
ﬂ:/‘2W+wa
0

. 0S(a, —it)  QA(p,T)
0.5 =10yA, and or =i o

and so

Thus the phase in (17.13) is
S(a, —it) + E(—it) = i(A(W, 7) — ET).
Now, the real critical point (¢1(s),t) satisfies

_ 0S(¢1,t)
9,55 = 0, ool = —F,

s0 ¢1 has period ¢, and m¢; = —VV(¢1) (as in Fig. 17.9). This has a phase
= S(¢1,t) — Etlas/ot=—k-
The complex critical point (¢2(0) = 12(—ic),iT) satisfies
0pS (a0, —iT) = 10y A, 7) =0

and
65(¢2, _iT) _ 5A(¢2a )
or or

s0 1y has period 7, and mys = VV (1h2) (as in Fig. 17.9). Hence the phase
is

=iE,

iWQ = Z(A(LZ)Q, 7') — ET)| aA(g;Q,r):E
We can characterize a general closed critical orbit by the list
(15 my, 15 ma, 15 ms,. . ')a

meaning the real closed critical point is traversed once, the complex closed
critical point is traversed mj times, the real critical point is followed again,
then the complex critical point mq times, etc. (we follow the real critical point
several times in succession if some of the m; are zero). Applying the stationary
phase method, we obtain the following contribution to the path integral (up
to a constant, in the leading order as h — 0):

Z Z i) Wi /R (maoobm ) Wa T _ iW /R Z (eiwl/ﬁ i esz/h>n

n=0msj.. n>0 m=0

1 n
_ 1W1 h Wi /h
S M Gy

Wi /h 1
1 _ eiW1/h 1

= 1

_e—Wa/h
eiwl/h(l _ e*WQ/h)

T eiWi/h _ o—Wa/h"
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We want to identify values of E for which Green’s function has a singu-
larity, with resonance eigenvalues. Writing the lowest resonance eigenvalue as
Ey — iAE and expanding e?V1(E)/" to first order around Ey, and e~"2(E)/h
to zeroth order, gives the equation

eWiEo)/h — 7 or Wi(Eo) = 2rhn, n=0,%1,...

for Ey (i.e. Ey is the ground state energy, as before), and the expression

_ OW1(Eo) o —W2(Eo)/h
AE =h ( SE e

for AE. The last two equations represent the Bohr-Sommerfeld quantization
for resonances.
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Quantum Statistics

In this chapter, we extend quantum mechanics to the situation when only
partial information about the system of interest is available. Here the notion
of wave function (i.e. a square integrable function of the particle coordinates
— an element of L?(R?)) is replaced with the notion of density matriz (or
density operator), a positive, trace class operator on the L? state space. This
topic is closely related to quantum statistical mechanics.

The notions of trace and trace class operators, which are extensively used
in this section, are defined in Mathematical Supplement, Section 25.11.

18.1 Density Matrices

Consider a physical system described by a quantum Hamiltonian H acting
on a Hilbert space H (say, H = — ) A+ V(z) on L*(R®)). Let {1;} be an
orthonormal system (possibly, a basis) in H and let

’L/) = Za]”(/}j.

Given an arbitrary observable A (say, position or a characteristic function of
position), its average in the state v is given by

(A)y = (W, AY) =D Gmn (tm, Atn) - (18.1)

m,n

Now suppose that we know only that, for each n, the system is in the state
1, with a probability p,. We thus have much less information than before.
Now the average, (A4), of an observable A is given by the expression

(A) =" pn(tn, Athy) . (18.2)

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_18
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This corresponds to the situation when the parameters a, in (18.1) are in-
dependent random variables with zero mean and variance E(|a,|?) = pn.
Observe that (18.2) can be written as

(A) = Tr(Ap), (18.3)

where Tr is the trace, p = > pnPy,. Here Py stands for the rank-one or-
thogonal projection onto the vector 9, i. e. Py f = (¢, f)¢, or Py = [¢)(¢] in
Dirac’s notation (see Sections 25.7 and 25.11 for the definition and discussion
of projections and trace).

Problem 18.1 Show that
TR(AP,) = (4, AY). (18.4)

Note that p is a trace class, positive (since p,, > 0 and Py, > 0) operator,
with trace 1: Trp = > p, = 1. We extrapolate from this the assumption
that generalized states are given by positive, trace class operators p on H,

normalized so that Trp = 1. Such operators are called density matrices or
density operators.

If vectors v, evolve according to the Schrodinger equation,

o
ot

then the equation governing the state given by the expression p = 3" pn Py,
is:

ih" = Hi, (18.5)

Op 1
Uge = h[H,p]. (18.6)

One takes this equation to be the basic dynamical equation of Quantum Statis-
tical Mechanics, or Quantum Statistics. We call it the von Neumann-Landau
equation, or the quantum Liouville equation.

Problem 18.2 Derive equation (18.6) for p = > p,, Py, with 1, as above.

Problem 18.3 Show that a solution of the equation (18.6) with the initial
condition p‘t:o =: po is given by
_iHt iHt
p=e¢e r pee .
Hint: Use the result of Problem 2.21.

Problem 18.4 Show that if the initial condition p|t:O is a positive operator,

then so is the solution of the equation (18.6), and Trp = Trp‘t:O. (Hint: use
the result of the previous problem.)

Problem 18.5 Show that if ¢; are bound states of H (i.e. Hip; = A;1);), then
p = ,;piPy,, for any p; > 0, > p; = 1, is a static solutions of the equation

.9
i% = 1M, ]



18.2 Quantum Statistics: General Framework 239

An important example of density matrices are rank-one orthogonal pro-
jections p = Py. Indeed, we have

Py >0 and TrP,=|¢|*=1

Problem 18.6 Show these relations.

There is one-to-one correspondence between one-dimensional subspaces
and rank-one orthogonal projections: {e"*y)} — P, and any rank-one or-
thogonal projection P can be written as Py for any normalized function
1 € RanP. Wave functions, 1, or rank-one projections, Py, are called pure
states. Density operators, p, such p # Py for any 1, are called mized states.
Thus p1 Py, + p2 Py, is a mixed state.

To summarize: if only partial information about a quantum system is avail-
able — namely, we know only that the system occupies certain states with
certain probabilities — we can describe states of such a system by positive
trace-class operators p > 0 (normalized by Trp = 1), called density operators,
or density matrices, with the equation of motion given by (18.6), and averages
of observables computed according to the prescription (18.3).

Denote the spaces of bounded observables and of trace class operators
on H as L>=(H) and L'(H), respectively. There is a duality between density
matrices and observables

(p, A) = Tr(Ap) (18.7)

for A€ L>*(H) and p € L*(H).
Consider the evolution of density matrices, ig’t’ = 1[H,p] (the von Neu-

mann equation) and of observables, i%‘? = —}[H, A] (the Heisenberg equa-
tion). Denote by a; and «j the corresponding flows, oz : p — p; and

of : A — A;. We have shown above that they have the following explicit
representations
iHt iHt iHt
h

ay(p) :=e” n pe and of(A)=e'n Ae” W'

In the sense of the duality (18.7), the evolution of density matrices, «;, and
of observables, oy, are dual:

(07 (A)) = {ailp), 4),

where the coupling is defined by the trace (p, A) = Tr(Ap).

18.2 Quantum Statistics: General Framework

We formalize the theory above by making the following postulates:
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States: positive trace-class operators on H (as usual, up to normalization);
Evolution equation : ihgf = [H, pl;

Observables : self-adjoint operators on H;

Averages : (A), := Tr(Ap).

We call the theory described above Quantum Statistics. The last two items
lead to the following expressions for the probability densities for the coordi-
nates and momenta:

e p(z;x) - probability density for coordinate x;
e p(k; k) - probability density for momentum p.

Above, p(k; k') is the integral kernel of the operator p := FpF ! i.e.
pk; k') = (27Th)73//eiikﬁxeik;ﬁ/p(x;x’)dm dz’. (18.8)

Problem 18.7 Show that the integral kernel of the operator p:= FpF 1 is
given by (18.8).

In particular, if p = Py, then

as should be the case according to our interpretation.
Note that the state space here is not a linear space but a positive cone in
a linear space. It can be identified with the space of all positive (normalized)
linear functionals A — w(A) := Tr(Ap) on the space of bounded observables.
Quantum mechanics is a special case of quantum statistics, and is obtained
by restricting the density operators to be rank-one orthogonal projections:

{9, Va eR} & p=Dy

(v, Ay) = Tr(APy)
in? (M) = He'H ), forsome pe R, o % = i, for p= P
ot - ) H ) ot - A P pP=1Ly .

Problem 18.8 Show these properties.

We show the < direction in the last statement. Using Dirac’s notation we
have that ig’z = }[H,p] and p = Py imply |x)(¥| — |[)(x| = 0 where x =
ih%f — H1, which yields that x = uy fo€ some real p. This implies that the
family of vectors ¢ := e 1) satisfies ihégf = Hy. O

Thus quantum statistics applied to the rank-one projections is equivalent
to quantum mechanics.

Quantum Statistics and Probability Theory. We have shown that quan-
tum mechanics is a special case of quantum statistics (with p — P). Now we
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show that another special case of quantum statistics is probability. Recall that
the average of A in a state p is (4), = Tr(Ap). We introduce the following
interpretation:

e A quantum random variable is an observable A.

e A quantum event is an orthogonal projection operator P (« subspace
RanP).

e The probability of event P in state p is Prob,(P) = Tr(Pp).

Consider observables and orthogonal projections which are multiplication
operators by measurable functions. For a projection P this means that it is
the multiplication operator by a characteristic function, xg, of a measurable

1
set @ C R3 (ie. xo(z) = { req ). For an observable, A, which is a

0 2¢Q

multiplication operator by measurable function ¢ : R® — R, the average is
(4)p =Tr(4p) = | &(2)p(z,2)dz,
R

while the probability of the event P = xq is

Prob,(P) = Tr(Pp) = /

. xo(@)p(z,z)dr = / p(x, x)dx. (18.9)

Q

Thus, if we restrict ourselves to observables and projections, both of which are
multiplication operators (or, more generally, are elements of a commutative
subalgebra of the algebra of all observables), we obtain a standard probabilistic
theory:

e The probability space (R3,P) where dP(x) = p(x, z)dz;
e Random variables which are measurable functions ¢ : R? — R;
e Events are measurable subsets @ C R? < characteristic functions, x¢.

18.3 Stationary States

Stationary, i.e. time-independent, solutions of equation (18.6) are given by
various functions, f(H) (defined, say, by the formula (2.20)), of the quantum
Hamiltonian H. Indeed, such operators, if well-defined, commute with H.
However, they represent density matrices (up to normalization) only if they
are positive and trace-class. The latter holds if and only if

e the functions f(A) are supported on the discrete spectrum of H,
e if o(H) extends to infinity, the f()\) decay at infinity sufficiently fast.

As an example, consider an operator H whose spectrum consists of isolated
eigenvalues (of finite multiplicity) converging to oco. (For example, H is a
Schrédinger operator with the potential |z|*.) Then an operator f(H) is trace



242 18 Quantum Statistics

class for any function f vanishing at co sufficiently fast (see Section 25.11).
Thus, for any such positive function, f(H) is a density matrix (up to normal-
ization).

To summarize: if the operator H has purely discrete spectrum, then
Eqn (18.6) has an infinite-dimensional space of time-independent solutions
— stationary states — which are density operators. These operators are of the
form f(H), where f is a positive function, decaying sufficiently fast at infinity.

However, the states above are not seen in nature if the number of particles
is very large. What is seen in this case, are the (thermal) equilibrium states.
These can be isolated as follows. Assume we have only one conserved quantity
— the energy. Then, following the second law of thermodynamics, we can char-
acterize the equilibrium states in a finite volume as states p which maximize
the von Neumann entropy,

S(p) == =Tr(plnp),
given the internal energy E(p) := Tr(H p):
p maximizes S(p), provided E(p) is fixed (E(p) = E, say). (18.10)

The criterion above is called the principle of mazimum entropy. This principle
can be extended in an appropriate form to infinite systems.

In (18.10), p varies over the convex set S := {p € the (Banach) space
of trace-class operators, p > 0, Trp = 1}. Assuming that the maximum
in (18.10) is achieved in the interior of S, one can show, using standard tech-
niques of variational calculus that the maximizer satisfies the Euler-Lagrange
equation

E'(p) =TS (p) — p1 =0, or, explicitly, H + T(Inp+1) — p =0, (18.11)

where T" and p are Lagrange multipliers corresponding to the constraints
E(p) = E and Trp = 1 respectively (see the Mathematical Supplement, Chap-
ter 26, on variational calculus). The latter equation can be easily solved to
give the following one-parameter family of positive operators
pr = e /T Z(T) | where Z(T) := Tre /T (18.12)

as equilibrium states (for a definition of the operator e=/T | see Section 2.3).
These states are called the Gibbs states and the Lagrange multiplier T is
called the temperature (the Lagrange multiplier p is called the chemical po-
tential). The quantity Z(T) = Tre= /T (or Z(B) = Tre PH for § = 1/T) is
called the partition function (at temperature T', of the system described by
the Hamiltonian H).

It is conjectured that in the absence of conserved quantities other than the
energy, all equilibrium states of infinite systems of infinite degrees of freedom
can be obtained as (weak) limits of Gibbs states.
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The Lagrange multiplier theorem of variational calculus (see Section 26.5)
implies that an equilibrium state minimizes the Helmholtz free energy

Fr(p) := E(p) = TS(p) (18.13)
where T, or § = T, is the Lagrange multiplier to be found from the relation
Tr(Hpr) = E.

Problem 18.9 Show this.

By a straightforward computation, the equilibrium free energy, F(T') :=
Fr(pr), is given by
F(T)=-TZ(T) .

The next result connects Gibbs states and the free energy, to ground states
and the ground state energy. Let 19 be the (unique) ground state of the
Hamiltonian H, and Fy the corresponding ground state energy. Let P, denote
the rank-one projection onto the vector 1. We have

Theorem 18.10 (Feynman-Kac Theorem) As T — 0,
pr — Py, and F(T)— Ey.

Proof. Let Eg < E1 < Ey < --- be the eigenvalues of H (our standing
assumption is that H has purely discrete spectrum, running off to co), and let
10,1, ... be corresponding orthonormal eigenstates. Then by completeness
of the eigenstates, and the spectral mapping theorem (see Section 25.11),

o0
pr =Y. pnPy, where p, = e F/T/Z(T). We can rewrite p,, as

n=0

Pn = e—(En—Eo)/T/ Z e~ (B —Eo)/T

n’=0

We see that p, < 1landasT — 0
. 1 n=0
Pn 0 n>1

It follows easily that ||pr — Py,|| — 0 as T'— 0. Furthermore, since

F(T)=-Th (Y e™®/T) = By —Tn (14 Y e”EnE)/T),
n=0 n=1

we see that F(T) — Epas T — 0. O
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18.4 Hilbert Space Approach

Quantum statistical dynamics can be put into a Hilbert space framework as
follows. Consider the space Hpgs of Hilbert-Schmidt operators acting on the
Hilbert space H. These are the bounded operators, K, such that K*K is

)

trace-class (see Section 25.11). There is an inner-product on Hpg, defined by

(F,K) := Tr(F*K). (18.14)

Problem 18.11 Show that (18.14) defines an inner-product.

This inner-product makes Hpg into a Hilbert space (see [45, 244]). On the
space Hps, we define an operator L via

1

LK =
h[

H, K],

where H is the Schrodinger operator of interest. The operator L is symmetric.
Indeed,
WMF, LK) = Tr(F*[H, K]).

Using the cyclicity of the trace, the right hand side can be written as

Tr(F*HK — F*KH) = To(F*HK — HF*K) = Te([F*, H|K)
— Tv([H, F|'K) = h{LF, K)

and so (F, LK) = (LF,K) as claimed. In fact, for self-adjoint Schrédinger
operators, H, of interest, L is also self-adjoint.
Now consider the Landau-von Neumann equation

Ok
Yot

where k = k(t) € Hus. Since k(t) is a family of Hilbert-Schmidt operators,
the operators p(t) = k*(t)k(t) are trace-class, positive operators. Because k(t)
satisfies (18.15), the operators p(t) obey the equation

dp
ot

If p is normalized — i.e., Trp = 1 — then p is a density matrix satisfying the
Landau-von Neumann equation (18.16). The stationary solutions to (18.15)
are just eigenvectors of the operator L with eigenvalue zero.

To conclude, we have shown that instead of density matrices, we can con-
sider Hilbert-Schmidt operators, which belong to a Hilbert space, and dynam-
ical equations which are of the same form as for density matrices. Moreover,
these equations can be written in the Schrodinger-type form (18.15), with
self-adjoint operator L, sometimes called the Liouville operator.

= Lk (18.15)

i

=Lp= ;[H, o (18.16)
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18.5 Semi-classical Limit

Unlike the Schrodinger equation and the wave function, the von Neumann
equation, ‘g’t) = f;i[H ,p], as well as the density matrix, has a well-defined
semi-classical limit, i.e. the limit as A/(typical classical action) — 0. In this
section we explore this limit.

We pass to physical units in which a typical classical action in our system
is 1, so that & is now the ratio of the Planck constant to the classical action
(cf. Chapter 16). Let the operators T}, 1 and I be defined as

T, = e atw)/h and I g(a) — d(—a). (18.17)

We introduce the following transformation of density operators p — W,(y, k),
where .,
W,(y, k) == (2nh)™ 2 Tr(Tay 1 1Ip), (18.18)

called the Wigner transform. It maps density matrices (quantum statistical
states) into functions of the classical phase space which look like classical
statistical states.

To formulate properties of the Wigner transform we recall a few definitions,
beginning with that of the Fourier transform p(k, k") of p(z, '), as given by
(18.8). Let A be the Weyl quantization of the classical observable (symbol)
a(y, k) (cf. Section 4.1):

A= (2rh)~¢ / / a(&,m)et =)/ gedn, (18.19)

where

aly, k) = (2zh) ™4 / / a(&,m)el E R/ hqedn, (18.20)

Theorem 18.12 (Properties of Wigner transformation) We have

1) p=p* = W, is real;

2) [ dkW,(y, k) = p(y,y) (probability density in y);

3) [ dyW,(y, k) = p(k, k) probability distribution in k;

4) Assuming that our system consists of two subsystems labeled as 1 and 2,
p1 = TI‘Q(p) — VVp1 (yh 1{31) = fdygdeWp(yl, Y2, 1{31, 1{32)

5) Tr(Ap) = [[aW,dydk.

Discussion. 2) and 3) imply that [ [ W,dydk = Trp and Prob,(z € £2) =
Jo Jgs Wodydk, Prob,(k € %) = [os [, Wodydk where Prob,(z € 2) =
Jo p(x, x)dx, and similarly, for Prob,(k € £2*). Note that W,(y, k) does not
have to be positive and therefore cannot be interpreted as a probability dis-
tribution in the phase space. (However, it becomes positive as i — 0.) This
interpretation is confirmed by the equation in 5): the r.h.s of this equation is
like the classical average of the classical observable a in the ”probability dis-
tribution” W,. The above property implies that W,(y, k) is an approximate
probability distribution in the phase space:
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Prob(z € 2,pe ') ~ / W,dydk. (18.21)
0 J

Before proving these statements we find a convenient representation of W,,.
To this end we use the Baker-Campbell-Hausdorff formula:

—ikx —iyp ; (ketyp) yk

e WTeTHT — i TV =ity (18.22)

d 7,yk

(see (4.8)). Using (18. 22) in (18 18), we obtain that W,(y, k) = (2nh)~ 2
x Tr B. where B = e~ W7 e=1"¥ Ip. Compute the integral kernel B(x,z') of B:
B(xz,2') = e~ "% p(—x + 2y, 2'), where p(x, ') is the integral kernel of p. This
gives

Wp(y,k):(27rh)_g/ =" p(2y — x, z)d. (18.23)

Changing the variable of integration as x — z’ = x — y, we obtain
W,(y, k) = (27TFL)_g /e_”;hz ply —z,y + x)dz. (18.24)

Problem 18.13 Prove 1), 3), 4), 5). Hint for 1): use that p(z,z') = p(2/, ).
Hint for 3): use that « = J(z +y) + (2 — y). Hint for 4): 4) follows from 3)
and y -k =y1 - k1 + yo - ko, etc.

We show 2). We use that for functions f, with integrable Fourier transforms
(2mh)~ f dkf(k) = f(0), which follows by setting = = 0 in (27h)~ f dk:e“;nk
><f( ) = f(x). Usmg this relation we obtain [ dkW,(y,k) = p(y — z,z +

Y)|le=0 = p(y,y), which is 2).
To formulate the main result of this section we recall the definition of the
Poisson bracket of classical mechanics:

{a,b} = (0y,a0k,b — 0,,bdk, a). (18.25)

Jj=1

Theorem 18.14 (Semi-classical limit) If h(y,k) = ,! |[k]*> + V(y) and
H = f;L;A + V(z), then

W,g [H,p] — {h, Wp} + O(ﬁV%Wp)

and therefore

ap i
o = fh[H, pl = W, = —{h,W,} + O(hViW,).
Discussion.

a) This theorem implies that in the semi-classical limit the Landau-von
Neumann equation g;’ = —[H, p] becomes the classical Liouville equation of
statistical physics,
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ow = —{h,w}, (18.26)

for the semi-classical limit w of the Wigner transform W, of the density opera-
tor p. Thus, in the limit A — 0, quantum statistics becomes classical statistics.

b) In classical mechanics the equation (18.26) is obtained as follows. Let
w(y, k) be the particle density in the classical phase space. Assume now that
y and k satisfy the Hamilton equations and we want to see how w(y, k) moves
with the flow. Differentiate w(y, k) w.r.to time to obtain

drw(y, k) = dywy + Opwk = Bywdyh — Ipwdy,h, (18.27)

which is (18.26).

c¢) Taking a rank-one, orthogonal projection as the initial condition for the
Landau-von Neumann equation, we relate Schrédinger’s equation to Newton’s.
Proof of Theorem 18.14. Integrating by parts several times, we obtain

Wi #1001 (4, k) = ;;:j (2mh) = /(55 Yoy — 0 + e T
_— ﬁla‘ / (20,00 — 0y 0 )y — 124/ + 2oy F i
o ;ZL hlg / @y 0ur + By 0o+ Z;: By + 0y) Pl o= yr—ye ™ da
- QZZL 515 /[(&ﬁy/ — 0y 0y)plar=ayr=y + ig:ayp]eixkhdz
= :18?/ hlg /pe”kﬁdx _ Zvpr

where we used that (0y + 0y )plar=z,y'=y = Oy(P|a’=x,y'=y). Furthermore, we
have

Wi v, (4, k) = B2 /(V(y - QCE) —V(y+ 2:0))pe nodx
)

= 12

)

= 2 /[—VV(y)(—ith) + O((hV)?)pe 'V da
= (=VV(y)Vi + O(hV3i))W,,.

/ [~VV )z + O@?)]pe * do

Recall the definitions of the classical Hamiltonian, h(y, k) = ,} [k[* + V(y),
and of the Poisson bracket, (18.25), which give (*V, — V(y)V,)W, =

{h,W,}. Hence the sum of the last two equations gives the desired equation.
O
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18.6 Generalized Hartree-Fock and Kohn-Sham
Equations

In this section we describe the natural extension of the Hartree-Fock equation
(HFE), (14.13), to density operators, i.e. non-negative, trace-class operators,
and its natural and powerful modification - the Kohn-Sham equation.

Generalized Hartree-Fock equation. Our starting point is equation (14.13),
which we reproduce here

= [h(7),7]; (18.28)

where h(7) := h+v*n, —ex(y), with h := —A+V, n,(x,t) == v(z,z,t) and
ex(y) = —v' v where v¥y is the operator with integral kernel ex(y)(x,y,t) :=
v(xz — y)y(x,y,t). Here and in what follows, A(x,y) stands for the integral
kernel of an operator A.

Eq. (18.28) was derived for finite-rank, orthogonal projections, which as we
learned in this chapter is a special case of density operators. Now, we extend
it to general density operators.

Remark on notation: in keeping with the standard notation in this subfield,
we use here a different notation, -y, for the density operator, rather than the p
used in the rest of this chapter and in the next one.! Moreover, in this section,
we denote the particle density (which is a non-negative function of z and t)
by n(z,t), rather than p(x,t), as we did in Section 14.1.

We may consider this equation for fermions and bosons. For instance,
(18.28) with ex(y) = 0 generalizes also the Hartree equation (14.10). For
fermions (the HFE), the density operators satisfy

0<y=9"<1, (18.29)

while for bosons (the Hartree equation), they are not restricted from above
and satisfy only 7 > 0. As the eigenvalues of v give the number of particles in
the correspond states, the upper bound in (18.29) expresses the Pauli principle
of having at most one fermion per state.

Recall that for a density operator -, the function n,(z) := y(z,z) (omit-
ting the time argument) is interpreted as the one-particle density, so that
Try = [~y(z,z)dz = [ n,(z)dz is the total number of particles.

Now, we allow a more general class of terms ex(y) and call the result-
ing equation the generalized Hartree-Fock equation. As special cases, we can
consider (18.28) with

- ex(7y) := 0 for the Hartree (or reduced Hartree-Fock, v < 1) equation;

! The origins of the operators v and p are somewhat different:  comes as a one-
particle reduction from a many-particle theory, i.e. from integrating out the coor-
dinates of the remaining particles, while p comes from integrating out the degrees
of freedom of an environment.
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- ex(7y) := —v'y for the Hartree-Fock case;

- ex(y) = an appropriate real-valued function of n,(z) = 7(z, ), for
density functional theory.

In the third case, we arrive at the time-dependent extension of the cele-
brated Kohn-Sham equation, which lies at the foundation of density functional
theory.

We observe that (18.28) has the following properties (cf. Theorem 19.13
below; we write -y, for a solution to (18.28) at time ¢):

1) (18.28) is positivity preserving: if the initial condition v;—¢ is positive,
then so is the solution ~¢;

2) (18.28) preserves the trace: Try; = Tryi—o;

3) (18.28) conserves the energy and the number of particles

E(vy) :== Tr((h + ;v *ny)y) — Ex(y), (18.30)
N(y):=Try = /nv, (18.31)

where Ex(v) := — Tr(yv* 7). Note that
Tr((v*ny)y) = /nvv * nyde = //nv(x)v(ac — y)ny(y)dzdy,

Tr(yof 7) = / / oz — y) (. )| Pdudy.

To prove the first two statements, we note that for «’s from a reasonable
class, h(7) is a self-adjoint operator and let U, (¢, s) be the evolution generated
by the operator h(y) (see Theorem 25.32 of Appendix 25.6) and U,(t) =
U,(t,0). Then the solution v; can be written as

Tt = U'y(t)'}/tZOU'y(t)il (1832)

(cf. Problem 18.3). To show the first property, we use that the evolution U, (t)
is unitary, U, (t)* = U, ()™, to find

(W, y) = (U ()"0, ve=0Un (t)"9) > 0.

For the second property, we use the cyclic property of the trace, Tr(AB) =
Tr(BA), to find Tryy = Tr(Uy (t) " Uy (£)e=0) = Trys—o-

Problem 18.15 Complete the proof of the properties above.

Stationary generalized Hartree-Fock equation. Clearly, v is a static
solution to (18.28) if and only if « is time-independent andsolves the equation

[h(7),7] = 0. (18.33)
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For any reasonable function f and for numbers 7' > 0 and p € R, solutions of
the equation

h(v) — p)), (18.34)

solve (18.33). Under some conditions, the converse is also true. (The parame-
ters T' > 0 and p, the temperature and chemical potential, are introduced here
for future reference.) The chemical potential u is determined by the condition
that Tr~y = some constant, say v.

The function f is selected on physical grounds by either a thermodynamic
limit (Gibbs states) or by a contact with a reservoir (or imposing the maximum
entropy principle). It is given by the Fermi-Dirac distribution

1

h) = 18.35
HOE (18.35)
as we are dealing with fermions. For bosons, frp would be replaced by the

Bose-Einstein distribution

fe(h) = hl

A (18.36)

Inverting the function f and letting f~' =: ¢/, we rewrite the stationary
generalized Hartree-Fock equation as

hyu —Tg'(v) =0, (18.37)

Here hy, :=h(y) —p=—-A+V +vsn, —ex(y) —p, T >0 (temperature),
and p > 0 (chemical potential). It follows from the equations ¢’ = f~! and
(18.35), the function g is given by

g(A) = —(AIn A+ (1= A)In(1 — \), (18.38)

so that
(18.39)

Kohn-Sham equation. According to the Hohenberg-Kohn, Levy and Lieb
results ([163, 200, 196, 197]), the ground state energy functional for a quan-
tum many-body system of identical particles (fermions) can be written as a
functional of the one-particle density of the many-body ground state.

However, this result says nothing about the form of this functional. The
latter is suggested by replacing in the Hartree-Fock equation the HF exchange
term, —ex(7y), which is an operator, by a one-particle density dependent func-
tion (or a multiplication operator) —zc(ny(z)), called the exchange-correlation
self-interaction, which is much handier for computations. One expects —xc(n)
is small in an appropriate sense. As a result we arrive at the equation
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Oy

lgr = (P, 7] (18.40)

where, recall, n,(z) := y(z, z) and, with h := —-A+V,
hp = h+vxn—zc(n). (18.41)

The function xc()) is given empirically, with the expression zc(\) = —eA¥/3,
going back to Dirac, used most often.? (18.40) is the time-dependent Kohn-
Sham equation.

The most studied is the static case. In this case, Eq (18.40) becomes

1

3= (o, — ), (18.42)

where hy,, is given in (18.41). To this we add the condition fnn, = const,
which determines the chemical potential .

Introducing the map den from operators, A, to functions, denA(z) :=

A(x, x), we can rewrite (18.42) as an equation for just the one-particle density

n = den f(;(hn — 1), (18.43)

where f is given by (18.35) and h,, by (18.41).

Eqgs (18.42), or (18.43), is the Kohn-Sham equation, the main equation of
density functional theory.

Note that because of the minimal coupling, there is no (pure) density
functional theory when the system in question is coupled to a magnetic field.

2 z¢(\) = —eA?? is the leading term in the semi-classical expansion for the Hartree-
Fock term ex(7y) := —vf 7.
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Open Quantum Systems

In this chapter, we introduce and study the notion of open quantum system,
generalizing that of the quantum system we have dealt with so far. This notion
lies at the foundation of quantum information theory.

19.1 Information Reduction

Consider a large system (total system T') containing a subsystem we are inter-
ested in. We call the latter a system of interest, or just a system, and denote it
symbolically as S. The rest of the total system will be called the environment
and denoted E. We write T' = S + E. Let  and y be the coordinates of the
system and environment, respectively. The state spaces of S, F and T are the
Hilbert spaces Hg = L?(dz), Hg = L*(dy) and Hr = L?(dxdy).

We will be interested in system observables, i.e. operators acting on the
space Hs = L?(dx). We will associate with them operators (denoted by the
same letters) on Hr = L?(dzdy) acting on the variable .

Assume we are interested in measuring only properties of the system .S,
e.g. averages for its various observables. Assume the total system, T'= S+ F,
is described by a wave function, say ¢ (z,y). The question we would like to
address is: is there a wave function ¢(x) for S, such that measuring the average
of any observable A associated with S, in the state (), gives the same result
as measuring it in the state ¢ (z,y); i.e. is, for any A = A,,

(b, Ap)r = (p, Ap)s ?

Here the inner-products on the l.h.s. and r.h.s. are in the spaces Hr and Hg,
respectively. The answer is that this holds if and only if the subsystem and
environment are not correlated, i.e. ¥ (x,y) = ¢(x)n(y) for some 7. If we take,
for example, ¥ (z,y) = arp1(z)n (y) + asp2(z)n2(y), then (1, A) # (o, Ap)
for any p(z).

So what does it take to describe a state of S in this case without referring
to the environment? The answer is: use density operators. Namely, with any

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59562-3_19&domain=pdf

254 19 Open Quantum Systems

total wave function, ¢ (z,y), we can associate a density operator, p = p, for
our subsystem, so that

(¢, A¢) = Trs(Apy) (19.1)

for any system observable A. Here Trg is trace of the system’s degrees of
freedom. Indeed, the operator p, is defined by its integral kernel

py(z,2") = /w(%y)lﬂ(x’,y)dy : (19.2)

Problem 19.1 Check that (19.1) holds for any operator A acting on the
variable z, provided py is given by (19.2).

To develop an abstract theory, we define the important notion of the partial
trace. For any trace-class operator, R, on Hr, we define the operator Trg R
on Hg by

(¢, (Tr R)Y) = > (dxa, R, (19.3)

K2

for any ¢, 1) € Hs and for any orthonormal basis {x, } in Hg. Here (v x)(z,y) :=
b(x)x(y)-

Problem 19.2 Show that the r.h.s. of (19.3) is independent of the choice of
the orthonormal basis {x;}-

Problem 19.3 Show that the integral kernel of Trg Py is given by (19.2).

We may consider Trg as a map from (linear) operators on Hr to operators
on Hg. We record its properties. In what follows, Trg and Trr denote the
standard traces on Hg and Hr and we omit the subindex 7T in Trr so that
Tr = Trp. We have

1) Trg is a linear map;

2) Trg is positive (or positivity preserving);

3) Trg is trace preserving: Trg o Trg = Tr.

In addition, Trg commutes with multiplication by system observables, i.e.,
for any system observable A,

Here and below, we consider operators acting on Hg = L?(dx) also as opera-
tors on Hr = L%(dzdy) acting just on the variable x (see Remark 19.6 for a
discussion).

The properties of Trg listed above imply the following properties of the
operator Trg R:

a) Trg R is a linear operator;

b) Trg R is positive if R is positive;

c) Trg Trg R = Tr R.
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Problem 19.4 Show all the properties listed above.
Next, we have the following key result:

Theorem 19.5 For any system observable A we have
Tr(AR) = Trs(Ap), where p = Trg R. (19.5)

Proof. By property (c) above, we have Tr(AR) = Trg (Trg(AR)) and by
(19.4), we obtain furthermore Trg(AR) = A Trg(R), which, together with the
previous relation, implies (19.5), since p = Trg R. O

Thus if R is a density operator of the total system T=S+E, then p := Trg R
is a density operator of the system S. It is called the reduced density operator.

Now, as was mentioned above, the wave function, 1, of the total system can
be associated with a density operator acting on the total system coordinates,
namely the rank-one projection R := P, so that

(6, Av) = Tr(AP,) (19.6)

for any operator (observable) A. With this, if A is a system observable, i.e., an
operator which acts only on the variables , then (19.1), with py := Trg Py,
follows from Theorem 19.5.

To summarize: if the total system is described by a density operator R,
then the results of observations on the system S are given in terms the system’s
density operator p = Trg R, without further reference to R.

A system under consideration, whose interaction with the environment
cannot be neglected but which is described in terms of its own degrees of
freedom, is called an open system.

In fact, every system, unless it is the entire universe, can be considered as
a subsystem of a larger system. Hence, in reality every quantum system is an
open system.

Remark 19.6 In tensor product notation we write ¢ ® x, and A® 1g, where
1g is the identity operator on Hg, for ¥(z)x(y) and an observable A acting
only on z, respectively. Moreover, using the notion of tensor product (see
Appendix 25.13), we can pass to a general framework of abstract Hilbert
spaces, Hr = Hs ® Hg, without referring to the variables describing their
degrees of freedom.

One can also define the partial trace, p = Trg R, in terms of the integral
kernels R(z,y,2’,y’) and p(x,2’) of R and p, by generalizing the formula
(19.2) as

p(z,z') == /R(x,y,x',y)dy. (19.7)

Problem 19.7 Check that the definitions of partial trace given by (19.7) and
(19.3) are equivalent.
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The results of the next problem are useful in applications.

Problem 19.8 Given a density matrix p. of E, introduce the map Trf; from
operators on Hr to operators on Hp by

Trk R := (Trg R) ® pe.

Show that (i) Try is a projection, (ii) its dual (on the space of bounded
operators) is given by
Trg A := (Trg Ape) ®

Consider also the symmetric version
Trg R == (Trg Ry/pe) ® /pe
and show that the dual to Try, is of the same form.

Conditional Expectation. In Section 18.2, we explained that quantum
statistics is a non-commutative extension of classical probability theory. We
further elaborate this thesis by introducing and discussing the quantum (non-
commutative) extension of the key probabilistic notion of conditional expec-
tation.

Given a density matrix R of T', we define, for any observable, A, the system
observable (SO)

Ex%(A) .= Trg(AR)/ Tre(R). (19.8)

This is a map from total observables to system ones. It extends the notion
of conditional expectation from classical probability to the non-commutative
setting, as confirmed by the following properties:

(i) ExR is a linear map;

(i) B3 (1) = 1

(iii) E:CR(BAB’) BEx3(A)B’ for any SOs B and B';

(iv) Bap(A%) = Exf(4)"

(v) Ex(A) >0,if A>0.

Problem 19.9 Prove properties (i) -(iii) above.

Properties (ii)-(iii) imply that Ez%(B) = B for any SO B (take A = 1
and B’ =1 in (iii)), that

Ex}(Bxy(A)) = Exg(A)
(follows from the previous equation by taking B = Ex%(A)), and that
Tr (Bz$(A)R) = Tr(AR). (19.9)

Problem 19.10 Prove (19.9).
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Properties (iv) and (v) above are more subtle and we prove them here. For
brevity, we write Ex3(A) = Ex(A) and
w(A) ;= Tr(AR).

Using properties (iii) and (19.9) and letting B and C be any SOs, we obtain
w(BEz(A*)C) = w(Ex(BA*C)) = w(BA*C). Since BA*C = (C*AB*)* and
w(A*) = w(A), this yields

w(BEz(A*)C) = w(C*AB*).
Now, moving in the reverse direction, we find w(C*AB*) = w(F), where
F := Ex(C*AB*), which, together with w(F) = w(F*), F* = B(Ez(A))*C
and (iii), gives w(C*AB*) = w(F*) = w(B(Fz(A))*C). This and the previous
conclusion imply

w(BEz(A*)C) = w(B(Fxz(A))"C).

Since this is true for every SOs B and C, we have Ex(A*) = (Exz(A))*. Indeed,
since Fz(A) is a SO, this follows from the following

Lemma 19.11 The relation w(BEC) = 0, for a given SO E and for arbitrary
S0s B and C, implies that EE = 0.

Proof. We use (19.5) to write w(BEC) = Trs(BECYp), where p = Trg R, and
then take B = [¢) (x| and C = |¢) (1|, with ¢ such that (¢, py)) # 0, to obtain

W(BEC) = (x, E@) (¥, p).

This implies that (y, E@) = 0, for every x and ¢, which yields that F = 0.
]

This concludes the proof of (iv).
For property (v), proceeding as in the first part of the proof of (iv), we
obtain
w(BExz(A)B*) = w(BAB*) >0

if A > 0. Since Ex(A) is a SO and since the above inequality is true for every
SO B, we have that Ex(A) > 0. Indeed, this follows from the following

Lemma 19.12 I[fw(BEB*) > 0, for a given SO E and for every SO B, then
E>0.

Proof. Proceeding as above, we take B = |¢) (|, with ¢ such that (¢, pyp) # 0,
where p = Trg R. Then

0 <Sw(BEB") = (¢, E@) (¢, pib),

which implies that (p, E@) > 0 for every ¢, which yields that £ > 0.
O

Thus, we conclude that property (v) holds.
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19.2 Reduced dynamics

Consider a system of interest (S) interacting with an environment (E). We
found in Section 19.1, that if the total system is described by a density
operator R, acting on the total system state space Hr = L?(dxdy) (or
Hr = Hs X HEg), then the density operator p = TrgR of S gives the same
results for averages of the system’s observables as R. Here, recall, Trg is the
partial trace over the environment degrees of freedom defined in (19.3). Then,
for any observable A = A,, associated with the system

Tr(AR) = Trs(Ap), p = Trg R. (19.10)

(Recall that Tr = Trr.) Recall that the operator p = Trg R, called the re-
duced density operator, acts on the system state space and has the following
properties:

1) p is a linear operator on the state space of the system;

2) p is positive if R is positive;

3) Trsp = Tr R.

Assume now our total system is described by the Schrodinger operator,
Hr, acting on the state space Hy = L?(dxdy). A model to keep in mind is
the one given by

Hr = Hs®1g + 15 ® Hg + Av, (19.11)

where Hg and Hg are Schrodinger operators of this system and environment
acting on Hg and Hg, respectively, A is a real parameter, called the coupling
constant, and v is an operator acting on Hr = Hs ® Hg. Here Av describes
the interaction of the system and the environment.

The evolution of the total system is given by the von Neumann-Landau
equation

OR 1
i att = h[HT,Rt], Ri—o = Ro. (19.12)

We write the solution of this initial value problem as R; = a:(Ryp). Let Uy :=
—"%". Tt is shown in Homework 18.3 that

A map « on a space, B, of operators is called positive iff a«(R) > 0, whenever
R > 0. With this definition, we have

Theorem 19.13 For each ¢, the map a; has the following properties
1) a4 is linear;

2) oy is positive;

) oy is trace preserving: Traz(R) = TrR;

; a(R*) = ar(R);

«; 1s invertible.

3
4
5
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Problem 19.14 Prove this theorem. (Hint: To prove the trace preservation
property, one can use either the definition of the trace or its cyclic property,
Tr(AB) = Tr(BA), and properties of Uy := eJHﬁTt, see Homework 2.21.)
Here we prove the second statement. We omit the subindex tot at Hr. Using
the relations (19.13) and (¢, U;¢) = (U, ¢) (the latter shown in Homework
2.21), we find

(¥, ar(R)Y) = (¥, U RU ) = (U, RU¢Y) > 0
Now, the reduced density operator of the system S at time ¢ is given by
pt = Trg Ry.

We consider the particular class of Ry of the form Ry = pg ® p. for some fixed
density operator p. for E and define

Bt(po) = Tre at(po @ pe). (19.14)

The family 3, is called the reduced evolution. We observe

1) The evolution §; depends on pe.

2) Starting with a pure state, the evolution §; produces mixed states,
unless S and E do not interact.

3) If S and E do not interact then 8; = a7 ,where o (p) := U;pU;, the
evolution of S. (Indeed, in this case, a; := af ® af and the result follows from
the fact that a® and Trg commute.)

4) In general, ;(po) = Trg at(Ro), where Ry is s.t. Trg Ry = po, is not
even a linear map for fixed ¢.

What can we say about the reduced evolution 3;7 As we deal with a fixed
t, we can concentrate on a single map «. For a fixed map « acting on density
operators on the total state space Hr = L?(dxdy) and an environment’s
density operator p., we define the reduced map 3 acting on system density
operators on the system space Hg = L?(dx) as

B(p) = Tre alp ® pe). (19.15)

Moreover, we assume that « is of the form a(R) = URU* where U is a unitary
(or more generally, invertible) operator on Hy. Then we have

Theorem 19.15 The map (19.15) has the following properties
(a) [ is linear;
(b) § is positive;
(c) B is trace preserving: Tr(3(p) = Trp;
(d)

B(p*) = B(p)*

Proof. We show only property (b), leaving the other properties as the exercise.
This property follows immediately as § is a composition of two positivity
preserving maps, Trg and a.
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Problem 19.16 Show (a) - (d). (Hint: To prove (c) show that Trg Trg = Trp
and use the cyclic property of the trace, Trg(AB) = Trg(BA).)

Theorem 19.17 The map (3 is of the form
Blp) =D _ VapVy: (19.16)
where V,, are bounded operators satisfying (strong convexity)
S ViV, =1. (19.17)

We prove this theorem at the end of this subsection.
Problem 19.18 Show that (19.16) implies Theorem 19.13.

Is the converse true, i.e. do the properties stated in Theorem 19.13 imply
(19.16)? The answer is no. However, the following strengthening of the posi-
tivity property does the job.

Definition 19.19 A map ( on a space, B, of operators is called completely
positive if and only if f ® 1 is positive on B ® M}, for any k > 1. Here My is
the space of k x k matrices.

Problem 19.20 Show directly that maps of the form (19.16) are completely
positive.

The next theorem shows that the reverse, which is more subtle, is also true.

Theorem 19.21 (Kraus) (i) Linear, completely positive maps [ are of the
form (19.16). If, in addition, § are trace preserving, then (19.17) holds also.
(ii) Representation (19.16) is unique up to a unitary transformation, i.e. if
Yo VapViy =3, WhpW, for every density matrix p, then there is a unitary
operator U s.t. W,, = UV, for every n.

The operators V,, in (19.16) are called the Kraus operators. We prove this
result below. This theorem illustrates the importance of the notion of com-
plete positivity. This notion also differentiates between quantum and classical
situations, see Remark 19.27.

Definition 19.22 Linear, completely positive, trace preserving (TPCP) maps
are called quantum (dynamical) maps or quantum (communication) channels.

In the opposite direction, a quantum map can be lifted to a unitary evo-
lution of a larger (total) system. To describe this, it is convenient to pass
from quantum maps of density operators to the dual maps of observables.
The map (automorphism) ', acting on (an algebra of) bounded of operators
on the system Hilbert space, is said to be dual to a map (automorphism)
on density operators if it satisfies
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(0, 5'(A)) = (B(p), A), (19.18)

where, recall, (p, A) is the coupling between density operators and observables:
(p, A) = Trs (4p). (19.19)

A map ' on (an algebra of) bounded of operators on the system Hilbert space,
is said to be positive if and only if 5'(A) > 0, whenever A > 0. Similarly, one
defines the complete positivity. 3’ is called unital if and only if 5'(1) = 1.

A quantum map [ satisfies the conclusions of Theorem 19.17 if and only
if its dual, ', satisfies
1) @' is linear;
2) (' is completely positive;
3) ' is unital: §'(1) = 1;
1) 5(4°) = 5/ ()"

5) B(4) = X, Vit AV,

where V,, are bounded operators satisfying > V*V,, = 1 (strong convexity).

g
g
g
g

By Kraus’ theorem 19.21, properties 2) and 3) are equivalent to property
5). Furthermore, 3’ is unital if and only if 3 is the trace preserving. Indeed,
TeB(p) = (B(p), 1) = (p, #'(1)) and Trp = (p,1) imply that TrB(p) = Trp if
and only if #'(1) = 1.

Finally, property 3) shows that ' has the eigenvalue 1 (with the eigen-
vector 1). This suggests that § also has the eigenvalue 1. The corresponding
eigenvector would be an equilibrium state.

Problem 19.23 Show that (1) the composition of two quantum maps is
again a quantum map and (2) the composition of two quantum maps with
Kraus operators {V,, } and {W,,}, has the Kraus operators {V,,,W,, }.

In the direction opposite to the one of Theorem 19.17, we have

Theorem 19.24 (Stinespring) 5’ : B(H) — B(H) is an adjoint quantum
map if and only if it is of the form

B'(A) =W (A 1)W, (19.20)

where K is a Hilbert space and W : H — H ® K, a bounded operator.

The artificial environment space K is called the ancilla space’.

Derivation of Theorem 19.24 from Theorem 19.21 (finite-dimensional H).
Let d := dim™H. Define W : H® C* — H by W : f — @;Vif. Then W* : H —
H® Cis given by W* : @, f; — >, Vi* f; and (19.20), with K := C¢, follows.
O

! In quantum information theory, the ancilla is an auxiliary quantum system. One
of its common uses is for indirect measurements, in which a measurement is done
on the ancilla coupled to S. After the measurement is finished, the ancilla is
discarded.
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For other proofs of this result see [93, 177]. ([93], Theorem 4.6, shows a
more general result implying Theorem 19.24.)

Problem 19.25 Show that the operators W and W* is the proof above (a)
are mutually adjoint and (b) satisfy W*(A ® 1x)W =, V;*AV;.

In the opposite direction, Stinespring’s theorem implies Kraus’ Theorem
19.21, as we show in Appendix 19.3 below.

The first proof of Theorem 19.21 (finite-dimensional H). Let K be an ab-
stract Hilbert space of the same dimension as H. We construct the function

W::Z@i@)xieH@IC,

where {6;} and {x;} are some orthonormal bases in H and K, respectively.
The function ¥ provides the map from K to H as

K:pek —:= (W, ¢)x €H,
whose inverse is given by
Kl peH—¢:= W)y ck.
(This demonstrates that any two Hilbert spaces of the same dimension are

isometrically isomorphic.)

Problem 19.26 Show that the two expressions above define operators in-
verse of each other. (Hint: use the expansion in the bases {6;} and {x;}.)

It is convenient to introduce the maps Ty : HQ K — Hand T) : H —
H ® K, defined by T,€ := (¢,&)x and Tin=n®¢ (the Dirac bra and ket
operators). Then K¢ = TyW.

Let ¢ = K¢ =Ty¥. Then Py = Ty PyT}, where ¢ = K14, and therefore

B(Py) = Ty(B ® 1)(Py)T}. (19.21)

Since the map § ® 1 is completely positive, the operator (8 ® 1)(Py) is
positive and therefore can be written as

(BO1)(Pr) =) |94} (rl, (19.22)
k

where @5 are non-normalized, but mutually orthogonal vectors from H ® K
(@), are eigenvectors of the operator (8 ® 1)(Pyg) with the norms equal to the
square roots of the corresponding eigenvalues). Using relations (19.21) and
(19.22), we find

B(Py) =Y [To@i)(Ts®l, (19.23)
k
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where, recall, ¢ = K.
Now we have Ty¢ := (¢, &) = (€, d)xc. For ¢ = K14, this gives Ty¢ =
(€, K=Y\ = ((K*)71€,4)3 and therefore

To& = Tigeey-1¢t), (19.24)
where Tw : f = (¥, f)n mapping H ® K to K. The last two relations imply

B(Py) =D Vi) Vi,
k

with the operators Vi on H given by Vi := T(K*)—lék. Since, in the Dirac
bra-ket notation, Py = |1)(¢|, the latter equation can be rewritten as (show
this)

B(Py) =Y ViPyVy.
k

Extending this relation, by linearity, to arbitrary density matrices gives
(19.16). g

Remark 19.27 One can show (see [93], Theorem 4.3) that a positive linear
map between two algebras of observables? one of which is abelian is completely
positive.

19.3 Some Proofs

First, we give a lengthier but instructive direct proof of Theorem 19.13(b)
which we will use below. Let {x;} be an orthonormal basis in the environment
space L?(dy). By the definition of 3, (19.15), and the property a(R) = URU*,
we have V¢, 1) € L?(dx)

(&, B(p)w) =Y (dxi, lp @ pe)xi)

2

=Y (U oxi, p ® pU ") (19.25)

3

Taking here ¢ = 1, we see the r.h.s is non-negative, provided p is non-negative.
This gives Theorem 19.13(b). O

Proof of Theorem 19.17. To prove (19.16), we write the inner product in
L?(dxdy) as (-) = {{-)g)s, i.e. first as the inner product in L?(dy) and then in

2 Technically our algebras of observables are C*-algebras. See [45] for the definition
of the C*-algebra. A good example to keep in mind is a subset of the space of
bounded operators (on some Hilbert space) close under algebraic operations of
addition, multiplication and taking adjoints.
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Hs = L?(dx). Let x; be an orthonormal basis in Hg = L?(dy) of eigenfunc-
tions of p. with eigenvalues A;. Then p. = > APy, = > Ajlx;)(x;|, so that,
using (19.25), we obtain, for any ¢,v € Hs,

(@, B(p)%) =Y (VNG U dxi)s: pv/ A5 (X5, U bxi)B)s

i,
= Vi, poVij)s, (19.26)
%,
where V¢ = \/>\j<Xj7 U*px.:)g, and therefore (¢, B(p)v) = (¢, Z” ViipVi; ).
Now
= VAU ¥xi) = (VA UdXG, Xi)Es ¥)s.
This implies

which, in turn, gives
Z ViiViid = Z Vi;'\//\j@(m Uoxj)e
0] ]
=D 06U (i UdxgJexae
ij
= Z Ai{x;, U™ Z<Xi’ Udxj)EXi)E-
J i

Since Y, (xi, Uopx;)exi = Udpx;, this gives

D ViVisd =D NG U Udxsm = > Ai{xg, 6x5)e. (19.27)
i J

Since (x;, ¢x;)e = ¢ and Y \; = Trpe =1, we have 3, ViV =¢. O

The second proof of Theorem 19.21. (Derivation from Theorem 19.24 for
arbitrary H.) For ¢,v € H, we use Stinespring’s Theorem 19.24 to write
(9, B (A)) = (o, W*(A® Li)W) = (W, (A ® 1c)W1p) for some ancilla
space K. Let {x;} be an orthonormal basis in K. Inserting the partition of
unity ), Py, = 1, where recall P\, = |x;)(x;| is the rank one projection on
Xi, and writing the inner product in H ® K as (-)nex = (()x)n, i.e. first as
the inner product in C and then in H, we find

(6, 8" (A = > (W, (A® Py, )W) ek

K2

= (0 W, Al W) (19.28)

K2
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Now, define the operators V; on H by Vi¢ := (x;, W), so that the last
equation reads (¢, 8*(A)Y)n = >, (Vie, AVi1b)s, which is equivalent to

B*(A) = VAV (19.29)

Since W is bounded, the operators V; are bounded as well. By definition
(19.18), Eq. (19.29) implies (19.16).

Next, if 8 is trace preserving, then definition (19.18) implies that §* is
unital (i.e. 5*(1) = 1) and (19.29), with A = 1, becomes (19.17). This proves
the theorem. O

19.4 Communication Channels

The quantum communication channel is one of the key notions in quantum
information theory. In this section we compare classical and quantum channels
and describe various ways to process information.

We begin by explaining the notion of information. Classical information
consists of words constructed from a finite collection of symbols, called an al-
phabet, with the simplest one being the binary alphabet consisting of two sym-
bols, called bits, say {0,1}. A more complicated example consists of a written
language alphabet. More generally, classical information could be modelled by
a probability distribution, p(x), on the set X of words or letters (p : X — R,
s.t. p(x) > 0 and ) p(x) = 1). (We use the symbol > in both the discrete
and continuous cases. In the latter case, > stands for an integral, [.)

A classical (communication) channel is a map S, from probability distri-
butions into probability distributions, satisfying

1) Be is linear;

2) Be is positive (i.e. positivity preserving: p > 0 = S, (p) > 0);

3) Be preserves the total probability, >~ Bu(p)(x) = >, p(x).

A map . having the above properties is called a stochastic map. Note
that we can write 3) as (Bu(p),1) = (p,1) Vp or 85(1) = 1, where (p, f) =
> .p(@)f(x), and B}, defined on bounded functions, is the map dual to G
defined by

<ﬂcl(p)7 f> = <p7 ﬂ:l(f»

Quantum information is represented by density operators p (p > 0 and
Trp = 1). The simplest physical system — the one with state space C? — is
called the qubit (quantum bit). One can realize a qubit as the lowest two
states of an atom or of a Josephson junction between superconductors (with
the rest of the spectrum considered as an environment).

While the classical binary digit (also called the bit) takes only two values, 0
or 1, the qubit (in a pure state) takes values on the 3 dimensional sphere {¢) €

C2%: ||¢|| = 1}. If we take the standard basis, |0) := ((1)) and |1) := (?), in



266 19 Open Quantum Systems

C? (playing the role of the classical information bits), then a qubit can be in
any superposition of the states [0) and |1) : |0) + 8]1) with |a|? + |3]? = 1.

Clearly, a quantum communication channel should map density matrices
into density matrices. Since a transmission of information could be viewed as
an evolution process, and since evolution of an open quantum system is given
by quantum (dynamical) maps, the quantum channel is, by the definition, a
quantum (dynamical) map.

Recall that a quantum (dynamical) map is an automorphism on density
operators (i.e. a map of density operators into density operators), which is
linear, completely positive and trace preserving.

Thus depending on the application, the same object is called either a
quantum (dynamical) map or a quantum communication channel, or simply
quantum channel.

One introduces the following definitions:

Preparation: The preparation is a linear, bounded, positive map @ : p — p
from probability densities, p := {p(x)}, to density operators, p (i.e. from
classical to quantum information). Given a basis, {p,}, of density operators
pz (DMB), @ can be constructed as

B(p) = > p(x)pa-

Reception: The reception is a linear, bounded, positive map R : p — p
from density matrices to probability densities. Given a collection {M,} of
positive operators satisfying » M, = 1 (i.e. {M,} is a positive operator-
valued resolution of the identity), called positive operator-valued measure or
POVM, a reception map can be given by

R(p)(x) := Tr(Myp).

Starting with von Neumann’s axiomatization of the measurement process,
one can show that a measurement is a reception map (see [242], Section 3.1).

Note that the preparation and reception maps allow us to embed classical
channels, (3., into quantum ones as

ﬁcl_)éoﬁcloR-

Assume our transmission (computation) is quantum, but the input and/or
extraction of information could be either quantum or classical. Further, as-
sume that the originator possesses a DMB, {p,}, and the receiver a POVM,
{M,}. Thus we can introduce the following refinements:

quantum-quantum channel Gqq : p — o’

classical-quantum channel feiq : p — p = > pape — 0.

quantum-classical channel Bqc1 : p — p' — py = Tr(Myp').

classical-classical channel Bcic1 : p — p = D pepe — 0 — px = Tr(Myp').
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The last case is the one one expects in most quantum computations. One
starts with classical information, converts it into a quantum one, which is
manipulated by a quantum computer or quantum channel, and at the end
one converts the quantum output into a classical one.

Remark 19.28 (Measuring classical and quantum information) Let a
source be modelled as a probability distribution {p,} (or a random variable
X with probability distribution, p, = P(X = z)). To measure classical in-
formation contained in a probability distribution p(x), Shannon defined the
quantity

H(p) == p(x)logp(x), (19.30)

which is now called Shannon’s information entropy or just Shannon’s infor-
mation. It is analogous to the Boltzmann entropy of Statistical Mechanics.
The quantum analogue of Shannon’s information is von Neumann’s entropy,
which has already appeared in Section 18.3 and will be discussed in Section
19.6.

19.5 Quantum Dynamical Semigroups

Now, we address dynamical properties of the reduced evolution (see (19.14))
and restore t in the notation.

Definition 19.29 A family 5;, Vt > 0, of quantum maps is called an open
quantum evolution. (Thus a reduced evolution is an open quantum evolution.)

Note that a single quantum map, 3, generates the discrete time flow,
Bk k=0,1,....

Now we may introduce the notion of an an abstract open quantum system
as a pair: a space of density operators and an open quantum evolution on it.

We further refine the notion of open quantum evolution to the following:

Definition 19.30 A quantum dynamical semigroup (qds) is an open quantum
evolution which has the Markov property, i.e. it is a semigroup:

ﬂt © ﬁs = ﬂtJrs Vt; s > 0. (1931)

For a quantum dynamical semigroup (;, we define the generator by

L(p) = 0Bt(p)t=0, (19.32)

for those density operators p for which §;(p) is differentiable at ¢ = 0. Then
B:(p) satisfies
Bi(p) = L(Bi(p)), Bi=o(p) = p. (19.33)
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Problem 19.31 Show that (19.31) and (19.32) imply (19.33).
Problem 19.32 Show that a; given in (19.13) is a qds and find its generator.

Theorem 19.33 Under certain technical continuity conditions, the genera-
tors of Markov evolutions are of the form

L(p) = A+ (WipW — {W}‘pr}), (19.34)
7=0

where H is a self-adjoint operator (system Hamiltonian), {A, B} := AB+ BA
and W; are bounded operators s.t. W W, converges strongly.

For a proof of this theorem see [93, 184] and also [7]. Eq (19.33) with (19.34)
is called the Lindblad equation.

If an open quantum evolution 3; has the Markov property, then so has its
dual, f;. The generator, L', of 3] is the operator dual to £ (in the coupling
between density operators and observables given by (19.19)). Hence 3; satisfies
the differential equation gt B; = L'B;. Furthermore, for £ of the form (19.34),
L' is given by

£(A) = ;[H, A+ 32007 AW, - ;{W;Wj,A}). (19.35)

Write £ = Lo + G, where Lgp := fg[H, p| and G := L — Ly. Then, as
follows from (19.34), the operator Lg is formally anti-symmetric, while the
operator G is formally symmetric (for self-adjoint W;’s), in the sense that

Tr(ALop) = ~Tr((LoA)p),  Tr(AGp) = Tr((GA)p),

or (abusing notation as primed and not primed operators act on different
spaces) Ly = —Lo and G’ = G. In addition, G satisfies

Tr(p*Gp) <0 (19.36)

(and therefore is dissipative in the sense of the following definition: An opera-
tor G on density operators is said to be dissipative if for each density operator
p there exists an observable A, such that Re Tr(AGp) < 0.)

Problem 19.34 Show that Tr(p*Gp) < 0 for self-adjoint W;’s. Hint: for self-
adjoint Wj’s,

H(p*Gp) = ZTr ) (W5, p])) < 0. (19.37)

The fact that 8; has the eigenvalue 1 (with the eigenvector 1) is now
translated into the property that £’ has the eigenvalue 0 (with the eigenvector
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1), which is apparent from expression (19.35). As above, this suggests that £
also has the eigenvalue 0, with the eigenvector being an equilibrium state.

In fact, for the Lindblad equation (19.33)-(19.34) derived, non-rigorously,
by the 2nd order and Markov approximations, from reduced dynamics (19.14),
with the initial state p. of the environment being the Gibbs state

pre = e HelT | 70, (19.38)

where Zp, := Tre /T

property:

- the operator (19.34) satisfies L(Apr) = (L'A)pr,
where pr = prs is the Gibbs state of the system, pr = e_H/T/ZT, with
Z(T) := Tre~ /T This property is called the detailed balance condition. Tak-
ing here A =1 and using L'l = 0, we see that it implies L(pr) = 0, i.e.

- the Gibbs state pr is a stationary state of (19.33)-(19.34).

To understand where the latter property comes from, let the Lindblad
equation (19.33)-(19.34) be derived as describeded above. Let prs and pre
be the Gibbs states for the system and environment at temperature 7'. Take
pTs ® pre as the initial condition in (19.14). Of course, unless the system and
environment are decoupled, prs ® pre is not a static solution for the total
system (19.11)-(19.12). However, it is a static solution in the leading order in
the coupling constant, so that prs gives a static solution for the approximate
reduced dynamics (19.14) generated by L.

Given the properties above, we see that in the inner product (4, B)r :=
Tr(A*Bpr) on the algebra of observables, we have that L is anti-self-adjoint,
while G is self-adjoint,

, at temperature T, see (18.12), we have the following

Li=—-Ly, G"=G". (19.39)
Problem 19.35 Show the relations (19.39).

Note that if G = 0, i.e. for the flow generated by Lg, the energy and
entropy, as defined in Section 18.3, are conserved.

Problem 19.36 Prove this statement.

For a general evolution (19.33)-(19.34), this is not true anymore. Instead, as
we will show in Section 19.6, if pr is a static solution, then the free energy and
relative entropy are non-increasing functions of time (see Proposition 19.40
and Theorem 19.38).

Finally, recall that quantum maps are characterized by either complete
positivity, or the explicit form (19.16), which are equivalent by Theorem 19.21
and Homework 19.20. These characterizations extend to quantum dynamical
semigroups, since the latter are families of quantum maps. So we expect the
generators of these semigroups to be characterized correspondingly. So far, we
characterized their generators (£) by the explicit form (19.34) corresponding
to (19.16). Thus a natural question is which property of £ corresponds to the
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complete positivity of 3;7 The answer is the complete dissipativity, which is
defined by lifting the property

D(A, A) >0, (19.40)
where D, (A, B) is the dissipation function defined by
Dr(A,B) .= L' (A*B) — L/(A*)B — A*L'(B). (19.41)

to A® My, for any k > 1, where A is an algebra of observables and M}, is the
space of k X k matrices. The form D, has some remarkable properties:

-Dr(A,A) =0if and only if L'A = %[H, A] for some self-adjoint operator
H;3

- Dr(el,el) =0

- if Dg(A, A) = 0 implies A = 1, then there is a unique stationary state
ps« and for every p, we have §;(p) — p«, as t — oo.

(If p« is an equilibrium state, then the last property is called return to
equilibrium.)

A linear map L’ of a C*-algebra satisfying (19.40) and £'A* = (L' A)* is
called a dissipation. It is shown in [178] that dissipations are dissipative in the
sense of the definition given before (19.36).

19.6 Irreversibility

A quantum (dynamical) map S is said to be irreversible iff 8 is not invertible
(within the class of quantum maps) and reversible, otherwise. An example of
a reversible map is

Blp) = VoV, (19.42)
where V' is an invertible operator. In fact, we have (cf. [242], Section 3.2)

Proposition 19.37 Any invertible quantum map 3 is of form (19.42).

Proof. Assume f3 is invertible. Then S~! exists and is a quantum map. By
Theorem 19.17 (or 19.21), both, 8 and 87!, are of the form (19.16) - (19.17).
Now, denote the Vj,-operators for 3! by W,, and rewrite the equation 3~! o
B=1as

B7HBp) =D Wi VapVi Wy, = p, (19.43)

m,n

with the bounded operators V,, and W,, satisfying > V7V, = 1 and
Yo Wi Wy, = 1. Taking here p = Py, for an arbitrary normalized vector

3 In the terminology of C*-algebras, £’ is a derivation. In general, a derivation is
a linear map 8 of a C*-algebra, satisfying 6(AB) = 6(A)B + A§(B), for all A, B
in the domain of 6.
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1, we see that (19.43) can be rewritten as ), . Pw,, v,y = Py. Testing this
relation on various functions, we see that it holds if and only if every W, V,, ¢
is proportional to :

WmVnw = amnwv
for some numbers a,,, and for each pair m,n. On the other hand, by the
completeness relations above, we have ViV, = Y V*W} W,,Vi. Since

VIWr = (W, Vy,)*, this gives

ViV =Y Gmntmil.
m

Now, using the polar decomposition Vj, = Uy|Vj|, where Uy, are some unitary
operators and |A4| := vV A* A, the notation by, := > i GmnGmk, the observation
that by, > 0,Vk and the relation |Vi| = v/bkk, we find

D bkl = V/bunbrr Uy Uy,

and therefore U,, = \/bbnkbkk Uy, for each n and k. Hence V,, = b,,,,U,, = ¢ Uk,

where ¢, = bk \/2’;:, for every n and some fixed k. Remembering (19.16),

this gives (19.42) with V := /3" |cak|2Vi. Since 3 is invertible, V' should be
invertible too. d

How to quantify the notion of irreversibility? In classical mechanics
we encounter irreversibility when we pass from Newton’s equation to the
Boltzmann equation. While Newton’s equation is reversible ((x(¢),p(t)) —
(x(—t), —p(—t)) is a symmetry of Newton’s equation), the Boltzmann equa-
tion is irreversible: the Boltzmann entropy

H() =~ [ fioef, (19.44)

for the particle densities, f(x,v,t), which solve the Boltzmann equation, in-
creases along the evolution (the celebrated Boltzmann H-theorem).

In quantum mechanics, while the Schrodinger equation is reversible, the
reduced evolution, say, p; = B:(po) (or g pt = Kpy, in the Markov case) it leads
to when some information is 'integrated out’, is expected to be irreversible.
To prove this, we look for an analogue of the Boltzmann entropy, and it is
natural to define

S(p) = —Tr(plog p), (19.45)

which is nothing but the von Neumann entropy, defined by von Neumann 20
years earlier, and which was already used in Section 18.3, where the definition
of the operator log p was discussed. We list properties of S(p):

1) S(p) = 0 if and only p = Py is a pure state;
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2) S(UpU*) = S(p), for unitaries U;

3) S Ajpi) = 22 Ai8(p), for A; =2 0,3°A; = 1
4) For any density operator, pap, of a composed system A + B,

S(paB) < S(pa) +S(ps) (19.46)

where p4 and pp are the marginals of pap:

Trppap = pa and Trapap = pB-

To prove Property 1), we let A; and ¢; be eigenfunctions and eigenvalues
of p so that p = — > \; Py, and use that due to the relation if, then

S(p) =~ 3" Ajlogh; = H({\}) (19.47)

(which can be also used to define S(p); remember 0 < p < 1 and therefore
0 < Aj; <1and S(p) > 0). Then the equation S(p) = 0 can be rewritten as
> AjlogA; = 0. Since every term in the sum on the Lh.s. is non-positive, it
should vanish separately. So A;’s are either 1 or 0. Next, 2) follows from the
cyclicity of the trace and 3), from concavity of the function zlogx. Finally,
the subadditivity of the entropy, (19.46), was proven in [75, 187].

However, there is no H-theorem for S(p), i.e, in general, S(p) does not
decrease (or increase) under the evolution. We look for a more general object
which has monotonicity properties. Such a candidate is the relative entropy
defined as

S(p1, p2) :=Tr(p1(log p1 — log p2)), (19.48)

if Ranp; = Ranpy and oo, otherwise. We have the following result whose proof
can be found in [212] and [292], Statement 3.1.12:

Theorem 19.38 (Generalized H-theorem (Lindblad)) If 8 is a quan-
tum map, then

S(B(p1), B(p2)) < S(p1, p2)- (19.49)

Note that, if 3 is reversible, then (19.49) holds with equality.

This shows that S(B:(p1),B:(p2)) is monotonically non-increasing, as ¢
increases, and is constant if §; is reversible.

It is shown in [229] that for finite-dimensional spaces, any transformation
B, which satisfies the equality in (19.49) — i.e., 8 preserves the relative entropy
— is reversible:

S(B(p1), B(p2)) = S(p1,p2) <= [ isreversible. (19.50)

Thus, by this theorem, the strict decrease of the relative entropy implies that
the map is irreversible.
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We say a quantum (dynamical) map [ is unitary if and only if it is of the
form (19.42) with V unitary. 4

If p. is a stationary state, then Theorem 19.38 implies that for a quantum
dynamical semigroup, (3, the relative entropy S(3:(p), p«) is monotonically
non-increasing, while (19.50) says it is constant if and only if §; is unitary.
This can be strengthened to the following result ([282]):

Theorem 19.39 Let (; be a quantum dynamical semigroup on a finite-
dimensional space. Assume (; has a stationary state p.. Then S(8:(p), p«)
is differentiable in ¢ and the entropy production, defined by the relation

a(p) == =S (Be(p), ps)li=0, (19.51)

is non-negative and convex. Moreover, it is equal to 0 if and only if G; is
unitary (and consequently, its generator £ is a commutation, Lp = i[H’, p]
for some H').

Recall from Section 18.3 the definition of for the free energy (see (18.13))

Fr(p) := E(p) = TS(p). (19.52)

Proposition 19.40 Let §; be a quantum dynamical semigroup on a finite-
dimensional space. Assume pr is a static state of 3;. Then the free energy Fr
is non-increasing under f;, and is constant if and only if £, is unitary.

Proof. By definitions (19.38) and (19.48), the free energy (19.52) can be ex-
pressed in terms of the relative entropy for p and pr as

Fr(p)=TS(p,pr) +TnZyp. (19.53)

This relation, together with (19.51) (for p. = pr) and the semi-group property
of 3, implies

8tFT(pt) = —TO'(pt), (1954)

where p; := [;(p), which, by Theorem 19.39, yields the result.

41If V is unitary, then the adjoint quantum map $* is a homomorphism, i.e. it
satisfies 8" (AB) = 5" (A)B"(B).
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19.7 Decoherence and Thermalization

Consider an open quantum system with a state space Hg and an evolution ;.
Let {¢,};>1 be a preferred orthonormal basis in Hg, which will be specified
below. The system is said to exhibit (full) decoherence (in the preferred basis)
if for any initial condition pg, the off-diagonal matrix elements (@, Bt(po)@n)
of its evolution B;(pp) vanish in the limit of large time:

Jin (o Be(po)n) = 0, (19.55)

whenever m # n. Denote p, := Bi(po) and [plmn = (Pmpipn). We claim
then that decoherence implies that after some time

Tr(Ap,) ~ Y Pm{m: Apm), (19.56)

where pm, := [pt]m,m, which is a statistical sum. Indeed, inserting the com-
pleteness relation, Y, |¢m){¢@m| = 1, for the basis {¢,,} on both sides of A,
we find

TI‘(Apt) = Z[pt]m,n<90na A‘pm> (1957)

m,n
Egs (19.55) and (19.57) imply the desired relation (19.56).

Now assume our open system originates by reduction from a total system
which includes an environment. If H = Hg is the original hamiltonian of the
system of interest (5), then the preferred basis is the one of (generalized)
eigenvectors of Hg, called the energy basis, and the quantum evolution g, is
the reduced one, B:(po) = Tre a:(po ® pe),

The environment plays a crucial role in the phenomenon of decoherence.
Indeed, if the system and environment do not interact, then there is no deco-
herence.

To gain more insight into the role of the environment, let the evolution of
the total system be given by ¥ = ¥,. Expanding this in a basis {¢,, } in L?(dx),
we find ¥ = 3" om @ Quy, for some oy, € L?(dy). We compute the reduced
density operator for this state. Let {x;} be an orthonormal basis in Hg. Then
Tre Py = 22, Ve Xi)E = Yo ni(Xis @m)ElPm)(an, Xi)E(@n]. Since
{xi} is an orthonormal basis, we have ). (on, Xi)E(Xis ¥m)E = (0, am)E,
which together with the previous relation gives

py = Trg Pp = Z[Pt]m,nwmanh

m,n

where [pylmn = (@ms PrPn)s = {am, an)r. Hence decoherence means that
the environmental dynamics forces (a,, @, )g — 0, whenever m # n.
According to Subsection 18.3, the equilibrium states of the total system,
and environment, at temperature 7' = 1/f3 are given by Rg := e PH7 /7(3),
Z(B) = Tre PHT and ppg := e PHE/Zx(B), Zr(B) := Tre P#He. (The
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subindex T for“total”should not be confused with the temperature T'=1/4.)
We say that the total system T' = S + E has the property of return to equi-
librium iff

Jim Trsm (0 (A)(po @ pe,p)) = Trsiu(ARs),

for all observables (of the joint system) A, and for all initial density matrices
po on Hg. If this happens, then the large time limit of the reduced density
matrix of such a system is given by

Poc i= Jim py = Tre(Rg) = ps,g +O(N),

where A is the coupling constant between in the system S and environment
(see (19.11)). In the second relation, we used that, by perturbation theory of
equilibrium states, Rg = ps s ®pg,3+O(A). The leading term of p., (for small
coupling constant A) is just the Gibbs state of the system (see e.g. [45, 224]).
In this sense, the system undergoes the process of thermalization.
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The Second Quantization

In this chapter we describe a powerful technique used in the analysis of quan-
tum many-body systems — the method of second quantization. In rough terms,
it allows one, instead of working with a fixed number of particles, to let the
number of particles fluctuate, while keeping the average number fixed. We ap-
ply this method to derive a useful mean-field limit for many-body dynamics.
The method also provides a natural language for quantum field theory (see
Chapters 21 and 22) and can be used to preview, in a much simpler setting,
some of the issues arising there.

20.1 Fock Space and Creation and Annihilation
Operators

Consider a system of n identical particles moving in an external potential
W (x) and interacting via pair potentials v(z; — ;). Its Schrédinger operator
is given by

n

h? 1

H, = Z(*2mA”“ + W)+, Zv(:ci — ). (20.1)
i=1 i#j

We assume the particles are bosons. In this case H, acts on the space

L2,,,(R?") of L? functions on R*" which are symmetric w.r.t permutations of

the particle coordinates x1, ..., z, € R3. We define the new Hilbert space

fbos = 6920:0‘/,?71; (202)

of sequences ¢ = (Py,P1,...) = B2 Py, D, € Fn, where Fy = C, and
F,=L2% . (R3) n > 1, equipped with the inner product

sym

(W, ) = Z/tpn(xl,...,xn)én(xl,...,xn)d”x, (20.3)
n=0
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where ¥,, and &,, are the n—th components of ¥ and ®. The space Fpos is
called the bosonic Fock space. On Fp,s we define the operator

H = 3% H,, (20.4)

where Hy = 0, H; = —;;AI + W(z) and H,, n > 2, are as above,
so that HV = @52, H,¥,. The operator H is called the 2nd quantized
Schrodinger operator. The reason for this name will become clear later. The
vector £2:=(1,0,0,...) € Fpos is called the vacuum vector in Fy,s. Note that,
by construction, H{2 = 0.

Problem 20.1 Assuming the pair potentials, v(x; —x;), are real and bounded,
show that H is self-adjoint.

One of the advantages of the 2nd quantization is the representation of op-
erators on the Fock space Fp,s in terms of annihilation and creation operators
(raising and lowering the number of particles). These are the operator-valued
distributions f — a(f) and f — a*(f), where f € L%(R3) and a(f) and a*(f)
are operators on Fp,s, defined as

(a(f)¥)n = Vn + l/f(:c)lI/nJrl(:c,:cl, veey Ty )dx, (20.5)

and a(f)§2 =0, and

(@ (f)D)ns1 = Vn + 1(f@D,) (20.6)

for n > 0. Here f®®, = PnS_H(f ® &,,), with P? the orthogonal projection
from L?(R3") to L2, (R3"):

sym
1
(Pff)(.fl,,xn) = nl Z f('rﬂ(l)v"'vxﬂ(n))v
TESH

where, recall, S,, is the symmetric group of permutations of n indices. The
operators a(f) and a*(f) are unbounded and satisfy

(@ ()@, &) = (@, a(f)¥). (20.7)

Indeed, we compute, using (20.5), on vectors @, ¥, with finite numbers of
components,

(@,a(£)T) =D (P, (a(f)P)n)
— Z Vn+1 /dzl...d:anrl@n(:cl, o) f(Xp1) Vg1 (21, ey Tg1)-

It is easy to see by relabeling the variables of integration that @, (x1, ...z ) f (Tn41)
can be replaced by
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Pns+1(f($n+1)@ (:El, ey Tn))

= n+1 E J(@j)Pn (1, 1, g1y Tngr)

to obtain
(@, a(f)¥)
= Z \/7’L + 1 /dnJrl Pf+1(¢n($1; ceey l‘n)f(xn-l—l))g/n-i—l(xl; ceey :L‘n-i-l);

which, together with (20.6), implies (20.7). Moreover, a*(f) is adjoint to the
operator a(f) : a*(f) = a(f)*.
Problem 20.2 Show that

[a(f),a”(9)] = (f,9), [a(f), alg)] = [a”(f),a"(g9)] = 0. (20.8)

The operators a(f),a*(f) are operator-valued distributions and it is con-
venient to introduce the formal notation a¥ (z) = a*(8,), so that, formally,

/ fa ()= [ f@a @ (209)

We consider a(x),a*(x) as formal symbols satisfying
[a(w), a*(y)] = 6(z —y), [a*(x),a®(y)] = 0. (20.10)

Representation of vectors in terms of creation operators.

Proposition 1. Any & = &P, can be written as

1 mn
@:zn:wﬂ/ (21, .r T Ha x;)02d"x (20.11)

Proof. Using the definition of a*(x), we compute

(@ (yn)---a™ (Y1) 2)m = \/n!PnS(H 8(xi — i) bnom. (20.12)

Problem 20.3 Show (20.12). Hint: Use induction starting with

(a*(y1) Q) (21) = VIPP (821 — 41))bna

and

(a™(y2)a™ (y1)12)n (w1, 22) = \/2P2S(5(5E1 = y1)6(x2 — Y2))bn,2-
The equation (20.12) implies that

1
Jl /@n(yl, ) [[ o (W) 2d"y = P @, (w1, ..., ), (20.13)

which implies the statement of the proposition. [
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20.2 Many-body Hamiltonian

One-particle operators. Let b be an operator on L?(R?). We write it as an
integral operator b, f(z) = [ b(x,y)f(y)dy, where b(x,y) is the integral kernel
of b. We think of bja(x) as the operator b acting on the parameter x, bya(z) =
Jb(z,y)a(y)dy. We define an operator B on Fyos by the formula

B= /a*(x)bza(z)dz. (20.14)

We call operators of this type one-particle operators. The equation (20.14) is
an integral of the product of operator-valued distributions and it is not clear
whether it is well-defined to begin with. However, if one thinks about (20.14)
as a formal expression and uses formally the definitions of a(x) and a*(x), one
finds that the operator B defined by (20.14) is equal to

B=®;2Bn, Bo=0, By:=)» by, n>1, (20.15)
i=1

where b; = b, stands for the operator b acting on the variable x;. The latter
expression makes a perfect sense.

One can demonstrate (20.15) formally as follows. Using the definitions of
a(xz) = a(b;) and a*(z) = a*(é,) and (20.5) and (20.6)

(B®D),, = \/n/d:anS[é(:cl — ) (bpa(x)P)p—1(x2, ..., Tpn)]

= \/n/d:cps[é(:cl — 2)bp/nPp (2, 72, ..., T1)]
= nPnS[bzl@n(zl, ey Tp)]

z": bmigﬁn(xl, ey T,
=1

as claimed.

There is a different representation of (20.14) which is well defined directly.
Let {f;} be an orthonormal basis in L?(R?®) and define the operators a; :=
a(f;) and af := a*(f;). Assume f; € D(b) and let b;; := (f;, bf;) be the matrix
associated with the operator b and the basis {f;}. Consider the expression

B=>a;bja, (20.16)
ij

defined on vectors for which the sum on the r.h.s. converges (say on vectors
with finite number of components).

Problem 20.4 Show that the operator ), a;b;ja; acts as (20.15).
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Formally, the expression (20.16) is obtained from (20.14) one by inserting
the partition of unity > |fn)(fn| = 1 into the latter expression. Though
(20.14) needs an additional interpretation, it is much more convenient to work
with and is used commonly.

Consider a few examples. The free Schrodinger operator:

h?
Hy — /a*(z)(f o Adale)ds. (20.17)
The equation (20.15) shows that Hy = &322 Ho,,, where Ho, = > o, (— ;”:n AL
is the free n-particle Schrédinger operator (V' = 0).

We define the number operator N = [ a*(z)a(x)dz and momentum opera-
tor P = [ a*(z)(—ihVy)a(xz)dz. Then N = @ > onl and P = @22 P, where
P, = Z] 105 respectwely We have

[Hy, N] =0, [Ho, P] =0. (20.18)

These equations imply the conservation of the particle number and total mo-
mentum. We prove [Hy, P] = 0:

(0,7 = [ [ dsa (@)= )} Adjala), [ dya ()(~in, )aty)

-/ dzdya*(x)(ﬁg 42)[o(@), a* @)=, aly)
+ [ [ @ w9y, @)~
/ dea ()|~ fm \—ihVa(z) = 0,
where in the last step we used that [a(z),a*(y)] = 6(z — y).
Problem 20.5 Show that [a* () Aza(z), a(y)] = [a* (), a(y)] Aval(z).

Problem 20.6 Show (20.18).

In mathematics, one denotes the operator in (20.15) as dI'(b).
Problem 20.7 Show formally that [dI'(b1),dI"(b2)] = dI'([b1, b2]).

We can generalize (20.17) to a particle moving in an external field W:

Hy = / . C A+ W(2))a(x)dz. (20.19)

Two-particle operators. Let

V= ; /a*(m)a* (y)v(x — y)a(z)a(y)dzdy. (20.20)
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(The integrand on the r.h.s. annihilates particles at x and y, acts with v(x—y),
and then creates particles at x and y.) We claim that

1
Vo), =, > w(@i = 2)Pn (1, 00y ). (20.21)
i#]
Indeed, consider a(z)a(y) [} a*(x;)2. Using this expression and (20.20) and
using a(y)a*(z) = a*(2)a(y) +6(y — z), we pull a(y) through [[}_, a*(zy) and
use a(y){2 = 0, to obtain

n n

a(x)a(y) H a*(z;)02 = a(x) Z 6(y — x;) H a*(xz;) 0. (20.22)

i=1 i=1 ki
Then we pull similarly a(z) trough [];_; a*(zx) and use a(z)f2 = 0 to find

n

a(z)a(y) H a*(z;)NR = Z 6(y — x;) Z 6(x — xj) H a*(x)2.  (20.23)
i=1 i=1 j#i ki,
Let &,, = \/1n! J Pn(x1, ..oy zn) [1] a*(z;)2d"z. Using (20.23) and (20.20) and
integrating the delta-functions, we arrive at

1 n n .
Ve, = il Zl Z v(zi — )P (21, ey T H a*(z1)12, (20.24)
i=1 j#i i=1
which gives (20.21). O
The equations (20.19) and (20.21) show that the Hamiltonian (20.4) in-
troduced at the beginning of this chapter can be written as

H= | a(x)(— QFLmAx + W(x))a(z)dx

/ (20.25)

+, [ @ @3 Gl - at@al)dsdy.

Problem 20.8 Show that [V, N] =0, [V,P] =0, [H,N] =0, [Hw=o, P] = 0.

20.3 Evolution of Quantum Fields

Consider the Heisenberg evolution of a(z): a(z,t) = e'n a(z)e” " . Then

a(z,t) satisfies the Heisenberg equation,

0
zhata(:c,t) = —[H,a(z,1)]. (20.26)

1Ht

Using that [H,a(xz,t)] = e [H,a(z)le” %", and computing the commutator
[H,a(x)], one can show that a(x,t) satisfies the differential equation
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h2
2m
+ [ dyota ~ y)a’ (v taly. e,

0
zhata(:c,t) =(—_ A;+W(x))a(z,t)

(20.27)

Problem 20.9 Show (20.26) and (20.27).

Note that if v = 0, then (20.27) is the Schrédinger equation but for the
operator valued function a(z,t), called a quantum field. This is the origin of
the term the second quantization.

20.4 Relation to Quantum Harmonic Oscillator

Assume the potential W is positive and confining, so that the operator
725; Ay + W(z) has positive, purely discrete spectrum {A;} accumulating
to infinity. Let {f;} be an orthonormal basis of its eigenfunctions. Then ap-
plying to the operator Hy the formula (20.16), with this basis and using that
the matrix of the operator _2h; A, + W(z) in this basis is diagonal with the
diagonal elements {\;}, we obtain

Hw =Y _\aja;. (20.28)
j

On the other hand, consider the r-dimensional quantum harmonic oscillator,
described by the Schrédinger operator

h? 1 < 5 o
Hyo=—, A+, > mwia (20.29)

2m :
=1

on L?(R"). As we know from Section 7.4, it can be rewritten in a form similar
to (20.28):

. 1
Hpo = > hw <a:-‘ai + 2> : (20.30)
=1

where, recall, a; and a; are the harmonic oscillator annihilation and creation
operators,

(mwjr +ip;) and aj = (mwjz; —ip;). (20.31)

4= \/Qmﬁwj N \/Qmﬁwj

(These operators satisfy the commutation relation [a;, aj] = 6;;.) We see that,
modulo the additive constant, § >, Aw;, (20.30), with hw; = A;, is a finite-
dimensional approximation to (20.28).
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20.5 Scalar Fermions

As before, to simplify notation slightly we consider scalar (or spinless)
fermions. (For fermions with spin we would have to introduce one more vari-
able - spin- for each particle and require that functions below are antisym-
metric with respect to permutations of particle coordinates and spins.) We
define the Fock space for scalar fermions as

]:fermi = @flo:o]:n; (2032)

where 7y = C, and F,, = L2, (R*"),n > 1, with L2_  (R*") the space
of functions, ¥ € L?(R3"), anti-symmetric w.r.t permutations of coordinates

Z1,..., T, € R3:
D(Tr(1ys ooy Tr(ny) = (—D)FOW (21, 2), T € Sp,

where, recall S,, is the symmetric group of permutations of n indices and #(7)
is the number of transpositions in the permutation 7. We equip this space with
the inner product (20.3). Again, the vector 2 := (1,0,0,...) € Ffermi, is called
the vacuum vector in Fyermi. The second quantized hamiltonian H is again
defined by (20.4) and H{2 = 0.

The creation and annihilation operators are defined now as

(a(f)¥), = n+ l/f(:c)lI/nJrl(:c,:cl, oy T ), (20.33)

for n > 0, and a(f)f2 =0, and
(@*()D)nt1 = Vn+ 1P (f(@1)Pn (22, oy Tns1)), (20.34)
where P2 is the orthogonal projection of L?(R3") to L2 oym(R3™). As before,

a*(f) is adjoint to the operator a(f) : a*(f) = a(f)*. However, unlike the
bosonic annihilation and creation operators, the fermionic ones anti-commute

[a(f),a™(9))+ = ([, 9), [a(f), a(g)l+ = [a"(f), alg)l+ =0, (20.35)

where [A, B]+ := AB 4+ BA. A remarkable fact is that the fermionic annihi-
lation and creation operators are bounded.

Problem 20.10 Show this. Hint: Use the anti-commutation relation a(f)a*(f)
+a*(fa(f) = | fI1*.

The second-quantized operator (20.4) is still expressed in the form (20.25)
and the derivations above concerning (20.25) remain true.
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20.6 Mean Field Regime

We introduce the coupling constant g into our Hamiltonian (20.25) by replac-
ing v by gv and consider regime where g < 1 and the number of particles
n > 1 but ng = O(1) so that the kinetic and potential energy terms in (20.1)
are of the same order. We rescale our Hamiltonian by defining:

1 1
a(f) =, ¥g(f) and a”(f) = ¥g(f).
Vi Ve
The rescaled creation and annihilation operators are operator-valued distri-
butions obeying commutation relations

[y (), w;(y)] = ¢ 6%(xz —y), and rest = 0.

The Hamiltonian H can be written in terms of ¢, (z) and ¢} (z) as H = g 'H
with

h2

o A+ (@) byla)d’s

= [ v -
(20.36)
+ [ ) w52 vl = ) Byl ) das,

In the mean-field limit, as ¢ — 0, the rescaled creation and annihilation
operators, ,(x) and 9 (z), commute, and our quantum theory converges to
the classical one, which is a Hamiltonian theory with the phase space given by
a space of differentiable functionals (classical field observables) A(w, 1)), with
the Poisson bracket defined (for two functionals A(t),v) and B(v, 1)) as

{

and the Hamiltonian functional given by

waw=/wmmw@fw

(20.38)
+ [ wlen) vlan) vior - 22) (o) vlza)d nides,
with h, := f;L;A + W(x). With 1 considered as an evaluation functional
1 — (x), the Hamilton equation is given by
Oy = {H (¢, ), 9}, (20.39)

which has the form similar to (20.26). (For details and discussions see math-
ematical supplement, Chapter 26, and especially Section 26.6.) Using (20.38)
and (20.37) this equation can be written explicitly as
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K2 9
2mA + W(x) 4+ v *|]°), (20.40)

which is the Hartree equation introduced in Section 14.1. Thus we arrived
at the Hartree Hamiltonian system with the Hamiltonian functional H (v, 1))
and the Poisson bracket {4, B}(%, 1) and with dynamics given by the Hartree
equation (20.40). For more details see Sections 4.7, 26.6 and 26.7.

To formalize this heuristic analysis we consider analytic functionals, A(1), 1),
i.e. functionals of the form

ihoyp = (—

A0 = Y [ TTo o, mivn, ) [T otodsdy, (2040

where apq (21, ..., Tp; Y1, ..., Yq) are the integral kernels of bounded operators
apq, With series converging in an appropriate topology.

Now, consider the Wick quantization, i.e. association with classical obsev-
ables A = A(1, 1) their quantum counterparts:

A=A, ) — A= A(hg, ¥,

according to the rule
N P q
A= 3 [ [Tos@amteon i) [ volw)adry. (2042)
Pq 1=1 =1

The operator A is said to be the Wick quantization of the classical field ob-
servable A and A is said to be the Wick symbol of the operator A.

Let &, be the flow generated by the Hartree equation (20.39), or (20.40),
i.e. for any reasonable g, D;(1)g) is the solution of (20.40) with the initial con-
dition . It defined the classical evolution of classical observables according
to aft(A) := Ao ®; where (Ao ®;)(1,1) = A(P:(v), P+(v)). Furthermore, let
at(/l) .= etHt/9 Ae=iHt/9 he the Heisenberg dynamics of quantum observables.
Finally, let N := g=' [ ¢} (x) ¢g(x)d*z be the particle number operator and
T = Sthlloo' One can show (see [124, 16]) that for a certain class of classical
observables A and on states, ¥, satisfying ||[N¥|| < ¢/g, we have for ¢t < 7, as
g — 0, -

i (A) = agl(A) + O(y). (20.43)

We sketch a proof of (20.43). Using the Duhamel principle (i.e. writing

—

a_4(ag! (A))— A as the integral of derivative dra_, (A€l (A)) = o ([H, acl(A)]—

{H,a¢(A)})), we obtain

—

o (A) — afl(A) = /0 dsay_o(R(aS(A))), (20.44)

where R(A) := ;[ﬁ A — {ﬁ}, which gives
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o t
o (A) — ag (Dserye.) < / ds|R(A0®)|lryery  (20.45)

Note that the full evolution a; drops out of the estimate. Now, we have to
obtain appropriate estimates of the remainder R(A) and the classical ob-
servable A o @,. First, we find a convenient expression for the remainder

R(A) = ;[I:I,A] - {ﬁ} Let the operators A and B have the symbols,
A(¢,¢) and B(y,7) and assume B(3,%) is a monomial of degree m in 1
and 1, separately. Then the commutator operator C' = [A, B], has the symbol

C (3, ) given by (see e.g. [13])

mo ok
Ow.w) =Y, (A Bh(,v), (20.46)
k=1
where
{A, B}y = //(aj;A,ajZB - aj;B,ajZA). (20.47)

The definition of the Hamiltonian H (1, ) and Eqns (20.46) and (20.47) imply
—_— 2 —_—
il A] = g{H, A} + 9 {V. A}, (20.48)

It is not hard to show that |{V, Als| < C||A|l. with C' < oo and ||A|l, an
appropriate norm of A. This implies (cf. (4.11))

i[H, A] = g{H, A} + O(¢). (20.49)

Comparing the relation (20.48) with the expression for the remainder R(A)
we see that R(A) = g{V, A}s = O(g) which together with (20.44) implies, in

turn, (20.43). Finally, one has to estimate the norm || A o @,||. of the classical
evolution and this is the place where our restrictions enter and which we skip
here. This completes our sketch.

Thus the mean-field regime is nothing else but the quasiclassical regime

1
of the quantum many-body field theory with the reciprocal, = = g, of the
n

number of particles playing role of the quasiclassical parameter. As the num-
ber of particle increases a quantum system starts behaving classically. In the
opposite direction it is shown in ([124]) that the many-body theory described
by the quantum Hamiltonian (20.25) can be obtained by quantizing the clas-
sical field theory described by the classical Hamiltonian (20.38) and Poisson
brackets (20.37).

20.7 Appendix: the Ideal Bose Gas

As an example of an application of the second quantization, we compute the
partition function, pressure, and the equation of state for an ideal bose gas (i.e.
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a gas with no interparticle interactions), placed in the box A = [— é, g]d c R4
The Schrodinger operator for such a system is
h2
Hy= / a*(z)(—, Aj)a(x)dz, (20.50)
A 2m

where A, is the Laplacian on L?(A) with periodic boundary conditions. The
Gibbs equilibrium state with a fixed average number of particles and for the
inverse temperature 3 (grand canonical ensemble) is

pppu = e PHAIND 7, (8, 1),

where Nj = [, a*(x)a(x)dz is the number of particles operator in the volume
A C R and Z(B,p) = Tre B#Ha=#Na) g the partition function. Here p
is the chemical potential entering as a Lagrange multiplier due to fixing the
average number of particles. This state is obtained by maximizing the entropy,
while leaving the average energy and average number of particles fixed (hence
two Lagrange multipliers, 8 and u, appear, see Section 18.3).

Note that in our case the one particle configuration space is the flat torus
which is A = [-%, ]? with opposite sides identified (i.e. R?/%7Z?) and the
corresponding momentum space is the lattice QL“ Z4. Using separation of vari-
ables, and the result of Section 7.1 for a single particle in a box with peri-
odic boundary conditions, or verifying directly that J], . 2 74 (a*(k))™ (2 are
eigenvectors of H, with the eigenvalues > ke 27 74 EKTUE, W conclude that the
spectrum of the operator H, is

o(Ha)={ > erni|m=01,...Vk}.

ke2rzd

Here ¢, = 2}n|l€|2 and each eigenvalue is of the multiplicity 1. Using equa-
tion (25.50) from the Mathematical Supplement, which expresses the trace of
an operator in terms of its eigenvalues, we obtain the following expression for

ZA(ﬁa H’)
Za(Bop) =) zxmrem P (20.51)

Nk

where z = eP* | is called the fugacity. The latter expression can be transformed

ZA(B, 1) = H (Z 2" e Pex ") = H(l —ze PeR)TL, (20.52)
n=0

k k

Note in passing that if for a self-adjoint operator A with a purely discrete
spectrum {);} accumulating at 1, we define det A := [[;Z, A; whenever this
is finite, then we can rewrite (20.52) as

ZA(B,p) = det (1 — ze=# Hray~1



20.7 Appendix: the Ideal Bose Gas 289

where Hy 4 = 72; Ay is the one particle Hamiltonian acting on L?(A) with
periodic boundary conditions.

Next, we consider the quantity Py (8, p) := Vlﬁ In Z,(8, p), where V :=
vol(A), called the pressure. We have

Py(Bo) ==y 3 (1= ze)
k

X (20.53)
— _Vﬁ Tr In(1 — ze_ﬁHlvA).
Using that, as V — oo,
27)4
ETS sw = [swar,
ke ?rzd
we see that formally Py (8, 1) converges, as V — oo, to
1 —Ber
P(ﬁ’u):_(Qﬂ)dﬁ In(l-—ze Ydk
. (20.54)
= 7(27T)dﬁd;r2 / In(l—ze ®*)dk.

To get the last integral, we changed variables k — k/+/f3.
We compute average number of particles, 7 = Tr(Napg,,). This definition
implies the relation n = z (962 In Z4(6, 1), from which we obtain the expression

»e—Bek

1
n/V=_ > L B (20.55)

ke 3 zd

To have n > 0, we should take 0 < z < 1. The terms in the sum on the
right hand side are, as can be easily checked, the average numbers of particles
having momenta k,

ny, = Tr (Nk pg.p.)

where Nj := a*(k)a(k). To show this, one uses that, by (20.51), n; =
fé Oc, ZA(B, 1), where Z,(8, 1) is considered as a functional of ¢ = gy,
to obtain

2 e~ Bek
T l—ze B

Equations (20.54) and (20.55) constitute the equation of state of the ideal
Bose gas (parameterized by z). More precisely, solving Equation (20.55) for
z as a function of the density p = n/V, and temperature T' = 1/3, and
substituting the result into Equation (20.54), we find the pressure P as a
function of p and T.

ng
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However, if we seek the equation of state as a relation between P, E and
V' (which is, of course, equivalent to the expression involving P, p and T'), the
answer is much simpler. Indeed, using the definition of F

E=EB,u,V):=Tr(Happuan)

and considering the partition function, Z4 (3, z), as a function of 3 and z (and
V') rather than of § and p (and V'), and similarly for the pressure, we find

0 )
B== gy nZa(8:2) == o

Taking into account (20.54) and setting d = 3 we find

(VBP(B,2)). (20.56)

E= PV. (20.57)

This is the equation of state of the ideal Bose gas.

Problem 20.11 It is an instructive exercise to re-derive the results of this
section for the ideal Fermi gas.

Now, we consider the ideal Bose gas in the domain A with a fixed number,
n, of particles. Its Hamiltonian is

n

1
HA,n = Z 72m Azl
=1
acting on the space @7 L*(A) := L2, (A") with periodic boundary condi-
tions. Here @) is the symmetric tensor product, and L3, (A™) is the L* space
of functions symmetric with respect to permutations of variables belonging to
different factors in the product A™. Assume we want to compute the canonical
partition function,

Zan(B) = Tre PHan, (20.58)

This is not a simple matter (try it!). We show how to derive it from the grand
canonical one, Z,(8, 1). The considerations below are heuristic, but can be
made rigorous.

Using expression (20.52) one can show that as a function of z = e#,
Za(B, 1) is analytic in the disk {|z| < e} for some ¢ > 0. Next, by the
definition of Z4(8, 1), we have Za(B, 1) = > 0" Zan(B)z". Hence Zy ,, can
be computed by the Cauchy formula

1 dz
Zan(B) = o }{Z_E ZA (B, ) g (20.59)

By the definition of P4 (8, ), we can write Z,(3,u) = eVAPa(B:1) Writing
also 27" = e 0% = ¢7VVInZ where v = n/V, (20.59) becomes
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1 d
Zan(B) = 7{ SV (BPABm)—vinz) 42
|z|=¢

21 z

Now we take V = |A| and n large, while v = n/V remains fixed. Taking into
account the fact that P4 (3, 1) has a limit as V' — oo, and applying (formally)
the method of steepest descent to the integral above, we find

Zam ~ ce P Z4(B, 1), (20.60)

where |In¢| is uniformly bounded in V, and p solves the stationary phase
equation
ot Bz0,Pa(B, ) =n/V,

or equivalently (passing from z to p) p : 0,Pa(B, 1) = n/V. Define Py »(5) :=
[31V In Z4 ,(8). Then relation (20.60) can be rewritten as

Prn(B) = (=Bun + Pa(B, 11))|o, Pa(8,1)=nv -

That is, P4 (8), as a function of n, is (in the leading order as V' — oo) the
Legendre transform of P4 (S, 1), considered as a function of p.

Similarly, we can pass from Z4(8, 1) to Zan(8) by taking the Legendre
transform in the variable v =n/V.

20.7.1 Bose-Einstein Condensation

We analyze formula (20.55) for the average number of particles. From now on
we set d = 3. We would like to pass to the thermodynamic limit, V' — oc. The
point is that Equation (20.55) is the relation between the average number of
particles n (or the average density p = n/V), the temperature T'= 1/, and
the chemical potential y (or fugacity z = e?#). Recall also that 0 < z < 1. As
long as p and (3 are such that z < 1, the right hand side of (20.55) converges

to the integral
1 ze Bex dk
(2m)3 / 1—ze Pex

as V' — oo. However, if the solution of Equation (20.55) for z yields, e.g., z =
1—O(V 1), then we have to consider the k = 0 term in the sum on the right
hand side of (20.55) separately. In this case we rewrite (20.55) approximately

as
—Bek
no ze
- dk 20.61
p V+/1_Ze_m , (20.61)
z _ kP

where we put ng = |*_. Now using ¢, = , changing the variable of inte-

1— 2m

gration as k' = \/ an k, and passing to spherical coordinates, we obtain

2 e~ Bek 5
[ k=X P ae),
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where A = /27 3/m (the thermal wave length), and

oo —12
ze
g32(2) = / 22 dx.
0

1—ze @

Thus Equation (20.61) can be rewritten as

no _
p= +A % g3/2(2) . (20.62)
Recall that ng = ,*_, and that this equation connects the density p, the

thermal wave length A (or temperature T' = 27 /m A\?), and the fugacity z (or
chemical potential u = é In z), and is supposed to be valid in the entire range
of values, 0 < z < 1, of z.

Can z really become very close to 1 (within O(1/V)), or is the precaution
we took in the derivation of this equation by isolating the term no/V spurious?
To answer this question we have to know the behaviour of the function gs/2(2)
for z € (0,1). One can see immediately that

93/2(0) = 0, g5/5(2) >0 and g3 5(1) = c0.

The function gs/5(2) is sketched below.

g3 (D) g5
2 \ 2

1
Fig. 20.1. Sketch of g3/5(2).

We see now that if p A3 < g3/2(1) (with g3/5(1)—p A3 > a positive number,
independent of V'), then the equation

pA* = 93/2(2) , (20.63)
which is obtained from (20.62) by omitting the V-dependent term '{?, has

a unique solution for z which is less than 1, and is independent of V. Con-
sequently, taking into account the term ng/V = V(fiz) would lead to an
adjustment of this solution by a term of order O(1/V'), which disappears in
the thermodynamic limit V — oo.

However, for p A3 = g3 /2(1), the solution of this equation is, obviously,

z =1, and for pA* > g3/5(1), the above equation has no solutions at all. Thus
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for p A3 > g3/2(1) we do have to keep the term ng/V. Moreover, we have an

estimate
no

V

(here z, is the solution to Equation (20.62)) which shows that in the case
pA% > g3 /2(1), a macroscopically significant (i.e. proportional to the volume
or the total number of particles) fraction of the particles is in the single, zero
momentum — or condensed — state. This phenomenon is called Bose-Finstein
condensation. The critical temperature, T,, at which this phenomenon takes
place can be found by solving the equation

=p X% — g3a(2:) > pX® — g3/0(1)

/))\3 = 93/2(1)

describing the borderline case for A, and remembering that 7" = m2’;2 As a

result we have
2/3
27 p
T, = ( ) |
m 93/2(1)

From Equation (20.62) we can also find the fraction of particles, ng/V, in
the zero momentum (condensed) state as a function of temperature. This
dependence is shown in the diagram below.

n, /v

Tc

Fig. 20.2.

In this elementary situation, we have stumbled upon one of the central
phenomena in macrosystems — the phenomenon of phase transition. Indeed,
the states for which all the particles are in the single quantum state corre-
sponding to zero momentum, and those for which the macroscopic fraction
of the particles in the quantum state of zero momentum (and consequently
in every single quantum state) is zero, can be considered two distinct pure
phases of ideal Bose matter (gas). The first pure phase — called the conden-
sate — occurs at T' = 0, while the second pure phase takes place for T' > T,. In
the interval 0 < T < T, of temperatures, the Bose matter is in a mixed state
in which both phases coexist.

Bose-Einstein condensation exhibits a typical property of phase transi-
tions of the second kind: though all the thermodynamic functions and their
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first derivatives are continuous at the phase transition, some of the second
derivatives are not. Typically one looks at the specific heat

_OE(T,u,V)

Cv: oT

the change of heat or energy per unit of temperature. Using Equations (20.54)
and (20.56), one can show that while Cy is continuous at T = Ty, its derivative
with respect to T is not. Cy as a function of T is plotted below (see [166],
Sect. 12.3]):

Cv/n

ol

T

Fig. 20.3. Specific heat of the ideal Bose gas.

One can show that the thermodynamic properties (eg., the equation of
state — a relation between pressure, temperature and volume) of Bose-Einstein
condensation are the same as those of an ordinary gas — liquid condensation.
The modern theory relates the phase transitions to superfluid states in liquid
helium (He?) and to superconducting states in metals and alloys, to the phe-
nomenon of Bose-Einstein condensation. In the mean field description of the
phenomena of superfluidity and superconductivity, the wave function of the
condensate — the fraction of particles (or pairs of particles, in superconduc-
tivity) in the quantum zero momentum state — called the order parameter,
is the main object of investigation. Of course, in both cases one deals with
interacting particles, and one has to argue that Bose-Einstein condensation
persists, at least for weakly interacting Bose matter.

Problem 20.12 Extend the above analysis to an arbitrary dimension d.
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Quantum Electro-Magnetic Field - Photons

To have a theory of emission and absorption of electromagnetic radiation by
quantum systems, not only should the particle system be quantized, but the
electro-magnetic field as well. Hence we have to quantize Maxwell’s equations.
We do this by analogy with the quantization of classical mechanics as we have
done this in Section 4.1. This suggests we have to put the classical electro-
magnetic field theory, which is originally given in terms of Maxwell’s PDEs,
into Hamiltonian form. As before we do this in two steps: by introducing the
action principle, and performing a Legendre transform. Then we define the
quantization map by associating with canonically conjugate classical fields the
corresponding operators, and quantizing observables correspondingly. Since
Maxwell’s equations are wave equations for vector fields with constraints, to
provide the reader with a simpler guide, we first quantize the scalar Klein-
Gordon equation, which gives the wave equation in the limit of vanishing mass.
The reader familiar with the quantization of the Klein-Gordon equation can
proceed directly to the next section on quantization of the Maxwell equations.
In what follows, we work in physical units in which the Planck constant and
speed of light are equal to 1: A=1, ¢ = 1.

21.1 Klein-Gordon Classical Field Theory

21.1.1 Principle of minimum action

We construct the Hamiltonian formulation of the Klein-Gordon equation. We
consider a scalar (real or complex) field ¢(z,t) on R? satisfying the evolution
equation

(O4+m?)p =0, (21.1)

where, recall, (0 := 92 — A is the D’Alembertian operator and the parameter
m > 0 is interpreted as mass. For m > 0 this is the Klein-Gordon equation,
once proposed to describe relativistic particles, and for m = 0 this is the wave

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_21
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equation (assumed to describe massless particles). The corresponding theory
is called the Klein-Gordon classical field theory.

We write equation (21.1) as a Hamiltonian system. This is done in two
steps: introducing the action principle, and performing a Legendre transform.
Then we quantize the resulting infinite dimensional Hamiltonian system. To
fix ideas, we consider from now on only real fields. We remark on complex
fields at the end.

As for classical mechanics, we begin with the principle of minimal action
(properly, of “stationary” action). Recall that it states that an evolution equa-
tion for physical states is an Euler-Lagrange equation for a certain functional

called the action.

More precisely, one considers a space of functions ¢, defined on space-time,
called the fields. The equation of motion for ¢ is given by S’(¢) = 0, where S
is an action functional on the space of fields. This functional is of the form

S@ = [ [ £0(.0. V0000w, 0)dzds (21.2)

for ¢ : R x R, — R (for the moment we consider only real fields). Here,
L:RxR?xR — R is the Lagrangian density. The space integral of the
Lagrangian density,

L0.0) = [ £(0(e.0), V.0la0). 6z O)do. (21.3)

is called the Lagrangian functional. Recalling from in Section 4.7 the defi-
nitions of critical points and the derivation of the Euler-Lagrange equations
(see also Section 26.2 of Mathematical supplement), it is easy to show that
critical points of satisfy the Euler-Lagrange equation

— 00,06, 8)) + DsL(. ) = 0. (21.4)

Now, we turn to the Klein-Gordon equation. Let f : R — R be a differen-
tiable function. Consider the Lagrangian functional

26.0) = [ {310 - y1v.08 - s as (21.5)

defined on some subspace of H'(RY) x L?(RY) s.t. f(¢(z)) is integrable.
The corresponding Lagrangian density is £(¢, ¢) = é|¢>|2 = 3IVa0? = f(9).
The critical point equation for the corresponding action functional S(¢) =
fT L(¢(t), ¢(t))d?xdt is the (nonlinear) Klein-Gordon equation:

0
O¢ + f'(¢) = 0. (21.6)

One can generalize the above construction by considering the action
S(¢) = fOT L(¢(t), 4(t))dt, defined on the space of paths
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Poosr = {6 € CH([0,T]; X) | $(0) = b0, ¢(T) = ¢},

for some ¢g, ¢ € X, where the Lagrangian functional L(¢,n) is defined on
X xV.Here X is an open subset of a normed space V' (or manifold). X is called
the configuration space of the physical system, and its elements are called
fields. In an examples above, X is some functional space, say X = H'(R% R).
(If X is a non-linear space, then the Lagrangian functional would be defined
on (a subset of) T X, the tangent bundle of X.) The Euler-Lagrange equation
in this case is . _

— 01(03L(9,0)) + 0pL(,¢) = 0 (21.7)
where 04L and 0 ;L are variational or Gateaux derivative of L with respect

¢ and (ﬁ, respectively. (See Mathematical Supplement, Section 26.2 for the
definition.)

21.1.2 Hamiltonians

We generalize the construction we used for classical mechanics. Suppose the
dynamics of a system are determined by the minimum action principle with
a Lagrangian functional L : X x V' — R, which is differentiable. Here V' and
X are a Banach space and an open subset of V. We pass to the new variables
(o, qb) — (¢, ), where m € V*, as a function of ¢ and é, is given by

™= 0;,L(¢, ). (21.8)

(Recall that V* is the space dual to V', see Mathematical Supplement, Sec-
tion 25.1.) We assume that the equation (4.41) has a unique solution for .
(Typically, L is convex in the second variable.) With this in mind, we define
the Hamiltonian functional, H : X x V* — R, as

H(¢,m) = ((m.6) = L(6.9) |0, L(6.d)—r- (21.9)

As in Classical Mechanics, the space Z := X x V* is called a phase space of
the system.

Theorem 21.1 If L(¢, ¢) and H (¢, ) are related by (21.8)-(21.9), then the
Euler-Lagrange equation (21.4) for the action (21.2) is equivalent to the Hamil-
ton equations .

The proof of this theorem is a straightforward generalization of the proof of
Theorem 4.8.

Problem 21.2 Prove this theorem.

This gives a hamiltonian formulation of CFT.
For the Klein-Gordon classical field theory, the Lagrange functional is
L(o,x) = [ {5(xI* = IV¢|?) — f(¢)} dz, and, consequently, the Klein-Gordon

Hamiltonian is
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HG.m) = [ {0 + 196+ 0) | s (2111)

Problem 21.3 Show (21.11).

21.1.3 Hamiltonian System

Suppose that Z = X x V* is a space of functions @(x) = (¢(x),w(x)) on
R<. The functional on X which maps X > ¢ + ¢(z) is called the evaluation
functional (at ), which we denote (with some abuse of notation) as ¢(z), and
similarly for V.

Problem 21.4 Show that 046(y) = 6, and 9,7 (y) = 6.

Now, we recognize that the Hamilton equations equations (21.10) can be writ-

ten, for all x, as .
Pi(x) = {P(x), H}(Pt) (21.12)

where {F,G} is the Poisson bracket on Z defined for any pair differentiable
functionals F, G on Z as

{F,G} = (04 F,0,:G) — (0. F, 05,G)

B (21.13)
= [{0:F0,G — 05F0,G}da.

(See Section 4.7 for the notion and another example of the Poisson brackets.)

Problem 21.5 Prove this.

One can show, formally, that with the Poisson bracket given in (21.13),

{r(z),0(y)} = 6(x —y), {d(x),0(y)} =0, {m(z),7(y)} =0.  (21.14)

Problem 21.6 Show (21.14).

Equation (21.14) says that the evaluation functionals, 7, and ¢, are canonical
coordinates. To have a rigorous interpretation of the first equation in (21.14),
we introduce, for f € C$°(R%), the functionals

o(f): o= (f,9) and  w(f) 7w (f,m).

Then (21.14) means that {7(f),¢(g)} = (f,g), etc, for all f,g € C°(RY).
Note that a path @; in Z solves (21.12) iff, for all functionals F,

d

oy F(@) = {F(2). H}. (21.15)
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Definition 21.7 A Hamiltonian system is a triple, (Z,{-, -}, H), a Poisson
space (Z,{-,-}) (a Banach space Z, with a Poisson bracket) together with a
Hamiltonian functional H defined on that space.

For the Klein-Gordon classical field theory the phase, or state, space is
Z = HY(R?) x H'(R?), the Hamiltonian is given by (21.11), and the Poisson
brackets are defined on it as

(F.G} = / (0:F0,G — 0,F0, G, (21.16)

(In principle we could consider a larger phase space, Z = H'(R?) x L?(R4),
but the space above is more convenient.)
For a more general situation see Mathematical Supplement, Section 26.6.

Remark 21.8 Our definition of a Hamiltonian system differs from the stan-
dard one in using the Poisson bracket instead of a symplectic form. The reason
for using the Poisson bracket is its direct relation to the commutator.

21.1.4 Complexification of the Klein-Gordon Equation

With the view to quantization, it is convenient to pass from the real phase
space Z = H'(R?) x H'(R?) = H'(R?,R?), with the Poisson bracket (21.16),
and with the canonical real fields, ¢(f) and 7 (f), to the complex one, Z¢ =
H'(R?,C), with the Poisson bracket

{F, G} = ’L/ {8a(I)F8@($)G - a@(I)Faa(l)G}d:L‘, (2117)

where 6a(x) = aRea(I) — i@lma(x) and 6@(93) = 6Rw(x) — i@lma(x), and with
the canonical complex field «(f), and its complex conjugate a(f), defined by

alf) = L —1/2 im(C1/2
()=, ((CT21) +im(CV21)
alf) = 1 ~1/2 0y _ (12

where C' is an operator on L2(R?). The Poisson brackets (21.16) and (21.17),
imply, for f,g € C§°, the Poisson brackets

{a(f),a(9)} = (f.9), {a(f),alg)} ={a(f),alg)} =0.  (21.19)

(21.18)

Problem 21.9 Prove the above statement.

Thus (21.18) is a canonical transformation. Consider the free classical field
theory, i.e. the Hamiltonian (21.11) with
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L 5 .2
F(¢) = ,m”|9f, (21.20)

with m > 0. Since —A +m? > 0, we can take
C=(—A+m?)~12 (21.21)

Then the free Klein-Gordon Hamiltonian is expressed in terms of the fields
(21.18) as

H(a,a) = /@C_ladx, (21.22)

21.2 Quantization of the Klein-Gordon Equation

We are now ready to attempt to quantize the free Klein-Gordon theory, i.e.
(21.11) - (21.16), with (21.20). The Klein-Gordon equation (21.1), or the cor-
responding Hamiltonian system, (21.11) - (21.16), with (21.20), look like a
continuum of classical harmonic oscillators. The link becomes especially ex-
plicit if pass in the classical fields ¢(z,t) and 7(x,t) to the Fourier transform

in the x variable: ¢(k,t) and 7(k,t). The Fourier transformed fields satisfy
the equation (07 + |k|*)¢ = 0, and have the Hamiltonian

H(p,7) = ;/{W + w(k)?|p|?Ydk, w(k) == V/I|k]2 +m2.  (21.23)

Thus we want to quantize the free Klein-Gordon classical field as a contin-
uum of harmonic oscillators. In finite dimensional case we can quantize the
corresponding hamiltonian system in any set of canonically conjugate vari-
ables. In the infinite dimensional case, the choice of such variables makes a
difference between a meaningful and meaningless quantum theory. Recall, that
we obtained a representation (7.22) of the harmonic oscillator, which can be
rewritten, with m =1 and h=1, as H = 2;21 wjaja; on the space

LA(R",dpe), dpe(x) := [det(27rc)]_1/26_<I’071I>dT:c,

where ¢ := diag(h/w;), so that (z,c tz) = >0 wia?, d"z = [[;_, dz; is
the Lebesgue measure on R", and the operators a; and their adjoints aj, are

defined on the space L2(R", du.) by

1 i 1

du. is Gaussian measure of mean zero and covariance c¢. The point here is
that unlike the standard representation, where the harmonic oscillator Hamil-
tonian acts on the space L?(R",d"x), which has no r — oo limit, the new
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representation is on the space L?(R", dy.), which can be considered as a finite-
dimensional approximation of the Gaussian space L?(Qs, duc). Here

Qs ={f | (=A+ [zl +1)7/2f € LARN)},

for s sufficiently large, and duc is the Gaussian measure on Qs of mean 0,
and covariance operator C' which acts on L2(R?) and has matrix c as a finite—
dimensional approximation. Elements of the space L?(Qs, djuc) are functionals
F(¢) on Qs such that

/ F(6)2dpc(6) < .

s

We explain this in more detail later, in Subsection 21.3 below. The repre-
sentation (21.22) can be thought of as coming from quantization of the clas-
sical hamiltonian system with the hamiltonian h(a, @) := {(a,c la), where

a = (a;).
Motivated by this representation, we associate with the complex fields
a(f), and a(f), the annihilation operator a(f), and its adjoint, the creation

operator a*(f), acting on the space L?(Qs, duc), with some covariance oper-
ator C, for s sufficiently large, according to the relations

a(f) = (CY2£,0), a*(f) = —(CV2fdy) + (C™Y2f). (21.25)
(More precisely, a(f)F = (CY2f,0,F) = Ox|x=oF (¢ + AC/?f), etc.) These

operators satisfy the commutation relations

[a(f),a*(9)] = (f.9),
[a(f), alg)] = [a"(f), a"(9)] = O,

where f,g € C§°. (For representation of canonical commutation relation, see
[45].) Tt is convenient to introduce the operator-valued distributions, a(z) and

a*(z) by a(f) = [a(z)f(x)dz and a*(f) = [a*(z)f(x)dz. Then
a(z) = C20y(, a*(z) = —CY2,0,) + C 72 ¢(2). (21.26)

With this correspondence, the Hamiltonian functional H(a, @) = [aC ais
mapped into the quantum Hamiltonian operator

Hy = /a(:c)*C’fla(:c)d:c, (21.27)

acting on the space L?(Qs, duc). (The subindex f stands for the "field”.) Here
we put the creation operator a(z)* on the left of the annihilation operator a(z)
for a reason, to be explained later. Recall, that for the Klein-Gordon CFT,
the covariance operator is given by (21.21). In this case it is convenient to
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pass to the Fourier representation, a(k) = (27)~%2 [ e~"*q(z)dz, and use
the Plancherel theorem, to obtain

Hy = /w(kz)a*(kz)a(kz)dk, (21.28)

where w(k) = \/|k|2 + m2. (The meaning of the integral on the r.h.s. is ex-
plained in Section 20.2.)

Define the particle number and the momentum operators (cf. Section 26.8
of Mathematical Supplements and Problem 21.13)

N = /a*(x)a(m)dac and Py :/a*(m)(—ivm)a(x)dx. (21.29)
Problem 21.10 Show (formally) that the operators P, H, and N commute.

21.3 The Gaussian Spaces

We sketch a definition of the Gaussian measure, duc(9), on Qs, of mean 0
and covariance operator C, acting on L?(R9). (For detailed exposition see
[135, 270, 271].) One way to describe duc is through finite-dimensional ap-
proximations, X, of Q% = Q)_, given in terms of cylinder sets. For each f € Q%,
we define the linear functional on Qs,

£6):= [ rodo

where the integral on the r.h.s. is understood as [(—A+ |22 +1)%/2f - (- A+
|22 + 1)7%/2¢d%z. Let n = dim X. Given n linearly independent vectors
fi,..., fn from X, we associate with each Borel set B in R™, the X — cylinder
set

Cp:=A{¢ | (/1(9),..., fr(¢)) € B}.

With every measurable function g on R™ we associate the functional G(¢) =
g(d(f1),...,¢(frn)) on QF, called a X —cyliner function. We define duc(¢4) by
giving its integrals of X —cyliner functions over X —cylinder sets

GO)dnc(@) = [ glar,....n)du (@ (21.30)

Cp B

for every B and g and for increasing sequence of finite-dimensional spaces X,
whose limit is Q. Here dud is the finite-dimensional Gaussian measure on
R™,

A (§) = (det 200y )~ V26~ (@:Cx o) 2gqny

where d"z is the usual Lebesgue measure on R™ (here we display the dimension
of the measure) and Cx is the matrix ((f;, Cf;)). duc(¢) can be extended
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to a measure on the c—algebra generated by cylinder sets which leads to the
notion of the integral of measurable w.r.to this algebra complex functionals.

Next, as usual we define L?(Q,, duc) to be the space of measurable com-
plex functionals F(¢) on @, such that st |F(¢)]?duc(¢) < oo. The basic
examples of square integrable functionals are

F: ¢€ Qs ’_’p(d)(fl)vv(b(fn))

where p(t1,...,t,) are polynomials in t1,...,t, and f1,..., fn € Q%. In fact,
one can show that, by our construction,

the span of vectors of the form H (f;)02, n>1, is dense in L*(Qs, duc).

' (21.31)

Proving this latter fact requires some general considerations from the theory
of functional spaces. (See however the corresponding proof for the harmonic
oscillator.)

We introduce the expectation of a functional F' with respect to duc:

E(F)i= [ P(é)duc (o).
The terminology “mean 0” and “covariance C” corresponds to the properties

E(#(f)) =0 and  E((f)o(9)) = (f,Cg),

or, formally,

E(¢(x)) =0 and  E(é(z)d(y)) = C(z,y)

where C(x,y) is the integral kernel of C. These formulae can be easily proven
by using finite dimensional approximations (21.30).

What should s be? Compute the expectation of the square of the norm
functional ¢ — 8], i= (6, (— A+ [2f* +1)~*6) = [ $(x)K,(w,y)é(y)dedy,
where K(z,y) is the integral kernel of the operator (—A + |z|* +1)7%. We
have formally

E(6l3,) = [ [ 8o~ y)K. (o) E(@(@)oly)dady
://6(30—y)Ks(:z:,y)C(x,y)d:Edy.

Since C(x,y) = C(y,x), this gives E(|¢[3,) = Tr((=4, + |z> + 1)7°C).
Now, the operator C' is bounded and the operator (—A,, +|z|? 4+ 1)~ is trace
class if s > d = 3. So in this case E(||¢]|3,) < oc. If we know more about
C, we can relax the condition s > d = 3. For example, for the Klein-Gordon
theory, C' = (—A +m?)~/2 and we have s > d — 1 for dimension d > 2.
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The integration by parts formula in our space is

| Fi0,G)no(o) = [ (-0, +iCT10)FGdnc(e). (2132

s Qs

To prove (21.32) we use

| FioGducto) = [ (-iduF)Gino(o) +i | FGoudno(o)

s s s

and the relation
dpdpc(¢) = —C~ pdpc(d).

To see the latter relation, think formally about the Gaussian measure as being
dpc (o) = const e‘<¢7071¢)/2D¢_

The integration by parts formula implies that —i0s is not symmetric on

LQ(st d,LLc)Z
(—i0g)" = —104 + iO*1¢.

However, the above implies that the operator m := —idy + éiC”l(b is sym-
metric. In fact, it is self-adjoint: 7* = 7.

21.4 Wick Quantization

We now describe a systematic way to quantize observables, called Wick quan-
tization. To see why we need a special procedure let us quantize naively
the free Klein-Gordon Hamiltonian (21.11), with (21.20), which we rewrite
as H(¢, m) = J [{(z<))? + (C~1¢")?}dx, where C is given in (21.21) and
where we denote for the moment the classical coordinate and momentum field
by ¢° and 7, respectively. First we observe that the quantum fields corre-
sponding to the classical fields ¢¢ and 7 are

1

¢(z) \/201/2(a(33)+a*($)) and m(z) = , C~2(a(z) —a*(z)). (21.33)

iV/2
Here, remember, ¢(z) is considered as an operator of multiplication by the
evaluation functional ¢(z). The second equation gives

1
= —i0y + 21‘071(,#

We have shown in Subsection 21.3 that this operator is symmetric. Using this
expression, one can show that

ilm(z), ¢(y)] = 6(z —y) (21.34)
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Problem 21.11 Derive formally the commutation relations above.

Now in the expression (21.11), with (21.20), we replace the classical fields by
the quantum ones above to obtain

N ICERCRRLE
=, U@ = P + [0+ @) s

_ /{C 1/2 *C—l/2a+0 1/2ac—1/2 *}dx

:2/*0 i/@*@mx

where we have used the commutation relation for a and a*, and the self-
adjointness of C~1/2. The first term on the right hand side is non-negative,
and the second is infinite (recall (21.21), which gives O~ = (= A +m?)'/2),
and therefore the r.h.s. is infinite.

We can make this argument rigorous as follows. First, we move to momen-
tum space via the Fourier transform: a(x) — a(k), a*(z) — a*(k) (we omit
the *hats’ over a(k) and a*(k)). We wish to show that [w(k)a(k)a*(k)dk = oo
where w(k) = (|k|? +m?)'/2 (the dispersion law). Let R? = Uyeza By (a dis-
joint union), where B, is the unit box with center at a lattice point in Z9,
f— fBa a, and w, = mingep, w(k). Then

H(¢,)

[aaaag]zzéaﬁ

/waa* > g Walad),

a€Z3

so that

On the other hand,

E Walaa E Walg, aa—i—g Wa = 0.

Now we describe the quantization procedure which avoids the above prob-
lem. Fix the covariance C'. Recall that we denote for the moment the classical
coordinate and momentum fields by ¢ and 7. Classical observables are
functionals A(¢, ) of ¢! and 7¢!. We express A(¢°, 7) in terms of the
functions « and @&, using

1 1
C'2(a + @) and 7 =

V2 V2

(see (21.18)): A(¢°, 7)) = B(a, @). We consider functionals B(a, @) : L2(R%)x
L?(R?) — C, analytic in a and @&, of the sense of the convergent power series,

¢ = C2(a - a)
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m m—+n

a) = Z/Bm,n($1, ey Tt H H a(z i)d(n-{-m)x.

=1 i=m-+1

We associate with classical observables, A(¢, 7¢!), quantum observables, i.e.
operators A on the state space L?(Qs, pic), according to the rule

A7) A:=: A(¢,7): =: B(a*,a) : (21.35)
where : B(a*,a) : is a Wick ordered operator defined by
: B(a™,a) :
m m-+n
= Z/an(xl, o tman) [t @) [ a(zi)d" ™z, (21.36)
m,n =1 1=m-+1

Here are some examples of Wick ordering:
Example 21.12
2 = [CTY2%(a + a*))?
— . (C~1/24)2 —1/2, %\2 1/2 ¢ —1/2 1/2 1/2 % .
(C™2a)* + (C™2a")* + C~ C™2a+C™2aC™
:(071/2a)2+(071/2a*)2+2c 1/2 a*C~ 1/20“

Using above, we compute

= ;/ An? 4+ |Vo|? + m?¢*} : do = ; /a*C’fladz. (21.37)

Problem 21.13 Show that the momentum operator Py = [ a*(x)(—iVy)
xa(z)dz can be written as (cf. (26.26))

Py = / cm(x)Vao(z) @ da

Problem 21.14 (see [135]) Let ¢ = (f,Cf) = E(¢(f)?). Show

2 o(f)" = 2P, (c7Y2¢(f)) where P, is the n'* Hermite polynomial
2. e8(f) .= pb(f)—c/2,

21.5 Fock Space

Using the definitions (21.26) of the annihilation operator a(z), we see that
the only solution to the equation af2 = 0 is {2 = const. We thus set 2 = 1,
and call it the vacuum. Now we show that any element of L?(Q,duc) can
be obtained by applying creation operators to the vacuum. From now on, we
omit the subindex s in @s. Let (S) denote the symmetrized tensor product
and L2, (R"), the subspace of L?*(R"?) consisting of functions which are
symmetric with respect to permutations of the n variables x; € R<,
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Theorem 21.15 Any vector F' € L?(Q, duc) can be written uniquely as

F= Z\/n /F T1, .. xp)at (21) - at (@) dxy - - day, (21.38)

where F,, € L2 (R"?) = G L?(RY).

sym

Proof For simplicity, we will denote the right hand side in (21.38) by >_ \/17“
[ Fn(a*)"£2. We first remark that for any G,, € L?(R"?),

/ G(a®)" 2 = / GEVm (a*) 02 (21.39)
where
sym 1 nd
G* (:L‘l; v amN) = n w; G($W(1)7 <o 7~rw(n)) € Lgym(R )

is the symmetrization of ¢. Here S,, is the group of permutations of the n
variables, and for 7 € Sy, 7(1,...,n) = (7(1),...,7(n)).
Next, we have by straightforward computation

</Fn(a*)"9,/Gm(a*)mQ> - {n!<F3, o :fg (21.40)

Problem 21.16 Show (21.40).

Thus, for two vectors, F' and G, of the form (21.38), we have

(F,G) = (Fn,Gy). (21.41)

M8

n=1

Now we use the fact that the span of vectors of the form []} ¢(f;)2,n > 1,
is dense in L? (see (21.31)). By the relation (21.33), we have

[Tou H¢ (@2 13) + " (€ ).

1

Using the commutation relation, a(f)a(f)* = a(f)*a(f)+{f, g), to pull a’s to
the right of a*’s, we transform the product [I(a + a*) to the normal form
[+ a*) = Zk+l<ankl . But (a*)*a'2 = 0 unless [ = 0, so

[17 o(f)2 =>k<, | Aro(a* k.Q By (21.39), this can be rewritten as

= 1
[Towe=3 [, m



308 21 Quantum Electro-Magnetic Field - Photons

where F, € L?

sym

(RFd) = @fsymLQ(Rd). Thus vectors of the form

Z;/F(a)g

are dense in L?. On the other hand, by (21.41), the subspace

{F:zn:\/ln!/F" "0 | Fy eLSym(R"d)} (21.42)

is closed. Since by above, it contains a dense set, it is the whole L? space.
Definition 21.17 The (bosonic) Fock space is
oo
F = EB ®L2 R)] with Z Fo,G,)
n=0 n=1
We call F,, := G} L%(R?) the n-particle sector. By convention, Fy = C.
The previous theorem provides a unitary isomorphism
LX(Q.dpc) = F

given by

Z\/n'/¢n QH@‘% = (¢o, P1,P2,---)-

Moreover it is easily checked that
E(F) ::/ Fdue = (2, F$)
Q

and on F,
a(f) D On 6.7:”'—>\/n<f,¢)n> S
and

a*(f)¢n€fn'—>\/n+1f®¢n€fn+1

Proposition 2. In the Fock space representation, the Hamiltonian, H
= [a*C~'a, the momentum operator Py = [ a*(—iV)a and particle number,
N = [a*a, operators (see (21.27) and (21.29)) are of the form

Hip = DX Crlon), Pro = @ (D pes,0n),
n=0 1 n=0 1

No < @D (o).

n=0

where the subscript x; in Cy; indicates that this operator acts on the variable
SCj.
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This is simply a matter of using the commutation relations. We leave the
proof as an exercise.

Thus we have obtained a very simple realization of our state space
L?(Q, dpc) which is independent of C', and in which the Klein-Gordon Hamil-
tonian acts as a direct sum of simple operators in a finite but increasing num-
ber of variables:

Hf = @ZOZO Z \/7AI1 +m2.
1
In particular, the spectrum of Hy is
o(Hy) = {0} U{Un>1[nm,00)}

where the zero-eigenfunction is the vacuum, §2. Physically, this theory de-
scribes non-interacting particles (bosons) of mass m.

Problem 21.18 Find the spectrum of the momentum operator

Py = /a*(z)(—ivx)a(z)dz.

Remark 21.19 For connections with stochastic fields and with infinite di-
mensional pseudodifferential calculus, see [304] and Berezin [38], respectively.
There is also a relation to the Wiener chaos expansion used in stochastic
differential equations.

21.6 Quantization of Maxwell’s Equations

Maxwell’s equations as a hamiltonian system. As a prelude to quan-
tizing Maxwell’s equations we have first to write them in Hamiltonian form.
Recall that we work in physical units in which the Planck constant and speed
of light are equal to 1: A = 1, ¢ = 1. The Maxwell equations for vector fields
E :R3*t!1 — R3 (the electric field) and B : R3T! — R3 (the magnetic field) in
vacuum are

V-E=0 VXBZ%? (21.43)

0B

E=— -B=0. 21.44
V x Iy \Y% 0 ( )

The third and fourth equations are actually constraints. They can be used to

reduce number of unknowns by introducing the potentials U : R3T! — R and
A :R3t! — R3 such that

B=V x A, E=—0A/8t — VU. (21.45)

Then the last the equations (21.44) are satisfied automatically. There is still a
redundancy in the choice of A and U. Specifically, any gauge transformation
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A A+ Vy, U U —dy/ot (21.46)

for x : R3*! — R, results in new potentials A and U which yield the same
fields £ and B. By appropriate choice of x, we may take

V-A=0

which is called the Coulomb gauge. From now on, we work in this gauge. The
equation for U is AU = 0, so we can take U = 0, which gives

E=—-0A/dt, B=Vx A

Now, the first, third and fourth equations in (21.43) - (21.44) are automatically
satisfied while the second equation results in

0A =0, V-A=0. (21.47)

Thus the vector potential A is a transverse vector field satisfying a wave
equation. (A vector field f : R? — R3 is called transverse (or incompressible
or divergence free) it V- f =0.)

Similarly as for the Klein-Gordon equation, one shows that Equation (21.47)
is the Euler-Lagrange equation for the action

T
S(A) = ;/0 /RB{|A|2 — |V x A]?}dxdt (21.48)

where the variation is among transverse vector fields. Again repeating the
steps we went through in the Klein-Gordon case, we arrive, for Maxwell’s
equations, at

1. the phase space, which is the direct sum of two Sobolev spaces of trans-
verse vector fields (i.e. the derivatives are considered in distributional
sense),

7 — Hl,trans(RS_ RS) o) Hl,trans(RS, R3)

2. the Hamiltonian functional (the Legendre transform of the Lagrangian

L(A,A) = [{|AP — |V x A]P}),

1 2 2
H(A, E) = ?/{|E| +IV x AP}dz -
—, [P + |BPYis

where —F is the canonically conjugate field to A : 9 4L(A, A) —A=—E,
and V- E = 0;
3. the Poisson bracket

{F,G} := (04 F, TOG) — (0pF, TOAG) (21.50)

(on Z), where T be the projection operator of vector fields onto transverse
vector fields:
TF:=F — (A)~'V(V-F);
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4. Canonically conjugate fields are A and E. If T;;(z — y) is the matrix
integral kernel of the operator T, then

{Ei(z), 4;(y)} = Tij(z —y).
Note that by the definition, 04 F' = TO4 F' and similarly for g F'. The Hamil-

ton equations for the above system are

& = JrdpH(D), Jr:= (; OT> , &= (ABE). (21.51)

Note that the first Hamilton equation yields, as expected,

A=TOpH(AE)= -TE = —E.

Problem 21.20 Check that V- (T'F) = 0.

Problem 21.21 Check that Maxwell’s equations are equivalent to the Hamil-
ton equations (21.51). (Cf. Problem 21.2.)

Quantization of the EM field. We quantize the Maxwell hamiltonian
system in the same way as the Klein-Gordon one, but replacing scalar gener-
alized operator-functions, say a(z), by generalized transverse operator-vector-
fields, say a(z) = (a1(x), az(x),as(x)) with V-a(z) = 0, and using the projec-
tion T onto the be the transverse vector fields, when needed. Here V - a(x) is
understood as a distributional divergence of the operator-valued distribution,

[ v a@it@ds == [ aw)- Vi()ds = -a(v1),

i.e. a symbolic way to represent the operator-valued functional —a(V f). The
resulting theory can be summarized as follows:

1. The quantum state space is L2(Q'"*"*, duc), where, for s sufficiently large,
Qs = {A:R® - R® | (A + |22 +id)™*/24 € L2, divA =0}

and duc is the Gaussian measure of Q'™ with the covariance operator
C=(—A)"1/2,

2. The quantized A(x) and F(z) are operator-valued transverse vector fields,
acting on the space L2(Q'"*"*, duc) as the multiplication operator by A(z)
and E(z) := —i0a(s) + 3iC 1 A(z), respectively. They give canonically
conjugate fields with the non-trivial commutation relation

i[Ex(2), Ai(y)] = T (z — y)1

where T'(z — y) is the integral kernel of the projection operator, T, onto
the transverse vector fields (recall our convention i = 1).
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3. A(x) and E(x) are expressed in terms of the annihilation and creation
operators, a(z) and a*(x), as

. CY2%(a(x)+a*(x)), E(z) = ! C~Y2(a(z)—a*(z)). (21.52)
V2 ’ V2

Here a(z) and a*(z) are operator-valued transverse vector-fields, a(x) =

(a1(z),az2(x),as(x)) with V - a(z) = 0, satisfying the commutation rela-

tions

[ai(z), a5 (y)] = Tu(z —y)1,  [ai(z),a;(y)] = 0 = [aj (z), aj (y)].
(21.53)

A(x)

4. The quantum Hamiltonian operator acts on the space L?(Q™%"* duc)
and is given by

1

Hf:2

/ CEP |V x AP de = /a(z)* -V —=Aa(zx)dr, (21.54)
where a(z)*-v—Aa(z) = 3, a;(x)*-v/—Aq;(z). (Here again the subindex
f stands for the ”field” and the precise definition of the integral on the
r.h.s can be found in Section 21.2.)

Note an essential difference in the EM case: there is no mass (m = 0). That
is, the covariance operator is C' = (—A)~1/2.

The equations (21.52) - (21.54) give the full description of the quantized
electro-magnetic field in vacuum.

For the Maxwell theory, the Fock space is built on the one-particle
space L2 .. (R3 R3) = {f € L2(R3 R3)|divf = 0}, instead of L?(R?) =

L?(R4,C). The Maxwell Hamiltonian acts on it as

Hf = @ZOZO Z \/_Alz
1

This representation can be used to obtain the spectrum of H:
o(Hy) = {0} U{Un>1[0,00)}

where the zero-eigenfunction is the vacuum, §2. Physically, this theory de-
scribes non-interacting massless particles (bosons), called photons.

The Fourier transforms, a(k) and a*(k), of the operators a(z) and a*(z)
satisfy a(k) = (a1(k),az2(k), as(k)) with k- a(k) = 0. The commutation rela-

tions for a;(k), af (k) are

kik;

[ai(k), aj (k)] = (6ij — 2 )o(k — k), [ai(k), a; (k")) = 0 = [a (k), aj (K)].

(21.55)
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In these terms, the Maxwell quantum Hamiltonian is of the form

Hy = /w(kz)a*(kz) -a(k)dk,

with w(k) = |k|, and the quantized vector potential, A(x), is given by

/{e” ok e ok *(k)}\/ilzk)' (21.56)

In the Fourier representation, we can choose an orthonormal basis ey (k) =
e(k,\), A€ {—1,1} in k+ C R3, satisfying k- ex(k) = 0. The vectors e (k) =
e(k,\), A € {—1, 1} are called polarization vectors. We can write the operator-
valued transverse vector fields a™ (k) as

a*k)= Y ealkaf (k),

xe{-1,1}

where af (k) = a?(k, ) := ex(k) - a*(k), the components of the creation and
annihilation operators a” (k) in the direction transverse to k; they satisfy the
commutation relations

[a¥ (k), ol (K)] = o, [ax(k), a3 (K)] = 683 (k — k). (21.57)

Now the Hamiltonian Hy and the quantized vector potential, A(x), can be

written as
Hp=>" / w(k)ai (k)ax(k)dk
A

and

dk

Az) = {e™Fay (k) + e~ Fa} (k) }ex(k (21.58)
> [1etan Cl

Elements of F,, can be written as 1, (k1, A1, ..., kn, An), where A; € {—1,1}
are the polarization variables. Roughly in the case of photons, compared with
scalar bosons, one replaces the variable k by the pair (k, A) and adds to the
integrals in k also the sums over A.
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Standard Model of Non-relativistic Matter and
Radiation

In this chapter we introduce and discuss the standard model of non-relativistic
quantum electrodynamics (QED). Non-relativistic QED was proposed in the
early days of Quantum Mechanics (it was used by Fermi ([98]) in 1932 in
his review of theory of radiation). It describes quantum-mechanical particle
systems coupled to a quantized electromagnetic field, and appears as a quan-
tization of the system of non-relativistic classical particles interacting with a
classical electromagnetic field (coupled Newton’s and Maxwell’s equations). Tt
is the most general quantum theory obtained by quantizing a classical system.

22.1 Classical Particle System Interacting with an
Electro-magnetic Field

We consider a system of n classical particles of masses m; and electric charges
e; interacting with electro-magnetic field. Recall that we work in physical
units in which the speed of light is equal to 1: ¢ = 1. The coupled Newton’s
and Maxwell’s equations, describing interacting particles and electromagnetic
field are

E
V-E=p, VXBzaat + 7, (22.2)
VxE:—aaf, V- B=0. (22.3)

Here p and j are the charge and current densities: p(x,t) = >, e;6(z — (1))
and j(x,t) = >, e;&i(t)0(x — x;(t)). The first equation is Newton’s equation
with the Lorentz force. The last four equations are Maxwell’s equations in
presence of charges and currents.

To find a hamiltonian formulation of these equation we first present the
minimum action principle for this system. As before, we express the electric
and magnetic fields, E and B, in terms of the vector potential, A : R3+! - R3,
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and the scalar potential, U : R3T! +— R via (21.45). The action functional
which gives (22.1) is given by

T M
S0 = [ 8 (e el e AB). 224)

Indeed, let us compute the Euler-Lagrange equation for this functional (see
(4.40)). Using the Lagrangian function L (v, ¥|U, A) = >, (" |7|? — eU () —
e¥; - A(7i)), we compute

O L(v,9U, A) = my + eA(7), 9,L(7,4|U, A) = eVU(7) +eV7 - A(7).

Plug this into (4.40) and use the relations & A(v) = 8, A(y)+(3-V)A(v), V(5
A) — (7 V)A(y) = 4 A curlA, and (21.45) to obtain (22.1).

To (22.4) we add the action of electromagnetic field found in the previous
chapter, but with a non-zero scalar potential,

Sem (U, A) / / (JA+ VU? — |V x AP?)(z,t)dxdt.
R3

(We do not have to assume the Coulomb gauge, divA = 0, here.) Using that
eU(x(t),t) = [ps pla,t)U(z, t)dx and ei(t) - A(x(t),t) = [ps (2, 1) - A(z, t)dz,
to rewnte the last two terms in (22.4), we obtain the action functional of the
coupled system

S(’Y’U’ A) = SP(V) +S€m(U; A) +Sint(’YaUa A)v (225)

where S, ( fo |% |#dt is the action of the free particle, familiar to
us from Sectlon 4.7, Sem(U A) is the action of a free electro-magnetic field
given above, and Smt(¢), U, A) is the interaction action, coupling them,

T
Sint(%U,A):/O /RB(—p(m,t)U(ac,t)—l—j(m,t)-A(x,t))dxdt. (22.6)

It is easy to check that the Euler-Lagrange equation for the action (22.5) gives
the Newton - Maxwell system (22.1) - (22.3).

Gauge invariance. The fields E and B are not changed under gauge trans-
formations (21.46) of A and U. Hence we would like to make sure that the
action (22.6) gives the same equations of motion for different A and U, con-
nected by a gauge transformation (21.46). Under (21.46), the action (22.6)
changes as S(v,U, A) — S(v,U, A) + A(~, x), where

Ay, x) == /0 /]R3 (pOex + j(z,t) - Vx)dxdt (22.7)
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:/O g (0(0x) + V- (Gx) — (V - j + Orp)) dud. (22.8)

Hence the gauge transformation leads to an equivalent action/Lagrangian, i.e.
to the action which gives the same Euler-Lagrange equation.

Covariant formulation. Geometrically, the electric field is a one-form,
while the magnetic field is a two-form. One can form the field tensor F' :=
—EAdx° + B, as a two-form on the Minkowskii space M3*1, with coordinates
(20, 21, 22, 2?), where 2° = ¢, and the metric g = diag(1,—1,—1,—1). By the
last two Maxwell’s equations, F' is a closed form, dF' = 0, and therefore it is
exact, i.e. there is a one-form A, s.t. F' = dA. (A can be thought of as a con-
nection, and F as a curvature on a U(1)—bundle.) Then the action functional
can be written as a 'Dirichlet’ integral, S(A) = — ¢ [} 511 ([|[dA|* + (T, A)),
where J := (p,j) on the Minkowskii space M3+ with the norm and inner
product related to the Minkowskii metrics, g = diag(1, —1, —1,—1). This gives
the first two of Maxwell’s equations as d*F = J, where d* is the operator
adjoint to d.

Elimination of scalar potential. Note that the time derivative of scalar
potential U does not enter this Lagrangian. This indicates that U is not a
dynamical variable and we can eliminate it from the action. We do this in the
Coulomb gauge, divA = 0, as follows. Varying the action S(v,U, A) w.r. to
U, we obtain the first of Maxwell’s equations

— AU = p. (22.9)

Furthermore, divA = 0 implies, after integration by parts, that fRS |A +
VU|2dz = [3s (JA]*+|VU|?)dz. Using this and [y, |VU|?dz =[5 U(—A)Udz
= Jus Updz, we see that the terms involving U add to —3 [z Upda. Now,
solving the Poisson equation (22.9) for U as U = (—A)~!p, we obtain

/IR3 pUdr = /R p(=A) " pdr = Veou (@),

where x = (x1,...,2,), plus the infinite Coulomb self-energy term. Here

Veour (z) =3 D it |Ief;| With this and dropping the Coulomb self-energy
i Lj

term, we can write the action as

Sy, A) = Sy (7) + S5 (A) + S (v, A), (22.10)
cou T H
where Sp l fO ( '}’z Vcoul)dta Sf(A) = ;fo f]R3 (|A($,t)|2 -
|V x A(z, t)| )d:z:dt is the free action of electromagnetic field, encountered in
the previous chapter, and

T
Seoul( g ,A)/O Agj(x,t)~A(x,t)dxdt. (22.11)
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Hamiltonian formulation. Now, we pass to the hamiltonian formula-
tion. To this end we impose the Coulomb gauge, divA = 0 and use the
Lagrangian given by the above action. The generalized particle momenta
are k; = m;i; + eA(x;), while the field momentum is —F = A, the same
as in the free case. The classical Hamiltonian functional is H(x,k, A, E) =
k-v—L(@,v,A E)l, ik —cA(:),ie—ps Which gives

H(.Z‘, k, A, E) = Z (kz - ezA(xz))2 + ‘/coul(x) + Hf(Aa E)

2mi

where k = (k1,...,k,) and Hf(A, E) is the Hamiltonian functional of the free
electro-magnetic field. Defining the Poisson bracket as the sum of classical
mechanics one, (4.47), and electro-magnetic one, (21.50), we arrive at the
hamiltonian formulation for a system of n particles of masses my, ..., m, and
charges e1, ..., e, interacting with electromagnetic field, (F, B).

22.2 Quantum Hamiltonian of Non-relativistic QED

According to our general quantization procedure, we replace the classical
canonical variables ¢! and k¢! and classical fields A% (z), and E(z) by the
quantum canonical operators x;, p;, A(z), and E(x) (see (4.4) and (21.52)),
acting on the state space

L*(R*™) @ L*(Q' ™%, duc) ~ L*(R*") @ F = Hpars @ Hy- (22.12)

In the units in which the Planck constant divided by 27 and the speed of light
are equal to 1, A =1 and ¢ = 1, the resulting Schrodinger operator, acting on
Hpart & va is

H =

WA
o, (Pi eiA(%))* + Voo () + Hy, (22.13)

1

where, recall, m; and e; are the mass (in fact, the ’bare’ mass, see below)
and charge of the i-th particle. Recall the the quantized vector potential A(x)
and quantum Hamiltonian H; are given in terms of the annihilation and cre-
ation operators a(k) = ), ex(k)ax(k) and a*(k) = >, ex(k)a} (k) (obeying
canonical commutation relations (21.57)) by

d3k

22.14
¥ ity (22.14)

A(z) = /{e”'ka(k) +e ke (k

and
Hy = /w(k)a(k)* -a(k)dk. (22.15)
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Note that in the units we have chosen, various physical quantities entering the
quantum hamiltonian are not dimensionless. We choose these units in order
to keep track of the particle mass.

Also note that we omitted the identities 1,,¢ and 15 on Hpare and Hy,
respectively, and a careful notation would have Vepu(2) ® 15 and 1. @ Hy,
instead of Veoui(z) and Hy. In what follows, as a rule, we do not display these
identities.

Gauge principle (minimal coupling). We see that the full, interacting
Hamiltonian, is obtained by replacing the particle momenta p; by the covari-
ant momenta p4 ; = p; —e;A(z;), and adding to the result the field Hamilto-
nian, Hy, responsible for the dynamics of A(z). This procedure is called the
minimal coupling and it is justified by a gauge principle requiring the global
gauge symmetry of the particle system also to be the local one.

Ultra-violet cut-off. The quantum Hamiltonian H we obtained above is ill-
defined: its domain of definition contains no non-zero vectors. The problem is
in the interaction (p — eA(z))? — p? = —2eA(x)p + e2A(x)? (written here in
the one-particle case). The A(x) is too rough an operator-valued function. It
has the empty domain. E. g.

A(z)(f(z) @ 2) = f(x)Az)$2

) B3k
= f(x)/e_”'ka*(k: Jolk ¢_ L*(R*) ® F.
w(
To remedy this we institute an ultraviolet cut—oﬁ. It consists of replacing
A(x) in (22.14) by the operator A, (x) := X * A(x) where y is a smooth
well-localized around 0 (i.e. sufficiently fast decaying away from 0) function:

Ax) — Ay (x) == x * A(z). (22.16)

Recall that x denotes the inverse Fourier transform of a function x. We choose
X to be a positive function whose integral is equal to 1 (a smoothed-out é-
function). In fact, the specific shape of ¥ is not important for us. Now, A, (x)
is of the form L

Ay (z) = /(eik Ta(k) + h.c x(k) dk. (22.17)

) )

Assuming that the ultra-violet cut-off x decays on the scale k, we arrive, as a
result, at the Hamiltonian of non-relativistic matter interacting with radiation:

= (Pays)” + €5 Veoul(x) + Hy (22.18)

1
:2m]

j=1

acting on Hpare ® Hy, where pa; = p; — e;Ay(x;), and p; = —iV,, (note
that the parameter e enters the definition of the operator p, ;). This is the
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standard model of non-relativistic QED. We show below that H., is well-
defined and is self-adjoint.

To sum up, we arrived at a physical system with the state space H =
H, ® Hy and the quantum Hamiltonian H.,. Its dynamics is given by the
time-dependent Schrodinger equation with

Zatw = Heml/]a

where 9 is a differentiable path in the Hilbert space H = H, ® Hy. A few
comments are now in order.

Choice of k. We assume that our matter consists of electrons and the
nuclei and that the nuclei are infinitely heavy and therefore are manifested
through the interactions only). We reintroduce the Planck constant, /& and
speed of light, ¢, for a moment. The electron mass is denoted by me. Since
we assume that x(k) decays on the scale k, in order to correctly describe the
phenomena of interest, such as emission and absorption of electromagnetic
radiation, i.e. for optical and rf modes, we have to assume that the cut-off
energy, hick, is much greater than the characteristic energies of the particle
motion. The latter motion takes place on the energy scale of the order of the
ionization energy, i.e. of the order a?mgc?, where o = 451@ ~ is the
fine-structure constant. Thus we have to assume a?mec? < hck.

On the other hand, for energies higher than the rest energy of the the
electron (me1c?) the relativistic effects, such as electron-positron pair creation,
take place. Thus it makes sense to assume that Ack < meic?. Combining the
last two conditions we arrive at the restriction a?mec?® < hck <€ mec® or
a’meic/h < Kk < meie/h. In our units (h = 1, ¢ = 1) this becomes

1
137

a2mel K R <K M-

Free parameters. We will see later that the physical mass, mg, is not
the same as the parameter m = m; (the ’bare’ mass) entering (22.18), but
depends on m and k. Inverting this relation, we can think of m as a function
of me and k. If we fix and the particle potential V(z) (e.g. taking it to be
the total Coulomb potential), and me and e, then the Hamiltonian (22.18)
depends on one free parameter, the bare electron mass m (or the ultraviolet
cut-off scale, k).

Gauge equivalence. We quantized the system in the Coulomb gauge.
Assume we quantized the system in a different gauge, say the Lorentz gauge,
how is the latter Hamiltonian related to the former one? As we saw above,
classically, different gauges give equivalent descriptions of a classical system.
Do they lead to equivalent descriptions of the corresponding quantum sys-
tem? The answer is yes. One can show that quantum Hamiltonians coming
out of different gauges, as well as other observables, are related by unitary
(canonical) transformations.
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22.2.1 Translation invariance

The system of particles interacting with the quantized electromagnetic fields
is invariant under translations of the particle coordinates, x — x + y, where
y=(y,...,y) (n— tuple) and the fields, A(x) — A(x —y), i.e. He,, commutes
with the translations

Ty :¥(z,A) - ¥(z+y,t,A), (22.19)

where (t,A)(z) = A(z—y). (We say that H,,, is translation invariant.) Indeed,
we use (22.19) and the definitions of the operators A(z) and E(z), to obtain
T,A(z) = (t,A)(x)Ty and Ty E(z) = (t,E)(z)T,, which, due to the definition
of Hey, give

TyHeka = HenTya

In the Fock space representation (22.19) becomes
Ty : @nw’n(xa kla cey k’n) - @neiy~(k1+...kn)wn(z + Y, klv cey k’n)

and therefore can be rewritten as T}, : ¥(x) — e PiW(x +y), where Py is the
momentum operator associated to the quantized radiation field,

P; = Z/dk:k:aj(k)ax(k).
A

As we know from Section 3.4, typically, symmetries of a physical system
lead to conservation laws. (In the classical case, this is the content of the
Noether theorem.) In our case, of a particular importance is space-time trans-
lational symmetry, which leads to conservation laws of the energy, H.,, and
the total momentum. We check this for the spatial translations. It is straight-
forward to show that 7 are unitary operators and that they satisfy the rela-
tions T4y = 13T, (and therefore y — T, is a unitary Abelian representation
of R?). Finally, we observe that the group T} is generated by the total mo-
mentum operator, P;o, of the electrons and the photon field: T, = e Prot |
Here P;,; is the selfadjoint operator on H, given by

Pt =Y pi®1p + Ly ® Py (22.20)

where, as above, p; := =iV, the momentum of the j—th electron and Py is
the field momentum given above. Hence [H.y, Piot] = 0.

22.2.2 Fiber decomposition with respect to total momentum

Since the Hamiltonian H., commutes with translations, 7}, it has a fiber de-
composition w.r.to the generator P, of the translations (cf. Section 6.6). We
construction this decomposition. Let H be the direct integral H = fﬂg HpdP,
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with the fibers Hp := L*(X) ® F, where X := {z € R* | > . m;z; =
0} ~ R3=1D (this means that H = L?*(R3 dP;L*(X) ® F)) and define
U : Heq ® Hy — H on smooth functions, compactly supported in z, by the
formula

O0)p(a) = [ w4 (22.21)
R3

where 2’ are the coordinates of the n particles in the center-of-mass frame and
Ty, = (Temy -+, Tem) (n— tuple), with xepy, = Z-lmi >, mix;, the center-of-
mass coordinate, so that = a2’ +x,,. Then U extends uniquely to a unitary
operator (see below). Its converse is written, for p(z') € L?(X) ® F, as

(U™1d)(z) = /W e~ iwem (P=P) @ (1) dP. (22.22)

The functions @p(z') = (U¥)p(z') are called fibers of ¥.

Lemma 1. The operations (23.8) and (22.22) define unitary maps L*(R3")®
F —H and H — L*(R3>") ® F, and are mutual inverses.

Proof. By density, we may assume that ¥ is a C§° in z. Then, it follows from
standard arguments in Fourier analysis that

(UTtUw)(z) = /dPe*“P*Pf)zcm/dye“P*Pf)'W(x’er)
= /dy /dpe*iP-(rcmfy)eiPr(rcmfy)mzury)

- /dy 6(zcm - y) ePr(@em=v) W(xl + y)
— U(z). (22.23)

On the other hand, for @ € H,

(UU'®)p(a) = /dyei(P_Pf)y/dqei(q—Pf)yéq(x/)

/dq /dy elP=0v ¢ (1)

dqo(P — q) <15q(x’)

= dp(2)). (22.24)

From the density of C§° in x functions, we infer that (22.23) and (22.24) define
bounded maps which are mutual inverses. Unitarity can be checked easily. [J

Since H.,, commutes with P;.;, it follows that H., admits the fiber decompo-
sition

&b
UH, U™ ! = / H..(P)dP, (22.25)
R3
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where the fiber operators H..(P), P € R3, are self-adjoint operators on
the space fibers Hp. The latter means that UH.. U '®p = H,.(P)®p for
Pp(x') € fﬂg HpdP. We compute H,, (P). Using a(k)e~ ¥t = e~ (Pit+k)q (k)
and a*(k)e” W = e (=R g*(k), we find VeV (P~ A (2 4y)e (P=F) =
0 and therefore

Ay (z)ey PP = e (P=P) A (1 —y). (22.26)

Using this and (22.22), we compute

Ho U™ 9)) = [ e 0P, (P)o(P)ar,
RS

where the fiber Hamiltonians H.,.(P) are given explicitly by

1
Hoo(P) =" " (P =P =iV — ;A ()" + Veou(s') + Hy  (22.27)

—~ 2m; J

where &} = x; — X, is the coordinate of the i—th particle in the center-of-mass
frame.

22.3 Rescaling and decoupling scalar and vector
potentials

In order to simplify the notation and some of the analysis from now on we
assume that our matter consists of electrons and the nuclei and that the nuclei
are fixed (the Born-Oppenheimer approximation in the case of molecules,
see Section 10.1) and therefore are manifested through the interactions only.
Recall that we work in physical units in which the Planck constant and speed
of light are equal to 1: A = 1 and ¢ = 1, so that e?/47 = a ~ 1§7, the
fine-structure constant. In the original units, a = ,°, .

In the Hamiltonian (22.18) the coupling constant - the electron charge e -
enters in two places - into the particle system itself (the Coulomb potential)
and into coupling the particle systems to the quantized electro-magnetic field
and thus has two different effects onto the total system. To decouple these
two effects, we rescale our Hamiltonian as follows:

r— T, k— o’k ,
Q

Under this rescaling, the Hamiltonian H., is mapped into the Hamiltonian
a?H (e), where

H(e) = zn: 21,1 (iVa, +eAX(x)))? + V(z) + Hy (22.28)
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where ¢ = 2,/ma%?, AX(x) = A, (az) with y(k) replaced by x(a?k), and
V(z) = Veoul(z, aR). We write out the operator AX(z):

x(a?k)

Vew(k)

The Hamiltonian H(g) is, of course, equivalent to our original Hamiltonian
H,.

After the rescaling performed above the new UV cut-off momentum scale,
2k, satisfies

AX(z) = /(eik'wa(kz) + h.c.) k. (22.29)

K =a~
/ —2
Me] K K <@ "My,

which is easily accommodated by our estimates (e.g. we can have k' =
O(a~3mg)). From now on we fix x and we do not display « in the cou-
pling function in (22.29) (the presence of a multiplying = above only helps
our arguments).

At this point we forget about the origin of the potential V' (z), but rather
assume it to be a general real function satisfying standard assumptions, say

(V) V € L2(R3N) 4+ L*°(R3VN),,

i.e. V can be written as a sum of L2— and L*°—functions, where the second
component can be taken arbitrary small. It is shown in Section 22.3.1 that a
sum of Coulomb potentials satisfies this condition and it is shown in Section
22.3.1 that under conditions (V), the operator

n

1
Hpart = Z QmAI] + V(SC)

j=1

is self-adjoint on the domain D(3°7_, or Az,). The Hamiltonian H (e) is a
key object of our analysis.

22.3.1 Self-adjointness of H (g)

The key properties of a quantum Hamiltonian are boundedness below and
self-adjointness. One way to approach proving these properties is to use the
gaussian space representation (22.12) and the Kato inequality (see [73], cf.
Section 10.1). This would give the result for for all coupling constants . (See
also a proof of the self-adjointness of H(e) for an arbitrary e, using path
integrals by [160].) We take a different approach which demonstrates some
of estimates we need later, but proves these properties only for € sufficiently
small.

Theorem 22.1 Assume ¢ is sufficiently small. Then the Hamiltonian H(e)
is defined on D(H(0)) and is self adjoint and bounded below.
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Proof. To keep the notation simple we consider one-particle systems (n = 1).
We decompose the Hamiltonian (22.28) into unperturbed part and perturba-
tion as

H(s) = H(0) + I(e). (22.30)

In this proof we omit the super-index x and write A(x) for AX(x) in (22.28).
Using (22.28), we find

I(e) = —ep- A(z) + ;52|A(:1:)|2. (22.31)

Now the self-adjointness of H () follows from the self-adjointness of H(0) =
Hpart ® 14 + 1pare ® Hy, Proposition 22.2 below, the smallness of ¢ and an
abstract result, Theorem 2.11 of Section 2.2 . [J

The next statement shows that I. is a relatively bounded perturbation in the
sense of forms.

Proposition 22.2 There is an absolute constant ¢ > 0, s. t.

(0, I(e)p) < ce((, HO)W) + [[¢[7). (22.32)
Proof. Let || - || 7 stand for the norm in the Fock space F. First we prove the
bounds )
latel < [V el (223)
and
ot < [Pz ez e2s

The first inequality follows from the relations

la(F)gl < / \Flllawl -

< ([ (fetonir)”

(due to the Schwarz inequality) and [ w||ay||* = (¢,wa*ap) = (¢, Hp1p). The
second inequality follows from the first and the relation

(22.35)

la(f)*bll% = (¥, a(fa(f) d)F = la(f)el%F + / 1115 (22.36)

The inequalities (22.33) and (22.34) yield the following bound ||A(z)y||r <
c(||H}/21/)||}- + |¥]| ), which implies that

|A(z)(Hy +1)" 2 < c. (22.37)

Now, chose ¢ s.t. Hpari +¢'1 > 1. Using the equation H(0) = Hpare @17+
1part ® Hy and using repeatedly that for any positive operator B, ||B§1/)||2 =
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<1/)7B’1/)> and that <1/}5Hpartw> S <1/),H(0)1/)> (SinCe Hf Z 0) and <1/)7Hf1r/)> S
(¢, (H(0) 4+ ¢'1)%), we find that

I(Hy +1)2 (H(0) + ¢1)"2|| <1,

| (Hpare + ¢'1)2 (H(0) + ¢'1)7 2| < 1.

These inequalities together with the estimates [|[pi| < ¢||(Hpare + ¢/1)29],
and (22.37) give,

| (Hpare + Hy + 1) ™Y 2pA(2) (Hpare + Hy + 1)V < c. (22.38)
Similarly, (22.37) implies that
| (Hpare + Hy + 1) Y2A(2)?(Hpars + Hy + 1) 7V2| < c. (22.39)

The estimates (22.39) and (22.38) together with the relation (22.31) imply
(22.32). O

One can also prove a bound on I(¢) itself, not just on its form (1, I()v), so
that the self-adjointness of H(g) would follow from the Kato-Rellich theorem
2.9. This is done in Appendix 23.8.

22.4 Mass Renormalization

In this section we study electron mass renormalization. First we analyze the
definition of (inertial) mass in Classical Mechanics. Consider a classical parti-
cle with the Hamiltonian h(z, k) := K (k)+V (z), where K (k) is some function
describing the kinetic energy of the particle. To find the particle mass in this
case we have to determine the relation between the force and acceleration at
very low velocities. The Hamilton equations give & = Vi K and k=F , where
F = -0,V is the force acting on the particle. Assuming that K has a min-
imum at k = 0, we expand VK (k) around 0 to obtain & = K”(0)k, where
K" (0) is the hessian of K at k = 0. Differentiating the above relation w.r. to
time and using the second Hamilton equation, we obtain & = K" (0)F (). This
suggests to define the mass of the particle as m = K" (0)7!, i.e. as the inverse
of the Hessian of the energy, in the absence of external forces, as a function
of momentum, at 0. (K (k) is called the dispersion relation.) We adopt this as
a general definition: the (effective) mass of a particle interacting with fields is
the inverse of the Hessian of the energy of the total system as a function of
of the total momentum at 0.

Now, we consider a single non-relativistic electron coupled to quantized
electromagnetic field. Recall that the charge of electron is denoted by —e and
its bare mass is m. The corresponding Hamiltonian in our units is

1
HY = oy (V2 @ 15 + AX(z) )2 + 1pan ® Hy, (22.40)
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acting on the space L2(R3) @ F = Hpare @ Hy. It is the generator for the
dynamics of a single non-relativistic electron, and of the electromagnetic ra-
diation field, which interact via minimal coupling. Here recall A, (z) and Hy

are the quantized electromagnetic vector potential with ultraviolet cutoff and
the field Hamiltonian, defined in (22.17) and (22.15)

The system considered is translationally invariant in the sense that He(,lf)
commutes with the translations, T,

TyHe(llﬁ) = He(llﬂ)Ty’
which in the present case take the form
Ty :¥(x,A) = ¥(z +y,t,A), (22.41)

where (t,A)(z, A) = A(x — y). This as before leads to HY commuting with
the total momentum operator,

Piot = part & ]-f + ]-part ® Pf, (2242)

of the electron and the photon field: [He,{), Piot) = 0. Here Py := —iV, and
Py =3, [dkka}(k)ax(k), the electron and field momenta. Again as in Sec-
tion 22.2.2, this leads to the fiber decomposition

UHLU H W(p (22.43)
R3
where the fiber operators He(,lﬁ)(P)7 P € R3, are self-adjoint operators on F.

The computation of the operator HS@) (P) is the same as of thje corresponding
fiber operator in Section 22.2.2. Specifying (22.27) to the present case (i.e.
taking 2’ = 0), we obtain

1
HY(P) =, (P~ P —eA¥)* + H; (22.44)
m

where AX := AX(0). Explicitly, AX is given by

Z/dk: |k||f/|2 (k) {ax(k) + a5 (k) }. (22.45)

Consider the infimum, E(p) := inf U(Hé,? (P)), of the spectrum of the
fiber Hamiltonian He(,?(P) Note that for e = 0, E(P)|c=o =: Fo(P) is the
ground state energy of Hy(P) := He(};)(P)|e:0 =, (P- Pf)2 + Hy with the

2m

ground state 2 and is Eo(P) = |§:. Moreover, it is easy to show that F(p) is

spherically symmetric and has a minimum at P = 0 and is twice differentiable
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P = 0. Following the heuristic discussion at the beginning of this section, we
define the renormalized electron mass as

Mren = B"(0) 71,

where, recall, E”(0) is the Hessian of E(P) at the critical point P = 0. A
straightforward computation gives

(Hess B(P), = (85— 1d) | PP

o E(P)  (22.46)
Since E(P) is spherically symmetric and C? at P = 0, and satisfies 8 p| E(0) =

0, we find Hess E(O))ij = ]‘Dléjlzj 6‘2P|E(0) and therefore as

1
E(0)

Myen ‘= 82

|P|

Recalling our discussion at the beginning of this section, the kinematic
meaning of this expression is as follows. The ground state energy FE(P) can be
considered as an effective Hamiltonian of the electron in the ground state. (The
propagator exp(—itE(P)) determines the propagation properties of a wave
packet formed of dressed one-particle states with a wave function supported
near P = 0 — which exist as long as there is an infrared regularization.) The
first Hamilton equation gives the expression for the electron velocity as

v = apE(P)

Expanding the right hand side in P we find v = Hess E(0)P + O(P?). Since
E(P) is spherically symmetric, and C? in |P| near P = 0, this becomes

v = 9pE(0,0) P + O(P?).
This suggests taking (0 £(0))~" as the renormalized electron mass.
It is shown in [28, 59, 61] that the infimum, F(P) = inf spec(He(,lﬂ) (P)), of

the spectrum of H, é,lﬁ)(P) is twice differentiable and P = 0 and the expression
for myen is computed to the order e3.

22.5 Appendix: Relative bound on I(¢) and
Pull-through Formulae

Proposition 22.3 There is an absolute constant ¢ > 0, s. t.

()]l < ce(IHO)w[ + [[¥]]) - (22.47)
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Proof. We use the pull-through formula a(k) f(Hy) = f(Hy+w(k))a(k), valid
for any piecewise continuous, bounded function, f, on R, proven in Appendix
23.8. Applying it to the function f(X) := (A+ 1)~ 2 gives

a(k)(Hf +1)"2 = (H; +w(k) + 1)~ 2a(k). (22.48)
Using this relation we obtain
lalg)a(Hl < [ I£llae)ak)o]
- / Flllalg) (Hy + (k) + 1)~ 3a(k) (Hy + 1)}y
< [ 19llalo) Es + () + 1 H (k) EHs + D o).

Applying now the bounds (22.33) and (22.35) and using that ||H;/2(Hf +
w(k) + 1)) < [l and |HY2(Hy +1)29]| < [(Hy + 1)), we obtain

oot < () (L10) o

Now, using this relation together with (22.33), (22.35) and (22.36), we find
] [ [ lgl?
la@a(rywlr < [T [+ vy

f 2
S R R

o @a et <2 ([ '2> ( / '9'2)1/2 Iy + 1)1
+3/'f' JUEEERT
+3 177 [ lgPlol?.

The above estimates imply

[A(@) A=)l < c([Hpyl + [19]]) - (22.49)

and

Finally, using the estimates (22.37) and [|[py|| < ¢||(Hpars +¢1) 29|, for ¢/
8.t. Hpart +¢'1 > 1, and the fact that Hpar and A(z) commute, we find

IpA(z)|| < e A(x) (Hpars+¢'1) 2] < el (Hy+1) 2 (Hpare+¢'1) 280 (22.50)
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Using the equation H(0) = Hpart ® 15 + Llpary ® Hy and using repeatedly
that for any positive operator B, ||Bé1/)||2 = (¢, By) and that (¢, Hpart?)) <
(i, H(0)w) and (v, Hyh) < (b, (H(0)+¢' 1)), we find that ||(H s+1)2 (Hpars +
d1)29|| < ||(H(0) + ¢'1)3||. This inequality together with (22.50) gives

IpA(@)e|| < el (H(0) + )¢l (22.51)
The relation (22.31) and estimates (22.49) and (22.51) imply (22.47).

Now we prove the very useful “pull-through” formulae (see [135, 28]) used
above:

a(k)f(Hy) = f(Hy +w(k))a(k) (22.52)

and
f(Hy)a™(k) = a*(k)f(Hy + w(k)), (22.53)

valid for any piecewise continuous, bounded function, f, on R.

Problem 22.4 Using the commutation relations above, prove relations (22.52)-
(22.53) for f(H) = (H; —2)~!, 2 € C/R™.

Using the Stone-Weierstrass theorem, one can extend (22.52)- (22.53) from
functions of the form f(\) = (A — 2)~!, 2 € C\R™, to the class of functions
mentioned above. Alternatively, (22.52)- (22.53) follow from the relation

N N N

FHp) [Ja (k)2 = O wki) [ o (k) 2.

j=1 i=1 j=1

Problem 22.5 Prove this last relation, and derive (22.52)- (22.53) from it.



®

Check for
updates

23

Theory of Radiation

Emission and absorption of electromagnetic radiation by systems of non-
relativistic particles such as atoms and molecules is a key physical phe-
nomenon, central to the existence of the world as we know it. Attempts to
understand it led, at the beginning of the twentieth century, to the birth of
quantum physics. In this chapter we outline the theory of this phenomenon.
It addresses the following fundamental physical facts:
(a) a system of matter, say an atom or a molecule, in its lowest energy
state is stable and well localized in space, while
(b) the same system placed in the vacuum in an excited state, after awhile,
spontaneously emits photons and descends to its lowest energy state.
The starting point of theory of radiation is the Schrédinger equation
O
i) = HEW,
describing quantum particles interacting amongst themselves, and with quan-
tized electro-magnetic field. Here % is a path in the state space Hpart @ Hy
and the quantum Hamiltonian operator H(e) entering it acts on Hpart @ Hy
and is given by (see (22.28)):

n
1
H(e) = ; oy (Vi + eAX(x;))* + V(x) + Hy, (23.1)
with the notation explained in the previous chapter. (Recall that we use the
units » = 1 and ¢ = 1 and, as a rule, we do not display these identities
1part and 1¢ on Hpare and Hy, respectively. A careful notation would have
Veour(z) ® 15 and 1pa ® Hy, instead of Veowi(x) and Hy.)

The mathematical manifestation of the fact (a) is that H(e) has a ground
state, which is well localized in the particle coordinates, while the statement
(b), rendered in mathematical terms, says that the system in question has no
stable states in a neighbourhood of the excited states of the particle system,
but ‘metastable’ ones.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_23
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23.1 Spectrum of the Uncoupled System

To understand the spectral properties of the operator H () we first examine
a system consisting of matter and radiation not coupled to each other. Such
a system is described by the Hamiltonian

H(0) = Hpart ® 15 + 1pare @ Hyp (23.2)

which is obtained by setting the parameter ¢ in (22.28) to zero. The corre-
sponding time-dependent Schrodinger equation is
o
i = H(0)%. 23.3
i = HO) (23.3)
The dynamics of a system of quantum matter (atom, molecule, etc., with
fixed nuclei) is described by the Schrédinger operator

n

1
Hpas =) o 15+ V(@)

Jj=1

acting on Hpare = L?(R3™) (or a subspace of this space of a definite symmetry
type). Recall the spectral structure of the Schrédinger operator Hpaws. By
HVZ theorem (see Section 13.4), we have

o(Hpart) = {negative EV’s, E;} U { continuum [0, co) }. (23.4)
Here j = 0,1,... and we assume Ey < E; < .... The eigenfunction, ¢§™",

corresponding to the smallest eigenvalue, Fy is called the ground state, while
the eigenfunctions Q/J?art for the higher eigenvalues E; with j > 1, are called
the excited states. The generalized eigenfunctions of the essential spectrum
are identified with the scattering states (see Figure 23.1).

E, E,... 0
N —

X

b/ |

bound states scattering states

X
X

Fig. 23.1. Spectrum of Hpart

For the field, oess(Hy) = [0,00) and oq(Hy) = {0}. The eigenvalue 0 is
non-degenerate, and corresponds to the vacuum vector: Hf2 = 0.

Using separation of variables, we obtain the eigenfunctions and the gener-
alized eigenfunctions,

PP @R, and PP e H a* (ki) 82, (23.5)

i=1
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for various s > 1 and ki, ..., ks in R3, of H(0), corresponding to the eigen-
values E;, j = 0,1,..., and the spectral points E;(k) = E; + > ;_, w(k;) €
[E;,0), respectively. This leads to the following stationary solutions

I e ) and O @ [[a"(k)2)

i=1

of the time-dependent Schrédinger equation (23.3). The first of these states
describes the particle system in the state 1/);5’&“ with no photons around, while

the second one corresponds to the system in the state 1/)?&” and s photons
with momenta k1, ..., ks. Both states are stationary in time. In the absence
of coupling between matter and radiation, the system of matter and radiation
placed in one of these states remains in the same state forever. Radiation is
neither absorbed nor emitted by this system.

Note finally that various eigenfunctions and generalized eigenfunctions
above lead to different branches of the spectrum of H(0), which, as a set,
is of the form

o(H(0)) ={EV's E;} U {continuum [E};, c0)} U continuum [0,00) (23.6)
Jj=0

(see Section 25.13 of the Mathematical Supplements). The spectrum of H(0)
is pictured in Figure 23.2.

branches of the continuous spectrum

Ly

v
A\
X

fF

0

oy
o

o Ei---

b1

bound states

Fig. 23.2. Spectrum of H(0).

The question we want to address is: how does this picture change as an
interaction between the matter and radiation is switched on? This is the main
problem of the mathematical theory of radiation.

23.2 Complex Deformations and Resonances

In this section we discuss a key notion of the (quantum) resonance. It gives
a clear-cut mathematical description of processes of emission and absorption
of the electro-magnetic radiation. In this description, the process of radiation
corresponds to formation of resonances out of the excited states of particle
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systems. The most effective way to define resonances is to use complex trans-
formation of the Hamiltonian under consideration (see Section 17.1) which we
proceed to describe in the present setting.

Define the dilatation transformation, Uyg, on the Fock space, Hy = F, as
the unitary group of operators, given by

Upg2=0 and U [Ja"(£,)2 =] a" (uo f;) 2. (23.8)
Here ug is the rescaling transformation acting on L?(R3), given by

(ugf)(k) = e f(e~ k). (23.9)
(Uyg is the second quantization of ug.) This definition implies Upy := e?T?
where T := [ a*(k)ta(k)dk and ¢ is the generator of the group uy (see Chapter
20 for the careful definition of the integral [ a*(k)ta(k)dk) and

Usoa® (f)Uzy = o (ug f) (23.10)

where a” (f) stands for either a(f) or a*(f). Applying this transformation
to the photon Hamiltonian Hy, we find Hyg = efer. Denote by Upg the
standard dilation group on the particle space: Upg : ¥(z) — e’ 94p(e? ) where,
recall, n is the number of particles (cf. Section 17.1). We define the dilation
transformation on the total space H = H, ® Hy by

Ugp = Upg @ Uyp. (23.11)

For € € R the above operators are unitary and map the domains of the
operators H(e) into themselves. Consequently, we can define the family of
Hamiltonians originating from the Hamiltonian H () as

H.g:=UgH(e)U; " . (23.12)

We would like to extend this family analytically into complex 6’s. To this
end we impose the following condition (in addition to condition (V)):

(A) Vy(z) := V(ex), as a multiplication operator from D(A;) to Hpar, has
an analytic continuation, Vj, in 6 from R into a complex neighbourhood
of # = 0, which is bounded from D(A;) to Hpars.

Furthermore, we fix the ultra-violet cut-off x (k) from now on so that xg (k) :=
6_39/2x(6_‘9k) is an analytic function in a neighbourhood of # = 0, vanishing
sufficiently fast at oo, e.g. by taking x(k) = e~ Ik1?,

Under Condition (A), there is a family H (e, ) of operators Type-A ana-
lytic ([176, 247, 162]) in the domain |Im#| < 6y, which is equal to (23.12) for
0 € R and s.t. H*(¢,0) = H(e,0) and

H(g,0) = UrepH (g, iIm0)Ug L. (23.13)



23.2 Complex Deformations and Resonances 335

Indeed, using (22.28), we decompose H(g) = Hpart + Hy + I(), where I(¢)
is defined by this relation: I() = Y7, [iVy; - eAX(x;) + ye2 AX(x;)?], where
we used that divAX = 0. Using this decomposition, we write for § € R

H(e,0) = H,()) @15+ e 1, @ Hy + I(¢,6) , (23.14)

Furthermore, using (23.10) and the definitions of the interaction I(g), we see
that I(,6) is obtained from I(¢) by the replacement a#(k) — e~ % a#(k)
and, in the coupling functions only,

k —e % and z; — ez (23.15)

This gives the required analytic continuation of (23.12). We call H (e, §) with
Im@ > 0 the complex deformation of H ().

One can show show that:

1) The essential spectrum of moves (e.g. the spectrum of the deformation
Hyg is o(Hyp) = {0} Ue™ ™[0, 00));

2) The real eigenvalues of H (e, ), Im# > 0, coincide with eigenvalues of
H(e) and that complex eigenvalues of H(e,d), Im# > 0, lie in the complex
half-plane C~;

3) The complex eigenvalues of H(e,#), Imf > 0, are locally independent
of 6.

Let Wy = UV, etc., for # € R and z € C*. Use the unitarity of Uy for real
0, to obtain (the Combes argument)

(W, (H(e) — 2)7'®) = (¥, (H(e,0) — z) " dy). (23.16)

Assume now that for a dense set of ¥’s and @’s (say, D, defined below), ¥y
and @y have analytic continuations into a complex neighbourhood of § = 0
and continue the r.h.s analytically first in 6 into the upper half-plane and then
in z across the continuous spectrum.

e The real eigenvalues of H (e, ) give real poles of the r.h.s. of (23.16) and
therefore they are the eigenvalues of H(g).

e The complex eigenvalues of H (e, #) are poles of the meromorphic contin-
uation of the Lh.s. of (23.16) across the spectrum of H onto the second
Riemann sheet.

The poles manifest themselves physically as bumps in the scattering cross-
section or poles in the scattering matrix.

An example of the dense set D for which the r.h.s. of (23.16) has an
analytic continuation into a complex neighbourhood of 6 = 0, is

D= U Raﬂ(XNan|T|§a)- (23.17)
n>0,a>0

Here N = [ d*ka*(k)a(k) be the photon number operator and 7" be the self-
adjoint generator of the one-parameter group Uy, 6 € R. It is easy to show
that the set D is dense.
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We define the the resonances of H(e) as the complex eigenvalues of H (e, 0)
with Imé > 0. Thus to find resonances (and eigenvalues) of H(e) we have to
locate complex (and real) eigenvalues of H (e, d) for some 6 with Imé > 0.

23.3 Results

The rigorous answer to the question of how the spectral properties of H(0)
change as the interaction is switched on is given in the theorem below. This
theorem refers to the notion of resonance described in Section 23.2 (see also
Section 17.1). We have

Theorem 23.1 Let ¢ # 0 be sufficiently small. For statements (ii) and (iii),
we assume, besides (V), Condition (A). Then

(i) H(e) has a unique ground state, .. This state converges to ¥5™" @ 2

as ¢ — 0, and is exponentially localized in the particle coordinates: i.e,
l|e®1#lap|| < oo for some 6 > 0.

(ii) H(e) has no other bound states. In particular, the excited states of Hpart
(i.e. 1/);5’&“ ® £2, j > 1) are unstable.

(iii) The excited states of Hpays turn into resonances of H(e), € # 0 (see

Fig. 23.3).

Statement (ii) uses in addition to (V) and (A) a technical condition called
(positivity of) the Fermi Golden Rule, which is satisfied except in a few “de-
generate” cases).

Fig. 23.3. Bifurcation of eigenvalues of H(0)(the second Riemann sheet).

This theorem gives mathematical content to the physical picture based on
formal calculations performed with the help of perturbation theory. Statement
(i) says that a system of matter, say an atom or a molecule, in its lowest energy
state is stable and well localized in space, and according to statements (ii) and
(iii), the excited states of the particle system disappear and give rise to long-
living, metastable states of the total system. The latter are solutions of the
time-dependent Schrodinger equation

which are localized for long intervals of time, but eventually disintegrate.
(Recall that the metastable state is another term for a resonance.) These
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metastable states are responsible for the phenomena of emission and absorp-
tion of radiation and their life-times tell us how long, on average, we have to
wait until a particle system emits (or absorbs) radiation.

The real parts of the resonance eigenvalues — the resonance energies — pro-
duce the Lamb shift, first experimentally measured by Lamb and Retherford
(Lamb was awarded the Nobel prize for this discovery). The imaginary parts
of the resonance eigenvalues — the decay probabilities — are given by the Fermi
Golden Rule (see, eg, [169]).

In the rest of this chapter we outline main steps of the proof of Theorem
23.1, with more machinery given in the next chapter.

23.4 Idea of the proof of Theorem 23.1

A complete proof of statements (i)-(iii) can be found in [265] (see also [29, 27]).
We will describe the proof of (i) in this chapter and in Chapter 24. The proofs
of (ii) and (iii) are similar. Namely, techniques developed in the proof of (i)
are applied to the family H(e,0), Im# > 0, instead of H (e).

Since we are dealing only with the ground state, we will not need the
analyticity Condition (A) above.

The proof of statement (i) of Theorem 23.1 — existence of the ground
state — is done in two steps. On the first step, after performing a convenient
canonical transformation, we map the family H(e) — z1 into a family Hy(e, 2),
acting on the subspace of the Fock space H¢ = F corresponding to the photon
energies < p for some £ < p < EP** — EP* where ES™* and EP™" are the
ground state and the first excited state energies of Hpart. On the second step,
done in Chapter 24, we apply to Hy(e, z) a spectral renormalization group
which brings it isospectrally into a very simple form which can be analyzed
easily.

We explain some intuition underlying the proof. To understand the prob-
lem we are facing we look at the spectrum of H(e = 0), i.e., when the inter-
action is turned off (see Figure 23.4). We see that the unperturbed ground
state energy is at the bottom of continuous spectrum. This suggests that only
the ground state {5 of Hpar and the low energy states of H are essential.

region of
interest
R —

NN

Fig. 23.4. Region of interest w.r.t. specH (0).
Hence - and this is the key idea - we would like to project out the inessential

parts of the spectrum without distorting the essential ones. But how do we do
this? Let us try the first idea that comes to mind:
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H—Q,HQ, , (23.18)

where P, is the spectral projection for H(0) associated with the interval
[Eo, Eo + p]. The operator @, can be written explicitly as

Q, = Py @ By, (Hy) . (23.19)
Here PP™" is the orthogonal projection onto ¥5*"* and Ejo,)(Hy) is the spec-
tral projection of Hy corresponding to the interval [0, p], defined as follows.
First, recall that Hy = @, Hy,, on F = @, , Frn, where Hy g is the oper-
ator of multiplication by 0 on Fy := C, and for n > 1, Hy,,, = > ", w(k;) are
multiplication operators on F,, := @7 L?(R3). Next, let xya be the character-
istic function of the set A C R. Now we define

Ea(Hy) = OploEa(Hfn)

where for n > 1, Ea(Hy,,) is the operator of multiplication by the function
xa(d>op_qw(k;)), acting on Fy,, and Ea(Hy,) is the operator of multiplica-
tion by xa(0) on Fo. The operator Ejg ,(Hy) “cuts-off” the energy states of
Hy with energy above p. The new operator Q,H (¢)Q, acts on the subspace
L?*(R3) ® F which consists of states of the form

gart & ¢ s ¢) S RanE[Oﬁp] (Hf)

(see Section 12.7). This is exactly what we want. However, the low energy
spectrum of the operator Q,H(¢)Q, is different from that of H(e). So we
have lost the spectral information we are after. In Section 11.1, we learned
how to project operators to smaller subspaces without losing the spectral in-
formation of interest. (We will refine this procedure in Sections 23.6 and 24.3.)
But, as usual, there is a trade-off involved. While the map (23.18) acting on
operators H is linear, the new map we introduce is not. This new map is called
the decimation map (or Feshbach-Schur map). The result of application of
this map to the family H(e) — 21 is a family H,(e) of operators which act on
the subspace RanFEjy, (Hy) of the Fock space F and which is a small pertur-
bation of the operator H; plus a constant. In fact, for technical reasons it is
convenient to use not the Feshbach-Schur map, but its extension - the smooth
Feshbach-Schur map. (The latter is more difficult to define but much easier
to use.) This is done below. In the next chapter we apply a renormalization
group, based on the smooth Feshbach-Schur map, which brings isospectrally
the operators H(e) arbitrarily close to operators of the form E -1 + wHy,
with £ € R and w > 0.

23.5 Generalized Pauli-Fierz Transformation

In order to improve the infra-red behaviour of the Hamiltonian H(¢), in this
section we apply to it a canonical transformation. To simplify notation we
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only consider the case n =1 and m = 1. (The generalizations to an arbitrary
number of particles is straightforward.) In this case we have

1
H(e) = 2(@'V$ +eAX(2))? +V(x) + Hy (23.20)
where 2 € R3. The vector potential operator AX(x) is still given by (22.29).
Now Hpary = —3A + V(z) acts on Hpare = L*(R?), so that H(e) acts on
L2 (Rg) 4 Hf.

Now, we introduce the generalized Pauli-Fierz transformation
H. = e SF@ [ (g)el @), (23.21)
where F(z) is the self-adjoint operator on the state space H given by
d3k
VIE

with the coupling function f; A(k) chosen as (recall that we do not display «
in the coupling function in (22.29))

—ik-x X(k)

vad

The function ¢ is assumed to be C2, bounded, with bounded second derivative,
and satisfying ¢'(0) = 1. We assume also that ¢ has a bounded analytic
continuation into the wedge {z € C| |arg(z)| < 69}. We call the resulting
Hamiltonian, H., the generalized Pauli-Fierz Hamiltonian. We compute

Fa) =3 / (Fon(Bax(k) + for(k)al (k) (23.22)
A

forlk) ==e o(|k| 2 ex(k) - z). (23.23)

H - ;(p — Ay (@) + Vi(z) + Hy + eG(x) (23.24)

where A;(x) = AX(2) —VF(z), Vo(z) :==V(x)+ 822 S Skl far(B)|?d?k and
_ i B

Gla) =i % [ HGertklar®) = for®)a3(0) NI

(The terms G and V. —V come from the commutator expansion e*iEF(z)Hf
xell (@) = _e[F, _ < | F, . serve that the operator-family

ieF () F,Hy] — < [F,[F, Hy]].) Ob hat th famil
Aq(z) is of the form

d3k

il

where the coupling function x» (k) is defined as follows

Ai(z) = /(Xr,A(k)aA(k) + Xa A (K)ax (k) (23.26)
A

Xaz(k) == e,\(k)efikxx(k) — Vafer(k).
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It satisfies the estimates
[x.2 (k)| < constmin(1, \/|k:|<:zz)), (23.27)

with (z) := (1 + |z|?)'/2, and

&k
/ | e (R)|? < oo (23.28)

The fact that the operators A; and G have better infra-red behavior than the
original vector potential A, is used in proving, with a help of a renormalization
group, the existence of the ground state and resonances for the Hamiltonian
H. and therefore for H(e).

We note that for the standard Pauli-Fierz transformation, the function
fa.a(E) is chosen to be x(k)ex(k) - x, which results in the operator G (which in
this case is proportional to (the electric field at = 0) - x) growing as x. This
transformation can be used if our system is placed in an external confining
potential W (x) satisfying the estimate W(x) > c|z|?, for |z| > R, for some
c>0and R>0.

For further reference, we mention that the operator (23.24) can be written
as

H. = Hp. + I, (23.29)

where
2
oo =ty + 5 3 [(gaatf+ P, (23.30)

with Hy := H(e = 0) = Hpart + Hy (see (23.20)), and I. is defined by this
relation. Note that the operator I. contains linear and quadratic terms in
creation- and annihilation operators, with coupling functions (form-factors)
in the linear terms satisfying estimate (23.27) and with coupling functions in
the quadratic terms satisfying a similar estimate. Moreover, the operator Hy.
is of the form Hy. = HP** + Hy where

. g2
HP™ := Hpare + 9 Z/(|fz,/\(k)|2 + [xne (F)[?2[k])d*E, (23.31)
A

where, recall, Hpary = féA + V(z). Note that similarly to Proposition 22.3
one can show the following

Proposition 23.2 We have

IG@)wl, |A@)EI < c(IH; ¢l + []) - (23.32)

This theorem implies that I. is a relatively bounded perturbation of Hy:..
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23.6 Elimination of Particle and High Photon Energy
Degrees of Freedom

Since we are looking at a vicinity of the ground state energy of H/(e), the
degrees of freedom connected to the excited particle states and to high pho-
ton energies should not be essential. So we eliminate them isospectrally us-
ing the smooth Feshbach-Schur (decimation) map. In this section we con-
struct this map and use it to pass isospectrally from the family H. — z - 1 to
a family Hy(e, z) of operators which act non-trivially only on the subspace
RanF ,(Hy), where recall Ejg ,()) is the characteristic function of the in-
terval [0, p], of the Fock space H; = F. The advantage of this family is that it
is even smaller perturbation of Hy plus a constant and that it can be treated
by the renormalization group approach developed in the next chapter. Passing
from H. — z -1 to Hy(e,z) will be referred to as elimination of the particle
and high photon energy (actually photon energy > p) degrees of freedom.

As was already mentioned, the smooth Feshbach-Schur map is a gener-
alization of the Feshbach-Schur map, discussed in Section 11.1 and it arises
when the projections P and P := 1— P are replaced by more general operators
P and P forming a partition of unity

P?+ P?=1. (23.33)

Here we give a quick definition of the smooth Feshbach-Schur map. For more
details see Section 24.3. Consider operators H on a Hilbert space H with
specified decompositions H = Hg + I. We define

Hp :=Hy + PIP. (23.34)

Assume now that
IP and PI extend to bounded operators on H (23.35)

and that z is s.t.
Hp — z is (bounded) invertible on Ran P. (23.36)

We define smooth Feshbach-Schur map, F fgmo"th, as

F]SJmOOth(H _ Z].) = H() —z1 + pIp (23 37)
~ PIP(Hp —2)"'PIP. |

Definition 23.3 We say that operators A and B are isospectral at a point
z € Ciff

(a) z€0(A) &z €0(B),
(b) AY = z¢p & Bo = z¢
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where 1 and ¢ are related by ¢ = P and ¥ = Q¢ for some bounded operators
P and Q.

We have the following theorem :

Theorem 23.4 Assume H — z1 is in the domain of ngmo"th. Then the op-
erators H and FE°°h(H — 21) + 21 are isospectral at z, in the sense of the
definition above, with the operator P, the same as in Ff;.m"(’th and the operator
Q defined by

Qp(H —21):=P — P(Hp — 2)"*PIP. (23.38)

This theorem generalizes Theorem 11.1 of Section 11.1; its proof is similar
and is sketched in Section 24.3.

Now we adapt these notions to the families of operators (23.24). In this
case, a partition (P, P) (see (23.33) ) is defined as follows. Let x, = x,(Hy) :=
X, /p<1t and X, = Xp(Hy) := Xm,/p>1, Where xa<1 and xx>1 are smooth
functions satisfying the relations

lifa<?
<1+ X1 =1, 0< o<1, xaz1 <1, xac1 = {0 S ir’

(and the corresponding relation for xx>1). Thus x,(Hf) = x#,<, is an al-
most the spectral projection for the operator Hy onto energies < p. With the
definition (23.31), let furthermore

PP* = orthogonal projection onto the ground state eigenspace of HP*'*,
(23.39)
and PP := 1 — PP™". (Recall that HP*" is defined in (23.31).) Assume the
ground state of HP*'* is simple and the corresponding eigenspace is spanned
by a function 5™, Then, in the Dirac notation, PP** = |[¢b™") (™" |. We
introduce a pair of almost projections

P, = PP @ x, (Hy) (23.40)

and P, := PY™" + PP @y, (H}), which form a partition of unity PPQ—l—Pi =1.
Note that P, and P, commute with Hy.. Let Fy and E; be the ground state
energy and the first excited state energy of HP** and set

1
2, ={2z€C | Rez < Ep + 4/)}. (23.41)

Now we have

Theorem 23.5 Let |¢| < p < Ey — Ey. Then Flsginoom is defined on for the
families of operators, H. — z - 1, z € {2,, where H. is given by (23.24), with
the decomposition (23.29), and is isospectral (in the sense of Theorem 23.4).

Proof. The first part of the theorem follows from the definition of the domain
of the map F#°°*™h given above and Propositions 23.9 and 23.10 given in
Appendix 23.10 below. The isospectrality follows from the first part of the
theorem and Theorem 23.4. O
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Let, as above, Ejg ,(A) be the characteristic function of the interval [0, p]. We
define the subspace

Xp = gart X E[O,p] (Hf)Hf ~ E[O,p] (Hf)Hf

of Hpart ® Hy. Here ~ stands for the isomorphic isomorphism. The subspace
X, and its orthogonal complement, X pL, are invariant under Ff;:lo"th(HE —z1)
and span Hpary @ Hy.

Let AE = Ey — Ey. We choose py such that ¢ < pg < min(1, AE). We
apply Flsgf[l)o"th to the families of operators (23.24) with the decomposition

H. = Ho. + I, as given in (23.29) - (23.30), to obtain the new Hamiltonian
Ho(e,2) := FE°""(H, — 21)|x,,. (23.42)

We claim that for Rez < Ey + }lpo and 0 < pg < Ey — Fy,
H.—21 and Hy(e,z) areisospectral at 0. (23.43)

Indeed, since P, = 0 on X ;‘, we have that
FEmoot (H, — 21)[xx = (Hoe — #1)lmanxs (23.44)

Therefore, for Rez < Fy + ip and 0 < p < Ey — Ey,
. 3
Fproo™(He — 21)|x1 > WP>0 (23.45)

and, in view of Theorem 23.4, (23.43) holds.
Observe that since the projection POpart has rank 1, the operator Hy(e, z)
is of the form

Hole,2) = [(WF™ | FE°(H, = 21008 )ty IRanio g1 (23:46)

Since we are interested in the part of the spectrum which lies in the set
{z€R|Rez < Eg+ jpo}, we can study Ho(e,z), which acts on the space
X, = RanF ,,)(Hy), instead of H.. Thus we have passed from the operator
H. acting on Hpare @ Hy to the operator Hy(e,z) acting on the subspace,
RanFy ,(Hy), of the Fock space Hy = F, which is isospectral (in the sense
of Definition 23.3) to H. — z1 at 0, provided z is in the set (23.41). We
eliminated, in an isospectral way, the degrees of freedom corresponding to
the particle and to the photon energies > pg; i.e., we projected out the part
Ran (1 — PP™") of the particle space Hpart, and the part Ran(1 — Ejg 1 (Hy))
of the Fock space Hy = F. The parameter py is called the photon energy scale.

23.7 The Hamiltonian Hy(e, 2)

Key properties of Hy(e, z) are summarized in the next theorem.
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Theorem 23.6 Let z € {2,, and ¢ < py < AE (pg is the scale parameter
entering the definition of Hy(e, z)). The operator Hy(e, z) has a generalized
normal form,

Ho(e,z) = Hoo + Z XpoHo,rsXpo> Ho,00 := ho,00(Hy)

r4+s>1
rts (23.47)
HO,TS ::/ H a* ho rs Hf,kl I{?T+S) H a(ki)dT+sk,
1=r+1

with coupling functions hg,s which are analytic in z € {2, and satisfy the
estimates

r+s r+s
|0y ho,rs (1, k)| < (const)po Zw(ki)é H (const - & pg! -w(kj)_é), (23.48)
i=1 j=1

for any i, 1 <i <r+s, p€10,1], and n = 0, 1,where the product is absent
in the case r = s = 0, and

[10,00(0)] < (const)|Ey — z + 0(52)|, |0, ho,00(1) — 1] < (const)52/p% ,
(23.49)
for p € [0, 00).

We note that the crucial for the future analysis term ZZ T w(k; )2 is due to
the estimate (23.27) gained in the generalized Pauli-Fierz Hamiltonian (23.24).
The proof of this theorem is simple but lengthy. It can be found in [27, 121].
Below we sketch its main ideas.

Sketch of proof of Theorem 23.6. Using the definition of the smooth
Feshbach-Schur map FISD’[::)O"“‘(H8 — z1), we write the operator Hy(e, z) in the
form

Ho(e,z) = Hy 4+ XpoWXpo

where with the same definitions as in the proof of Proposition 23.10,
W =L — (5™, LRy (2) 5™ Ve »

with R,(z) = P,(Hoe + Py, 1P,y — z) "1 P,. Now we use estimates obtained
in the proof of Proposition 23.10 of Appendix 23.10 below, to expand the

resolvent (Ho. + P,,I. Py, —z) ! in a Neumann series, which with the notation
I=1.,P=P,, P= Ppo, and Ry p = P(Hoe — 2) 'P can be written as
W= Z (WP T(—=Ry pI)"5™") (23.50)

Next we bring each term on the right hand side of (23.50) to the generalized
normal form. To this end we observe that the terms on the right hand side
of (23.50), with n > 1, consist of sums of products of five operators: R, p,



23.8 Estimates on the operator Ho(e, 2) 345

P, p, a(k) and a*(k). We do not touch the operators Ry p, P and p, while we
move the operators a(k) to the extreme right and the operators a*(k) to the
extreme left. In doing this we use the following rules:

1. a(k) is pulled through a*(k) according to the relation
a(k)a* (k') = a*(K")a(k) + 6(k — k)
2. a(k) and a*(k) are pulled through Ry p according to the relations

a(k)Ro p = Ry a(k)
k

Ro,pa*(k) = a* (k)RS

where Rg,(;;) =Ry p ’HfHHf (k) and simi_larly for pulling a(k) and a*(k)
through other functions of Hy, such as P (see the equations (22.52) of
Appendix 23.8).

The procedure above brings the operator Hy(g, z) to generalized normal form
(23.47), at least formally. It remains to estimate the coupling functions hg s
entering (23.47). A direct estimate produces large combinatorial factors which
we must avoid. So we use a special technique which amounts to a partial
resummation of the series, in order to take advantage of cancelations. This
can be found in [27, 121]. O

23.8 Estimates on the operator Hy(e, z)

Though the operator Hy(e, z) looks rather complicated, we show now that
the complicated part of it gives a very small contribution. To this end we use
Proposition 23.11 of Appendix 23.11 and the estimates (23.48) and

Foa U ) AT )

(valid for any functions .J; and used for J; = w=1/2

r+s>1,

or = 1), to obtain for

X oo Hors (€, 2)Xpo || < (rls) ™2 (Vdmepy /7Y p3 2. (23.51)

With choosing, say, po = €%/°, these estimates and the relation

1
ho,00(Hy) — ho,00(0) — Hy = /(hB,OO(SHf) —1)ds Hy
0

imply that the operator Hy(g, z) is of the form
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Ho(e,2) = (BEo+ AoE — z) -1 +w(Hyp)Hy + O(sg) ,

where Ey + AgE — z = ho00(0) and w(Hy) = 1+ O(sé). Here AgE is a
explicitly computable energy shift of the order O(¢?). Since the spectrum
of the operator Hy + Ey + ApFE fills in the semi-axis [Ep + AgE, 00), the
isospectrality Theorem 23.4 implies that spec H () = spec H. C [Eg+ AoE +
O(Eg ) ,00), which implies the following intermediary result:

Theorem 23.7 Assume ¢ # 0 is sufficiently small and that the ground
state of the particle Hamiltonian, Hpar, is non-degenerate. Define Ey(e) =
inf o(H(g)), the ground state energy of H(e). Then

Eo(e) = Bo+ AoE + O(Eg),

with explicitly computable energy shift AgE of the order O(g?).

Applying the renormalization transformation iteratively (see the next chapter)
to quantum Hamiltonians of the form (23.47) - (23.49), given in Theorem 23.6,
we find energies E(™ = Ey 4 O(£2) and numbers w™ = 1+ O(e3), such that
for p=0(¢) < 1 and any n > 1,

H. (or H(e)) is isospectral to E™ + w™ H; + O(2p")

in the disk D(E(™, p™). This will give us a much more precise information
about the spectral properties of the Hamiltonian H (). The above procedure
is at the heart of the renormalization group approach.

Remark 23.8 The property that the interaction vanishes under renormaliza-
tion transformations, i.e. when we go closer and closer to the ground energy
(or farther and farther from the particle system) is called infrared asymptotic
freedom.

Note that the spectrum of the operator Hy+ Ey+ Ao E contains the eigenvalue
Ey + AoE, with eigenfunction {2, and the continuum [Fy + AgE, 00), with
generalized eigenfunctions Y™ @ ITa*(k;)f2. Hence, extending the results of
Theorem 23.4, Qp, (H: — 2){2, where Qp(H — 21) is given by (23.38), gives
an approximate eigenfunction of H. with approximate eigenvalue, Fy + AgFE
and similarly for the continuum.

23.9 Ground state of H(¢)

Let Ugg be a unitary group of operators, given by (23.8). We define the rescal-
ing transformation, S,, on operators on the Fock space F by

Sp(H) := UsgHU 4, 6 =—1In p. (23.52)

In particular, we have (see (23.10))
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Sp(a® (k) = p~*%a*(p™ k), (23.53)
so that
Sp(Hy) = pHy and  Sp(x,) = x1- (23.54)
Define HO) (¢, z) := py 'S, (Ho(e, 2)), where, recall, Hy(e, 2) is defined in
(23.42). The operator H®) (e, z) is of the form

H=Hop+ Y x1Hrsx1, Hoo = hoo(Hy)

r4+s>1

r s (23.55)
H,q ::/Ha*(kj) hes(Hp ky o kegs) [ a(k)d ek,

j=1 i=r41

acting on acting on the space Ej 1(Hs)F, where recall Ejy ,(A) denotes the
characteristic function of the interval [0, p], and with coupling functions A,
satisfying the estimates

r+s r+s
|07 hrs (2, k)| < (comst)pf > w(ki)z [] (S0 - w(ky)~2), (23.56)
i=1 j=1

forany i, 1<i<r-+s, u€[0,1], & > 0, and n = 0, 1,where the product is
absent in the case r = s = 0, and

const const
hoo ()1 <7 "1Bo =2+ O], 10uhoo() =11 < 7 7€,
0

for pu € [0, 00). To prove this we use (23.53). Then Theorem 23.4 implies that

z€oy(H.) < 0€ou(HY(e,2)) (23.58)
as long as z is in the set 2,, = {z € R | z < Ey + ;po}. Next,
let S := {w € C|Rew > 0,|Imw| < jRew}. Theorem 23.6 above im-
plies that for ¢ sufficiently small, the operators H(°) (¢,z) (more precisely,

HO (e,2) — (HO(e,2))p) satisfy the assumptions of Theorem 24.1 of the
next chapter, which implies, in particular, that

(23.57)

e H®O(g, 2) has a simple eigenvalue A\(%) (¢, 2) € D(0, c£?);
o o4(HO(c,2)) c AD(e,2) + S.

With some extra work (in which the analyticity of A9 (e, 2) in 2z € 2,
plays an important role) we show that the equation A(9) (¢, z) = 0 for z has a
unique solution. Let Fy(¢) solve this equation. By (23.58), this gives that Fy(¢)
is a simple eigenvalue of H. and o4 (H(g)) C S. This together with (23.58)
shows that Fjy(e) is the ground state energy of the operator H..

Finally, if ¢ is the eigenfunction of H(®) (e, Ey(¢)) corresponding to the
eigenvalue 0, then Qp, (H: — Eo(¢)1)¢, where Qp(H — 21) is given by (23.38),
is an eigenfunction of H. corresponding to the eigenvalue Ey(e).

Finally, we use the relation o4 (Hg) = oy (H (5)) with a simple relation
between the eigenfunctions to transfer the spectral information from H. to
H(e). O
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23.10 Appendix: Estimates on I. and Hp (¢)

Recall that we consider the Hamiltonian H,, given in (23.24), whose decom-
position into unperturbed part and perturbation is given in (23.29) - (23.30).
In this section we omit the subindex 1 in A;(x), entering (23.24), so that the
operator-family A(zx) is given by

&k
VIE

with the coupling function x . (k) satisfying the estimates (23.27) - (23.28).
Using (23.29)-(23.30), we find

A(z) = Z/(Xz,x\(k)%(k) + XaA(F)ax (k) (23.59)
A

I.=—-p Alz) + ;€|A(z)|2 + G(x).

Proposition 23.9
ILP,| < Cle . (23.60)

Proof. We write P, P for P, Pp, respectively. Since p is bounded relative to
Hpart, we have ||P - p|| < C . Finally, since p < ¢, the bound (23.32) implies
that

[PG(z)], [PA(z)]| < C.

Collecting the last four estimates and using the fact that Rez < Ey + p, we
arrive at (23.60). O

In the present context, the operator Hp, introduced in (23.34), is given by
Hp (¢) = Ho: + B,I.P,. (23.61)

Proposition 23.10 Assume || < p. Then £, C p(Hp, (€)) and, for z € £2,,
the inverse of Hp (¢) — 2 satisfies the estimate

|By(Hp, () — )] < Cpt. (23.62)

Proof. To simplify notation we assume z is real. If we omit the subindexes p
and ¢ and denote P = P,, P = P, and I = I, (e.g. Ip stands for P,I.P,).
Recall the definition (23.39) (P = PY*™* @ x,(Hy)) and the definitions before

and after this equation. We have
P =Py @1+ PP @ x,(Hy) . (23.63)

Now using HP* PP > B, PY™ | HP™' > Fy and Hy > 0, Hyx,(Hy) >
pXp(Hy) , where recall Fy and E; are the ground state energy and the first
excited state of HP*'* and using that Ho. = HP** @ 17 + 1pae ® Hy, we
estimate
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PHy.P > (E, + Hy)PY™ @ 1y

1 _
Hp)lpare @ Xp(Hp).

24
PTg

+(Eo+ g

Setting 6 := 3min(E, — Ey — }lp, ép) > p. Since for z € £2,, z < Eg + ip , We
conclude that 1
P(Hp. — 2)P > 5 (6 + Hy)P. (23.64)

Due to (23.64) and the fact that Ho. commutes with P, we can define, for any
real a, the invertible, positive operator R 5 := P(Ho.—2)"% = (Hoe.—2)"“P,

satisfying Ro PRO b= P? 50 that the following identity holds:

P(Hp(e) — 2)P = Ry *[1+ K|R, 1/, (23.65)

where K = Ré/;IRé/;. Next we show that || K|| < const €. Using the definition
of I, we find

K| < e||pR”2||||A< )Ry 2|
||R1/2 A) [ A=) Ry 2l (23.66)
+ e2||R”2||||G< )Ry 2Il-
The relative bound on A(x) proven above implies that

1/2 1/2 51/2 1/2
| A@)RY2] < c(IHY Ry 2+ IRY21). (23.67)

Now let v = Ré/;v Then the estimate (23.64) can be rewritten as

166 + Hp)2 Ry 2ull < V3] Pul|
This gives, in particular, that, for z € 2 NR,
1H R3] < V3 (23.68)

and
IRY2| < v/3671/2. (23.69)

Next, using that ||pv||? = (v,p?v) < (v, (Hoe + C)v) and taking v := Rl/2
we obtain 1o
IpRy 2] < C871/2. (23.70)

Estimates (23.66) - (23.70) imply | K|| < Cep™! , if z € £2,. Pick now |e| < §
so that ||K|| < 1/2 and therefore the right hand side of (23.65) is invertible
and satisfies (23.62). O
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23.11 Appendix: Key Bound

Recall that Ey ,(\) denotes the characteristic function of the interval [0, p].
Proposition 23.11 (Key bound) Let H,; be an rs-monomial of the form

r r+s
/(Ha*(kj))hTs(Hf,kl...k:T+S) I akia ™k, (23.71)
Jj=1 i=r+1

where hy.s(p, k), k = (k1 ... kr1s), are measurable functions on [0, 1] x R3("+3),

called coupling functions, and let £2,4(p) = {k € R3"+3) | S w(k;) <
j=1
r+s
p, >, w(k;) < p}. Then we have the following bound:
Jj=r+1

s, s B
rs (23.72)
2 1T w(ky)

Jj=1

1 Et0,0) (H ) Hrs o, (Hp)|* < p™°

Proof. In this proof we denote E, := Ejg ,(Hy). Using the form (23.71) of
H,,, taking the norm under the integral sign, and using the norm inequality
for the product of operators, as well as ||A*|| = || 4|, we have

1Bt < [ [0 Ellhecllla’ Bl (23.73)

Here [|hys|| is the operator norm of h.s(Hy, k). So [[hys|| = sup,, [hrs(p, k)]
Let f be a positive, continuous function on R3”. We will prove the estimate

2
/flla"Epll < (" / oy (23.74)
2 wi<p IIIWJ'

where w; = w(k;), which will imply (23.72).
First, we prove the estimate for n = 1. By the pull-through formula (22.52),
we have
a(k)E, = E,(Hy + w(k))a(k)Ey.

Since Hy > 0, this implies
la(k)Epll < Xw(r<plla(k)Epl.

Proceeding as in the proof of the relative bound on a(k) (see (22.33)), we
obtain
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[ 2\ 1/2
<([_ 1) s (23.75)
w<p

which implies (23.74) for n = 1. Now we prove (23.74) for arbitrary n > 1.
First of all, applying the pull-through formula (22.52) n times, we find

[[ak)E, (Hy) = E,(H, +Z H ki) E,.

1

Hence
/flla"Epll < / flla"E,|. (23.76)
YT wi<pe
Secondly, applying the pull-through formula (22.52) n times again, we obtain
—1/2 771/2
[Tatki)E, = [[atkp) ;21 ?E,
1 1

= <Hf+iw< 1/21_[“ H;”E
1

This formula and inequalities (23.75) and (23.76) give

1/2
2
[ ol < [ ( [ dkn> a1 B, "k,
Swi<p W

Proceeding in the same fashion we arrive at (23.74).
Applying the bound (23.74) with n = r to the integral [ |la”E,||||hrs||d"k,
we bound the r.h.s. of (23.73) by

L 9 1/2
/HasEp” pr/ || :SH drk dsk
Yiwise Hl Wi

Applying bound (23.74) with n = s to the outer integral gives (23.72). O
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Renormalization Group

In this chapter we investigate spectral properties of quantum Hamiltonians of
the form (23.55) - (23.57). To this end we develop a spectral renormalization
group method. It consists of the following steps (see Sections 24.2-24.5):

e Pass from a single operator H (= H.) to a Banach space, B, of Hamiltonian-
type operators (of the form (23.55) - (23.57));

e Construct a map, R,, on B, with the following properties:
(a) R, is isospectral in the sense of Definition 23.3;
(b) R, removes the photon degrees of freedom related to energies > p.

e Relate the dynamics of semi-flow, R},n > 1, to spectral properties of
individual operators in B.

The map R, is called the renormalization map. It is of the form
Ry=p"'S,0F,

where F), is the smooth Feshbach - Schur (decimation) map, and S, is a
simple rescaling map (see Sections 23.9 and 24.4). F, maps operators which
act non-trivially only on the subspace RanFEjy 1)(H) consisting of states with
photon energies < 1, to operators which act non-trivially on states with photon
energies < p. The rescaling S, brings us back to the subspace RanEjq 1) (Hy).
By design, the renormalization map R, is isospectral in the sense that the
operators K and R,(K) have the same spectrum near 0, modulo rescaling.

The renormalization map gives rise to an isospectral (semi-)flow R}, n >
1, (called renormalization group (RG)) on the Banach space B. We will see
that orbits of this flow, with appropriate initial conditions approach the op-
erators of the form wH; (for some w € C) as n — oo. In fact, CHy is a line
of fixed points of the flow (R,(wHf) = wHy¢). By studying the behaviour of
the flow near this line of fixed points, we can relate the spectrum of an initial
condition, H, near 0 to that of Hy, which we know well. This is the basic idea
behind the proof of Theorem 23.1.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_24
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24.1 Main Result

In this section we formulate the main result of this chapter. It concerns the
spectra of quantum Hamiltonians of the form (23.55) - (23.57),

H=Hop+ Y x1Hpsx1, Hoo = hoo(Hy), (24.1)
r4+s>1
r r+s
H,, = / [T 0" (k5) hes(Hy By - Jores) T aka)d™o, (24.2)
j=1 i=r+1

acting on the space Hyeq := Ejo1)(Hy)F, where recall Ey ;(\) denotes the
characteristic function of the interval [0, p]. Let B" denote the unit ball in
R3" and I := [0,1]. Above, x, := x,(Hy) are the operators defined in Section
23.6 (the shorthand we use from now on) and the coupling functions, h,s :
I x B™* — C, satisfy the estimates

r+s r+s
|8Zhrs(ﬂa k)| S Yo Zw(kz); H (50 W(kj)ié)v (243)
i=1 j=1

forany 1 <i<r+4s,puel0,1], & > 0, and n = 0,1, where the product is
absent in the case r = s = 0, and

|hoo(0)| < o, [Ophoo(p) — 1] < Bo (24.4)

for 1 € [0,00). Here, recall, k = (k1,..., kris).

Note that, in order to be able to apply our theory to the analysis of reso-
nances of H., the space of operators H should include non-selfadjoint.

Let D(0,r) stand for the disc in C of the radius r and centered at 0. We
denote by D; the set of operators of the form (24.1) - (24.4) with hgo(0) = 0.
We define a subset S of the complex plane by

1
S :={w € C| Rew > 0, |Imw| < 3Rew}. (24.5)

Recall that a complex function f on an open set A in a complex Banach space
W is said to be analytic if VH € A and V¢ € W, f(H + 7€) is analytic in the
complex variable 7 for |7| sufficiently small (see [40]). We are now prepared
to state the main result of this chapter.

Theorem 24.1 Assume that Gy and = are sufficiently small. Then there is
an analytic map e : Dy — D(0, ¢y3) such that for H € D, the number e(H)
is a simple eigenvalue of the operator H and o(H) C e(H) + S. Moreover,
e(H) e R, for H=H*.

Note that our approach also provides an effective way to compute the
eigenvalue e(H) and the corresponding eigenvector.
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Operators on the Fock space of the form (24.1) - (24.4) will be said to
be in generalized normal (or Wick) form. Operators of the form (24.2) will
be called (rs)-monomials. Though Hy can be expressed in the standard Wick
form, Hy = [wa*a , the corresponding coupling function, w(k1)8(k1 — k), is
more singular than we allow. But even if this coupling function were smooth,
finding the Wick form of operators like x,(Hy), or the h,s, is not an easy
matter. In what follows we manipulate the operators a*(k), a(k) and Hy as if
they were independent, using only the commutation relations

[a(k), Hf] = w(k)a(k) ,

etc.

24.2 A Banach Space of Operators

In this section we define the Banach space of operators on which the renor-
malization group acts. We consider formal expressions of the form (24.1) -
(24.4) acting on RanFEjo 1)(Hy).

For £,v > 0, we define the Banach space, Be,, consisting of formal expres-
sions, (24.1) - (24.2)acting on the space Hyeq := Ejo1)(Hy)F and satisfying
|H|lew < 00, where

[Hllew = > &) || Hyll, (24.6)
r+s>0

with [|Hpsl|, := || hrs||, and

1hrs|l z:rlaauxsup[!f’drS |0 hrs|] < o0, (24.7)
.k

where Q(n)*lforn*() and Q(")*w [T, Vw(k;) forr+s>1.
Slmﬂarly to (23.51) we obtain

Proposition 24.2 Let H,; be as above. Then for any v > 0,
X HrsXpll < (rls!) ™2 (Vamp) 2 p" | Hys - (24.8)

Thus ., .51 XpHrsX, converges in norm.

Next we state without proof that the map {h,s} — >_ [(a*)h,sa® is one-
to-one (see [27, Thm. II1.3]). Here the {h,s} satisfy (24.7). Hence the normed
space Bg, is indeed a Banach space.

For the future analysis it is important to know how different operators
behave under rescaling, more precisely, under the action of the rescaling map
p~1S,, defined in (23.52), as p — 0 (or of (p~15,)" as n — oo, which in the
present case is the same). We have for r +s > 1
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p IS () = [(ay bR (24.9)
where
WO (Hy k) = 5205y (o, k) (24.10)
If H,s € By, then h,s behaves for small |k;|’s like 32777 w(k;)” Hgif w(k;)™>.
Since by (23.53), S,(a*(k)) = p~3/2a# (p~'k), we have for r +s > 1
p 1S, (Hys) ~ p TV H (24.11)

In the » + s = 0 case, we have to specify the behaviour of the function
hoo(pe) at p = 0. In our case, hoo(pt) — hoo(0) ~ i and therefore

p~ S, (Hoo — (Hoo)2) ~ Hoo — (Hoo)2),
p~ S, ((Hoo)2) = p~* (Hoo) o2
where we used the notation (A)g, := (2, AR2). Hence, H,s, r+s > 1, contract,

Hyo— (Hgo) 2 are roughly invariant, while (Hop) g, expand under our rescaling.
This suggests to decompose the Banach space B, into the direct sum

(24.12)

Be, =C-14+T +W, (24.13)

of the subspaces which expand, are roughly invariant or contract under our
rescaling:

T={T(Hf) | T:[0,00)— CisC" with T(0)=0}, (24.14)
and
w ::{ Z XlHTsXI € B{V } (2415)
r4+s>1

This decomposition will plat an important role below.

Remark 24.3 The subspace 7 can be further decomposed into the invariant
substace C- H; and and contracting one,

T.={T(Hy) | T:[0,00) — Cis C' with T(0)=T'(0)=0}. (24.16)

The decomposition of the Banach space Bg, into the subspaces C- 1, C- Hy
and 7, + W is related to the spectral decomposition of the map p=15,,.

24.3 The Decimation Map

In this section we construct a map which projects out the degrees of freedom
corresponding to high photon energies. We use the smooth Feshbach-Schur
map, which we define here in a greater generality than in Section 23.6, and
formulate its important isospectral property. Let x, x be a partition of unity
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on a separable Hilbert space H, i.e. x and x are operators on H whose norms
are bounded by one, 0 < y,x < 1, and x? + x? = 1. We assume that y and
x are nonzero. Let 7 be a (linear) projection acting on closed operators on H
with the property that operators in its image commute with y and x. We also
assume that 7(1) = 1. Let 7 := 1 — 7 and define

H,\+ =1(H) + x*r(H)x", (24.17)

where x# stands for either x or y.

Given x and 7 as above, we denote by D, , the space of closed operators,
H, on ‘H which belong to the domain of 7 and satisfy the following three
conditions:

D(r(H)) = D(H) and xD(H) C D(H), (24.18)

H . is (bounded) invertible on Rany, (24.19)

7(H)x and x7(H) extend to bounded operators on H. 24.20
(H)x X 1

(For more general conditions see [27, 139].)
The smooth Feshbach-Schur map (SFM) maps operators on H belonging
to D., to operators on H by H — F;,(H), where

Fry(H) = Hy + xWx — xWxH_  xWx. (24.21)

Here Hy := 7(H) and W := 7(H). Note that Hy and W are closed operators

on H with coinciding domains, D(Hy) = D(W) = D(H), and H = Hy + W.

We remark that the domains of xWx, xWx, H-, and H- , all contain D(H).
Define operator

Qrx(H) = x — xH xWx. (24.22)
The following result ([27]) generalizes Theorem 11.1 of Section 11.4.

Theorem 24.4 (Isospectrality of SFM) Let 0 < x < 1 and H € D, ,
be an operator on a separable Hilbert space H. Then we have the following
results:

() Hp =0 = Fry(H)p =0, p:=x) € Rany.

{)Fry(H)p=0 = HyY=0,¢:=Q.(H)peH.

(iii) dim NullH = dim NullF; , (H).

(iv) H is bounded invertible on H if and only if F; , (H) is bounded invertible
on Ran y. In this case

H™' = Qr\ (H) Fry (H) ™' Qry(H)* + xH'x,  (24.23)
Foy(H)™' =xH ' x + x7(H) 'x. (24.24)
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We also mention the following useful property of F ,:
H is self-adjoint = F,,(H) is self-adjoint. (24.25)

The proof of this theorem is similar to the one of Theorem 11.1 of Section 11.4.
We demonstrate only the proof of the statement (ii) which we use extensively
below and refer for the rest of the proof to [27]. The statement (ii) follows
from the relation

HQ-y(H) = xFry(H). (24.26)

Now we prove the latter relation, using the shorthand Q = Q,(H), H, =
Hy + xWx, H, =Hy+ xWx:
HQ=Hy — HyH_'xWyx = xH,
+ XPWx — (XHy +X°Wx) H 'xW . (24.27)

Since xH, H;leX = (XHO + X2WX) H;lex = x*Wy, the r.h.s. gives
x Fry(H).

The Feshbach-Schur map is a special case of the smooth Feshbach-Schur
map and is obtained from the latter when y is a projection, x? = x, by taking
7 =0. Then F, becomes F\(H) := x(H — HxH,'xH)x, Hy := Hoy =
xHx, as defined in Section 11.1.

For Hamiltonians of the form H = . H,4 considered in Sections 24.1-
r+s>0
24.2, we define the decimation map as

F,=F,,, (24.28)

where F , is the smooth Feshbach-Schur map and the operators 7 and x are
chosen as

T(H) = HOO = hoo(Hf) and X ‘= Xp = Xp(Hf) = prlegl, (24.29)

where the cut-off function x <1 is defined in Section 23.6. To isolate a set on
which the map R, is defined we write H = Hoo + >, X1Hrsx1 € Bey as

r+s>1
where E := (2, H2) = hoo(0), T := Hoo— E and W := Y H,s (ctf. (24.13)
r+s>1
- (24.15)) and define the following polydisc in B, :
Dev(a,8,7) i= {H € Be | Ihool0]] < o (24.31)

sup [l =11 < B, [Wiew < 7.
re[0,00)

The following lemma shows that the domain of the decimation map F), con-
tains Dg¢, (v, 5,7), for appropriate numbers «, 3,y > 0.
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Lemma 24.5 Fix 0< p<1,v<1/2,and 0 < ¢ < (47)~'/2. Then it follows
that the polydisc D¢, (p/8,1/8, p/8) is in the domain of the decimation map
F,.

Proof. Let H € D¢, (p/8,1/8,p/8). We observe that x1iWx1 := H — hoyo
defines a bounded operator on F, and we only need to check the invertibility
of H:y, on Ran Xp- Now the operator hg, g is invertible on Ran Xp since for all
r € [3p/4,00)

Re hoo[r] > r — |hoo[r] — 7|
> 7’(1 - sup|h670[7"] — 1|) — [ho,0[0]]
3p P P
> T0-18) - g2 (24.32)

Furthermore, by (24.8), |[x1Wx1|| < [Wllex < v = p/8. Hence Re(ho,o +
x1Wxi1) > § on Rany,, i.e. H: , is invertible on Ranx,. U

Note that the decimation map, F), maps isospectrally operators which act
nontrivially on Ran x; into those which nontrivially on Ran x,.

24.4 The Renormalization Map

Using that the subspace RanFjq 1)(H ) is invariant under the composition map
S, o F,, we define the renormalization map as a composition of a decimation
map and a rescaling map on the domain of the decimation map F), (see (24.28))
as

Rp = pilsp o Fp |RanE[011](Hf) (2433)

where S, is the rescaling map defined in (23.52). By Lemma 24.5, its domain
contains the polydiscs Dg, (, 3,7), with a, 3,7 < §. Note that the map S,0F),
acts on the orthogonal complement, RanFEyq 1)(H 7))+, trivially:

p'S,0F, =p~'S,or on RanEj(Hs)" (24.34)

where the map 7 is defined in (24.29). Note that while the standard Feshbach-
Schur maps have the semigroup property (see Supplement 24.6): R,, o R,, =
Rpsp1» the smooth ones have this property only under certain conditions on
p1 and ps.

Next, we list some elementary properties of the map R, which follow
readily from the definitions

1. R, is isospectral in the sense that p-R,(H) and H are isospectral at 0 in
the sense of Theorem 24.4,
2. Ry(wHy +21) =wHy + ;zl Yw, z € C.
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In particular, CHy is a complex line of fixed points of R,: R,(wHy) =
wHy Yw € C, and C-1 is (a part of) the unstable manifold. The first property
follows from the relations (24.34).

Problem 24.6 Prove the statements above.

Describing the range of the renormalization map R, on polydiscs D¢, (v, 3,7)
is considerably harder. The following result, proven in [121], shows that con-
traction is actually a key property of along ’'stable’ directions.

Theorem 24.7 Let ¢ : H — (2, Hf2), and p := v > 0. Then, for any
c>1,0<p<1/2, a,3< %, and v < 1, we have that

RP - p71€0 : va(aa ﬁa’}/) - DED(TP(aa 557)) (2435)

continuously, with ¢ := 411 and, for an absolute constant c,

rola, B,7) = (ev*/p, B+cv?/p, cp™). (24.36)
Moreover, R,(H) and H are isospectral (modulo rescaling) at 0.

Remark 24.8 Subtracting the term p~'¢y from R, allows us to control the
expanding direction during the iteration of the map R,. In [27], such a control
was achieved by changing the spectral parameter A\, which controls (£2, H(2).

The proof of this theorem is similar to the proof of Theorem 23.6 which we
outlined above: expand R, (H) in the perturbation W := H — Hyg, reduce the
resulting series to generalized normal form, and estimate the obtained coupling
functions. To bring the operators we deal with into generalized normal form,
we use the “pull-through” formulae (22.52) and (22.53).

To explain the result above, we, as usual in the study of nonlinear dy-
namics, consider the linearization (variational derivative) of OR,(w - Hy) in
order to understand the dynamics of the map R, near its near its fixed points
w - Hy, w € C. The variational derivative of the map R, at a point Hy is
defined as

0
OR,(Ho) == ) Ry(Ho+58)|

for any & € Be,. Thus OR,(Hy) is a linear operator on Be,. By the definition
of the map F), we have the relation F,(w-Hy¢ + s§) = w- Hy + s7(£) + O(s?),
which in turn implies (informally) that 0D, (w-Hf)¢ = 7(&)+x,7(§)X,- Using
this and the relation S,(x,) = X1, we obtain

ORp(w - Hy)§ = P_lsp(f) . (24.37)

Scaling properties of H,s = [(a*)"h,sa® are given in (24.11) - (24.12). They
suggest that for v > 0, the termsH,s, r + s > 1 contract, the terms Hyg —
(Hpp) g are essentially invariant, and the terms (Hgg) s, expand. In the physics
terminology and for v > 0,
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r+s>1 «— drrelevant terms,
Hoo — (Hoo)a < marginal terms,

(Hoo) < relevant terms.

where we used the notation (A), := (2, AQ).
The following equation follows from Eqs (24.9) - (24.10) :

||p_1Sp(HTS)||£V = p(1+y)(r+s)_1||HT8||£V = p_1||HTS||p*1*“£7V : (24-38)

Applying these equalities to operators of the form W = > H,,, we find
r+s>1

o™ S (Wllew < MWl p-rvg < "W o (24.39)

(Recall that v > 0.) Let R := OR,(w- Hy) = p~'S, and

rp(a, B,7) = (0, B, p"v). (24.40)

The estimate (24.39), together with the relations p='S,(F1) = p~'1 and
p~'S,(wHy) = wHy, implies that

R — p~teo : Dew(av, B,7) = Deu(ri” (o, 8,7))- (24.41)

This is the linearization of the estimate (24.35). Theorem 24.7 deals essentially
with controlling the nonlinear part of the map R,.

In the next section we address the dynamics of R} as n — oo in a vicinity
of the fixed point manifold My, 2 CHy, and connect this dynamics with
spectral properties of operators of interest.

24.5 Dynamics of RG and Spectra of Hamiltonians

To describe the dynamics of R’; we need some definitions. Consider an initial
set of operators to be D := D¢, (o, Bo,Y0), With ag, o, 70 < 1. We let
Ds := D¢, (0, Bo,70) (the subindex s stands for ’stable’). We fix the scale p so
that

1
o, Bo, 70 < p < (24.42)

o
Below, we will use the n—th iteration of the numbers ag, 5y, 7o under the
map (24.36): Vn > 1

(O‘nyﬂn;'}/n) = TZ(OLOvﬂOa’VO)-

For H € D we denote H, := (H)p and Hy :== H — (H) 1 (the unstable-
and stable-central-space components of H, respectively). Note that Hs € D;.
It is shown in [121] that the following objects are defined inductively in n > 1
(with eg(Hs) =0 VH; € Dy)
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1

V,:={H € D| |H, — en—1(H)| < 12p"+1}; (24.43)
En.(H):= (Ry(H)),, H € Vy; (24.44)
en(Hs) is the unique zero of the function A — E, (Hs — A1)
1 L (24.45)
in the disc D(e,—1(Hy), 12p"Jr ),
and have the following properties:

Vi, C Vi1 C D(R}); (24.46)
RE(Va) © Dy (0/8, B 1) (24.47)

4
NEL(N) < = p (24.48)
len(Hs) — en—1(Hs)| < 2a,p™; (24.49)
en(Hs) R, if H=H" (24.50)

Proof (Proof of Theorem 24.1). Now we prove the first statement of Theorem
24.1. By (24.49), the limit e(H,) := lim;_. e;(H,) exists pointwise for H €
D. Tterating Eqn (24.49) and using that (cp”)?p < 1/2, we find the estimate

len(Hs) — e(Hy)| < 2an41p™ ", n > 0. (24.51)

Since eg(Hs) = 0, for n = 0 this estimate gives |e(Hs)| < 2a1p = 8,
which shows that e : Dy — D(0, 21 p). Moreover, (24.50) shows that e(H;) €
R, if H = H*. We skip the proof of analyticity of e(H) in Hs.

Next, we prove that e(Hy) is a simple eigenvalue. We omit the reference
to Hy and set e = e(H,). Let H := H® — el € N, V,,. (24.46) implies that
M Vo € D(RE), Vk. Hence we can define a sequence of operators (H™)oo
in By,s € B(Hrea) by H™ := R2(H®). Recall the definitions of S, and Uy
in (23.52) and (23.8) and let I, := Uy, p = e~?. Then the definition (24.33)
of R, implies that, for all integers n > 0,

3

1
g o (FP(HW—U )) T, (24.52)

where, recall, F, is defined in (24.28). We will use the operators @, defined
in (24.22), and the identity (24.26) (HQry = xFry(H)) which they satisfy.
Let

QM 1= Qr (H™), (24.53)

with 7 and x = x, given in (24.29). Then the equation HmMQM =
Xpr(H(")) together with (24.52), implies the intertwining property
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H=D QU= = pIrxg H™. (24.54)

Eq. (24.54) is the key identity for the proof of the existence of an eigenvector
with the eigenvalue e.

For the construction of this eigenvector, we define, for non-negative inte-
gers 3, vectors ¥y in ‘H by setting ¥, := {2 and

7, = QO r QW I QD 0 (24.55)

We first show that this sequence is convergent, as £k — oo. To this end, we
observe that (2 = I} x,, {2 and hence

Upp1 — 0 = QO I QW Iy QWD (@™ —x,) 2. (24.56)
Since ||x,|| < 1, this implies that
B—1 ‘
|7 =l < @ —xll [T {1+ @Y —xoll}- (2457)
=0

To estimate the terms on the r.h.s. we consider the j-th step Hamiltonian
HU). By (24.30) and (24.47), we can write HY) as

HY = E; 14T, + W; , (24.58)
with
Byl < § and [Wy] < vy < [ (24.59)
Recalling the definition (24.53) of QU), we have
Xo— QY =x (B +T; + x,W;x,) " x, W (24.60)
p Xp\ &5 P XpWiXp) XpWiXp- .
By (24.59), for all j € N, we may estimate
o=@ < (5 = Iwill) Iyl < 7 (24.61)

Inserting this estimate into (24.57) and using that [[;2,(1+ ;) < eXi=oNi
for A; > 0, we obtain

k—1

16 16 ;
[ = < 2 T {0
Pl p

16
< p% exp [3270 7], (24.62)

where we have used that Z;io v; < 27 (recall the definition of «; after Eqn

(24.42)). Since 3272y, < 00, we see that the sequence (¥ )xen, of vectors in
‘H is convergent, and its limit ¥, := limg_ o0 ¥ , satisfies the estimate
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32
p% exp [3270p71] , (24.63)

[P0 = 2| = || =% <
which guarantee that V() # 0.

The vector Wo, constructed above is an element of the kernel of H(®), as
we will now demonstrate. Observe that, thanks to (24.54),

HOw = (HO QO 17) (QW 7 --- Q%Y 0)
=pl,x1 (H(l) QW F;) (Q(2) Iy Q=1 0)

= o (I x1)  H® 2. (24.64)

Eq (24.58) together with the estimate (24.59) and the relation T2 = 0
implies that

| HE® Q|| = || (Wi + Ep) 2| (24.65)
<+ 8af < 2 .

Summarizing (24.64)—(24.65) and using that the operator norm of I'; x1 is
bounded by 1, we arrive at

[HO @] < 29 — 0 (24.66)
as k — oco. Since H(®) € B(H) is continuous, (24.66) implies that

HO g = Jim (HOw,) = o. (24.67)

Thus 0 is an eigenvalue of the operator H(®) := H —el, i.e. e is an eigenvalue
of the operator H, with the eigenfunction V.

Finally, we prove the second statement of Theorem 24.1. To simplify ex-
position we restrict ourself to self-adjoint operators. We omit the reference to
H, and set e = e(H,) and e, = e,(H,). Let H™M()\) := Ry (Hs — A) and,
recall, E,(\) := H™()\),. Using the equation E,(e,) = 0, the mean value
theorem and the estimate (24.48), we obtain that E,(A) > —2p7"(A — €,),
provided A < e,. Hence, if A\ < e, — 6,, with 8, > ~v,p" and 6,, — 0 as
n — oo, then H™(X) > 2p="0, — O(vn) > 7n. This implies 0 € p(H™ (X))
and therefore, by Theorem 24.4, 0 € p(Hs — \) or A € p(Hy). Since e, — e
and 0, — 0 as n — oo, this implies that o(H;) C [e, o), which is the second
statement of the theorem for self-adjoint operators. [J

We discuss the geometrical meaning of the results obtained above. Let
H €V, C D(RI). According to (24.30), H™ := R"(H) can be written as
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H™ = B, 14T, +W,, (24.68)

where T,, = T,,(Hy) with T,,(r) € C' and T},(0) = 0. By (24.47) we have
0, T (r)—1| < By and [[Wh|[ws, < yn. Hence the function 7,,(r) := T, (r) /r =

fol T'(sr)ds is continuous and satisfies |7, (r)—1| < §,,. One can also show that
T, — 7 = (constant) for H € ), V,,. By the definition of V,,, | E,,—en—1(Hs)| <
5P 1. Hence

Ry, (H) — e(Hs) + THy in the norm of Be,, (24.69)

where e(Hy) := lim;j_. e;(Hs), as n — oo. In other words M, := (), V,, is the
(local) stable manifold for the invariant manifold M, := CH/ of fixed points.
(Formally, a local stable manifold can be defined as a manifold invariant under
R, and such that M, = {H € B, | R,(H) — Myp as n — oo}.) By the
definition of V,,, it is the graph of the map e : Dy — Vj:

My={HeD | (H)g=e(H,)}. (24.70)

One can show that M, is invariant under R,,.

Consider the invariant manifolds M,,, M ¢, and M. Since M is of the co-
dimension one and contains the manifold CH of fixed points, while M, := C1
is invariant and expanding under R,, we see CHy =: My, and M, = C1
are fixed point and unstable manifolds, respectively.

The subspaces V,, :=C -1, V. :=C- Hf and V. 4+ V,; :== T + )V spanning
the Banach space Bg, (see Section 24.2) are tangent spaces to the manifolds

./\/lu, ./\/lfp and Mg at ./\/lfp.

]
T
/T/
2

Fig. 24.1. RG flow.

24.6 Supplement: Group Property of R,

The Feshbach-Schur maps has the semi-group property:

Proposition 24.9 (semigroup property) Assume the projections P; and P
commute. Then Fp, o Fp, = Fp, p,

Proof. Assume for simplicity that H and Fp,(H) are invertible. Then the
statement follows by applying equation (11.36) twice. OJ
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We have seen already in the first chapter that the space of quantum-
mechanical states of a system is a vector space with an inner-product (in fact
a Hilbert space). We saw also that an operator (a Schrédinger operator) on
this space enters the basic equation (the Schrédinger equation) governing the
evolution of states. In fact, the theory of operators on a Hilbert space provides
the basic mathematical framework of quantum mechanics. This chapter de-
scribes some aspects of operator theory and spectral theory that are essential
to a study of quantum mechanics. To make this chapter more self-contained,
we repeat some of the definitions and statements from the chapters in the
main text.

25.1 Spaces

In this section we review briefly some background material related to linear (or
vector) spaces. We introduce the simplest and most commonly used spaces,
Banach and Hilbert spaces, and describe the most important examples. We
begin with the basic definitions.

Vector spaces. A vector space V is a collection of elements (here denoted
u, v, w, ...) for which the operations of addition, (u,v) — u + v and multipli-
cation by a (real or complex) number, (o, u) — au, are defined in such a way
that

u+v=v+u (commutativity)

u+ (v+w)=(u+v)+w (associativity),
u+0=04u=u (existence of zero vector),
a(fu) = (afB)u,
(a+ B)u = au+ Pu,

a(u +v) = au+ av,

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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Ov =0, lv =w.

We also denote —v := (—1)v. Elements of a vector space are called vectors.
Here are some examples of vector spaces:

(@)R" = {z = (z1,...,xzn)] —00 < x; < oo Vj}- the Euclidean space of
dimension n;

(b) C(£2) — the space of continuous real (or complex) functions on {2, where
(2 is R™, or a subset of R";

(b) C*(£2) — the space of k times continuously differentiable real (or complex)
functions on 2, k=1,2,3,....

The addition and multiplication by real/complex numbers in these spaces
is defined in the pointwise way:

(x+y);=z;+y; and (ax); =azx; Vj

and

(f +9)(x) := f(x) + g(z) and (af)(z) = af(z) Yo e Q2.
Problem 25.1 Show that R™, C(§2) and C*(§2) are vector spaces.

Norms. To measure the size of vectors, one uses the notion of norm. A norm
on a vector space V is defined to be a map, V' 3 u — ||u|| € [0, 00), which has
the following properties:

(@) lu =0 < u=0;
(b) loul| = |e[[[ull;
(©) lu+ofl < Jull +[[v]l-

The last inequality is called the triangle inequality. We give some examples of
norms:

(a) ||zl = |a] = (3, 27)"/* in R™;

() [[flloe = sup,eq [f(2)] in C(£2) (also denoted || f]lc);
(©) [fllox = maxo<j<k Sup,eg | 4h; f(2)] in CH(R);

@) £l = (f [ f (@)Pd) /P in C(£2)

For examples (b) and (d), clearly, ||, = 0 £ = 0, [[afll, = lal | fI], Yo €
C, and for p = 1,00, [|f + gllp < [[fllp + l|gllp- We will prove the triangle
inequality for 1 < p < oo later.

A vector space equipped with a norm is called a normed vector space. Here
are some examples of normed vector spaces

(a) R™ with the norm ||z| = |x|;
(b) The subspace Cy(£2) of C(£2) consisting of all continuous, bounded func-
tions on {2 C R™, equipped with the norm || f||co;
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(c) The space C*¥(§2), for £ = [0,1], equipped with the norm ||f|cx or the
norm | f|[,.

Problem 25.2 Show that Cy(£2) is a normed vector space.

Banach spaces. A normed vector space is said to be complete, if Cauchy
sequences in it converge; that is, if u; € V, j = 1,2,... is such that
lim; ;o0 ||uj —ugl] = 0, then there exists u € V such that lim;_,o [Ju; —ul| =
0. A normed vector space which is also complete is called a Banach space.
Examples of Banach spaces include

(a) R™ with the norm ||z| = |z[;

(b) Cp(£2) with the norm || f||co;

(c) CF(92), for £2 = [0,1] with the norm || f|c»;

(d)For 1 < p < oo, the LP-space

D@ ={f:0-c| [ |fa@Pric <)
with the norm || f]|,.

Dual spaces. Next we define the important notion of dual space.

1. A bounded linear functional on a vector space V, with a norm || - ||, is a
map [ : V — C (or — R if V is a real, rather than a complex vector space)
such that

l(ag + fBn) = ad(§) + Bl(n)
for all §,n € V, and o, 8 € C (or R), and there is C' < oo such that
1)1 < Cliéll

forall £ € V.
2. The dual space of a normed vector space V, is the space V* of all bounded
linear functionals on V.

Note that on a finite dimensional space all linear functionals are bounded.
The dual space V* is also a normed vector space, under the norm

1]

vei=_ sup  [(§)].
seviligllv=1

If V is a Banach space, then so is V*, under this norm. One often denotes the
actionof € V*on £ € V by

{1,) = 1U(E)-

Inner products and Hilbert spaces. Now let H be a (complex) vector
space. We assume H is endowed with an inner product, (-,-). This means the
map

(, Y HxH—-C

satisfies the properties
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1. linearity (in the second argument):
(v, aw + Bz) = alv, w) + B(v, 2)

2. conjugate symmetry: (w,v) = (v, w)

3. positive definiteness: (v,v) > 0 for v # 0
for any v,w,z € H and «, 8 € C. It follows that the map | - || : H — [0, 00)
given by

loll := (v, 0)"/

is a norm on H. If H is also complete in this norm — that is, if it is a Banach
space — then H is called a Hilbert space.

Our main example of a Hilbert space is the space of square-integrable
functions, the L2-space (the state space of a a quantum system):

I2RY) = {( :R? - C| / [ < oo}
R4

with the inner-product
w.9) = [ G
Rd

Here and throughout, we will often use the simplified notations [ f or [p. f

for [o. f(x)dx.
Another important example of a Hilbert space is the Sobolev space of order

n,n=123,...
H"(RY) := {yp € L*(RY) | 0% € L*(RY) V o, |a| < n}.

Here a is a multi-indez: a = (a1, ..., aq), o non-negative integers, and || :=
Z;l:l a;. The expression 0%t denotes the partial derivative 9} --- 9599 of
order |a|. In other words, H"(R?) is the space of functions all of whose deriva-
tives up to order n lie in L?(R?). The inner-product that makes H"(R%) into
a Hilbert space is

(W, @y = > (99, 07¢)

0<|al<n

where (-, -) is the L? inner-product defined above. The Fourier transform — see
Section 25.14 — provides a very convenient characterization of Sobolev spaces:

Y € H'(RY) «— / (14 k2| (k)|?dk < . (25.1)
R4
We recall here two frequently used facts about Hilbert spaces (see, eg., [106]

or [244] for proofs).

Proposition 25.3 (Cauchy-Schwarz inequality) For v, w € H, a Hilbert
space,
(v, w)| < [[o[Jw]-
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A set {v,} C H, n=1,2,...is called orthonormal if ||v,| = 1 for all n
and (vn,vmy,) = 0 for n # m. It is a complete orthonormal set (or basis) if
the collection of finite linear combinations of the v,’s is dense in H. Recall
that for a subset D C 'H to be dense in H means that given any v € H and
e > 0, there exists w € D such that ||v — w|| < e. A Banach space which has
a countable dense subset is said to be separable. A Hilbert space is separable
if and only if it has a a countable orthonormal basis.

Proposition 25.4 (Parseval relation) Suppose {v,} C H is a complete
orthonormal set. Then for any w € H,

lw]* = ZI w, vn)

If H is a Hilbert space, then we can identify its dual, H*, with H itself,
via the map H > u — 1, € H* with l,v := (u,v) for v € H (here the notation
(-,+) indicates the Hilbert space inner-product). The fact that this map is an
isomorphism between H and H* is known as the Riesz representation theorem.

25.2 Operators on Hilbert Spaces

In this section we explain the notion of a linear operator on a Hilbert space H
(often just called an operator), which abstracts some of the key properties of
the Schriodinger operator introduced in Chapter 1. Operators are maps, A,
from H to itself, satisfying the linearity property

A(av + pw) = clv + fAw

for v,w € H, a, 8 € C. Actually, we only require an operator A to be defined
on a domain D(A) C H which is dense in H:

A:D(A) — M.

An example of a dense subset of L2(R?) is C§°(R?), the infinitely-
differentiable functions with compact support. (Recall, the support of a func-
tion f is the closure of the set where it is non-zero:

supp(f) := {z € R4 | f(z) # 0}.

Thus a function with compact support vanishes outside of some ball in R¢. For
2 C RY, C5°(£2) denotes the infinitely differentiable functions with support
contained in f2.)

Here are some simple examples of linear operators, A, acting on the Hilbert
space L%(R?). In each case, we can simply choose D(A) to be the obvious
domain D(A) := {¢ € L?(R?) | Ay € L?(R%)}.
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1. The identity map
1:9—q
2. Multiplication by a coordinate
T =z

(ie. (z;9)(x) = zj1b(x))

3. Multiplication by a continuous function V : R — C
Viyp—Vy

(again meaning (V)(x) = V(z)y(x)).
4. The momentum operators (differentiation)

pj ¢ — —ihdjy
5. The Laplacian
d
A Z@?Q/J
j=1

6. A Schrodinger operator

2
H:z/1»—>—h Ay + Vi)
2m

7. An integral operator
v [ KCywdy

(i.e. (K¢)(z) = [ K(z,y)¢(y)dy). The function K : R4 x RY — C is called
the integral kernel of the operator K.

The domain of the first example is obviously the whole space L?(R?). The do-
main of the last example depends on the form of the integral kernel, K. The
domains of the other examples are easily seen to be dense, since they con-
tain C§°(R?) (assuming V() is a locally bounded function). If the potential
function V() is bounded, then the largest domain on which the Schrédinger
operator, H, is defined, namely D(H) := {¢ € L?(R%) | Hy € L?*(R%)}, is
the Sobolev space of order two, H?(R?).

Remark 25.5 If the kernel K is allowed to be a distribution (a generalized
function), then the last example above contains all the previous ones as special
cases.

It is useful in operator theory to single out those operators with the prop-
erty of boundedness (which is equivalent to continuity).
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Definition 25.6 An operator A on H is bounded if

JAl == swp  [AY] < . (25.2)
{per | ||¢ll=1}

In fact, the expression (25.2) defines a norm which makes the space B(H)
of bounded operators on H into a complete normed vector space (a Banach
space). As we will see, bounded operators are, in some respects, much easier
to deal with than unbounded operators. However, since some of the most
important operators in quantum mechanics are unbounded, we will need to
study both.

Problem 25.7 Which of the operators in Examples 1-7 above are bounded?

In particular, show that the operators p; := —ihd; and Hy := _2h7iA are
unbounded on L?(R%).

Often we can prove a uniform bound for an operator A on a dense domain,
D. The next lemma shows that in this case, A can be extended to a bounded
operator.

Lemma 25.8 If an operator A satisfies || Ay|| < C||9|| (with C independent
of ¢) for ¢ in a dense domain D C H, then it extends to a bounded operator
(also denoted A) on all H, satisfying the same bound: ||Ay| < C||¢| for
P eH.

Proof. For any u € H, there is a sequence {u,} C D such that u, — u as
n — oo (by the density of D). Then the relation

| Avn, — Aum || < Cllun — upl|

shows that {Au,} is a Cauchy sequence, so Au, — v, for some v € H (by
completeness of H), and we set Au := v. This extends A to a bounded operator
on all of H (with the same bound, C). O

A converse statement — that an operator defined on all of H must be bounded
— holds for certain important classes of operators. One such class is closed
operators:

Definition 25.9 An operator A on H is called closed if whenever {u;}%2, C
D(A) is a sequence with u; — w and Au; — v as j — o0, u € D(A) and
Au = v. Another way to say this is that the graph of A, {(u, A(u)) | uv €
D(A)} C H x H, is closed.

A second such class is symmetric operators — i.e., those satisfying
(u, Av) = (Au, v) (25.3)

for all u, v € D(A). As we have seen, the operators of most importance in
quantum mechanics are symmetric (indeed, self-adjoint). Symmetric and self-
adjoint operators will be discussed in more detail below.
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Theorem 25.10 A closed or symmetric operator, defined on the entire
Hilbert space, is bounded.

Proof. For a closed operator, this is the “Closed Graph Theorem” of functional
analysis. For a symmetric operator, this is the “Hellinger-Toeplitz” theorem
— see, eg., [244].

We conclude this section with a useful definition.

Definition 25.11 The commutator, [A, B, of two bounded operators A and
B is the operator defined by

[A,B] .= AB — BA.

Defining the commutator of two operators when one of them is unbounded
requires caution, due to domain considerations. Given this warning, we will
often deal with commutators of unbounded operators formally without giving
them a second thought.

25.3 Integral Operators

Let K be an integral operator on L2(R?):

(i) = [ Koy

where K : R? x R? — C is the integral kernel of the operator K. Examples
include

1. K = g(—ihV) for which the kernel is
K(z,y) = (2nh) =gz —y) (25.4)

(here ¢ denotes the inverse Fourier Transform of g — see Section 25.14).
2. K =V (multiplication operator) for which the kernel is

K(z,y) = V(2)6(z —y).
The following statement identifies the kernel of the composition of integral
operators. The proof is left for the reader.

Proposition 25.12 If Ky and K5 are integral operators (with kernels K7 and
K5), then the integral kernel of K := K1/ 2 is

K(x,y) = y Ky (z,2)Ka(z,y)dz.

Problem 25.13 Prove this.
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Proposition 25.14 Let K be an integral operator with kernel, K (x, y), which
lies in L? of the product space: K (z,y) € L?(R% x R?). Then K is a bounded
operator on L?(R%), and

K< [ K)oy (25.5)
X

Proof. To show that the operator K is bounded, we estimate by the Cauchy-
Schwarz inequality,

‘/K ,y)u dy‘ </|K z,y)| 2dy>1/2 </IU(y)|2dy)1/2

This implies
| Kul? < / K (2, y) Pdady / fu(y)Pdy
) O

which in turn yields (25.5).

25.4 Inverses and their Estimates

A key notion of theory of operators is that of the inverse operator. Given an
operator A on a Hilbert space H, an operator B is called the inverse of A if
D(B) = Ran(A), D(A) = Ran(B), and

BA = 1|Ran(B)a AB = 1|Ran(A)-
Here Ran(A) denotes the range of A:
Ran(A) :={Au|u € D(A)}.

It follows from this definition that there can be at most one inverse of an
operator A. The inverse of A is denoted A~!. Put differently, finding the
inverse of an operator A is equivalent to solving the equation Au = f for all
f € Ran(A).

A convenient criterion for an operator A to have an inverse is that A be
one-to-one: that is, Au = 0 = wu = 0, or equivalently that it has trivial
kernel or nullspace:

Null(A—z2):={ue D(A) | (A—2)u=0}={0}. (25.6)

The operator A is said to be invertible if A has a bounded inverse. Since
by definition a bounded operator is defined on all of H, an invertible operator
A, in addition to being one-to-one, must also be onto: that is,

Ran(A) = H. (25.7)
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Remark 25.15 Conditions (25.6) and (25.7) ensure that A~1 exists and is
defined on all H. In fact, they are enough to ensure that A is actually invertible
(i.e. that A~! is also bounded) in some important cases, namely:

e if A is a closed operator, since by Definition 25.9 then so is A~!, and so
by Theorem 25.10, A~! is bounded;

e if A is symmetric, since then so is A™!, and so by Theorem 25.10, A~ is
bounded.

Problem 25.16 Show that if operators A and C are invertible, and C' is
bounded, then the operator C'A is defined on D(C'A) = D(A), and is invert-
ible, with (CA)~! = A=1C~L.

The following result provides a widely used criterion for establishing the

invertibility of an operator.

Theorem 25.17 Assume the operator A is invertible, and the operator B
is bounded and satisfies || BA™!|| < 1. Then the operator A + B, defined on
D(A+ B) = D(A), is invertible.

This theorem follows from the relation A+ B = (1+ BA~!)A, Problem 25.16
above, and Problem 25.18 below.

Problem 25.18 Suppose an operator K is bounded, and satisfies || K| < 1.
Show that the series > 2 (—K)™ is absolutely convergent (i.e. Y, |[(—K)"||
< 00) and provides the inverse of the operator 1 + K.

In other words, if || K| < 1, then the operator 1 + K has an inverse given by

o0

A+ E) =) (K" (25.8)

n=0

The series (25.8) is called a Neumann series, and is used often in this book.

25.5 Self-adjointness

To make this section more self-contained, we repeat the definitions of sym-
metric and self-adjoint, as well as some basic results for self-adjoint operators
from Section 2.2 of the main text. Recall,

1. A linear operator A acting on a Hilbert space H is symmetric if
(u, Av) = (Au, v) (25.9)

for all u, v € D(A).
2. A linear operator A acting on a Hilbert space H is self-adjoint if it is
symmetric, and Ran(A4 £1) = H.



25.5 Self-adjointness 377

Note that the condition Ran(A + i) = H is equivalent to the fact that the
equations

(A= f (25.10)
have solutions for all f € H.

Example 25.19 On H = L?(R9), the operators z;, p; := —ih0y;, Hy =
—Qh;A (on their natural domains), f(z) and f(p) for f real and bounded,
and integral operators Kf(z) = [ K(z,y)f(y)dy with K(z,y) = K(y,z) and
K € L*(R? x RY), are all self-adjoint. (See Section 25.14 for the definition of
f(p) using the Fourier transform.)

Proof. As an example, we show this for the operator p = fihddz on L%(R)
with domain D(p) = H'(R). This operator is symmetric, so we compute
Ran(—ihd, +i). For f € L?(R), solve

(=ihdy + i)Y = f,

which, using the Fourier transform (see Section 25.14), is equivalent to

(k+d)d(k) = f(k),

and therefore

(k) = kf(f)z Y(x) = (zwh)*/?/e“ﬂ/ﬁg(f)i dk.

Notice (14]k|2)|¢)2 = | f|2, so since f € L? (and hence f € L?), by (25.1), ¢ €

HY(R) = D(p), and therefore Ran(—ihd,, + i) = L?. Similarly Ran(—ihd, —
i) =120

Problem 25.20 Show that on L2(R%), x;, — 25; A (on their natural domains),
and f(x) and f(p) for f: RY — R bounded are self-adjoint (the last two are
bounded operators, and so have domain all of L?(R%)).

The next result provides important information about the invertibility of
self-adjoint operators.

Lemma 25.21 Let A be a symmetric operator. If Ran(A — z) = H for some
z with Im z > 0, then it is true for every z with Im z > 0. The same holds for
Imz < 0. Moreover, if A is self-adjoint, then A — z is invertible for every z
with Im z # 0 and satisfies the estimate

1

—2)7Y < :
A4 =27<

(25.11)

Proof. Write z = A+ iu with A\, u € R. Then, since A is symmetric, we have

I(A=2)ull? = {(A=2)u, (A=2)u) = | (A=Nul>+{lpal]? > [uf?[u]. (25.12)
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Hence, if Imz > 0 (or Imz < 0), then Null(A — z) = {0}. If also Ran(A —
z) = H, then (A — z)~! is defined on all of H. Further, (25.12) implies that
(A — 2)~! is bounded, with bound (25.11) (if one defines v := (A — 2)u),
and so in particular (A — z) is invertible. Then, by Theorem 25.17, A — 2’ =
(A —2z)+ (2 — 2’) is invertible for |2/ — z| < ||(A — 2)71||~!. Therefore, A — 2’
is invertible if |z’ — z| < |Imz|, so we can extend invertibility of A — 2’ to
all Imz" > 0 (or Im 2" < 0). if A is self-adjoint, then Ran(A +¢) = H and
therefore A — z is invertible and satisfies (25.11) for every z in C/R. O

This lemma shows that if A is self-adjoint, then oA + (3 is self-adjoint for
any real a # 0 and 3, and also that

A is self-adjoint = (A — z)1 = f has a unique solution ¥VIm z # 0. (25.13)

The next theorem shows that for bounded operators, self-adjointness is
easy to check.

Theorem 25.22 If A is symmetric and bounded, then A is self-adjoint.

Proof. By Lemma 25.21, it suffices to show that Ran(A 4 i\) = H provided
|A| is sufficiently large. This is equivalent to solving the equation

(A+iy=7f (25.14)
for all f € H and such a A\. Now, divide this equation by i\ to obtain

Y+ KAy =g,

where K(\) = (iA\)7*A and g = (iA\)"1f. Let |[A\| > ||[V]]. Then |[K(\)| =
|/1\‘ IA]l < 1 and we conclude that 1 + K ()) is invertible, as shown in Prob-
lem 25.18 above. [J

As an example, we consider an integral operator K with kernel, K(z,y),
which lies in L? of the product space: K(z,y) € L*(R% x RY), and satisfies
K(z,y) = K(y,z). Then the integral operator K is symmetric (see Prob-
lem 2.3). By Proposition 25.14 it is bounded, and therefore by the theorem
above, it is a self-adjoint operator on L?(R?).

The property of self-adjointness can also be described in terms of the
general notion of adjoint of an operator.

Definition 25.23 The adjoint of an operator A on a Hilbert space H, is the
operator A* satisfying

(A", ¢) = (Y, Ap) (25.15)
for all ¢ € D(A), for ¢ in the domain

D(A*) :={y e H | |(¥, Ap)| < Cy]|¢|| for some constant Cy,
(independent of ¢), V¢ € D(A)}.
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It is left as an exercise to show this definition makes sense.

Problem 25.24 Show that equation (25.15) defines a unique linear operator
A* on D(A*) (hint: use the “Riesz lemma” — see, eg., [244]).

The subtleties surrounding domains in the definition above are absent for
bounded operators: if A is bounded, then by Lemma 25.8 we may assume
D(A) = H. Since

(s, Ag)| < llwllAllll#ll,

for ¢, ¢ € H, we have D(A*) = H.

Not surprisingly, one can show that an operator A is self-adjoint according
to our definition above, if and only if A = A* (that is, A is symmetric, and
D(A*) = D(A)).

We conclude this section with a useful definition.

Definition 25.25 A self-adjoint operator A is called positive (denoted A > 0)
if

(¥, Ap) >0

for all v € D(A), ¥ # 0. Similarly, we may define non-negative, negative, and
non-positive operators.

Problem 25.26 Show that the operator —A on L?(R?) is positive (take
D(—A) = H?(R?)). Hint: integrate by parts (equivalently, use the diver-
gence theorem) assuming that ¢ € Dg := {¢ € C*R?) | [0%(z)| <
Co(1+|2))7? V a,|a < 2} for some 8 > d/2, Then use the fact that Dg
is dense in H2(R%) to extend the inequality to all ¢» € H?(R?).

25.6 Exponential of an Operator

In this section we construct the exponential e=*4 for a self-adjoint operator
A, which allows us to solve the abstract Schrédinger equation

oy
ot

where ¢ : t — (t) is a path in a Hilbert space H and A is a self-adjoint
operator on H. In our applications, iA is a Schrédinger operator. As before,
we supplement equation (25.16) with the initial condition

Yli=0 = o (25.17)

i

Ay (25.16)

where ¢y € H. Our goal is to prove Theorem 2.16 of Section 2.3 which shows
that self-adjointness of A implies the existence of dynamics. We restate this
theorem here in terms of an operator A:
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Theorem 25.27 If A is a self-adjoint operator, then there is a unique family

of bounded operators, U(t) := e~ ™4 having the following properties, for
t,s € R,

iaatU(t) =AU(t) =U(t)A, (25.18)

U(0)=1and U(t)y — 1, ast — 0, (25.19)

UBU(s) = U(t + s), (25.20)

(U@l = [lv]l- (25.21)

Furthermore, the initial value problem (25.18)-(25.19) has a unique solution.

Proof. We will define the exponential e’ for an unbounded self-adjoint oper-
ator A, by approximating A by bounded operators, and then using the power
series definition of the exponential for bounded operators:

eti=)" A (25.22)

n!

which converges absolutely since

oo oo

A A" yay
E ! < E Nl e < 00.
n=0 n=0

We have already shown in Section 2.3 that Theorem 25.27 holds for bounded,
self-adjoint operators A. (The self-adjointness is only needed for (25.21).) Now,
we extend it to unbounded operators. By Lemma 25.21, the operators

1
Ay = 2>\2[(A +iN) T+ (A =i\
are well-defined and bounded for A > 0. The operators A, approximate A in
the sense that Axy) — Ay as A — oo for all p € D(A). To see this, note first
that

1
Ax=ByA,  Byi= iN(A+ iIN)TE = (A—iN)TY (25.23)
and )
1-By=, [(A+iN)""+ (A —id) A
So using the estimate
(A==,

which is established in Lemma 25.21, we find, for any ¢ € D(A),
1 oy oy
11 = Ba)gll = Il [(A+iN) 7"+ (A= iX) 7] Ag|

1
< >\||A¢)||—>O as A — oo.
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And since D(A) is dense and ||By|| < 1, we have By¢ — ¢ as A — oo for any
¢ € H. Finally, taking ¢ = Ay for any ¢ € D(A), we conclude by (25.23),
that

Ap — Ay as A — oo for ¢ € D(A), (25.24)

as required.

Since Ay is bounded, we can define the exponential e** by power series.
We will show now that the family {e*4*, X\ > 0} is a Cauchy family, in the
sense that

[| ("4 — e )y — 0 (25.25)
as A\, \" — oo for all ¢p € D(A). To prove this fact, we represent the operator
inside the norm as an integral of a derivative:

1
. ) a ;
€ZA)‘/ _ ele :/ eZSAx’ el(l_S)A*ds_ (2526)
0 85

Since A) is symmetric and bounded, it is self-adjoint (Theorem 25.22). Us-
ing (25.18) and (25.21) in (25.26), we find (noting that Ay and Ay commute)

1
(e = e gul = | [ ey e-mi(ay, — 4y)uds]
0
1
= / [|e?s4x et 1= AN (A, — Ay )ep|ds (25.27)
0

1
- / 1(Ax — Ax)llds = [[(Ax — An)o].-

(The inequality used in the first step — the Minkowski inequality — can be
proved by writing the integral as a limit of Riemann sums and using the
triangle inequality — see [106]). Due to (25.24), relation (25.25) follows.
The Cauchy property (25.25) shows that for any ¢ € D(A), the vectors
e ) converge to some element of the Hilbert space as A — co. Thus we can
define
e = Jim e (25.28)

for ¢ € D(A). Since we have already shown that the theorem holds for
bounded operators, we have that |[e?4+| < ||¢|| for all 1 in D(A), which
is dense in H. Thus, as in Lemma 25.8, we can extend this definition of ¢4
to all ¢» € H. This defines the exponential e** function for any self-adjoint
operator A.

Now we prove (25.18). We use the definition (25.28) and the fact Ay is
a bounded operator and therefore e~#4» satisfies (25.18). Formally bringing
the differentiation into the limit, we obtain, for ¢ € D(H),

L0 a0 iAo\ 9 _ia
Zhat <¢7 € ¢0> - ’Lat /\h_{go<¢) € 1/’0) - ’L/\h_{lgo<¢7 8te ¢0>
= lim (6, Aye™ M yo) = Tim (Axg, ey

= <A¢a eiiAtllr/)0>'
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This exchange of limits is readily justified (the reader is invited to supply the
details). Furthermore, if )9 € D(A), one can show that e~*4%¢)y € D(A), and
therefore i 5, e~ "4y = Ae~ "4y, So ¥(t) 1= e~y satisfies (25.16) and
therefore (25.18) holds.

Next, clearly U(0) = 1. Moreover, for any 1y € D(A),

t
U(t)’(/)o — 1/)0 = ’L/O U(S)A’L/JodS —0ast—0.

Hence (25.19) holds.

To prove (25.21), we observe that by the self-adjointness of A, the deriva-
tive of the square of the Lh.s. of (25.21) w.r.to t is 0. Hence, it is independent
of t and therefore (25.21) follows.

This shows that the initial value problem (25.18)-(25.19) has a unique
solution. Indeed, if U;(t),7 = 1,2, satisfy (25.18)-(3.11), then U(t) := Uy (t) —
Us(t) satisfies (25.18) with the initial condition U (¢t = 0) = 0, which by (25.21)
implies that U(t) = 0.

To prove that U(¢) has the group property (25.20), we notice that both
sides of equation (25.20) satisfy the same differential equation (in ¢) with the
same initial condition. Hence, by the uniqueness, they are equal.

Another way to prove (25.20) is to use representation (25.28). By Prob-
lem 2.17, e~** has the group property (25.20). Given this result, for any

v, ¢ €H,
(¥, UU(5)9)

<U(t)*¢7 U(S)Qf)) = Alim <ei’4)\tw7 e—iAxs/F%))
= lim (¢, e”NF0) = (), U(t + 5)¢)

which proves (25.20). O
The theorem above has the following corollary

Corollary 25.28 If A is self-adjoint, then the Cauchy problem (25.16)-
(25.17) has a unique solution which conserves probability.

Indeed, the family 1 (t) := U(¢)vy is a solution of the Cauchy problem (25.16)-
(25.17), which conserves the probability. It is the unique solution of (25.16)-
(25.17), since, if there are two solutions, then their difference, 1), solves (25.16)
with 1/~)|t:0 = 0, and therefore by conservation of probability (a consequence
of symmetry of A), ||4(t)|| = ||¢(0)|| = 0 for all ¢ and hence ¢ = 0.

The operator family U(t) := e~%4 is called the propagator or evolution op-
erator generated by A, or for the equation (25.16). The properties recorded in
the equations (25.20) and (25.21) are called the group and isometry properties.
The operator U(t) = e~%4 is invertible (since U (t)U(—t) = 1) and is isometry
(i.e. |U()] = ||9]])- Such operators are called unitary. More precisely,
Definition 25.29 An operator U is called unitary if it preserves the inner

product: (U, Ug) = (1, ), for all ¥, ¢ € H, or what is the same, UU* =
U*U =1.
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To show that U(t) = e~®4 is unitary, we observe that ||U ()| = ||¢| im-
plies (¢, 9) = (U(t)y,U(t)y) = (¢, U*()U(t)¢), from which U*(#)U(t) = 1
follows. Similarly, U(t)U*(t) = 1. So U*(t) = U(—t) = (U(¢))~!. This if A is
self-adjoint, the operator U(t) := e~*4* exists and is unitary for all ¢ € R.

The following very simple example illustrates the connection between uni-
tarity and self-adjointness.

Example 25.30 If ¢ : R? — R is continuous, then the bounded operator
U:— ey

is easily checked to be unitary on L?(R9) (just note that U* is multiplication
by e~%®). Now ¢ is bounded as a multiplication operator iff it is a bounded
function. Note, however, that U is well-defined (and unitary) even if ¢ is
unbounded.

Remark 25.31 If A is a positive operator, then we can define the opera-
tor e~ in a way similar to our definition of ¢ above. We take e=4 :=

limy o, e~ 4* where Ay = (A + \)"!\A is a family of bounded operators.

To conclude this section we describe an important extension of Theorem
25.27 to the situation when the operator A is time-dependent, A = A(t). Our
goal now is to solve the abstract Schrodinger equation

o

i g =AM, Yle=o = o, (25.29)

where ¢ : t — (t) is a path in a Hilbert space H, for every ¢, A(t) is a
self-adjoint operator on H and g € H. We have the following result

Theorem 25.32 Let A(t) = A+ W (t), where A and W are self-adjoint oper-
ators and, in addition, W is bounded. Then there is a unique two-parameter
family of bounded operators, U (t, s) with the following properties, for ¢, s € R,

0

iatU(t, s) = At)U(t, s), (25.30)
U(s,s)=1and U(t,s)) — ), ast — s, (25.31)
Ul(t,s)U(s,r) =Ul(t,r), (25.32)
[U (¢, )¢l = ll]l. (25.33)
Proof. We construct the two-parameter family of bounded operators, U (¢, s)

satisfying (25.30) - (25.31). First, we pass to the interaction representation by
introducing the two-parameter family V (t,s) := e*=*)AU(t,s). This family
satisfies the differential equation

0

iatV(t7 s) =W(t, s)V(t,s), V(s,s) =1, (25.34)
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where W (t, s) := e!t=9)4W (t)e~*(*=)4 Now, we integrate (25.34) in t from
s to t and use the fundamental theorem of calculus to obtain

V(t,s)=1+1 /t W (r, s)V (r, s)dr.

We construct a unique solution to this equation. Iterating this equation, we
arrive at the series (Dyson series)

Ult,s) =1+ Unlt,s). (25.35)
n=1
where U, (t, s) := " fA(s " d"rW(r1,s) ... W(ry,s), with A(s,t) := {(r1,ra,...
s <rp <--- <1y <rp <t} Now, using that W(r, s) are bounded (in fact,
(IW(r, s)|| < |W(r)]]), we estimate

U,(t,s §/ d"r Wi(r:)|.
[Un(t, s)|l o 1:[|| ()

s

Next, the relation

n 1 n
e TT W ()| = / dry . dry TTIW )l
/Am) 1:[ Pl S 1:[ !

[ @l

shows that the series above converges in norm and represents a family of
bounded operators. Representation (25.35) shows that it satisfies (25.30) -
(25.31).

Similarly, one shows that U(t, s) satisfies also the equation

iaasU(t, s) =U(t, s)A(s). (25.36)
Using (25.30) and (25.36), one checks easily that the derivative of the Lh.s.
of (25.32) w.r.to s is zero. Hence, it is independent of s and therefore (25.32)
follows.

Finally, differentiating the square of the Lh.s. of (25.33) w.r.to t, we see
that it is independent of ¢ and therefore (25.33) follows. O

A two-parameter family of bounded operators, U (t, s), satisfying (25.30) -
(25.33) is called the propagator, or evolution, generated by A(t). (Recall that,
if A is t-independent then the same term is applied to U(t) = U(t,0) = e~*A%,
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Problem 25.33 Let A(t) = A + W (t), where A and W are self-adjoint op-
erators on a Hilbert space H and, in addition, W is bounded. Prove directly
(i.e without using Theorem 25.32, but using the ideas of its proof) that the
abstract Schrodinger initialvalue problem

P(t) = At)(t), ¥t = 0) = o, (25.37)

where ¥(+) : R — H is a differentiable vector function, has a unique solution
for every ¢y € H. Show that the solution satisfies || (¢)|| = ||vo]]-

25.7 Projections

Let H be a Hilbert space. A bounded operator P on H is called a projection
operator (or simply a projection) if it satisfies

P? =P
This relation implies || P|| < ||P||?, and so || P|| > 1 provided P # 0. We have
veRanP <= Pv=v and v¢€ (RanP)t < P*v=0. (25.38)

Indeed, if v € RanP, then there is a u € H s.t. v = Pu, so Pv = P?u = Pu =
v; the second statement is left as an exercise.

Problem 25.34 Prove that (a) P*v = 0 if and only if v L RanP, (b) RanP
is closed and (c) P* is also a projection.

Example 25.35 The following are projection operators:

1. let H = L?(R%) and let E be a subset of R%. Then

Xock © f(2) = xp(z)f(2)
where

XE(x)::{ler

0Oz ¢ FE

is a projection.
2. again let H = L%(R%) and let E be a subset of RZ. Then

Xper = F 'xner F:u(z) — (xp(k)a(k)) (2)

is a projection.
3. let H be any Hilbert space, and ¢, € H satisfying (¢, 1) = 1. Then

f= Ao, )Y

is a projection.
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4. as in 3), but now let {¢;}; be an orthonormal set (i.e. (1;,1;) = &;;).

Then
N

fe > (i, i

1
is a projection.

Definition 25.36 1. A projection P is said to be of rank r < oo if
dim RanP = r.
2. A projection P is called an orthogonal projection if it is self-adjoint, i.e.
if P= P*.

If P be an orthogonal projection, then (25.38) implies that
v L RanP <= Pv =0, i.e. NullP = (RanP)". (25.39)

The projections in Examples 1), 2) and 4) above are orthogonal. The
projection in Example 3) is orthogonal if and only if ¢ = .

Problem 25.37 Let P be an orthogonal projection. Show that

1. ||P|| £ 1, and therefore ||P|| = 1 if P # 0 (Hint: Use (25.38));

2. 1— P is also an orthogonal projection, Ran(1 — P) LRanP, and Null(1 —
P) = RanP;

3. 'H = RanP @ NullP.

Remark 25.38 Orthogonal projections on H are in one-to-one correspon-
dence with closed subspaces of a Hilbert space H. This correspondence is
obtained as follows. Let V' = RanP. Then V is a closed subspace of X. To
show that V' is closed, let {v,} C V, and v,, — v € X, and show that v € V.
Since P is a projection, we have v, = Py, so |[v—Pv|| = [[v—v,—Pv—uv,)|| <
[lv = vn || + |P|| |]lv — vn]| — 0, as n — oo. Therefore v = Pv, so v € V, and V
is closed. Conversely, given a closed subspace V', define a projection operator
P by

Pu=v, where u=v+vtecVaVt (25.40)

Problem 25.39 Show that P defined in (25.40) is an orthogonal projection
with RanP = V. For any given V', show that there is only one orthogonal
projection (the one given in (25.40)) such that RanP = V.

25.8 The Spectrum of an Operator
Again to keep this section self-contained we repeat some definitions and results
from Section 6.1 of the main text.

Definition 25.40 The spectrum of an operator A on a Hilbert space H is the
subset of C given by

o(A):={Ae€ C | A— Xisnot invertible (has no bounded inverse)}
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(here and below, A — X denotes A — A1). The complement of the spectrum of
A in C is called the resolvent set of A: p(A) := C\o(A). For A € p(A), the
operator (A — \)~1, called the resolvent of A, is well-defined.

The following exercise asks for the spectrum of our favourite operators.

Problem 25.41 Prove that as operators on L?(R¢) (with their natural do-
mains),

1. o(1) = {1}.

2. o(pj) =R.

3. o(z;) =R.

4. o(V) = range(V), where V is the multiplication operator on L?(R?) by a
continuous function V(z) : R — C.

5. o(—A) =10, 00).

6. o(f(p)) = range(f), where f(p) := F~1fF with f(k), the multiplication
operator on L?(R4) by a continuous function f(k) : R¢ — C.

Theorem 25.42 The spectrum o(A) is a closed set.

Proof. We show that the complement of the spectrum, p(A) := C/c(A), called
the resolvent set, is an open set. Indeed, let z € p(A). Then A — z is invertible
(has a bounded inverse) and therefore by Theorem 25.17, so is A — 2/ =

(A—2)[1+(z—2)(A—-2)71),if |2/ —z| < [[(A—2)7Y L. O
We observe that self-adjoint operators have real spectrum.

Theorem 25.43 If A = A*, then o(A) C R.

Proof. This follows immediately from Lemma 25.21. [J

One familiar reason for A — A not to be invertible is that (A — A)y = 0 has
a non-zero solution ¢ € D(A) C H. In this case we say that A is an eigenvalue
of A and v is called a corresponding eigenvector.

Definition 25.44 The discrete spectrum of an operator A is

04(A) = {X € C| X is an isolated eigenvalue of A with finite multiplicity}
(isolated meaning some neighbourhood of A is disjoint from the rest of o(A)).
Here the multiplicity of an eigenvalue A is the dimension of the eigenspace

NulllA—-X):={veH | (A—Nv=0}.

Problem 25.45 1. Show Null(A — \) is a vector space.
2. Show that if A is self-adjoint, eigenvectors of A corresponding to different
eigenvalues are orthogonal.
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The rest of the spectrum is called the essential spectrum of the operator A:

Oess(A) == o(A)\og(A).

Remark 25.46 Some authors may use the terms “point spectrum” and “con-
tinuous spectrum” rather than (respectively) “discrete spectrum” and “essen-
tial spectrum’.

Problem 25.47 For the operators z; and p; on L?(R%) show that

L. UeSS(pj) = ‘7(pj) =R;
2. Oess(xj) = 0(z5) =R;
3. Oess(—A) =0(—=A) =0, 00).

Hint: Show that these operators do not have discrete spectrum.

Problem 25.48 Show that if U : H — H is unitary, then o(U*AU) = o(A4),
0a(U*AU) = 04(A), and 0¢ss(U*AU) = 0es5(A).

Problem 25.49 Let A be an operator on H. If A is an accumulation point
of 0(A), then X\ € 0.s5(A). Hint: use the definition of the essential spectrum
and Theorem 25.42.

For a self-adjoint operator A the sets {span of eigenfunctions of A} and
{span of eigenfunctions of A}, where

W ={peH|{w =0 VweW},

are invariant under A in the sense of the definition

Definition 25.50 A subspace W C 'H of a Hilbert space H is invariant under
an operator A if Aw € W whenever w € W N D(A).

Problem 25.51 Assume A is a self-adjoint operator. Show that

1. If W is invariant under A, then so is W+;
2. The span of the eigenfunctions of A and its orthogonal complement are
invariant under A;

25.9 Functions of Operators and the Spectral Mapping
Theorem

Our goal in this section is to define functions f(A) of a self-adjoint operator
A. We do this in the special case where A is bounded, and f is a function
analytic in a neighbourhood of o(A).
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Problem 25.52 Let A be a bounded self-adjoint operator. Show o(A4) C
[—IIA[l, | A]l). Hint: use that if |2 > [|A[], then [[(A = z)ul| = (] — [[A])[[ul].

Suppose f(A) is analytic in a complex disk of radius R, {\ € C | |\ < R},
with R > [|A]|. So f has a power series expansion, f(A) =~ a,A\", which
converges for |A| < R. Define the operator f(A) by the convergent series

F(A) = i anA™. (25.41)
n=0

We have already encountered an example of this definition: the exponential
e discussed in Section 2.3. As another example, consider the function f()\) =
(A —2)7L, for |z| > ||Al|, which is analytic in a disk of radius R, with || A]| <
R < |z|, and has power-series expansion

fy=-" Sy

z1—M\/z z =

The corresponding operator defined by (25.41) is the resolvent
L= i i
A-z)"t=- A 25.42
Ao == 3 (25.42)

(Recall that the series in (25.42) is a Neumann series.) Of course, the resolvent
is defined for any z in the resolvent set p(A) = C\o(A). In fact, (A —2)7! is
an analytic (operator-valued) function of z € p(A). To see this, we start with
the relation

(A - z)_1 =(A4- zo)_l — (20— 2)(A— Zo)_l(A — z)_1

for z,z9 € p(A), which the reader is invited to verify (this relation is called
the first resolvent identity). Thus

(A=2)" =1 —(2—20)(A—20)"' 1A - 20)"".

If |2 — 20| < (||(A —20)71||)~!, the first inverse on the right hand side can be
expanded in a Neumann series, yielding

(z — 20)7 (A — 2z9) ™71,

I

Il
=)

(A—2)"t =

J

Thus (A — 2)7! is analytic in a neighbourhood of any zy € p(A).
The following useful result relates eigenvalues and eigenfunctions of A to
those of f(A).

Theorem 25.53 (Spectral mapping theorem) Let A be a bounded op-
erator, and f a function analytic on a disk of radius > || A]|. If Ap = A¢, then

f(A)p = F(A)o.
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Proof. If {a;} are the coefficients of the power series for f, then

A)p=>a;A¢= (> a;N)p=f(N¢.
j=0

j=0
O

We conclude with a brief discussion of alternatives to, and extensions of,
the above definition. Suppose f is analytic in a complex neighbourhood of
o(A). We can replace definition (25.41) by the contour integral (called the
Riesz integral)

f f(z )~ tdz (25.43)

where I is a contour in C enc1rchng o(A). The integral here can be understood
in the following sense: for any 1, (]5 €N,

W £ = 1 FE (A= 2) o)

(knowledge of (¢, f(A)g) for all ¥, ¢ determines the operator f(A) uniquely).

Problem 25.54 Show that the definition (25.43) agrees with (25.41) when
f(A) is analytic on {|A\| < R} with R > ||A||. Hint: by the Cauchy theorem,
and analyticity of the resolvent, the contour I" can be replaced by {|z| = Ro},
|A]| < Rp < R. On this contour, (A —z)~! can be expressed as the Neumann
series (25.42).

A similar formula can be used for unbounded operators A to define certain
functions f(A) (see [162]).

If A is an unbounded self-adjoint operator, and f is a continuous, bounded
function, the bounded operator f(A) can still be defined. One example of this
is the definition of €™ in Section 25.6. The definition of f(iV) using the
Fourier transform (Section 25.14) provides another example. More generally,
the Fourier transform, together with Theorem 25.27, allows one to define
functions of self-adjoint operators as follows:

Definition 25.55 Assume A is a self-adjoint operator and f(A) is a function
whose inverse Fourier transform, f is integrable, [|f(t)|dt < co. Then the
operator

f(A) := (2rh)~1/? L h f@)eAt/hat (25.44)

is well-defined, bounded, and is self-adjoint if f is real.

We present without justification a formula connecting the equations (25.43)
and (25.44) (i.e. connecting the propagator and the resolvent):

e MAtF(A) = 71T /Oo dAf(N)e MIm(A — X —i0) 7L (25.45)

— 00

The reader is referred to [244] for the general theory.
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25.10 Weyl Sequences and Weyl Spectrum

We now want to address the question of how to characterize the essential
spectrum of a self-adjoint operator A. Is there a characterization of o.ss(A)
similar to that of 04q(A) in terms of some kind of eigenvalue problem? To
answer this question, we observe that there is another reason for A—\ not to be
invertible, besides A being an eigenvalue of A, namely (4 — A)yp = 0 “almost”
having a non-zero solution. More precisely, there a sequence {1} C H s.t.

1. ||n|l =1 for all n
2. [(A=XN,|| = 0asn — oo
3. ¥p — 0 weakly as n — oo (this means (¢, 1),,) — 0 for all ¢ € H).

We say {1} C H is a Weyl sequence for A and ) if these statements hold.

Definition 25.56 The Weyl spectrum of an operator A is
ow(A) = {\| there is a Weyl sequence for A and A}.

The following result says that when A is self-adjoint, the sets o4(A4) and
ow(A) are disjoint, and comprise the whole spectrum:

Theorem 25.57 (Weyl) If A is self-adjoint, then oes5(A4) = 0w (A), and
therefore the spectrum of A is the disjoint union of the discrete spectrum of
A and the Weyl spectrum of A:

0(A) = 04(A) Uoy,(A).

Proof. Suppose first that A € oess(A). Then inf )y =1,4ep(a) (A= N[ =0,
for otherwise A — A would be invertible. Hence there is a sequence v,, € D(A)
such that ||¢n] = 1 and ||[(A — A),|| — 0 as n — oco. By the Banach-Alaoglu
theorem (see, eg., [244]), there is a subsequence {1,/ } C {1, } and an element
o € H such that ¢,, — 19 weakly as n’ — oo (we drop the prime in n’
henceforth). This implies that for all f € D(A),

(A= N)f. o) = lim (A= X)) = T (£, (A~ Njion) = 0.

Hence o € D(A) (since D(A) = D(A) = {¥ € H | [(Af, )| < C|f]| ¥f
DAY} and [(Af, 60)] = IN(F.%0)] < Mol £11) and Avio = Xedo. If whg = 0,
then {¢,} is a Weyl sequence for A and A, and so A € g, (A). If g # 0,
this implies that A is an eigenvalue of A. So A must therefore have infinite
multiplicity or be non-isolated. If X\ is an eigenvalue of infinite multiplicity,
then an orthonormal basis of Null(A — \) yields a Weyl sequence for A and
A, and therefore A € o,,(A4). If A is not isolated, then consider a sequence
Aj € o(A)\{A\} with \; — X. If there is a subsequence consisting of distinct
eigenvalues, a corresponding sequence of normalized eigenvectors is orthonor-
mal, and so converges weakly to 0 — hence it is a Weyl sequence for A and .
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On the other hand, if the sequence A; consists (eventually) of non-eigenvalues,
then, arguing as above for each \;, one can construct a diagonal sequence
which is Weyl for A and A. So we conclude A € 0,,(A), and we have shown
that oess(A) C 04 (A). Now suppose A € 0, (A), and let ¢, be a corresponding
Weyl sequence. Then certainly A € 0(A), otherwise

[l = 1(A = 2)7HA = Nball < (A =N THI(A = Neu]l — 0,

a contradiction. Suppose A is an isolated eigenvalue of finite multiplicity. For
simplicity, suppose the multiplicity is one (the argument is straightforward to
generalize), and let 19 be a normalized eigenvector. Write ¢, = cptbg + ¢~n
with ¢, = (o, %) and <7»/1~n,¢0> = 0. Since v, — 0 weakly, ¢, — 0, and
50 ||[thn| — 1. Also (A — Ap)th, — 0. Because A is isolated in the spectrum,
(A —¢)~! is uniformly bounded on ()" for ¢ near A, and so

[l = [1(A = X)L (A = A )|
< (const)||(A — )\n)z/;nH — 0,

a contradiction. Thus A € o.ss(A), showing 0, (A) C 0ess(A) and completing
the proof of Theorem 25.57.

As an application of the Weyl theorem we consider a Schrodinger operator
on a bounded domain, with Dirichlet boundary conditions.

Theorem 25.58 Let A be a cube in R%, and V a continuous function on A.
Then the Schrédinger operator H = —A + V, acting on the space L2(A) with
Dirichlet boundary conditions, has purely discrete spectrum, accumulating at
+00.

To be precise, the operator “H on L?(A) with Dirichlet boundary conditions”

should be understood as the unique self-adjoint extension of H from C§°(A).

Proof. Suppose A = [0, L]%. Consider the normalized eigenfunctions of the
operator —A on L?(A) with Dirichlet boundary conditions:

d/2 d -
or(x) = <i> Hsin(k:j:cj), ke L(Z+)d

(see Section 7.1), so that
— Agy = k> ¢y (25.46)
Now we recall that the eigenfunctions ¢y, k € E(ZJr)d, form an orthonormal
basis for L2(A):
b= > (k. V)

ke T (z+)4

for any 1 € L?(A) (this is a special case of a general phenomenon valid for
self-adjoint operators).
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We show now that the operator H has no essential spectrum. Assume on
the contrary that A € o.ss(H), and let u,, be a corresponding Weyl sequence;
ie. [Jupl = 1, up, — 0 weakly, and ||(H —X)u,|| — 0. By the triangle inequality

1E — Nuall > (=2 = Nun]l = [Vetnl > | (~A — Ayun | — max V] (25.47)
since |Juy|| = 1. Writing
Up = Z afﬁbk
k
where a¥ = (¢x, u,), and using (25.46), we compute
(=4 =D (k> = Najéx
k
and so by the Parseval relation (Proposition 25.4)
(=2 = Nunl* = D (kI = 2| (25.48)
k

The Parseval relation also gives

1=l = 3 lab (25.49)
k

Now choose K such that |k|> — X\ > /2(max|V| + 1) for |k| > K. Then
by (25.48) and (25.49),

[(=A=XNun|® > 2(max [V]+1)* > [ak]* = 2(max [V[+1)*(1— Y |ak]?)
|k|>K |k|<K

Since u,, — 0 weakly,

aicz = <¢kaun> —0
as m — oo, for each k. Choose N sufficiently large that |a¥| < (2K4)~'/2 for
k with |k| < K and n > N, where

Ky = #{k; e (Z+)d | |k| < K}

Then for n > N, 3 <k lak

nl

2 <1/2, and so
I(=A = Nun* > (max|V] +1).

Returning to (25.47), we conclude that for n > N, [[(H — A)uy| > 1, which
contradicts the property [|(H — A)un| — 0. Hence no finite A can be a point
of the essential spectrum of H.

Proceeding as in the proof of Theorem 6.18, one can show that H has an
infinite number of eigenvalues which accumulate at oco. [
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Next, we present a result characterizing the essential spectrum of a
Schrodinger operator in a manner similar to the characterization of the dis-
crete spectrum as a set of eigenvalues.

Theorem 25.59 (Schnol-Simon) Let H be a Schrodinger operator with a
bounded potential. Then

o(H) = closure {\ | (H — A\)¢ = 0 for ¢ polynomially bounded }.

So we see that the essential spectrum also arises from solutions of the eigen-
value equation, but that these solutions do not live in the space L?(R3).

Proof. We prove only that the right hand side C o(H), and refer the reader
to [73] for a complete proof. Let ¢ be a polynomially bounded solution of
(H — ANy = 0. Let C, be the box of side-length 2r centred at the origin. Let
jr be a smooth function with support contained in C)1, with j. =1 on C,,
0 < jr <1, and with sup, , |4)<2 [057r(2)] < co. Our candidate for a Weyl
sequence is

W e Jrt
154l
Note that |Jw,| = 1. If ¢ &€ L?, we must have ||j,%| — oo as r — oo. So for

any R,
1
wl < [ W0
/|x|<R 139112 Jjz1<r

as r — o0o. We show that
(H — Nw, — 0.

Let F(r) = [, |#[?, which is monotonically increasing in r. We claim there
is a subsequence {r,} such that

F(r, +2)
— 1.
F(r,—1)
If not, then there is @ > 1 and 79 > 0 such that
F(r+3)>aF(r)

for all » > ro. Thus F(rg + 3k) > a*F(r¢) and so F(r) > (const)b” with
b = a'/3 > 1. But the assumption that ¢ is polynomially bounded implies
that F(r) < (const)r™ for some N, a contradiction. Now,

(H - )\)JMP = jT(H - )\W + [_Aajr]w-
Since (H — A)¢ =0 and [A, j,] = (4j,) 4+ 2V}, - V, we have
(H - A)]r"/’ = (*A]r)d) —2Vjr - Vb

Since |0%j,| is uniformly bounded,
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1002 = N < (const) [

Cr11\Cr

(02 + |V[?) < (const) / 2.

Cry1 Cr

S0 P42 —F(r—1) _ _ F(r+2)

-1
F(r) - (F(r -1) )
and so [[(H — AN)wy, || — 0. Thus {w,,} is a Weyl sequence for H and A. O

1 = Ny, < 7

In the rest of this section, by way of illustration, we construct Weyl se-
quences for the coordinate and momentum operators. We assume, for simplic-
ity, d = 1.

Thus for any A € R, we will find a Weyl sequence for  and A. This sequence
is such that its square approximates the delta-function 6x(z) = 6(A—z) which
formally solves the equation

(z—A)6x =0

exactly. Such a sequence is sketched in Fig. 25.1.

Fig.25.1. Weyl sequence for z, A.

How do we construct such a sequence 1,7 Let ¢ be a fixed non-negative
function supported on [—1, 1], and such that

J1op =1

We compress this function, increasing its height, and shift the result to A:

Yn(w) == n'o(n(x = N).

[l = [1op =1
and

I = Al = [l = Nealotnte ~ WPdz = |, [ 1ollotw)lay —0

Then



396 25 Mathematical Supplement: Elements of Operator Theory

asn — oo. Thus A € o(x), at least. Now we show that ,, — 0 weakly. Indeed,

for any f € L?(R%),
1/2 1/2
_ 2 2
‘/wnf - ‘/Z_Agl/nwnf < (/lwnl ) (/z_xgl/n'f' )

which — 0 as n — oo by a well-known result of analysis. Thus, A € gess().
It is easy to convince yourself that = has no eigenvalues.

Now we construct a Weyl sequence, {9, }, for p and A. Using properties of
the Fourier transform, we have

1= Nl = (2 = N1 = [[(k = Al

Take for wAn the Weyl sequence constructed above:
U = n'2g(n(k — X))

for ¢ supported on [—1,1], and [|¢|?> = 1. So we have ||1,|| = [[¢/n]| = 1 and

[ Fon= [ fin =0

for any f € L?(R%). Further,

(k= Null =0 = [[(p— A)tou] — 0

and so 1, is a Weyl sequence for p and A. Thus o(p) = 0ess(p) = R. Now let
us see how 1, looks. We have

Yn(x) = (277?1)_1/2/eik‘w/hnl/Qi)(n(kz —\)dk = e M2z /n).

Suppose, for example, that ¢ = 1 for |z| < 1/2. Then v, looks like a plane
wave (with amplitude n~/2 and wave vector A), cut off near oo by ¢(z/n)
(|thn| is sketched in Fig. 25.2).

Iy, 1 1/[n
v

| |
T
-n/2 n‘/2

Fig.25.2. Weyl sequence for p, A.

We remark that the fact o(p;) = 0ess(pj) = R also follows directly from
the fact o(x;) = 0ess(z;) = R, together with Problem 25.48 and properties of
the Fourier transform.



25.11 The Trace, and Trace Class Operators 397

25.11 The Trace, and Trace Class Operators

This section gives a quick introduction to the notion of the trace of an operator,
a generalization of the familiar trace of a matrix. More details and proofs can
be found in [244], for example.

Let p be a bounded operator on a (separable) Hilbert space, H. Since
p*p > 0, we can define the positive operator |p| := y/p*p (this operator can
be defined by a power series — see [244]; see also Section 25.9). The operator
p is said to be of trace class if

> (W5, lplw;) < oo

J

for some orthonormal basis {t;} of H. If p is a trace class operator, we define
its trace to be

Trp= (1, p¢5)
J

for some orthonormal basis {1;} of H. This definition is independent of the
choice of basis.

Problem 25.60 Show that the trace is well-defined by showing the that the
right-hand side is independent of the choice of basis. Hint: consider another
orthonormal basis { ¢;} and let ¢; =3, c;j¢;. Show that

E CikCit = Okl,
i

using the fact that
Z<¢k7 ’l/)z><’l/)“ ¢l> = <¢ka ¢l>7

2

and then use that to show that

> (Wi v5) = (¢, 085)-

J J

Properties of the trace:

1. Trp* =Trp, and Trp > 0 if p > 0.

2. If p is trace class and A is bounded, then Ap and pA are trace class with
Tr(Ap) = Tr(pA) (cyclicity of the trace).

3. Tr(wA+B) =aTrA+ 3Tr B.

4. It (Kf)(z) = [ K(z,y)f(y) dy, then Tr K = [ K (x,z) da.

5. If p is trace class, then oess(p) C {0} and ), |A\;| < oo, where A; are the
eigenvalues of p.
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The trace class operators form a Banach space under the norm

loll1 == Tr|pl,

and the trace is a linear functional on this space.

Let us look at a few examples of trace class operators.

The first example is useful in the preceeding sections. Let A be an un-
bounded, self-adjoint operator, bounded from below, with purely discrete
spectrum. Let Fy < E; < F3 < --- be the eigenvalues of A (since there
is no essential spectrum, we must have E; — oo if j — 00). It is a general fact
(see [39, 244]) that the set of eigenvectors of A forms a basis in the underly-
ing Hilbert space. Since the eigenvectors of A can be chosen to be mutually
orthogonal, there is an orthonormal basis of eigenvectors. Suppose f: R — C
is a continuous function.

Proposition 25.61 f(A) is trace class with
=D f(E) (25.50)
J

provided the sum on the r.h.s. converges absolutely.

Proof. Let {1;} be an orthonormal basis of eigenvectors corresponding to the
eigenvalues {E;} of A. By the spectral mapping theorem (see Section 25.9),

[f (A = |F(Ej)lj, so

Z(¢Ja|f i) Z|f ) < o0

J

by assumption. Hence f(A) is trace class, and we may compute its trace as

Tr(f(A)) = > (¥, f(A Zf

J

Integral operators provide another useful example.

Proposition 25.62 Let K be a continuous function on [a, b]%. Then the in-
tegral operator K on L?([a,b]) defined by

b
- / K(2,9)f (0)dy

b
TrIC:/ K(z,z)dx.

is trace class, with

A bounded operator K is called Hilbert-Schmidt if K*IC is trace class. We
have
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Proposition 25.63 An integral operator K on L?(R?) with kernel K €
L?(R9¢ x R?) is Hilbert-Schmidt, and

TrK* K = |K (z,y)|*dzdy.
R x R4
Proof. Let {1;} be an orthonormal basis in L2(R¢). Then by the definition

of the trace,

T = 3 (5, KKy = 3 (K, Kg)
=;MM:§%Q@Mwm@mw
-/ P [ Kl

By the Parseval relation, this is
ek = [ ][ KGo)Pde= [ Ke)Pdsdy
Rd JRE R4 xR?

as required. [

A final example of a trace-class operator is a finite rank projection.

Problem 25.64 Show that if P is a rank-r projection, then P is trace class.
If, in addition, P is an orthogonal projection, then TrP = r.

We end this section by describing the spectra of trace-class operators.

Theorem 25.65 If p is a trace class operator, then its spectrum consists of
isolated eigenvalues with finite multiplicity, and possibly the point 0. Thus
eigenvalues can accumulate only at 0.

Proof. We prove the theorem for p positive. We begin with

Lemma 25.66 If p > 0 is a trace class operator, ); — 0 weakly, and [|1);]| <
M for all j, then

{5, ptp3) — 0. (25.51)

Proof. Let {¢,} be an orthonormal basis in our Hilbert space. Writing

wj = Z<¢na wj>¢nv

n

we find
(W, 005) = > (Dns U5} (Dms ;) (b, pOm)-

n,m
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Since p = p/2p*/?, we have

B ] = 1026, 026,0] < 026, 16" 2]
= (b, P ) (D pm) /2.

The last two relations yield

<7/)j’ ﬁ"/)j> < <Z |<¢na wj>|<¢na p¢n>1/2>

n
2

<2 > bns ) (bns pn)'/?

n<N

+2 <Z |<¢>n,wj>|<¢n,p¢n>”2> :

n>N

Applying the Cauchy-Schwarz inequality, we obtain

(W 0050 <2 D Wm0 | | D (dns )

n<N n<N
+2 <Z |<¢n,wj>|2> (Z <¢n,p¢n>> .
n>N n>N

Since p is trace class, given any € > 0, there is N(e) such that

D (bnipdn) <e.

n>N(e)

Since ; converges weakly to zero, for any € > 0 and N > 0, there is J(e, N)
such that

ST Wb )P <€ forall j>J(e,N).

n<N

The last three inequalities imply that for all j > N (e, N(¢)),

(0, pj) < 2¢ Trp+ 2|05 %, (25.52)

where we used

Z <¢nap¢n> < Z<¢n,pq§n> =Trp

n<N

and

> Kbm i) <3 Kms i) P = [ls]12.

n>N n
Since [|9;]| < M, the inequality (25.52) completes the proof of the lemma. O
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Lemma 25.67 If p > 0 is trace class, then so is p2.

Proof. Since

(¢, 0°8) = (po, po) = |Ip9||*
= [lp"2p" 20|12 < |Ip" 2211 p*26|I* = ||p" /2|1 (¢, p9),

for any orthonormal basis {¢;},

> (650705 < 1212 D (6, pg) < oo
J

j
Hence p? is trace class.

Now we are ready to prove our spectral statement. Let {1,} be a sequence
with ¢; — 0 weakly, and [|¢;]| = 1. Then by Lemmas 25.66 and 25.67,

(p — Nw;11% = (W5, (p* — 22p + A2);)
= (1, 0%105) — 2X\{(j, prbj) + A2 — N2

Hence p and A # 0 have no Weyl sequence. Thus by Theorem 25.57, A # 0 is
not a point of the essential spectrum of p. Thus o.ss(p) C {0}. O

Theorem 25.68 Let p be a self-adjoint trace class operator on a Hilbert
space ‘H. Then the normalized eigenvectors of p form a basis in H.

Proof. The normalized eigenvectors of p are independent, since p is self-
adjoint. Let V' denote the span of the normalized eigenvectors of p, and define
p* to be the operator p restricted to V. Then p* is a self-adjoint trace-class
operator on V1. It cannot have non-zero eigenvalues, since all such eigenvec-
tors would lie in the space V. Hence o(pt) C {0}. Since pt is self-adjoint
and non-negative, we apply Theorem 8.2 to p~ and —p* to conclude that
(1, prap) = 0 for all ¥» € V+, and so p~ = 0. That means V+ must consist of
zero-eigenvectors of p, and hence must be empty. Thus V ="H. O

A self-adjoint trace-class operator p can be written in the form

o= nim, (25.53)
J

where {1;} are orthonormal eigenfunctions and p; are the corresponding
eigenvalues, py; = p;v;. Indeed, since by Theorem 25.68, {1;} forms a basis
in H, any ¢ € H can be written as ¢ = Zj (¥j, ®)9;, and so

pd =Y pi(ti, o) =Y piPu,o.
J J

Since TrPy, = 1 and Tr(zj Aj) = ZjTrAj, the last relation implies the
relation Trp =, p;.
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25.12 Operator Determinants

In this section we discuss determinants of differential operators, which appear
in the stationary phase expansion of the path integrals developed in Chap-
ter 16.

For a square matrix A, the determinant function has the properties

. A is invertible iff det A # 0
A=A*=det AeR

. det(AB) = det(A) det(B)
A>0=detA=eTrln4)

. detA:H/\ P OfA>\

We would like to define the determinant of a Schrédinger operator.

U b

Example 25.69 Let H = —A+ V on [0, L] with zero boundary conditions
(assume V is bounded and continuous). Then using the fact that for n € Z,
sin(mnx/L) is an eigenfunction of —A with eigenvalue (7mn/L)?, we obtain

|(H —(mn/L)?) sin(mna/L)|| = ||V () sin(mnz/L)|| < (max [V)| sin(rna/L)|],

and spectral theory tells us that H has an eigenvalue in the interval [(7n/L)%—
max |V, (7n/L)? + max |V|]. Since {\/2/Lsin(mnz/L) | n = 1,2,...} is an
orthonormal basis in L?[0, L], we have

o(H) = {(7n/L)*+ O(1) | n € Z}.
So trying to compute the determinant directly, we get [[, oy g A = 00.
For a positive matrix, A, we can define (a(s) := TrA™ =>", v of 4 A"
Problem 25.70 Show in this case that det(A4) = e=¢4(0),
Now for H = —A +V on [0, L]? with zero boundary conditions,
Cu(s)=tr H*:= Z AT
xevof H

exists for Re(s) > 1/2 (see Example 25.69 for d = 1). If (i has an analytic
continuation into a neighbourhood of s = 0, then we define

det H = ¢=¢u(0)

So defined, det H enjoys Properties 1-4 above, but not Property 5. It turns
out that for H = —A+V, (g does have an analytic continuation to a neigh-
bourhood of 0, and this definition applies.

It is difficult, however, to compute a determinant from this definition. In
what follows, we describe some useful techniques for computation of determi-
nants.



25.12 Operator Determinants 403

Using the formula

1 o0
A8 = / ts_le_t’\dt
I'(s) Jo

for each A, € o(H) leads to

Cu(s) = FES) /0 tﬁ*lge*wdt.

Now ) is an eigenvalue of H iff e™* is an eigenvalue of e *#

(this is an

example of the spectral mapping theorem — see Section 25.9), and so e~ is
the n-th eigenvalue of e~*#. Thus
Cul(s) = ! /oo t 1 Tre~H at.
I'(s) Jo
This formula can be useful, as it may be easier to deal with Tr(e=*) =
[ e (z,z)dx than Tr(H*).
Example 25.71 We consider H = —A in a box B = [-L/2,L/2]? with

periodic boundary conditions. In this case
e (z,y) ~ (27Tt)_d/26_‘”3_y‘2/2t

in B x B, if B is very large, and so

Tre ™t = / e M (x, x)dx ~ / (27t)~ Y% = (27t) "/ ?vol(B).
BxB B

But calculation of det H by this method is still a problem.

Remark 25.72 Often (and in all cases we consider here), we have to compute
a ratio, gg:g, of determinants of two operators A and B, such that det A
and det B must be defined through a regularization procedure such as the
one described above, but the determinant of the ratio AB~! can be defined
directly. Since ¢4 = det(AB~'), we can make sense of the ratio on the left

det B
hand side without going to regularization.

The most useful calculational technique for us is as follows. Let A and B be
Schrédinger operators on L2([0,T]; RY) with Dirichlet boundary conditions.
Denote by J4 the solution to AJ4 = 0 with J4(0) =0, Ja(0) =1 (J adxd
matrix valued function on [0,77]). Then one can show (see, eg., [195, 180])

det A det Ja(T)

= . 25.54
det B det Jp(T) (25:54)
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Remark 25.73 If A = S"(¢) for a critical path ¢, then J4 is the Jacobi
matrix along ¢ (see Section 26.4).

Problem 25.74 Let A(T) be the operator —92+¢(t) defined on L?([0, T; R?)
with Dirichlet boundary conditions, and let J4 be the corresponding Jacobi
matrix. Show that the functions det A(T") and det J(T") have the same zeros of
the same multiplicities (¢o is a zero of f(t) of multiplicity n if 9% /Ot f(ty) = 0
for k=0,...,n—1and 9"/0t" f(to) # 0).

25.13 Tensor Products

We collect here a few facts about tensor products of Hilbert spaces, and tensor
products of operators and their spectra (see [244] for details and proofs).

Let H; and Hs be two separable Hilbert spaces. The tensor product of H;
and H- is a Hilbert space H; ® Ho constructed as follows. To i1 € H; and
1y € Ha, we associate a map

w1®’l/122H1 XH2—>(C
(f1, f2) = (f1,01) 1, (f2, ¥2) 2,

which is conjugate linear in each component (Y1 ® ¥a(afi, fo) = av; ®
Ya(f1, f2), 1 @ Yo(fi + g1, f2) = 1 @ Ya(f1, f2) + Y1 ® P2(g1, f2), and the
same for the second component). On the vector space, V', of all finite linear
combinations of such conjugate bilinear maps, we define an inner-product by
setting

(1 @ Yo, d1 @ Pa) := (1, P1), (Y2, P2) 1, (25.55)

and extending by linearity (it is straightforward to check that this is well-
defined). Then H; ® Hs is defined to be the completion of V' in the inner-
product determined by (25.55).

A simple example, which appears in Section 13.1, is

L*(R™) ® L*(R") ~ L*(R™™)

for positive integers m,n. This Hilbert space isomorphism is determined by
the map

feg— fx)g(y)
(see, eg., [244] for details).
Given bounded operators A and B acting on H; and Hs, the operator
A ® B, which acts on H; ® Ha, is defined by setting

A® B(t1 ® 1s) = Ay @ Biba,

extending by linearity to all finite linear combinations of elements of this
form, and then by density of these finite linear combinations, to Hi ® Ho.
This produces a well-defined operator.
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This construction can be extended to unbounded self-adjoint operators A
and B, yielding a self-adjoint operator A ® B (see, eg., [244]).

Of particular interest for us are operators of the form A ® 1 + 1 ® B,
acting on H = H; ® Ho, where A and B are operators acting on H; and
‘Ho respectively. This is an abstract version of the “separation of variables”
situation of differential equations. It is intuitively clear that we should be
able to reconstruct characteristics of such operators from the corresponding
characteristics of the operators A and B. As an example, we have the following
important (and simple) description of the spectrum of A® 1 + 1 ® B under
certain conditions on A and B, and, in particular, for A and B self-adjoint:

0(A®1+1® B)=0(A) +0(B)
0d(A®1+1®B) Co4(A)+04(B)C{evsof A®1+1® B}
Oess(A® 1+ 1® B) = 0ess(A) + 0ess(B)
U [0ess(A) + aq(B)]
U loa(A) + oess(B)).

Rather than prove any such statements (an involved task, requiring further
assumptions), let us just do a simple, suggestive computation. Suppose A =
A1 and By = Aa1pe. Then note that

(A®1+1® B)1 @ = A1 ® b2 + 11 @ Bibo
=M1 ® 2 + 1 ® (A21)2)
= A1 (Y1 ® ¥2) + A2 (Y1 @ 2)
= (A1 + A2)Y1 ® 1o,

which shows, in particular, that o4(A4) + 04(B) C{evisof A®1+1® B}.

25.14 The Fourier Transform

The Fourier transform is a useful tool in many areas of mathematics and
physics. The purpose of the present section is to review the properties of
the Fourier transform, and to discuss the important role it plays in quantum
mechanics.

The Fourier transform is a map, F, which sends a function ¢ : R* — C
to another function ¢ : RY — C where for k € R,

@(k) = (Qwh)_d/2 /]Rd e_ik‘”;/hw(:n)dx

(it is convenient for quantum mechanics to introduce Planck’s constant, h,
into the Fourier transform). We first observe that ’L/AJ = F1) is well-defined if v
is an integrable function (¢ € L'(R?), meaning [;, |¢(z)|dz < o), and that
F acts as a linear operator on such functions.
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In the following exercise, the reader is asked to compute a few Fourier
transforms.

Problem 25.75 Show that under F

|2 k|2

1. e zan? (ha)d/Qe*aB (Re(a) > 0). Hint: try d = 1 first — complete
the square in the exponent and move the contour of integration in the
complex plane.

2. e am2® AT d/2(det A)V/2e= 3k AR (A a positive d x d matrix). Hint:
diagonalize and use the previous result.

3.\ an ef\/lb;rz‘m‘ — (Jk|> +b)~1 (b > 0, d = 3). Hint: use spherical coordi-

nates. Alternatively, see Problem 25.77 below.

In the first example, if Re(a) > 0 then the function on the left is in L'(R9),
and the Fourier transform is well-defined. However, we can extend this result
to Re(a) = 0, in which case the integral is convergent, but not absolutely
convergent.

Properties of the Fourier Transform. The utility of the Fourier transform
derives from the following properties.

1. The Plancherel theorem: F is a unitary map from L?(R?) to itself (note
that initially the Fourier transform is defined only for integrable (L'(R%))
functions — the statement here is that the Fourier transform extends from
LY(RY) N L?(R?) to a unitary map on L2(R%)).

2. The inversion formula: the adjoint F* of F on L?(R?) is given by the map
¥ — 1 where

U(x) = (2wh) Y2 /R ) e =Ry (k) dk

(and by the Plancherel theorem, this is also the inverse, F~1).
For the next four statements, suppose ¥, ¢ € C5°(R9).

—ihV, (k) = ki (k).
ﬁﬂ( ) = iV (k).

P = (2mh) =2 x4,
o = (2mh) 2.

Here

Al

(f*9)( / f(W)g(z —y)dy (25.56)

is the convolution of f and g. The last four properties can be loosely sum-
marized by saying that the Fourier transform exchanges differentiation and
coordinate multiplication, and products and convolutions.

Proof. The proof of Property 1 is somewhat technical and we just sketch it
here (see, eg, [106] for details). In particular, we will show that ||f|| = || f]|.
Suppose f € C§°, and let C. be the cube of side length 2/e centred at the
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origin. Choose € small enough so that the support of f is contained in C,. One

can show that .
{Ey = (¢/2)¥ 2 /M | | € ehnZ?}

is an orthonormal basis of the Hilbert space of functions in L?(C,) satisfy-
ing periodic boundary conditions. Thus by the Parseval equation (Proposi-
tion 25.4),

L= [ = 3 e

kE€ehnZa

= (et Y0 IFG)F— [ 1FP

kE€ehnZa
as e — 0.
Problem 25.76 Show that {E})} is an orthonormal set.
We will prove Property 3, and we leave the proofs of the other properties as
exercises. Integrating by parts, we have
—ihV (k) = (2wh)*d/2/e*”'k/h (—ihV)(z)dw
=k- (%h)*d/?/e*”'k/%(x)dx = ki (k).

O
Problem 25.77 1. Show that for b > 0 and d = 3, under F !,

- e~V z]
(|k‘| + b) — \/QFL |z|

(hint: use spherical coordinates, then contour deformation and residue
theory).
2. Show that under F~1,

8(k — a) — (2wh) =4/ 2¢iaa/h,

Here 6 is the Dirac delta function— not really a function, but a distribution
— characterized by the property [ f(z)é(z—a)dx = f(a). The exponential
function on the right hand side is called a plane wave.

Functions of the derivative. As an application, we show how the Fourier
transform can be used to define functions of the derivative operator. Recall
our notation p := —ihAV. Motivated by Property 3 of the Fourier transform,
we define an operator g(p) (for “sufficiently nice” functions g) on L?(R%) as
follows.
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o — N

Definition 25.78 g(p)v (k) := g(k)v¥(k) or, equivalently,

gy = (2nh) =g « 4.
Let us look at a few examples.

Example 25.79 1. If g(k) = k, then by Property 3 of the Fourier transform,
the above definition gives us back g(p) = p (so at least our definition makes
some sense).

2. Now suppose g(k) = |k|?. Then g/(m\z/J(k:) = |k|2¢.
Problem 25.80 Show that —h2A¢ = |k|21).

Thus we have |p|?> = —h%2A. Extending this example, we can define g(p) when
g is a polynomial “with our bare hands”. It is easy to see that this definition
coincides with the one above.

3. Let g(k) = (,. |k +X) 7!, A >0, and d = 3. Then due to Problem 25.77,
we have

= VA =yl

m €

((Ho+\)")(2) P(y)dy (25.57)

T orh? rs |z —yl

where we have denoted Hy =, |p|? = f;”:nA.

Problem 25.81 Let y € R? be fixed. Find how the operator e?¥? acts on
functions (here y - p = Z;lzl Yipj, pj = —ihoy;).
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26

Mathematical Supplement: The Calculus of
Variations

The calculus of variations, an extensive mathematical theory in its own right,
plays a fundamental role throughout physics. This supplement contains an
overview of some of the basic aspects of the variational calculus. This material
will be used throughout the book, and in particular in Chapters 16 and 17 to
obtain useful quantitative results about quantum systems in the regime close
to the classical one.

26.1 Functionals

The basic objects of study in the calculus of variations are functionals, which
are just functions defined on Banach spaces (usually spaces of functions).
(Recall that a Banach space is a complete normed vector space.) If we specify
a space, X, then functionals on X are just maps S : X — R (or into C).

In the calculus of variations, one often uses spaces other than L2?(R%),
and which are not necessarily Hilbert spaces. Among the most frequently
encountered spaces are the Sobolev spaces H*(R%), s = 1,2,..., introduced
in Section 25.1. Recall that the Sobolev spaces are Hilbert spaces.

Spaces of continuously differentiable functions also arise frequently. For
k€{0,1,2,...}, and an open set 2 C R?, we define C*(£2;R™) to be the set
of all functions ¢ : £2 — R™ such that 0%¢ is continuous in {2 for all |a| < k,
and for which the norm

16l cramm = Y sup |0°6(z)]

la|<k e

is finite. Equipped with this norm, C*(£2; R™) is a Banach space.

Example 26.1 Here are some common examples of functionals, S, and
spaces, X, on which they are defined.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
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1. X = L?*([a,b];R), f € X* = X is a fixed function (X* denotes the dual

space to X, as explained in Section 25.1), and

S:60 [ f@)la)ds

Note that S(¢) is well-defined, by the Cauchy-Schwarz inequality.
2. Evaluation functional: X = C([a, b)), x¢ € (a,b) fixed, and

S ¢ @)
Compare this with the first example by taking f(z) = 6(z — o) (€ X*;
in this case X* # X).

3. Let V : R™ — R be continuous. Set X = {¢ : R* — R™ | V(¢) €
L'(R%)}, and take

S:¢p— V(g(z))dx.

Rd
4. Dirichlet functional: X = H'(R?), and

1
S /|V¢)|2dx.
2 Jga

5. Classical action: fix z,y € R™, set X = Py, 1= {¢ € C*([0,T];R™) | ¢(0) =
x,¢(T) =y}, and define

S: g /OT {;mw - V(¢>} dt.

6. Classical action: Let L : R™ x R™ — R be a twice differentiable function
(a Lagrangian function), and

T
S:¢ »—>/O L(o, (ﬁ)dt.

Here, X = P, is as in Example 5.
7. Action of a classical field theory: fix f,g,€ H'(R%R™), set

X ={pec H' R x [0, T|;R™) | ¢(x,0) = f(x), p(z,T) = g(z)}, (26.1)
and define

T 1 1
siom [ [ {5100+ 1908 + so) | doat

where f : R™ — R is a differentiable function.
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8. Lagrangian functional: Suppose £ : R™ x R4l — R (a Lagrangian den-
sity) is a twice differentiable function, and set

S //£(¢)(Jc,t),Vz,t¢($,t))dxdt

(here X is an appropriate space of vector functions from space-time R% xR,
to R™, whose specific definition depends on the form of £).

We encountered many of these functionals when we considered the problems of
quantization and of (quasi-)classical limit in quantum mechanics and quantum
field theory.

26.2 The First Variation and Critical Points

The notion of a critical point of a functional is a central one. It is a direct
extension of the usual notion of a critical point of a function of finitely many
variables (i.e., a place where the derivative vanishes). The solutions of many
physical equations are critical points of certain functionals, such as action or
energy functionals.

In what follows, the spaces X on which our functionals are defined will
generally be linear (i.e. vector) spaces or affine spaces. By an affine space, we
mean a space of the form X = {¢o+¢ | ¢ € Xo}, where ¢y is a fixed element
of X, and Xy is a vector space. We will encounter examples of functionals
defined on non-linear spaces when we study constrained variational problems
in Section 26.5.

Let X be a Banach space, or else an affine space based on a Banach space
Xo. (Recall that the notion of Banach space is defined in Section 25.1 of the
previous mathematical supplement.)

Definition 26.2 A path, ¢, in X is a differentiable function I > XA — ¢,
from an interval I C R containing 0, into X.

Definition 26.3 The tangent space, T3 X, to X at ¢ € X is the space of all
“velocity vectors” at ¢:

_ [0
Ty X { o

If X is a Banach space, then Ty X = X (and if X is an affine space based on
the Banach space X, Ty X = Xj). To see this, just note that for any £ € X,
o = ¢+ A is a path in X, satisfying ¢g = ¢ and d¢y/OA = £ (the reader is
invited to check the corresponding statement for affine spaces).

So the tangent space to a linear space is not very interesting. The notion
of a tangent space is useful when working in non-linear spaces (we will see an
example of this shortly).

| ¢ is a path in X, ¢g = gb}.
A=0
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Definition 26.4 A variation of ¢ € X along £ € Ty X is a path, ¢, in X,
such that ¢g = ¢ and 9py/OA|r=0 = &.

Example 26.5 One of our main examples is the classical action, Example 6
above (and (4.36)), defined on P,y = {¢ € C*([0,T],X) | ¢(0) =z, ¢(T) =
y} (an affine space). Then TPy = Poo (see Fig. 26.1), and an example of a
variation of ¢ € Py, in the direction & € Pyg is pr = ¢ + A € X,y

Fig. 26.1. Variations of a path.

We wish to define a notion of differentiation of functionals which is a direct
extension of usual differentiation of functions of a finite number of variables.
To do so, we use the concepts of the dual space X* to X and the notation
(-,-) for the coupling between the X* to X, described in Section 25.1.

Definition 26.6 Let S : X — R be a functional on a real Banach space
X, and let ¢ € X. We say that S is differentiable at ¢ if there is a linear
functional, 95(¢) € X*, such that

d

203 =0 = (95(¢),€) (26.2)

for any variation ¢y of ¢ along £ € X. The functional 95(¢) is the (variational)
derivative of S at ¢.

Remark 26.7 1. The notion of differentiability introduced here is often
called Gateaux differentiability. A stronger notion of differentiability,
called Fréchet differentiability, demands (for linear spaces) that

S(@+8) = 5(9) +(95(9),€) + o[l x)

as ||¢]|x — 0. The reader can check that if S is continuously (Gateaux)
differentiable at ¢y € X (i.e. 9S(¢) exists in a neighbourhood of ¢q, and
is a continuous map from this neighbourhood into X*), then S is Fréchet
differentiable at ¢g.

2. We will sometimes use the notation S’(¢) for the variational derivative
95(¢).

3. Recall that if X is a Hilbert space, then we can identify its dual, X*,
with X itself, via the map X 3 ¢ — I, € X* with I4¢ = (¢,&) for
& € X (here the notation (-,-) indicates the Hilbert space inner-product).
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(The fact that this map is an isomorphism between X and X* is known
as the Riesz representation theorem.) Thus when X is a Hilbert space,
we can identify 0S5(¢) with an element of X. This element is called the
gradient of S at ¢ (in the inner product of X), and is sometimes denoted

by gradx S(®).

Example 26.8 We compute the derivatives of some of the functionals in
Example 26.1. We suppose that whenever X is a space of functions, it is a
subspace of an L?-space. Then the variational derivative can be identified with
a function (or distribution), using integration by parts where necessary. This
is related to the L? gradient as discussed above.

1. For the functional S(¢) = f; fodx, we compute

d b
@5(0).6) = 1 S@)eo = [ 1) ondslico

/abfsdz (. 6).

Thus we identify 05 (¢) = f.
3. For S(¢) = [za V(¢), we compute

d d 0
0S(6).6) = 1 S@ho = gy [ Vionhode

= [ vV -s = (V9.8
and so we identify 9S(¢) = VV (¢).
4. For S(¢) = 3 [pa |V0[?, we compute

d
(08(9),€) = I\ S(ér)|a=0 = / aA|V¢A| In—odz

:/Rd V¢~V§dz:/ (—Ag)¢dx = (=49, )

Rd

where we integrated by parts (Gauss theorem), and used the fact that the
functions decay at co. Thus we identify 05(¢) = —Ad.

We leave the remaining examples as an exercise.

Problem 26.9 Compute the variational derivatives for the remaining func-
tionals in Example 26.1. You should find

5. 05(¢) = —m¢ — VV(9)

6. 9S(¢) = cllit (8¢L) + 04 L

7. 0S(¢) = O¢ + V() where O := 97 — A is the D’Alembertian operator
8. 9S(¢) = —Vat- ((9v¢L) + 0yL
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As in the finite-dimensional case, a critical point is a place where the
derivative vanishes.

Definition 26.10 An element ¢ € X is a critical point (CP) of a functional
S: X —-Rif9S(¢) =0.

In fact, many physical equations are critical point equations for certain func-
tionals.

Example 26.11 Continuing with the same list of examples of functionals
above, we can write down some of the equations describing their critical points:

4. A¢ =0 (Laplace equation, ¢ a harmonic function)

m¢ = —VV(¢) (Newton’s equation)

jt(@d)L) = (04L) (Euler-Lagrange equation)

O¢ + Vf(¢) =0 (nonlinear wave/Klein-Gordon equation)
—Vat - (OveL) + 0pL = 0 (classical field equation)

NS

The following connection between critical points and minima (or maxima)
is familiar from multi-variable calculus.

Theorem 26.12 If ¢ locally minimizes or maximizes a differentiable func-
tional S : X — R, then ¢ is a critical point of S. (We say ¢ is a local minimizer

(resp. maximizer) of S if there is some 6 > 0 such that S(¢) > S(¢) (resp.
S(¢) < 5(¢)) for all ¢ with [|¢ — ¢llx <6.)

Problem 26.13 Prove this (hint: it is similar to the finite-dimensional case).

Recall that a function f(v) is called strictly convex if
flsv+ (1 —s)) <sf(v)+(1—s)f(v), Vs € (0,1),

Vr € X, v,v’ € V. This condition holds if f is twice differentiable and has
positive Hessian, d? f(v) > 0, Yo € V. A function f(v) is called strictly concave
iff — f(v) is strictly convex.

Theorem 26.14 Assume f(v) is a differentiable and strictly convex/concave
function on a finite-dimensional space V. Then it has a unique critical point,
and this critical point minimizes/maximizes f.

We sketch a proof of this theorem. To fix ideas we consider only the convex
case. Assume for simplicity that f(v) is twice differentiable. Then as was
mentioned above d?f(v) > 0, Vv € V. Hence every critical point is a (local)
minimum. Assume there are two critical points, v; and ve. Then the function
f(sv1+ (1= $)v2) would have a maximum for some s € (0,1), a contradiction.
Hence f(v) has at most one critical point. One can show furthermore that
f(w) — o0, as ||v]| — oo and therefore f(v) has at least one minimizing point.
O

To extend this theorem to the infinite-dimensional case one would have
to make some additional assumptions, i.e. that f(v) is weakly lower semi-
continuous and V is reflexive (see e.g. [244]).
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26.3 The Second Variation

In multi-variable calculus, if one wishes to know if a critical point is actually
a minimum (or maximum), one looks at the second derivative. For the same
reason, we need to define the second derivative of a functional.

Definition 26.15 Let 1, € T4 X. A variation of ¢ along n and & is a two-
parameter family, ¢, € X, such that ¢go = ¢, a‘%\gf))\,#hzﬂzo = ¢, and

o
oM P |/\:u:0 =1

Definition 26.16 Let S : X — R be a functional. We say S is twice differ-
entiable is there is a bounded linear map 925(¢) : T, X — (T X)* (called the
Hessian or second variation of S at ¢) such that

82

(9>\8HS(¢/\’H)|>\:H:O = <625(¢)n)£> (263)

for all £, € Ty X and all variations ¢y , of ¢ along £ and 7.

Remark 26.17 1. The Hessian 92S(¢) can also be defined as the second
derivative of S(¢), i.e., 32S(¢) = 9 - 0S(¢). That is, we consider the map
¢ +— 95(¢) and define, for n € T, X, %S(¢)n := ;A@S(qb,\), where ¢, is
a variation of ¢ along 7.

2. We will often use the notation S”(¢) to denote 925(¢).

Computations of the second derivatives of the functionals in our list of
examples are left as an exercise (again, we suppose where appropriate that
the action of the dual space is just given by integration).

Problem 26.18 Continuing with our list of examples of functionals above,
show that

3. §"(¢) = D?V(¢) (a matrix multiplication operator).

4. S"(p) = —A (the Laplacian).

5. 5"(¢) = —md? — D*V () (a Schrédinger operator) acting on functions
satisfying Dirichlet boundary conditions: £(0) = £(T") = 0.

d d d

S"(¢)=—(92L) , — | 0> L) +9;L 26.4

with Dirichlet boundary conditions. (The first term on the r.h.s. is a prod-

uct of three operators while the second one is the time-derivative of 8; dﬁL'

7. 8"(¢) = O+ V"(¢), with Dirichlet boundary conditions: &(z,0) =
&(z,T) = 0.

, B 82L (92L 82L
S (¢) =—Vgt (6(v¢)2) Vet — Vo (6(V¢))8¢) + 8¢)2

The following criterion for a critical point to be a minimizer is similar to
the finite-dimensional version, and the proof is left as an exercise.
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Theorem 26.19 Let ¢ be a critical point of a twice continuously differen-
tiable functional §': X — R.

1. If ¢ locally minimizes S, then S”(¢) > 0 (meaning (S”(¢)&,£) > 0 for all
¢ e T¢X).

2. If §"(¢) > ¢, for some constant ¢ > 0 (i.e. (S”(})E, &) > c||€]|% for all
£ € TyX), then ¢ is a local minimizer of S.

Problem 26.20 Prove this.

Let us now pursue the question of whether or not a critical point of the
classical action functional

ﬂ@:ALW$Mw®

(which is a solution of the Euler-Lagrange equation — i.e., a classical path)
minimizes the action. As we have seen, the Hessian S”(¢) is given by (26.4).
We call azL the generalized mass.

Theorem 26.21 Suppose 8352[/ > 0. Suppose further that G;L is a bounded
function. Then there is a Ty > 0, such that S”(¢) > 0 for T < T.

Proof for L = ’gd)Q — V(). In this case S (¢) = —md?/ds®> — V" (¢), acting on
L?([0,T7)) with Dirichlet boundary conditions. Since inf o(—d?/ds?) = (7 /T)?,
we have, by Theorem 8.2, —d?/ds* > (n/T)%. So S"(¢) > m(n/T)* —
max |V”|, which is positive for T sufficiently small. O]

Corollary 26.22 For T sufficiently small, a critical point of S (i.e., a classical
path) locally minimizes the action, S.

26.4 Conjugate Points and Jacobi Fields

In this section we study the classical action functional and its critical points
(classical paths) in some detail. While such a study is of obvious importance in
classical mechanics, it is also useful in the quasi-classical analysis of quantum
systems that we undertook in Chapters 16 and 17.

Thus we consider the action functional

SwALW%Mm@

We have shown above that if ¢ is sufficiently small, then S”(¢) > 0, provided
(9°L/0¢*) > 0. So in this case, if ¢ is a critical path, it minimizes S(¢). On
the other hand, Theorem 26.19 implies that if ¢ is a critical path such that

S” () has negative spectrum, then ¢ is not a minimizer. We will show later

that eigenvalues of S”(¢) decrease monotonically as ¢ increases. So the point
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to when the smallest eigenvalue of S”(¢$) becomes zero, separates the t’s for
which ¢ is a minimizer, from those for which ¢ has lost this property. The
points at which one of the eigenvalues of S”(¢) becomes zero play a special
role in the analysis of classical paths. They are considered in this section.

In this discussion we have used implicitly the fact that because S”(¢) is
a Schrédinger operator defined on L?([0,t]) with Dirichlet (zero) boundary
conditions, it has a purely discrete spectrum running off to +o0o0. We denote
this spectrum by {\,(¢)}3¢ with A, (t) — 400 as n — oo. Note that if ¢ is a

critical point of S on [0,], then for 7 < t, ¢ := ¢|[o,-] is a critical point of S

on [0, 7]. Thus for 7 < ¢, {\,(7)} is the spectrum of S”(¢,) = S”(¢) on [0, 7]
with zero boundary conditions.
We specialize now to the classical action functional

5(@0) = [ {5167 = V((s))as

on the space X = {¢ € C*([0,t;R?) | $(0) = z, ¢(t) = y}, and continue to
denote by ¢, a critical point of this functional (classical path).

Theorem 26.23 The eigenvalues A, (7) are monotonically decreasing in 7.

Sketch of proof. Consider A\;(7), and let its normalized eigenfunction be ;.
Define 11 to be ¥ extended to [0,7 + €] by 0. So by the spectral variational
principle Theorem 8.1,

A (T 4 €) < (11, 8" (P)1) = Ai(7).

Further, equality here is impossible by uniqueness for the Cauchy problem
for ordinary differential equations, which states the following: if a solution of
a linear, homogeneous, second-order equation is zero at some point, and its
derivative is also zero at that point, then the solution is everywhere zero. To
extend the proof to higher eigenvalues, one can use the min-max principle. O
Definition 26.24 A point ¢(7) such that \,(79) = 0 for some n is called a

conjugate point to $(0) = x along ¢.

So if ¢ = &(7p) is a conjugate point to z, then S”(4) on [0,70] has a
eigenvalue. That is, there is some non-zero £ € L%([0, 79]) with £(0) = &(70)
0 such that

0

S"($)E = 0. (26.5)

This is the Jacobi equation. A solution of this equation with £(0) = 0 will be
called a Jacobi vector field.

Definition 26.25 The inder of S”(¢) is the number of negative eigenvalues
it has (counting multiplicity) on L?([0,¢]) with zero boundary conditions.

We recall that for 7 small, S”(¢) has no zero eigenvalues on [0, 7] (Theo-
rem 26.21). Combining this fact with Theorem 26.23 gives the following result.
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Theorem 26.26 (Morse) The index of S”(¢) is equal to the number of

points conjugate to ¢(0) along ¢, counting multiplicity (see Fig. 26.2).

spec[S"®,)]

Fig. 26.2. Index = # of conjugate points.

The picture that has emerged is as follows. For sufficiently small times, a
classical path ¢(0) locally minimizes the action. As time increases, the path
might lose this property. This happens if there is a point in the path conjugate

to ¢(0).

Example 26.27 An example of a conjugate point is a turning point in a
one-dimensional potential (see Fig. 26.3, and remember that we are working
with the functional of Example 26.1, no. 5).

W@

e

a b
Fig. 26.3. A turning point.

The classical path ¢ starts at a, and turns back after hitting b at time 7. Now

S//(d)) _ 777’?,852 o V”((b)

and it is easy to check that S”(¢)$ = 0 (just differentiate Newton’s equation).
Since ¢(0) = ¢(7) = 0 (the velocity at a turning point is zero), b is conjugate
to a.

We return to the Jacobi equation (26.5), and consider its fundamental
solution, J(s). J(s) is the d x d matrix satisfying

S"(¢)J =0
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with the initial conditions
JO)=0 and J(0)=1.

J is called the Jacobi matrix.
Proposition 26.28 The Jacobi matrix has the following properties

1. For any h € R%, Jh is a Jacobi field. Conversely, any Jacobi field is of the
form Jh for some h € R%.

2. ¢(m0) is a conjugate point to ¢(0) iff J(7p) has a zero-eigenvalue, i.e.
det J(mp) = 0.

Proof. 1. The first part is obvious. To prove the second part let & be a
Jacobi field, and let h = £(0). Then & := Jh satisfies the same differential
equation as & with the same initial conditions. Hence £ = 5 , and therefore
&= Jh.

2. We have shown above that ¢(7p) is a conjugate point iff there is a Jacobi
field £ such that £(79) = 0. By the previous statement, there is h # 0 such
that & = Jh, which implies J(79)h = 0. So J(79) has a zero eigenvalue
(with eigenvector h), and det J(79) = 0.

]

Now we give the defining geometric/dynamic interpretation of J. Consider
a family of critical paths ¢,(s) starting at ¢(0) with various initial velocities
v € R Denote o = ¢(0). Then

_ Oy ()

ov fo=s

is the Jacobi matrix (along ¢). Indeed, ¢, satisfies the equation 9S(¢,) =
0. Differentiating this equation with respect to v, and using that S”(¢) =
0505(¢), we find

J(s)

_ 0 _qn 8¢v
0= ava¢s(¢v) =S (¢v) a’U .

Thus, d¢,, /0v|,—; satisfies the Jacobi equation. Next,
0 0 <

oy 20 = o 5(0) =0
and 9 9
8v¢v(0) - 8vv =1

which completes the proof.



420 26 Mathematical Supplement: The Calculus of Variations
26.5 Constrained Variational Problems

Let S and C be continuously differentiable functionals on a real Banach space
X. We consider the problem of minimizing the functional S(¢), subject to the
constraint C(¢) = 0. That means we would like minimize S(¢) for ¢ in the
(non-linear) space

Mi={peX | C¢)=0}

We assume that C’(¢) # 0 for ¢ € M (here, and below, C’'(¢) and S'(¢)
denote the variational derivatives of the respective functionals considered as
functionals on all of X, rather than just M).

If C'is a C? (twice continuously differentiable) functional, then (see eg.
[122])

ToM ={{e X | (C'(¢).€) =0}

To see this, suppose ¢, is a variation of ¢ in M. Differentiating the relation
C(¢x) = 0 with respect to A at A = 0 yields (C"(¢),&) = 0, where & =
D drla=o. Thus TyM C {€ € X | (C'(¢),€) = 0}. Conversely, given £ € X
such that (C’(¢), &) = 0, one can show (using the “implicit function theorem”)
that there is a path ¢, € M satistying ¢g = ¢ and 88)\ dala=0 =&. S0 & € T, M.

Concerning the constrained variational problem, we have the following
result:

Theorem 26.29 (Lagrange multipliers) Let S be a C! and C a C? func-
tional on a Banach (or affine) space X. Suppose ¢ locally minimizes S(¢)
subject to the constraint C(¢) = 0 (i.e. ¢ locally minimizes S on the space
M) and C'(¢) # 0. Then ¢ is a critical point of the functional S — AC' on
the space X, for some A € R (called a Lagrange multiplier). In other words, ¢
satisfies the equations

S'(¢) =XC"(¢) and  C(¢) =0
(the first equation is as linear functionals on X).

Proof. The fact that ¢ minimizes S over M implies that ¢ is a critical point
of S considered as a functional on M. This means that S’(¢) = 0 on T5M.
Recall

T;M ={§ € X [ {C'(9),8) =0}

Let p € X be such that (C'(¢), p) # 0. Then for all £ € X,

@ .
T (o) ST

Hence
0= (S(@)m) = (S'(8),6) ~NC'(B).6), A= |

Thus S’(¢) is a multiple of C’(¢). O
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Example 26.30 Quadratic form: let B be a a self-adjoint operator on a
Hilbert space, X = D(B), and set

S:0 - (6.B6) (26.6)

and C(¢) = 3(||¢]|> — 1). Easy computations show 9S(¢) = B¢ and
0C(¢) = ¢. Hence by the result above, any critical point of S(¢) subject
to the constraint C(¢) =0 (||¢|| = 1) satisfies the equation

Bé = \o (26.7)

for some Lagrange multiplier A € R. This is an eigenvalue equation for B with
the eigenvalue being the Lagrange multiplier.

26.6 Legendre Transform and Poisson Bracket

Passing from the lagrangian to hamiltonian constitutes a Legendre transform,
defined formally as:

g(m) = sup ({m,u) — f(u)). (26.8)

ueX

Here f is a function (or functional) on a normed vector space, V, while g
is defined on the dual space V*, and (mr,u) is a coupling between V and V*
(See the previous mathematical supplement, Section 25.1 for definitions of the
dual space and the coupling (r,u).) Of course, for the supremum in (26.8) to
exist we have to make some assumptions on on the class of functions on which
the Legendre transform is defined. In the finite-dimensional case, it suffices to
assume that f is differentiable and strictly convex, i.e. Yv,v' € V,

flsv+ (1 —=s)') < sf(v) + (1 —8)f(v), Vs e (0,1).

In the infinite-dimensional case, we have to make extra assumptions. In
order not to complicate the exposition, we make an assumption which is much
stronger than needed, but which suffices for our needs. Namely, we assume
that f is of the form f(u) := }(u, Lu) where the linear operator L : V — V*
is invertible and satisfies (v, Lw) = (Lv,w) and (v, Lv) > §|jv|?, § > 0. In
this case, like in the finite-dimensional one, the function (m,u) — f(u) has a
unique critical point satisfying is df(u) = 7, (in this case, u = L~!7), and
this point is a maximum point. Hence

g(m) = ((m,u) — f(u)|uoy(w)=r- (26.9)

Problem 26.31 Show that g is differentiable, convex and that
(Legendre transform)? = 1.

Hint: use the fact that dg(m) = u(m) where u(m) solves df (u(w)) = .
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Problem 26.32 Show that the Legendre transform maps the functional
FW) =2 JIWF on X = L3R into glr) = [lrf*

The equation (26.9) shows that the classical and Klein-Gordon Hamilto-
nians, (4.45) and

. = [ {Gre+ o + 10} o (26.10)

(see (21.11)), are the Legendre transforms of the classical and Klein-Gordon
Lagrange functionals, (4.37) and

260 = [ {5 = i - 5(0) o

in the second variables,

h(z, k) = 1811618((/{?,’1}) — L(z,v)). (26.11)
and
H(,m) := Sgg(@ﬂ?ﬁ = L(¢,m)). (26.12)

Now we consider the Poisson brackets, which were defined in Section 4.7. If
Z is a real inner-product space, on which there is a linear invertible operator
J : Z* — Z such that J* = —J (J is called a symplectic operator), then we
can define a Poisson bracket of functions (or functionals) F' and G as

{F,G} = (OF, JOG). (26.13)

For one-particle Classical Mechanics with the phase space Z = R? x R3, the

symplectic operator is
01
J = <_1 0> , (26.14)

yielding the Poisson bracket (4.47). For the phase space Z = H'(R?,R™) x
H'(R?Y R™), the symplectic operator is (26.14) (but defined on a different
space), yielding the Poisson bracket

(F,G} = / {(0xF - 0,G — 0,F - 0,G}da. (26.15)

Suppose that Z = X x V* is a space of functions &(z) = (¢(x), 7(z)) on
R?. Recall that the functional on X which maps X > ¢ — ¢(z) is called the
evaluation functional (at ), which we denote (with some abuse of notation)
as ¢(x), and similarly for V. Consider the Hamilton equations

by(x) = {D(z), H}(2:) (26.16)
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where {F, G} is a Poisson bracket on Z. If this Poisson structure is given by
a symplectic operator J as in (26.13) with (¢, 7) := [ ¢(z) - m(x)dz, then, by
Problem 21.4,

(®(x), H}(@) = / (0B(2)) (). JOH () (y)dy
- / 6,(y)JOH (@) (y) = JOH (&) (x)

which gives
(@, HY(®) = JOH(®),

which leads to Hamilton’s equation
&= JOH(®). (26.17)

Example 26.33 The Klein-Gordon Hamiltonian theory: the phase space is
X = HY(R* R™) x H'(R?,R™), the Poisson bracket (26.13), with J given
n (26.14), and the Hamiltonian given by (26.10). So for &(t) = (¢(t), 7 (t)) a
path in H}(R") x H'(R™), Equation (26.17) is

(4) = (204100,

and we recover the Klein-Gordon equation ¢ = Ap + Vf (9).

For a general Hamiltonian system (Z,{-,-}, H) Hamilton’s equation can
be written as

b= {d H}, (26.18)

where we identified the derivation F' — {F(®,t), H} with the vector field Xg
on Z, determined by this derivation. The map t — ®.(Pg), where &;(Py) is the
solution to (26.18) with the initial condition @ is called the flow generated
by (26.18). Consider the equation

d
dt

with an initial condition F(®,0) = Fy(P), where Fy(P) is a smooth functional
on Z. The solution of this equation for various Fy(®) defines the flow &;(Py)
on Z, by the equation Fy(®:(Py)) = F(Po,t). This is the flow for the vector
field Xz on Z.

We conclude this section with brief remarks about an important classical
field theory which does not fit the above framework, the Schrodinger CFT.
Assume V =W @& W and define the Lagrangian on V ® V by

L(¢7X) = <J71¢7X> - E(¢)7

where J : V* — V is a symplectic operator as above (i.e. a linear invertible
operator satisfying J* = —J, e.g. (26.14) w.r.to the decomposition V=W @

F(,t) = {F(®,1), H}, (26.19)
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W) and E(v) is a functional on V. The generalized momentum now is © =
J 4. Then using the equations

H(p,m) = ({m,x) — L(¥, X))'x:BXL(w,X):w (26.20)
and 0y L(%, x) = J =11 we see that (m, x) and (J 14, x) cancel and we obtain
H(y) = E(¥). (26.21)

The phase space here is V' and the Poisson bracket is given by (26.13) (where
the derivatives are understood to be w.r.to ).

26.7 Complex Hamiltonian Systems

In this section we sketch the Lagrangian and Hamiltonian formalism on com-
plex Banach spaces. We begin with a specific complex Banach space and
discuss an abstract case briefly at the end of this section. We consider the
space

X ={¢pe H'R!*x[0,T];C) | ¢(x,0) = h(z), $(x,T) = g()},

where h, g, € H'(R?; C) are fixed functions. We identify X with the real space
(26.1) with m = 2 (i.e. with Re X & Im X)), as

-
¢ <= ¢ = (¢1,02), ¢1:=Reg, ¢ :=Ima¢.
With this identification, we can define the variational (or Gateaux or Fréchet)

differentiability and derivative, 835 (¢), for any functional S(¢) on X, and

specifically partial derivatives, 94, S(¢) and 94,5 (), with respect the real, ¢1,
and imaginary, ¢2, parts of the field ¢. After that we introduce the derivatives
with respect ¢ and ¢ as follows

05(p) = 04,5(¢) —104,5(¢) 055(9) 1= 04, 5(8) + 104, S(¢). (26.22)

To fix ideas, we consider the complex Klein-Gordon and Schrodinger field
theories.

Complex Klein-Gordon CFT. Here the action is given as in the item
(7) of Example 26.1, i.e. by

T
5@)= [ [ {1008 = 9.0 = 1(0)} dodt.

where f : C — R is a continuous function.
The equation dz5(¢) = 0 for critical points gives the complex non-linear
Klein-Gordon equation, as follows from
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935(¢) = =0+ Av — 05 f(9)-
Here 0;f(¢) is the regular complex derivative of a function. With the La-
grangian L(¢, ¢) := = [ {10:0]> = |V20|> — f(¢)}, the generalized momen-

tum is 7 = 9; L(d), $) = Dyp. This gives the same Hamiltonian as in (26.10).
The Legendre transform is defined as above, (26.8). The Poisson bracket is
given now by again by (26.15), but with complex derivatives w.r.to ¢ and .

Schrodinger CFT. The action for the nonlinear Schrodinger classical
field theory, with the self-interaction described by a differentiable function
f:C—R,is given by

T B ) )
) :/0 Aﬁ‘lm(ﬁtw—lvm ~ VI — f()} dadt,

on the same space as above. (We think of fOT f]Rd Im(1p0s3p)dxdt, modulo an

additive constant, as either fOT Jga s0Opdadt or fOT Jga ' Ovbpdadt.) The
critical point equation 0;5(1)) = 0 gives the non-linear Schrodinger equation.
Indeed, we compute

05S(Y) = 10 — (A + V)b = 05 f(¥).

With the Lagrangian L(), 1)) : = Jga {—Im( (YO) — [V = VY2 — f(¥)},
the generalized momentum is 7 = 9; L(’L/J, 1/1) 1. This gives the Hamiltonian

H(i,) = /R {IVot? + VY + f(¥)} da.

The Legendre transform is as above and it gives the Hamiltonian above. In
this case, the phase space is the complex Hilbert space, H'(R?, C) and the
Poisson bracket is given now by

(F,G} = / {0, F0;G — 8;F0,GYda. (26.23)

The symplectic operator is J = multiplication by — 4, so that {F,G} :=
Re(OF, (—i)0G). Finally the Hamilton equation for this system is = {v,H},
or in detail,
iOp = (= + V)b + 05 f (). (26.24)
Now we describe briefly an abstract construction. Let X be a complex
Banach space, or else an affine space based on a complex Banach space Xj.
Assume there is an antilinear map, C, on X satisfying C? = 1, so that one
can define a real part, X1 := }(1 + C)X, and imaginary, X, := ,,(1 - C)X,
part of X (3(1+ C) and }(1 — C) are projection operators). Then we can
identify X with the real space X7 @ Xo, as
L1-0)e.

¢ = g = (¢1,92), o1 := ;(1 +O)p, ¢ := 0;

With this identification, we can define the variational (or Gateaux or Fréchet)
differentiability and derivatives with respect to ¢ and ¢ as in (26.22)
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26.8 Conservation Laws

As in classical mechanics, an observable F(®) is conserved or is a constant
of motion, i.e. F(®P;), where @; is a solution of the Hamilton equation, is
independent of ¢, if and only if its Poisson bracket with the Hamiltonian, H,
vanishes, {F, H} = 0. This follows from the equation (21.15),

d

oy F(@) = {F(2). H}. (26.25)

As in classical mechanics, conservation laws often arise from symme-
tries. Assume a system has a symmetry in the sense that there exists a
one-parameter group 75, s € R, of bounded operators on the space V, s.t.
TsH = H, Vs € R, where

T H(p, ) := H(15¢,7_,7),

with 7/ being the dual group action of 75 on V*, defined by (7.7, ¢) = (7, 75¢)
(recall that (-,-) is the coupling between X and X*). Let A be the generator
of the group 75, s7s = A7s. Then the classical observable Q(¢, 7) := (mw, Ad)
has vanishing Poisson bracket (”commutes”) with the Hamiltonian,

{H7 Q} = 85H(TS¢5 Tisﬁ)|5:0 = 07

and consequently is conserved under evolution: Q(¢,m:) is a constant in ¢
where &; = (¢¢.7;) is a solution to (26.18). In analogy with quantum mechan-
ics we formulate this as

Us is a symmetry of (26.18) — (m, A¢) is conserved

For the Schrodinger CFT, the one-parameter group 75, s € R, can be cho-
sen to be unitary and the dual group is given by 7, = C7_;C, where C is the
complex conjugation, so that, since 7 = 1), we have 7.7 = Ts1. Hence the
operator Ts acts on H as ToH (¢, ¢) := H(7s¢, 75v). The conserved classical
observable is defined as Q(v, 1)) := (¢, iAs)) where A is the (anti-self-adjoint)
generator of the group 7, 0s7s = A7, and (1, ¢) is the standard scalar prod-
uct on L?(R% C). As above, it has vanishing Poisson bracket (”commutes”)
with the Hamiltonian, {H, Q} = 0, H (7s¢, Ts¥)|s=0 = 0, and consequently is
conserved under evolution: Q(¢)¢, ;) is a constant in ¢ where v; is a solution

0 (26.24).

We list some examples of symmetries and corresponding conservation laws

for a CFT with the phase space Z = H'(R¢,C) x H*(R%,C)

e Time translation invariance ((75¢)(x,t) := ¥(x,t + s), s € R) — conser-
vation of energy, H(1,);

e Space translation invariance ((1s%)(z,t) := ¥(x + s,t), s € R?) — conser-
vation of momentum P (i, 1) := [ (—iV)ydz;



26.8 Conservation Laws 427

e Space rotation invariance ((7pv)(z,t) := (R 'z,t), R € SO(R?)) —
conservation of angular momentum L (1, )) := > (z A =iV )hdx;

e Gauge invariance ((7,%)(z,t) = e"¢(x,t), v € R) — conservation of
‘charge/number of particles’ [ |¢|*dz.

Note that, except for the first case, the families above are multi-parameter
groups, but as mentioned in Section 4.7, they can be reduced to one-parameter

ones. As an example we also give the momentum field on the phase space
7Z = H'(RY R) x H' (R4, R):

P(¢,m) = /WVd)dl‘. (26.26)

Sometimes real theories have complex representations and these complex
theories have gauge symmetries which lead to the conservation of the num-
ber of particles, which is not obvious in the original real representation. We
encountered an example of this phenomenon in Section 21.2, where we found
that the real Klein-Gordon theory is equivalent to a complex theory on the
space H'(R? C) with the latter theory having gauge symmetry, resulting in
the conservation of the number of particles.
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Comments on Literature, and Further Reading

General references

There is an extensive literature on quantum mechanics. Standard books
include [36, 186, 226, 261]. More advanced treatments can be found in
[257, 41, 81].

For rigorous treatments of quantum mechanics see [39, 291, 94, 285, 287, 288,
285, 79].

Mathematical background is developed in the following texts: [17, 42, 73, 106,
162, 204, 244, 245).

Further mathematical developments and open problems are reviewed in [95,
169, 201, 208, 273].

Chapter 2

The definition of self-adjointness given in this section and in Section 25.5 of
Mathematical Supplement is different from the one commonly used, but is
equivalent to it. It allows for a straightforward verification of this property,
avoiding an involved argument.

For more on the semi-classical approximation see e.g. [250].
Chapter 4

For a discussion of the relation between quantization and pseudodifferential
operators and semi-classical asymptotics, see [39, 49, 50, 51, 78, 95, 158, 164,
250, 263].

Detailed discussions of identical particles can be found in most of the
books on quantum mechanics. For a particularly nice discussion of the relation
between spin and statistics see [115].

The orthogonal, unitary and symmetric groups and their representations
and algebras (in the first two cases) are discussed in most of the books on the
group theory, of which there is a considerable number.

© Springer-Verlag GmbH Germany, part of Springer Nature 2020
S. J. Gustafson and 1. M. Sigal, Mathematical Concepts of Quantum
Mechanics, Universitext, https://doi.org/10.1007/978-3-030-59562-3_27
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Chapter 5

Extensive development and discussion of coherent states can be found
in [70, 150] For more discussion about the relation between the uncertainty
principle and the stability of atoms, see [95, 199].

For stability of bulk matter see [95, 199, 201] and the book [208] (the papers
[199, 201] can be found in [203]).

Chapter 9

The wave operators for short-range interactions were introduced in [228], and
for long-range interactions, in [82, 52].

Scattering theory is presented in the textbooks mentioned above, as well as
in [136, 221, 232].

Modern mathematical treatment of scattering theory can be found in [169,
77, 302].

Chapter 10
Certain aspects of the theory of Coulomb systems (atoms, molecules, and
aggregates thereof) are reviewed in [95, 199, 202, 203, 264, 291].

The result on existence of bound states of atoms is due to G.M. Zhislin.

Existence of the hydrogen molecule was proven in [249].
Chapter 11

The Feshbach projection method was introduced by H. Feshbach in connection
with perturbation problems in Nuclear Physics (see [226]) and by I. Schur in
theory of matrices. A similar method, called the method of Lifshitz matrix, was
developed independently in systems theory and in linear partial differential
equations, where it is called the Grushin problem. See [27, 139] for further
extensions and historical remarks

The abstract results presented in this chapter follow the work [29], which
introduced the notion of Feshbach-Schur map Fp : H — Fp(H) and used
it as a basis of a renormalization group (RG) approach to spectral problems
(which is presented in Chapter 24).

There is an extensive physics literature on Zeeman effect, and on perturbation
of atoms by time-periodic electric fields (see e.g. [186, 226]). The first rigorous
results on the Zeeman problem were obtained in [24] and the time-periodic
one, in [303, 165]. See [73] and [168] for further discussion and references.

A rigorous approach to the Fermi Golden Rule was proposed by Simon ([270]).

For more on perturbation theory, see [35, 176, 248, 247] and the recent com-
prehensive review [275].
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Chapter 12

The Born-Oppenheimer approximation plays an important role in quantum
chemistry, and there is an enormous literature on the subject. We mention
here only rigorous works: [69, 148, 149, 151, 179, 218, 237, 280, 289]. This
approximation in conjunction with the Feshbach - Schur method is used in
[15] to give a rigorous derivation of the van der Waals forces between atoms.

The results (12.40) and (12.41) should be compared with those in [230].

The Born-Oppenheimer approximation for a molecule coupled to the quan-
tized electro-magnetic field (the non-relativistic quantum electrodynamics),
including a computation of the probability of spontaneous emission, was de-
veloped in [290].

For adiabatic theory and geometrical phases, see excellent review [20] and
books [262, 289]. Book [289] covers also application of adiabatic theory to
the Born-Oppenheimer approximation and many related topics. For adiabatic
theory in relation to thermodynamics, Lindblad dynamics and quantum res-
onances, see [3, 4], [22] and [5], respectively.

For the relation of the adiabatic theory to the integer quantum hall effect
and to charge transport and for the space-time adiabatic theory, see [20, 25]
and [237], respectively.

For the adiabatic theory without the spectral gap condition, see [21, 289)

For different aspects of the Born-Oppenheimer approximation, adiabatic
theory and geometrical phases, see [104, 256, 84].

Chapter 13

This chapter is somewhat more advanced than the chapters preceding it. Rec-
ommended reading for this chapter includes [73, 169, 9].

The key result of quantum many-body theory - the HVZ theorem - is due to
W. Hunziker, C. van Winter, and G.M. Zhislin.

Recently, mathematical many-body theory, especially scattering theory for
many-particle systems, has undergone rapid and radical development. It is
covered in [169, 77, 132, 76].

Chapter 14

For the rigorous derivation of Hartree and Hartree-Fock equations see [159,
279, 133, 34, 33, 86, 87, 90, 91, 89, 117, 123, 124, 1, 253, 238, 239, 182, 14].
The Gross-Pitaevski equation was proposed independently by Gross and
Pitaevski in connection with the problem of many bosons (boson gas) which
we consider here. It was derived by [90] with the derivation simplified in
[238, 239]. (For additional important aspects see [181, 63, 64].) Earlier, [209)
have shown that the bosonic many-body ground state looks asymptotically
(in the Gross-Petaevskii regime, in which the number of particles n — oo and
the scattering length ¢ — 0, so that na =: A\/(4w) is fixed) as the product
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of the ground states of the Gross-Pitaevski equation. For detailed discussion
and references see [210].

For the first result on the Hartree-Fock theory see the paper [211], with further
mathematical developments in [214]. (See [203, 191] for more references.)
For asymptotic stability of the Gross-Pitaevski, nonlinear Schrédinger and
Hartree equations see [277, 126, 293, 127, 128, 145, 72] and references therein.
Other interesting properties (in particular, the blow-up) and generalizations
are described in [185, 192, 193].

A small but very effective modification of the Hartree-Fock equations leads to
the Kohn-Sham equation, which is at the foundation of the density functional
theory, see [55, 65, 85] for reviews and references.

See [286] and [58] for background and results on the nonlinear Schrédinger
equations.

A rigorous proof of BEC in the Gross-Pitaevski limit is given in [207] (see also
[209)).

Chapter 15

Standard references on path integrals are [101, 180, 259, 254].
Rigorous results can be found in [272].

Important original papers are [188, 68, 195].
Chapter 16

An extensive rigorous treatment of semi-classical asymptotics can be found in
[49, 158, 170, 219, 220, 250, 251, 252].

Chapter 17

The mathematical theory of resonances started with the paper [270], whose
impetus came from the work [10, 32]. A classic, influential review of the theory
of resonances is [271].

See [162] for earlier rigorous references and [48, 71, 225, 276], for some recent
ones. Our analysis of the resonance free energy is close to [269], its physical
predecessors are [188, 68, 54, 8, 189, 190]. For complex classical trajectories,
see, eg., [49, 50, 51, 297, 298]. A more careful treatment of positive tempera-
tures would involve coupling of a quantum system to a thermal reservoir, or,
as an intermediate step, replacing the commutator with the Hamiltonian by
Lindblad generator, discussed in Chapter 18. Resonances (metastable states)
at zero and positive temperatures are a subject of intensive study in con-
densed matter physics, quantum chemistry, nuclear physics, and cosmology.
See [54, 44, 156, 296, 269, 80] for reviews and further references. For formal
treatment of tunneling of extended objects see [236].
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Moreover, [247] gives an excellent exposition of the perturbation theory of
resonances.

Chapter 18

More material on density matrices can be found in [46, 157, 292, 76]. For
a rigorous semi-classical analysis in terms of the Wigner functions, see [102,
103, 215, 243, 278]. There is an extensive literature on the Hartree-Fock and
Kohn-Sham equations, for relevant discussion and references see [65]. The
generalized Hartree-Fock equations were introduced in [65].

Chapter 19

For an abstract definition and discussion of the non-commutative conditional
expectation see [143, 175, 76].

For the relation of quantum dynamical maps to completely positive maps see
[292], Statement 3.1.4, and [45], Remarks to Section 5.3.1.

The form of generators £ was found by Lindblad and Gorini, Kossakowski
and Sudarshan ([213, 137], see [66] for the most general result and [76], for a
book discussion).

For the detailed balance condition see e.g. [227, 183, 108] and references
therein. Inequality (19.36) was shown in [281]. For a discussion of dissipa-
tion function (19.41) and dissipation see [76], Lecture 12. For far a reaching
generalization, see [174].

The dissipation function D, was introduced in [213].

Theorem 19.38 was proven in [212].

For important generalizations of the subadditivity of the entropy, (19.46), see
[205, 206]. For more on quantum entropy, see book [235] and reviews [56, 255].

For rigorous results on the decoherence - [222, 223, 224] (these papers contain
also a very brief review of the relevant physics literature) and on relation
between the decoherence and measurement, [107].

The approach to equilibrium is one of the central subjects of theoretical and
mathematical physics. In the last 20 or so years its mathematical underpinning
underwent a vigorous development on the level of microscopic theory, with
robust and elegant theory mainly due to works of V. Jaksi¢ and C.-A. Pillet,
see some reviews in [19, 173]

For the relation of the topics covered to quantum information theory, see
[116, 157, 177, 233, 242, 295, 301].

Chapter 20

A standard reference for mathematical treatment of the second quantization
is [38].
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The result on the comparison of the quantum and Hartree (mean-field) dy-
namics was obtained in [124]. The sketch of its proof follows [16]. The ex-
pansion (20.46) - (20.47) was derived in [13] it follows from the symbol com-
position formula of [38]. It was shown in [124] that the quantum many-body
theory with the quantum Hamiltonian (20.25) can be obtained by quantizing
the classical field theory described by the classical Hamiltonian (20.38) and
Poisson brackets (20.37).

Chapter 22

The renormalization of the electron mass and one-particle states were studied
in [109, 110, 240, 241, 152, 161, 28, 59, 60, 61, 62]. See [26] for the review and

references.
Chapter 23

The results on the theory of radiation, as well as the renormalization group
approach, are taken from [265, 121], which builds upon [29, 30, 27]. (Theorem
23.1 was established for systems with the coupling to photons regularized at
spacial infinity in [29] - [30]. It would have been applicable to confined systems,
i.e. systems in external potentials, growing at infinity sufficiently fast.) These
works assume that the fine-structure constant is sufficiently small. The method
in these papers also provides an effective computational technique to any order
in the electron charge, something the conventional perturbation theory fails
to do. For other approaches and references see the book [283] and a recent
reviews [26, 266].

The existence of the ground state for the physical range of the parameters
was proved in [140].

The notion of resonance in the non-relativistic QED was introduced in [29, 30].

The generalized Pauli-Fierz transformation was introduced in [265].

Theorem 23.4 was proven in [27].
Chapter 24

The spectral renormalization group method, described in this chapter is due
to [29], with further development due to [27, 121, 154, 155]. We follow [121] Tt
shares its philosophy with the standard renormalization group due to Wilson
and others which can be found in any standard book on quantum field theory
or statistical mechanics (for some papers see e.g. [130, 299]) and which is
treated rigorously ina large number of papers, see [37, 100, 47, 97, 96, 31, 100,
129, 258] for a review of rigorous results.

The Feshbach-Schur map could be also used for the problem at hand. In fact,
the Feshbach-Schur maps were introduced in [29] for exactly this purpose.
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However, for technical reasons, it is convenient to use its present generaliza-
tion.

Chapters 25 and 26

These chapters cover standard material though many of the proofs are simpler
or require less advanced material than those found in standard books.

For a discussion of determinants, see also [53, 45, 180, 195, 254, 259, 260] and
references therein.

For elementary facts on the calculus of variations, one can consult [131, 43].
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