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Preface

You hold in your hand a volume devoted to systems biology of infectious disease.
If you are new to the field, you may be asking ‘‘what is systems biology?’’ If you
think you already know the answer, you may be wondering how such an approach
can be applied to a problem as complex as infectious disease. Our goal is to
address both of these questions, and we anticipate that this volume will be of great
interest to investigators already engaged in systems biology research as well as to
those scientists and clinicians who may be seeking an introduction to the field.

What is Systems Biology?

As you read through this volume, it will become apparent that while there is no
single concise definition of systems biology, most authors will settle on several
key points. First, systems biology is an inter-disciplinary approach, requiring the
combined talents of biologists, mathematicians, and computer scientists. Second,
systems biology is holistic, with the goal of obtaining a comprehensive under-
standing of the workings of biological systems. This is achieved through the
acquisition of massive amounts of data by high-throughput technologies—oligo-
nucleotide microarrays, mass spectrometry, and next-generation sequencing—and
the analysis of this data through sophisticated mathematical algorithms (Fig. 1). It
is perhaps the use of mathematics, to integrate abundant and diverse types of data
and to generate models of interconnected molecular networks, that best charac-
terizes systems biology.

An additional characteristic often attributed to the approach is the use of an
iterative cycle of experimental perturbations. Once a model has been developed,
subsequent perturbations of the biological system are used to yield refinements to
the model and increase its predictive capacity. While the value of a clear
understanding of complex molecular networks may seem readily apparent, pro-
ponents of systems biology argue that the approach is also the only way to
understand the ‘‘emergent properties’’ of biological systems. As described in

v



‘‘Systems Approaches to Dissecting Immunity’’, these are properties—or bio-
logical outcomes—that cannot be predicted by an understanding of the individual
parts of a system alone. Finally, systems biology typically seeks to capture
information about changes in a biological system over time, providing unique
insights into the dynamic nature of the system, a property that has particular
relevance to infectious disease.

Why Focus on Infectious Disease?

Systems biology as we know it today was made possible by the human genome
project and the advent of high-throughput technologies to measure global changes
in gene transcription and protein and metabolite abundance. The first uses of this
approach just over a decade ago focused on the systematic perturbation of yeast
and the mathematical modeling of metabolic pathways (Ideker et al. 2001). Given
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Fig. 1 The systems biology paradigm viewed as an iterative cycle of events leading to the
generation of integrated models of molecular networks that serve to generate predictions for
subsequent testing, model refinement, and a deeper understanding of biological processes
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the complexity of even a single-cell organism, many would argue (and some still
do) that the approach is ill-suited for multi-cellular organisms or mammalian
systems. Yet the cancer field rapidly embraced the approach and has proven its
utility for network-based classification and prognosis of breast cancer, the iden-
tification of oncogenes in B-cell lymphomas, and improvements to radiation
therapy (Laubenbacher et al. 2009).

The infectious disease field, in contrast, has come rather late to the game.
Although our own group published the first genomic analysis of HIV-infected cells
in culture (Geiss 2000), and numerous reports of transcriptional profiling of virus-
infected cells and tissues have followed, the application of a true systems biology
approach to infectious disease has until only recently been considered too daunting.
What has brought about the change in attitude? Recent and dramatic improvements
to mathematical modeling (see ‘‘Studying Salmonellae and Yersiniae
Host–Pathogen Interactions Using Integrated ‘Omics and Modeling’’ and
‘‘Insights into Proteomic Immune Cell Signaling and Communication
via Data-Driven Modeling’’) and the success of the approach in other fields are
certainly contributing factors, but perhaps most important is the growing realization
that the infectious disease field desperately needs to take new approaches to solve
long unanswered challenges, particularly in the areas of vaccine and drug
development.

Trying to understand the countless and complex pathogen–host interactions and
intra- and inter-cellular signaling events that occur during the course of infectious
disease is indeed a formidable task. Historically, a reductionist approach was both
the most tractable and only available line of attack. But clearly a new approach is
needed. Vaccines against numerous deadly diseases, most notably AIDS, malaria,
and tuberculosis are still lacking. Drug-resistant viruses and bacteria continue to
emerge, a trend that is likely to endure as long as microbial targets remain the
focus of new drug development, and the focus on microbial targets also yields
drugs that are typically narrow in spectrum. As described throughout this volume,
systems biology offers a new and holistic approach to understanding pathogen–
host interactions, the innate immune response, and the mechanisms that lead to
disease, immunopathology, or protective immunity. The approach holds enormous
potential, but there are challenges as well.

Risks and Rewards

No doubt everyone engaged in systems biology research has heard the criticism that
the approach is nothing more than an expensive fishing expedition that takes
funding away from individual investigators. The relative merits of big versus small
science aside, if systems biology is a fishing expedition, the chapters in this volume
show that the approach is beginning to make some nice catches. For example,
systems biology is accelerating vaccine development by increasing our under-
standing of how protective immune responses are elicited ‘‘Systems Biology
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of Vaccination in the Elderly’’. Similarly, by providing a better understanding of the
host response to infection, the approach is facilitating the development of drugs that
target the host side of the pathogen–host interaction ‘‘Systems Biology Analyses
to Define Host Responses to HCV Infection and Therapy’’, an approach that will
yield drugs that are broader in spectrum and less prone to microbial resistance.
Moreover, systems biology is beginning to deliver on its much touted potential for
yielding biomarkers for new diagnostic and prognostic applications ‘‘Systems
Biology Approach for New Target and Biomarker Identification’’.

Nevertheless, the approach is expensive, and with ever-tightening budgets,
more money for systems biology means less money elsewhere. Moreover, because
the approach has been extensively hyped as being revolutionary, expectations have
been set high, and many are understandably disappointed with the pace of
progress. The extent to which systems biology represents a true paradigm shift has
also been called into question (Bothwell 2006). And there are still plenty of
technical, scientific, and mathematical hurdles to overcome. Even the choice of
experimental systems can be a challenge. The jump from cell culture systems to
nonhuman primates, for example, represents an enormous leap in system com-
plexity that taxes every aspect of the approach, particularly computational and
modeling techniques. Yet, as discussed in ‘‘The Role and Contributions of
Systems Biology to the Non-Human Primate Model of Influenza Pathogenesis
and Vaccinology’’ and ‘‘‘Omics Investigations of HIV and SIV Pathogenesis
and Innate Immunity’’, significant progress is being made, and the analysis of
biologically relevant infection models is essential if we are to understand the
processes of disease and immunity and translate findings into rational drug design
and vaccine development.

In This Volume

We begin this volume with an engaging editorial by Dr. Valentina Di Francesco
and colleagues, who oversee a broad portfolio of systems biology research con-
tracts at the National Institute of Allergy and Infectious Diseases (NIAID). NIAID
has made a substantial commitment to systems biology through the sponsorship of
genomic, proteomic, and bioinformatic resource centers, and more recently
through the funding of a systems biology for infectious disease research program.
This program is aimed at using experimental and computational approaches to
analyze, model, and predict the architecture and dynamics of the molecular net-
works underlying the initiation and progression of infectious disease (Aderem
et al. 2011). Each of the primary investigators associated with this program have
provided material for this volume.

The chapters of Systems Biology provide the reader with cutting-edge research
from leaders in the systems biology field. The initial chapter provides both a
concise overview of the systems biology paradigm as well as an excellent dis-
cussion of how this approach is being used to dissect the innate immune system.
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Subsequent chapters are devoted to systems biology approaches to bacterial–host
interactions (including Salmonella, Yersinia, and Mycobacterium), where
molecular events within the pathogen are as important as the host response to the
invading microbe; the application of high-throughput and computational
approaches to nonhuman primate models of influenza and AIDS; and an over-
view of the emerging field of systems vaccinology, where systems biology is
changing the way we think about vaccine design and testing. Final chapters are
dedicated to defining the host response to hepatitis C virus infection and therapy,
to drug target and biomarker identification, and to new computational approa-
ches, including data-driven modeling. By assembling a diverse spectrum of
perspectives and expertise, it is hoped that the information provided here will
serve as a catalyst for additional innovative approaches that will continue to
drive the field forward and that will ultimately transform how we view, treat, and
protect against infectious disease.

Seattle, Washington, July 2012 Marcus J. Korth
Michael G. Katze
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Introduction: Embracing Complexity
in Infectious Disease Research

The concept of systems biology is not new, in fact reflecting on work done in the
1960s, British biologist Denis Noble described systems biology as ‘‘… putting
together rather than taking apart, integration rather than reduction. … It requires
that we develop ways of thinking about integration that are as rigorous as our
reductionist procedures, but different … it means changing our philosophy, in the
full sense of the term’’ (Noble 2006).

Infectious disease research seems an ideal target on which to apply a systems
biology approach to understand an infectious agent, its host biology in response to
infection, and the dynamic nature of the pathogen and host interactions over the
course of disease. Traditional experimental approaches to infectious disease
research have focused mostly on subsets of the virulence process or on particular
events that occur during infection limiting both the speed and ability to understand
the complex process as a whole. For example, the study of individual genes,
operons and regulons provides necessary insights into the workings of infection, but
it does not offer a comprehensive framework for the interaction of the regulatory
networks of the infectious agent and the host cells. Comprehensive identification of
the cellular and molecular components of the pathogen and its host, and
characterization of the functional role and mechanisms involved in the interaction
require the use of advanced high throughput (HTP) technologies. High-perfor-
mance computational resources and sophisticated analysis tools are now available
to make sense of the enormous datasets generated. In spite of the difficulties and
challenges, the complexity of biological systems can now finally be embraced.

The National Institute of Allergy and Infectious Diseases (NIAID), part of the
National Institutes of Health (NIH), supports research to better understand, treat, and
prevent infectious, immunologic, and allergic diseases. Given the potential of
microbial genomic research, in the last few years NIAID has made a significant
investment in genomic-related programs that provide to the scientific community
comprehensive, publicly accessible resources for genome sequencing, transcripto-
mics, proteomics and bioinformatics, as well as rapid release of data and reagents for
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basic and applied research, in support of the Institute’s mission (http://www.
niaid.nih.gov/topics/pathogenGenomics/research/Pages/relatedInitiatives.aspx). To
leverage the availability of advanced technologies for genomics research in 2008,
NIAID established the Systems Biology Program (SBP) for infectious diseases
research to encourage a shift in thinking toward a more global and high-throughput
approach to basic research on infectious diseases in order to gain insight into the
biology of microbes, their role in pathogenesis, and their molecular interactions with
the host. The SBP utilizes computational and experimental high-throughput meth-
odologies to identify, analyze, quantify, model, and predict the structure and
dynamics of molecular networks involved in host/pathogen interactions (Aderem
et al. 2011). High-throughput methodologies often include next generation
sequencing, transcriptomics, proteomics, metabolomics, and lipidomics. By
encouraging a systems biology approach, NIAID also fosters multidisciplinary
teams—including statistical modelers, computational biologists, experts in HTP
genomics technologies, microbiologists, and clinicians—to tackle the complexity of
infectious disease research in a more comprehensive fashion.

As in other systems biology programs, the NIAID SBP has been experiencing a
number of challenges and ideal solutions are yet to be found. Comprehensive data
analysis and biological interpretation of the experimental results appear to be the
largest hurdles. Contemporary HTP technologies generate unprecedented amounts
of experimental data. In a systems biology project, an efficient and well-designed
data management infrastructure is crucial for data analysis. Experimental data must
be organized and systematically maintained to allow for long-term storage, acces-
sibility, and fast retrieval by multiple research laboratories that may be disseminated
geographically while participating in joint projects.

Mathematical modeling of the behavior of biological systems in response to the
tested experimental conditions is indispensable to integrate and effectively sum-
marize the experimental data; to identify missing information (e.g. predicted
essential genes that seem to be missing from the annotated genomes); to predict the
systems’ response to perturbations; and to suggest the next experiment. However,
establishing accurate models with high confidence levels depends on enough
amounts of data to set parameters, constraints, and to cross-validate, hence
increasing the need for even more experimental data.

In addition, systems biology research is sometimes conducted primarily with in
vitro experimentation rather than with in vivo/ex vivo systems to allow for better
control of the experimental system (e.g. temperature, chemistry, infection time
course) and measurements that can be replicated more easily and economically.
Nevertheless, the most promising observations derived from in vitro systems are
generally tested and validated in the relevant animal and human tissues. Also,
whenever technically feasible, multiple HTP technologies should be applied con-
currently to the same biological samples. This can present a challenge because
sample preparation protocols for different genomic technologies may alter the
characteristics of the sample.

xii Introduction: Embracing Complexity in Infectious Disease Research
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The power of the systems biology approach can only be fully exploited by
ensuring that—in addition to publications—the generated data, associated metadata,
original experimental design and protocols, and resulting models are made easily
accessible to the broad scientific community of infectious disease researchers. This
is especially important given the abundance of data generated by typical systems
biology projects, the limitations of the current analysis and modeling approaches,
and the budgetary constraints that limit the number of validation studies that can be
performed within any funded project. For that reason, NIAID is requiring that
funded systems biology projects share with the broad scientific community all the
generated ‘omics’ data and metadata, resources, and novel reagents through publicly
accessible databases and reagent repositories. Still, it appears that infectious disease
researchers in general need to become more familiar with the advanced technolo-
gies, analysis tools, and computational approaches—of the systems biology
approach in order to take full advantage of the shared resources and further pursue
much needed validation studies.

The systems biology approach is gradually being adopted by infectious disease
researchers. The slow pace of adoption is not surprising, since it parallels what
happened in the past with the introduction of new research tools that are generally
refined over many years before they are adopted for widespread use. New methods
are typically more expensive and lack evidence of reliability, accuracy, and value.
However, new methods usually become more precise and economical over time and
that is proving to be the case with systems biology.

HTP experimental work, data analysis, and model development are performed by
technology experts, bioinformaticians, and computational scientists respectively.
Biologists and infectious disease scientists more often provide interpretation of the
data in the context of the biological systems being investigated and contribute to the
design of important follow-up validation studies with more traditional ‘reductionist’
approaches (e.g., phenotype characterization of gene knock-outs) to pursue the most
promising new hypotheses gleaned from the data. While the controversy in the
scientific community continues as to where the balance should lie between the
‘reductionist’ and the ‘systems’ approach in biomedical research, the controversy
should be settled as traditional methodologies are still needed to fill in the details of
specific biological events, with systems biology acting as a hypothesis generator
pointing to areas needing further investigation.

NIH supports a broad array of basic and clinical research. Systems biology ulti-
mately seeks to improve health by approaching disease not as a pathology in indi-
vidual biochemical pathways of a particular cell type in a single organ, but as the
result of complex and interdependent processes. The long-term expectation is that
systems biology will more quickly identify the biological processes involved in
disease and facilitate the development of therapeutic strategies, vaccines, and
diagnostics based on a more comprehensive and systems-wide understanding of the
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mechanisms implicated in the disease processes. Several chapters in this book
already demonstrate the promise and initial successes of the systems biology
approach.

William Alexander
Peter A. Dudley

Valentina Di Francesco
Division of Microbiology and Infectious Diseases

National Institute of Allergy and Infectious Diseases
National Institutes of Health

Bethesda, MD, USA
E-mail: vdifrancesco@niaid.nih.gov
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Systems Approaches to Dissecting
Immunity

Alan Diercks and Alan Aderem

Abstract Systems biology is the comprehensive and quantitative analysis of the
interactions between all of the components of biological systems over time. Cells
of the innate immune system are the first line of defense against invading
pathogens and orchestrate the ensuing adaptive response, which is critical to the
establishment of long-term protective immunity. Innate immunity is well suited
for systems analysis, because the relevant cells can be isolated in various func-
tional states and many of their interactions can be reconstituted in a biologically
meaningful manner. Application of the tools of systems biology to the innate
immune system will enable comprehensive analysis of the complex interactions
that maintain the fine balance between host defense and inflammatory disease. In
this review, we discuss innate immunity in the context of the systems biology
concepts, emergence, robustness, and modularity. We also describe recent efforts
to apply these approaches to enable rational vaccine design and accelerate the pace
of clinical vaccine trials.
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1 Systems Biology

For the purpose of this review, we define systems biology as the comprehensive,
quantitative, and temporal analysis of the manner in which all of the components of
a biological system interact. Systems biology is a holistic rather than reductionist
approach to deciphering complexity and understanding emergent properties. This
approach requires the capture and integration of measurements from as many
hierarchical levels of information as possible. These can include DNA sequences,
RNA and protein measurements, protein–protein and protein–DNA interactions,
biomodules, signaling and gene regulatory networks, cells, organs, individuals,
populations, and ecologies. Raw measurements are then imported and annotated
into comprehensive databases, many of which are accessible online to the scientific
community. Both detailed graphical visualizations and mathematical modeling are
used to integrate the vast quantities of individual data points into molecular net-
works that underlie the biology of the system. These models suggest specific
hypotheses that are tested experimentally by selective molecular perturbations
thereby tying the phenotypic features of the system directly to the behavior of
protein and gene regulatory networks. Repeated cycles of iteration refine the model;
ultimately, these models will explain the systems or emergent properties of the
biological system of interest. Once a model is sufficiently accurate and detailed, it
will allow biologists to accomplish two tasks never possible before: (1) predict the
behavior of the system given any perturbation and (2) redesign or perturb the gene
regulatory networks to create completely new emergent properties. This latter
possibility lies at the heart of preventive medicine. Thus, systems biology is
hypothesis driven, global, quantitative, iterative, integrative, and dynamic.

Maximizing the potential of systems approaches requires an interdisciplinary
team of investigators that is also capable of developing the novel technologies and
computational tools. In this model, biology dictates what new technology and
computational tools should be developed. These tools often open new frontiers in
biology that go well beyond the original question, driving an iterative cycle of
development and discovery. Thus, biology drives technology and computation,
and, in turn, technology and computation revolutionize biology. Biological sys-
tems, as opposed to engineered man-made systems, are not the result of a rational
design process, but rather the result of a random evolutionary process that selects
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only for function. For this reason, reverse-engineering approaches predicated on
the assumption of a rational underlying design will often fail to unravel a bio-
logical system.

1.1 Basic Concepts Crucial in Understanding Complex Biological
Systems: Emergence, Robustness, and Modularity

1.1.1 Emergence

Complex systems display ‘emergent properties’ that are not present in their
individual parts and cannot be predicted even with a full understanding of the parts
alone. The arch is an example of an emergent property that arises from simple
constituents. A comprehensive analysis of the physical properties of rocks will not
predict that they give rise to an arch when assembled in a specific context. Life is
emergent and not inherent in the individual components of an organism. Simply
mixing DNA, RNA, proteins, carbohydrates, and lipids does not generate a bio-
logical system: life is a consequence of the specific organization of these com-
ponents and interactions between them. A systems approach is, therefore,
necessary to understand how the emergent properties of living organisms are
derived from their individual components.

1.1.2 Robustness

Biological systems tend to maintain phenotypic stability despite diverse perturbations
from the environment, stochastic events, and genetic variation. Robustness often
arises as an emergent property through positive and negative feedback loops and other
forms of regulatory control that constrain gene outputs at the transcriptional, trans-
lational, or post-translational levels. These feedback mechanisms insulate the system
from environmental fluctuations. Robustness is also achieved through redundancy of
pathways that perform the same biological function.

1.1.3 Modularity

A network module can be defined as a set of nodes that interact strongly and
perform common function. Modularity can contribute to robustness by confining
damage to independent parts, preventing the spread of damage to the entire net-
work. Modularity can also contribute to evolution of the system, where adaptation
can be achieved by rewiring connections between modules rather than reconsti-
tuting the modules themselves.
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1.2 A Systems Biology Approach to Studying Immunity

The complex interactions within the innate immune system that result in effective
host defense under normal conditions and inflammatory disease when perturbed
can only be dissected in a comprehensive way by systems biology approaches.
Immunology is particularly well suited for such analysis, as the cells can be
isolated in various functional states and many aspects of the immune response can
be reconstituted in a biologically meaningful manner. In this review, we highlight
by example three aspects of the immune response that are particularly well suited
to analysis by systems-level approaches. First, we describe the complex interac-
tions between the multitude of phagocytic and pattern-recognition receptors that
initiate the immune response to invading microbes. Next, we discuss a tran-
scriptional regulatory circuit that tunes inflammatory responses in macrophages
and discriminates transient from persistent stimulation. Finally, we describe how
the tools of systems biology can be used to gain an understanding of the molecular
and cellular interactions that govern the response to vaccination. We argue that
systems approaches offer a route to accelerating the pace of efficacy trials by
identifying correlates of protection.

2 Innate Immune Receptors

The recognition, phagocytosis, and presentation of pathogens by macrophages
represent emergent properties that arise from the concerted action of a number of
receptors and signaling pathways. Specific pathogen-derived molecules are
detected by chemotactic receptors on the macrophage, leading to alterations in the
cytoskeleton that culminate in directed movement. The macrophage then uses
pattern-recognition receptors (PRRs), which include the Toll-like receptors
(TLRs), the NOD-like receptors (NLRs), and the RIG-I-like receptors (RLRs), to
identify the nature of the pathogen by recognizing specific pathogen-associated
molecular patterns (PAMPs). Phagocytic receptors, such as the Fc receptor, the
complement receptor, and DECTIN, bind the particle and activate signaling
pathways that lead to its internalization (Underhill and Ozinsky 2002). Upon
internalization, the pathogen is degraded, and pathogen-derived antigens are pre-
sented to cells of the adaptive immune system; this process of antigen presentation
constitutes the mechanism by which the innate immune system instructs adaptive
immunity.

It is not possible to predict the complex behavior underlying chemotaxis,
phagocytosis, and antigen presentation by having a complete understanding of
each individual receptor and its cognate signaling pathway in isolation. Systems
biology approaches will enable an understanding of how the crosstalk between
these pathways results in the emergent properties that give rise to these functional
responses.
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2.1 Crosstalk Between Phagocytic Receptors and PRRs

It has long been known that phagocytosis can be uncoupled from the induction
of an inflammatory response (Aderem et al. 1984, 1985). For example, phago-
cytosis of latex beads is not accompanied by the production of arachidonic acid
metabolites unless the macrophages are primed with bacterial lipopolysaccharide
(LPS), in which case a synergistic response is observed (Aderem et al. 1986).
Similar synergy also occurs for Fc receptor and zymosan-induced phagocytosis
but not for complement-induced phagocytosis, which will not induce arachidonic
acid metabolite release even with LPS priming (Aderem et al. 1986). These
interactions are even more subtle when considering the internalization of bac-
teria. When macrophages internalize Gram-negative bacteria, tumor necrosis
factor (TNF) is only produced in the presence of TLR4. By contrast, TLR2 is
required for TNF production during phagocytosis of Gram-positive bacteria
(Underhill and Ozinsky 2002).

Phagocytosis of fungal zymosan provides an example of how phagocytic and
PRR pathways can function as interlocking pieces in their regulation of the
macrophage response (reviewed in Goodridge and Underhill 2008). Zymosan is
recognized by both TLR2 and DECTIN. TLR2 signaling induces inflammatory
cytokines through the MyD88 pathway and activation of NF-jB but does not
induce reactive oxygen species (ROS), phagocytosis, and only weak arachidonic
acid release. DECTIN, which recognizes b-glucan, activates Syk kinase,
induces zymosan phagocytosis, ROS induction, and weak arachidonic acid
release. When both TLR2 and DECTIN are activated, inflammatory cytokine
induction, ROS production, and arachidonic acid metabolism are all synergis-
tically enhanced.

Interactions between PRR signaling and phagocytic pathways extend beyond
internalization and inflammation. TLR signaling has been implicated in the
enhanced maturation of phagosomes (Blander and Medzhitov 2004). More
importantly, the presence of TLR ligands within a dendritic cell phagosome
markedly enhances the MHC class II-mediated presentation of antigens within that
phagosome (Blander and Medzhitov 2006). Thus, the entire set of functional
macrophage responses to pathogens are shaped and modulated by complex
interactions between PRR, phagocytic, and other pathways.

2.2 Crosstalk Between PRRs

Macrophages are not confronted with purified PAMPs in nature. Rather, they
interact with complete pathogens that present a cocktail of agonists to the
numerous PRRs they express (Underhill and Ozinsky 2002; Trinchieri and Sher
2007). These combinations of PAMPs enable the innate immune cell to carry out
‘multiparameter analysis’, which permits far greater accuracy in the determination
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of the threat. For example, if TLR4, TLR5 and the NLR IL-1b-converting enzyme
protease-activating factor (IPAF) are simultaneously activated, the cell can com-
pute that it has encountered a Gram-negative flagellated bacterium that contains a
type III secretion system (Miao et al. 2006). Activation of TLR4 and TLR5 cul-
minates in NF-jB-dependent inflammatory gene expression while detection of
flagellin by IPAF recruits (Geddes et al. 2001; Poyet et al. 2001) and activates the
caspase-1 inflammasome (Masumoto et al. 2003) which processes IL-1b and IL-18
for secretion (Dinarello 1998).

Dual sensing of flagellin by TLR5 and IPAF suggests a complex, two-step
process for regulating the response to invading bacteria. When a macrophage
encounters a Salmonella bacterium, TLR5 is initially stimulated by flagellin (in
addition to activation of TLR4 by LPS). This signal induces, among others, the
mRNAs encoding IL-1b and IL-18 and their precursor proteins. Once the bacte-
rium is in the phagosome, flagellin is injected into the cytoplasm via the type III
secretion system, and IPAF is subsequently activated. Conceptually, TLR sig-
naling in the absence of NLRs may constitute a ‘yellow alert’, indicating that
microbes have penetrated the physical barrier of the epithelial layer. The inflam-
masome NLRs, when activated in conjunction with the TLRs, may then trigger a
‘red alert’, alerting the immune system to the presence of pathogens which harbor
more threatening virulence factors such as the type III secretion system (Miao
et al. 2007). Signaling by TLRs alone or by NLRs alone does not initiate the red
alert, and thus the red alert emerges from the convergent activation of the two
pathways. IL-1b is not known to be capable of activating the inflammasome itself,
and thus paracrine IL-1b signaling can propagate the yellow alert but not the red
alert, which is reserved for the infected macrophage. A similar distinction between
the reserved red alert status of the infected cell and the yellow alert status for
neighboring cells activated by paracrine cytokine signaling has been postulated for
viral nucleic acid detection (Stetson and Medzhitov 2006): cytotoxic lymphocytes
and natural killer cells must be able to distinguish between virus-infected cells that
should be targeted for apoptosis and cells that have been activated into an antiviral
state by paracrine type I IFN signaling.

The system is even more complex than described due to crosstalk arising from
simultaneous engagement of multiple TLRs and other receptor families. Viral
RNA is recognized by at least five PRRs [TLR3, TLR7, TLR8, melanoma dif-
ferentiation-associated gene 5 (MDA5), and RIG-I], and it is interesting to spec-
ulate on how convergent detection can lead to synergistic, virus-specific responses.
Results from the Akira laboratory (Kumar et al. 2008) suggest that the adjuvant
effects of the double-stranded RNA (dsRNA) analog polyinosinic–polycytidylic
acid (polyI:C) arise from cooperative activation of TLR and cytoplasmic RLR
pathways. Thus, pathogen recognition by the innate immune system is perhaps
best considered as a process in which activation of several PRR pathways in
combination gives rise to an emergent, pathogen-specific response that seeks to
neutralize the threat, alert neighboring cells to the presence of microbes, and
initiate an appropriate adaptive immune response.
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2.3 Robustness and Modularity in Innate Immunity

While combinatorial PAMP detection by PRR pathways allows macrophages to
accurately determine threat levels posed by invading pathogens, it also illustrates
two additional key properties of the innate immune system: robustness and
modularity.

To provide protection, the innate immune system must be robust: pathogens
must be detected and the immune system alerted, even as evolution favors
development of pathogen strategies to evade detection. The large number of
PAMPs that may be detected by macrophage PRRs thus constitutes a robust, ‘fail-
safe’ detection system: if a particular PRR fails to detect a pathogen, or if a
pathogen evolves a strategy to evade a particular PRR, it nevertheless will be
detected by all of the relevant remaining PRRs expressed by the cell. This level of
robustness is revealed by gene-targeting studies, in which specific PRR knockouts
or knockdowns fail to exhibit phenotypes. For example, TLR3, which detects viral
dsRNA, when ablated does not result in universally enhanced susceptibility to
viral infection (Edelmann et al. 2004), presumably because signaling by other viral
RNA detectors (RIG-I, MDA5, and TLR7) is sufficient for protection. Similarly,
we have demonstrated that inflammasome activation in response to Listeria
monocytogenes involves detection by three or more cytoplasmic receptors: IPAF,
NALP3, and at least one other NLR utilizing the adapter ASC (apoptosis-
associated speck-like protein containing a C-terminal caspase recruitment domain)
(Warren et al. 2008).

Modularity in the PRR pathways is typified by the modularity in the struc-
tures of the PRRs themselves. In the TLR family, for example, a less conserved
N-terminalleucine-rich repeat (LRR) domain is coupled to a more highly con-
served C-terminal Toll/Interleukin-1 receptor (TIR) domain (Roach 2005) by a
single transmembrane domain. The LRR domains are so variable that they
cannot be aligned over large evolutionary distances; alignment can only be
accomplished using the TIR domains. The TIR domain couples the TLR to the
restricted set of adapters [the linker adapters, MyD88 adapter-like protein (MAL)
and translocating chain-associating membrane protein (TRAM), and the major
signaling adapters, MyD88 and TRIF], whereas the LRR domain is responsible
for PAMP recognition. Evolution of LRRs has resulted in an extraordinary
diversity in ligands detected by the TLRs, giving rise to six major TLR families
in vertebrates (Roach 2005). Structural studies of TLR–ligand complexes have
revealed diversity in LRR ligand binding mechanisms (reviewed in (Jin and Lee
2008)). While TLR2/TLR1 heterodimer binding of Pam3CSK4 is achieved by
hydrophobic interactions at the boundary between central and C-terminal
domains (Jin et al. 2007), TLR3 dimers bind dsRNA at two regions near the
N-terminal and C-terminal ends (Liu et al. 2008).

Robustness in the innate immune system emerges not only from the modularity
of the PRRs and the pathways they activate but also from the feedback
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architectures of the pathways themselves. Type I IFN induction by cytoplasmic
viral sensors in fibroblasts is an example of a positive feedback loop which results
in robust induction of an antiviral state (reviewed in Honda et al. 2006). Cyto-
plasmic detection of viral RNA by the RLRs RIG-I or MDA5 results in type I IFN
induction by activated IFN regulatory factor-3 (IRF3) and IRF7 transcription
factors. The type I IFN then feeds back on the cells in an autocrine manner to
induce IRF7 to high levels. IRF7 then induces additional type I IFN species and
increases the expression of the sensors RIG-I and MDA5 themselves, which
presumably renders the cell more sensitive to viral RNA. On the other hand,
precise control and robustness to intracellular noise is partly achieved in PRR
pathways by negative feedback loops. For example, TLRs induce the expression of
many genes that negatively regulate the TLR pathways (reviewed in Liew et al.
2005). In particular, the ubiquitin-editing protein A20 (Tnfaip3) is both induced by
and is a negative regulator of TLR, RLR, and NLR pathways (Boone et al. 2004;
Wang 2004; Saitoh et al. 2005; Lin et al. 2006; Hitotsumatsu et al. 2008), acting
directly on key adapter molecules such as tumor necrosis factor receptor-
associated factor 6 (TRAF6), TRIF, and receptor-interacting protein 2 (RIP2). The
second example of this type of regulation is illustrated by the network containing
the transcription factors NF-jB (Rel), ATF3, and C/EBPd. (See Fig. 1).

Fig. 1 Regulation of cytokine production in macrophages by the NF-jB, ATF3, and C/EBPd
circuit. Stimulation of TLR4 activates NF-jB, which initiates transcription of a number of
cytokines. ATF3 is also activated and represses transcription of a subset of these cytokines. NF-
jB and ATF3 also act similarly to modulate transcription of Cebpd which amplifies the
transcription of a subset of cytokines as well as itself. Cytokines were classified into three
categories based on genome-wide localization analysis of NF-jB, ATF3, and C/EBPd and the
classification confirmed by measuring transcriptional responses in ATF3-/- and Cebpd-/-

macrophages. (Adapted from (Alon 2007))
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3 Network Analysis of Innate Immune Responses

3.1 A Network that Enables Innate Immune Cells to Discriminate
Between Transient and Persistent Activation

It is well established that transcriptional programs are propagated by sequential
cascades of transcription factors (Bolouri and Davidson 2003; Smith et al. 2007).
We have shown that stimulation of macrophages with LPS induced the tran-
scription of multiple clusters of transcription factors within 3 h. We used a
combination of mathematical modeling and biological experiments to predict and
confirm the existence of a transcriptional network involved in TLR4 activation.
The power of the approach lies in its ability to rapidly identify complex interac-
tions between transcription factors and to define the functional emergent properties
of the system, which in turn suggest the molecular underpinnings of the biological
response. Analysis of the transcription factors activated immediately by LPS
predicted the existence of many networks involved in the TLR4 response.

One of these networks contained the transcription factors NF-jB (Rel), ATF3,
and C/EBPd (Fig. 1). High-density temporal measurements of LPS-induced
binding of these transcription factors to the Il6 promoter, combined with gene-
deletion studies, enabled us to construct a model of a regulatory circuit that par-
ticipates in the transcription of this cytokine-encoding gene. In this model, TLR4
stimulates translocation of NF-jB to the nucleus, where it activates weak tran-
scription of Il6. Concomitant with that, NF-jB induces C/EBPd, which then binds
to the Il6 promoter and acts together with NF-jB to stimulate maximum tran-
scription of Il6. At a later time point, ATF3 attenuates transcription of Cebpd and
Il6. ATF3 recruits histone deacetylase 1 to the Il6 promoter in an LPS- dependent
way. The ATF3-associated histone deacetylase 1 then deacetylates histones,
resulting in the closure of chromatin and inhibition of Il6 transcription. It is known
that C/EBPd binds to and recruits the histone acetylase CBP to its target pro-
moters, leading to more histone acetylation and chromatin opening. It is, therefore,
likely that epigenetic chromatin remodeling contributes to this network.

The relationship between NF-jB and C/EBPd suggests coherent feed-forward
type I regulation (Alon 2007). This type of regulation has been suggested to
protect biological systems from unwanted responses to fluctuating inputs (Alon
2007). The inflammatory response is like a double-edged sword, and it is therefore
critical that inflammatory cells be modulate their response appropriately. The
coherent feed-forward type I regulatory circuit described above could in principle
enable immune cells to distinguish transient stimuli from more dangerous per-
sistent activation. We used a combination of motif-scanning, microarray, and
ChIP-on-chip analysis to identify many LPS-induced targets of C/EBPd. These
genes showed differences in transcriptional responsiveness to persistent and
transient LPS-dependent stimulation of macrophages in vitro, and many have
ascribed functions in host defenses against bacterial infection. Consistent with our
in vitro studies, Cebpd-null mice were able to resist transient infection with a low
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dose of E. coli H9049 but were highly susceptible to persistent infection with a
higher dose.

In summary, we have used the tools of systems biology to show that TLR4-
induced inflammatory responses are regulated by the integration of transcriptional
‘on’ and ‘off’ switches with ‘amplifiers’ and ‘attenuators’. In addition, we have
demonstrated a mechanism by which the macrophages are able to discriminate
between transient and persistent activation. Collectively, these regulatory elements
may facilitate the maintenance of effective host defense and the prevention of
inflammatory disease.

3.2 Unraveling Complexity in Innate Immune Signaling

Genetic analysis of the mouse, whether through targeted gene deletions studies,
chemical- or radiation-induced mutations, or spontaneous mutations has been one
of the most powerful tools for unraveling immune responses. Although knockout
mice are generally produced based on a hypothesized function of the targeted gene
in a particular context, many genes that were originally identified by their role in
other aspects of mouse biology have subsequently been shown to impact immune
responses. Furthermore, large-scale phenotypic screening of mutagenized mice
can uncover unpredicted components of immune regulatory pathways. In both of
these cases, considerable effort is required to determine the mechanism by which
these genes impact immunity.

Systems biology approaches organize information into sets of interacting net-
works that can serve to contextualize the role of a gene. A reference library of
networks, such as those that we defined for NF-jB, ATF3, and C/EBPd (Fig. 1),
which are generated in a highly standardized manner, can be used as a comparator
to identify signaling pathways that are functionally associated with mutated genes
of interest. For example, the responses of macrophages carrying a mutation or gene
deletion to a panel of immune stimuli can be compared with a compendium of
responses from wild-type macrophages and macrophages lacking known compo-
nents of TLR-induced signaling and gene regulatory networks. By identifying
overlapping patterns in the responses, a testable hypothesis for the role of the gene
in the immune response, and even its likely interaction partners, can be identified.
These networks are generated using thousands of data points (e.g., entire tran-
scriptomes) making it far less likely that such an overlap occurs by chance.

We have used this approach to link the cpdm mutation in SHARPIN to path-
ways known to regulate TLR responses (Zak et al. 2011). We identified SHARPIN
as a potential regulator of macrophage responses in the course of a systems-level
transcriptional and epigenomic analysis of combinatorial TLR pathway activation.
To evaluate the role of SHARPIN in innate immunity, we measured TLR
responses in macrophages derived from cpdm mice, which bear a null mutation in
the Sharpin gene (Seymour et al. 2007). IL-12p40 production was markedly
impaired in response to nearly all TLR ligands evaluated, including Pam3CSK4
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(TLR2), LPS (TLR4), CpG-B (TLR9), and R848 (TLR7). The cpdm mutation also
strongly attenuated macrophage production of IL-12p40 in response to infection
with Listeria monocytogenes, which signals through TLR2, TLR5, and various
Nod-like receptor family members (Zenewicz and Shen 2007; Warren et al. 2010;
Leber et al. 2008).

Transcriptome analysis of wild-type macrophages identified 400 genes induced
threefold or more by a stimulation with Pam3CSK4. SHARPIN deficiency arising
from the cpdm mutation resulted in threefold impaired induction of 87 of these
genes, including many pro-inflammatory cytokines. To identify the transcription
factors that mediate the effect of SHARPIN on macrophage responses, we per-
formed promoter analysis. We used PAINT (Vadigepalli et al. 2003) to scan the
proximal promoter sequences of all 400 Pam3CSK4-regulated genes, and we then
applied the gene set enrichment analysis (GSEA) algorithm (Subramanian et al.
2005) to determine which transcription factors were associated with impaired
Pam3CSK4 responses. The only transcription factor binding sites that were over-
represented in the promoters of SHARPIN-dependent genes relative to the overall
set of 400 Pam3CSK4-induced genes were NF-jB and AP-1. This result suggests
that SHARPIN may be required for maximal NF-jB and AP-1 activation in
response to TLR2 stimulation in macrophages.

We analyzed the link between SHARPIN, NF-jB, and AP-1 in greater depth by
integrating the SHARPIN-dependent gene set defined above with our database
of transcriptome responses in mutant macrophages. The set of 87 SHARPIN-
dependent genes overlapped significantly with genes regulated by the panr2hypo-
morphic mutation in NEMO (Siggs 2010) a central node in the TLR2/NF-jB
pathway. The extraordinarily strong association between the effects of these mutants
suggested that SHARPIN might interact with NEMO. This interaction was con-
firmed by biochemical analysis and was abrogated by the panr2 mutation.

In addition to pinpointing the location of SHARPIN in the TLR2/MyD88/NF-jB
signaling cascade, this approach also revealed a previously unknown branch point in
the pathway that controls a subset of the response. Although similar, the effects of
SHARPIN-deficiency on macrophage responses were weaker than those of the
panr2 mutation. Some pro-inflammatory cytokine induction remain in SHARPIN-
deficient macrophages that is not observed in panr2 macrophages suggesting that the
panr2 mutation was also able to impair a SHARPIN-independent pathway.
Recently, it was shown that a paralog of SHARPIN, RBCK1/HOIL-1L (Lim et al.
2001), interacts with NEMO as part of the LUBAC complex (Tokunaga et al. 2009),
and therefore might mediate the SHARPIN-independent pathway. This hypothesis
was reinforced by the observation that the panr2 mutation ablates the RBCK1–
NEMO interaction. Furthermore, it has recently been shown that SHARPIN and
RBCK1 are present in distinct LUBAC complexes that are both capable of poly-
ubiquitinating NEMO (Gerlach 2011; Ikeda 2011; Tokunaga 2011). Comparison of
signaling defects induced by SHARPIN deficiency and by the panr2 mutation
suggested a model in which the MyD88 pathway bifurcates at NEMO. In this model,
summarized in Fig. 2, maximal induction of many pro-inflammatory cytokines
requires SHARPIN while the activation of a significant number of downstream
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genes occurs independently. Combined with transcriptional network analysis, this
also suggests previously unappreciated specificity in NF-jB and AP-1 activities
since these molecules are effectors for both arms of the pathway.

4 Systems Vaccinology

To date, vaccines have been created by ‘‘trial and error’’; vaccines are generated
from related pathogens, attenuated pathogens, or pathogen components. Systems
biology will enable rational vaccine design.

Fig. 2 SHARPIN is an essential adaptor distal to the branch point defined by the panr2 mutation
in NEMO. a The signaling responses most strongly impaired by SHARPIN deficiency and
NEMO L153P (panr2) are the phosphorylation of p105 and ERK, suggesting that p105 IjB
activity and TPL2 sequestration are dominant regulators of Toll-like receptor 2 (TLR2)-induced
proinflammatory cytokine expression. The greater deficiency in signaling and pro-inflammatory
cytokine induction observed in panr2 compared with cpdm macrophages may result from
SHARPIN-independent interactions between NEMO and the SHARPIN paralog and the linear
ubiquitin chain assembly complex constituent RBCK1, which are also abrogated by NEMO
L153P. b TLR2-induced IjBa degradation, phosphorylation of p38 and JNK, and Nfkbia gene
induction were unimpaired in cpdm macrophages and panr2 mutant macrophages, implying the
existence ofa branch of NEMO-dependent I-kappa-B kinase (IKK) and MAPK activity that
proceeds independently of SHARPIN and NEMO residue L153. (Adapted from Zak et al. 2011)
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The response of an individual to vaccination depends on a multitude of
interacting genetic, molecular, and environmental factors spanning numerous
temporal and spatial scales. Systems biology provides a powerful toolset for deci-
phering complex biological networks and has been applied extensively to identify
and contextualize novel regulators of the innate immune response (Amit et al. 2009;
Zak 2011; Litvak et al. 2009; Ramsey et al. 2008; Gilchrist 2006; Suzuki 2009). The
application of this approach to explore the innate-adaptive interface in the context of
vaccination has already yielded new insights into the mechanisms of action of the
‘gold standard’ yellow fever vaccine YF-17D (Querec 2009; Gaucher 2008) and the
seasonal influenza vaccine (Nakaya 2011). Furthermore, systems analysis of vac-
cination promises to generate useful biomarkers for protection and to identify
mechanisms of immunogenicity that will guide rational vaccine design. As these
topics have already been discussed in numerous reviews (Rappuoli and Aderem
2011; Pulendran et al. 2010; Zak and Aderem 2009; Shapira and Hacohen 2011;
Gardy 2009), we will instead provide a high level perspective on systems vacci-
nology analysis that, by necessity, involves large number of model systems, each
providing unique opportunities for discovery despite numerous practical constraints.

Systems vaccinology can be divided into five essential steps: measurements of
the innate (1) and adaptive responses (2) to vaccination, determination of vaccine
efficacy (3), systems-level data integration leading to the identification of bio-
markers and mechanistic insights (4), and perturbation of the vaccine response in
an appropriate experimental system (5). In the paragraphs below, we follow one
cycle through the iterative systems vaccinology process, defining the inherent
constraints and opportunities at each step.

4.1 An Iterative, Multistep Approach
Step I The starting point of the approach is the comprehensive analysis of the

innate immune response to vaccination. A wide range of technologies is
employed to make these measurements including transcriptomics, high-
throughput serum analyte profiling, and proteomics. Transcriptome anal-
ysis is the most reliable and robust and is the predominant technique
employed in systems vaccinology. In humans, vaccine-induced innate
responses are most often measured indirectly by profiling readily acces-
sible blood-derived cell populations (Querec 2009; Gaucher 2008; Nakaya
2011; Bosinger 2009; Palermo 2011).

Innate response measurements made by profiling whole blood or blood cell
subsets, although indirect, are nevertheless highly informative. This anal-
ysis probes multiple aspects of the response, all of which occur in parallel.
These include the subset of cells that respond directly to the vaccine, cells
responding to inflammatory mediators induced by the vaccine, and changes
in the composition and activation states in circulating cells.
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Step II The next step in the approach is to measure vaccine-induced adaptive
immune responses (immunogenicity). In contrast to innate responses,
measurements of immunogenicity can be directly obtained from cells
accessible in the blood or mucosa. These include antibody responses and
antigen-specific CD4+ and CD8+ T cell responses (Hersperger 2011).
Importantly, these measurements of adaptive immune function can be
easily quantified at multiple time points to define the peak and memory
responses as well as the impact of the initial vaccine ‘primes’ and sub-
sequent ‘boosts’.

Step III The third step of the approach is the measurement of vaccine efficacy. In
some cases, such as malaria, efficacy can be measured directly in chal-
lenge studies. Alternatively for infections such as HIV where challenge
studies are impossible, efficacy can be determined through measurements
of vaccine-reduced acquisition rates, post-infection viral loads, trans-
mission, or other aspects of the infection.

Step IV The full compendium of measurements are then computationally inte-
grated in a systems-level analysis to derive mechanistic insights and
biomarkers. When direct measurements of vaccine-induced innate
immune responses are available, it is possible to make computationally
guided predictions about the causal regulatory networks controlling the
vaccine-induced responses. We, and others, have employed these
approaches to derive and validate novel regulatory networks controlling
Toll-like receptor activated networks in innate immune cells (Amit et al.
2009; Zak 2011; Litvak et al. 2009; Ramsey et al. 2008; Gilchrist 2006).
These approaches can be readily extended to predict regulatory networks
controlling responses to vaccines, which are likely to activate several
innate immune pathways in parallel (Querec 2006; Lindsay 2010;
Delaloye 2009). When vaccine-induced innate immune responses (direct
or indirect) and immunogenicity or efficacy measurements are available
from the same animal or volunteer, it becomes possible to computa-
tionally identify predictive signatures of protection (Fig. 3). Currently,
the most powerful application of systems vaccinology is the identification
of these immunogenicity and efficacy signatures. In the best case, robust
predictive signatures illuminate novel mechanistic insights; in the worst
case these signatures serve as valuable biomarkers (Querec 2009; Nakaya
2011; Brooks 2008; Zou 2005).

Step V While biomarkers achieve practical utility once they are validated in
additional cohorts, the power of the mechanistic insights obtained in the
first round of analysis is only realized when they are used to design and
execute appropriate systems-level perturbations in an experimental model.
The perturbations most directly related to molecular signatures are over-
expression or knockdown (in vitro) or genetic ablation (murine in vivo) of
the relevant genes. Although in vitro systems are the most easily perturbed,
they are also the least appropriate for evaluating vaccine immunogenicity
and efficacy. The murine genetic ablation validation strategy was recently
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Fig. 3 Network of gene expression signatures associated with CD4+ responses and SIV titers in
macaques. The network represents innate immune signatures, measured days after primary
vaccination, which predict enhanced SIV Gag-specific CD4+ T cell responses, and reduced SIV
load after challenge, measured several months later. Each circle represents a gene expressed in
PBMCs of macaques 6 days after vaccination. Blue edges represent gene pairs associated with
enhanced CD4+ response; red edges represent gene pairs associated with immediate protection
after challenge. (Adapted from Rappuoli and Aderem 2011)
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applied in a study that identified immunogenicity signatures for the
seasonal influenza vaccine in humans (Nakaya 2011). Small molecule
agonists and inhibitors, specific for the networks implicated by the pre-
dictive signatures, can also be used as perturbations. Combinations of this
class of drugs and vaccines have been explored in model systems (Araki
2009; Tan 2011) and may ultimately identify pharmacologic agents that
can be combined with vaccines to improve efficacy.

4.2 Accelerating Efficacy Trials

During the 30 years since the discovery of HIV only four efficacy trials have
been performed, an average of one trial every 8 years. Two of them have shown
that anti-gp120 antibodies alone do not work; one has shown that T cells alone
do not work; and one has shown that a prime-boost regime involving B and T
cells may work. Altogether, only three hypotheses (elicitation of anti-gp120
antibodies, activation of T cells, and simultaneous elicitation of B and T cell
responses) have been tested. Similarly, although challenge models are possible
for malaria and numerous vaccines have been tested in phase I studies, all of
these trials tested two hypotheses: peptide-based vaccines and RTS, S-based
vaccines. To date, no efficacy trials have been performed for a new preventive
vaccine against tuberculosis.

Accelerated clinical development can be achieved by improving the design of
trials to test several hypotheses in parallel, incorporating systems biology to derive
mechanistic insights and biomarkers, and employing a flexible strategy to expand
the arms of the trial that are most promising (Freidlin and Simon 2005; Campbell
2009). For instance, several prime/boost strategies could be initiated concurrently
in a large phase II study where subsets of the enrollees are monitored by systems
biology approaches to test both safety and immune responses. This approach
would identify vaccines that elicit qualitatively similar immune responses and
permit rapid discrimination of different vaccine platforms and exploration of
diverse approaches. Information collected during the early phases of the trial could
be used to expand the most promising arms of the trial in order to gain sufficient
statistical power to show the efficacy required for vaccine registration. Although
this approach may require larger budgets during the initial phases, over the entire
course of vaccine development, it will save money and time and will increase the
probability of success. Several studies have demonstrated the ability to use early
vaccine-response signatures to predict later immune responses (Querec 2009;
Gaucher 2008; Nakaya 2011) and therefore, in principle, be used to make early
decisions regarding the course of a clinical trial.
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Abstract Salmonella and Yersinia are two distantly related genera containing
species with wide host-range specificity and pathogenic capacity. The metabolic
complexity of these organisms facilitates robust lifestyles both outside of and within
animal hosts. Using a pathogen-centric systems biology approach, we are com-
bining a multi-omics (transcriptomics, proteomics, metabolomics) strategy to define
properties of these pathogens under a variety of conditions including those that
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mimic the environments encountered during pathogenesis. These high-dimensional
omics datasets are being integrated in selected ways to improve genome annota-
tions, discover novel virulence-related factors, and model growth under infectious
states. We will review the evolving technological approaches toward understanding
complex microbial life through multi-omic measurements and integration, while
highlighting some of our most recent successes in this area.
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1 Introduction

The outcome of an intracellular bacterial infection—bacterial replication and host
cell death versus host cell containment of the pathogen—is a complex process that
involves multiple interactions between the host cell and the attacking bacteria. The
mechanisms employed by each participant in these interactions are multifaceted
and often difficult to elucidate by traditional methods. This is where a ‘‘systems
approach’’ in which detailed data covering the bacterial and/or host transcriptome,
proteome, and metabolome are integrated using metabolic and regulatory models
is useful.

In this chapter, we describe the systems biology approach we apply to analyze,
identify, quantify, model, and predict the overall molecular processes involved in
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the pathogenesis by Salmonella and Yersinia species, two relatively closely related
and medically important pathogens within the family Enterobacteria. In humans,
the pathogenic Salmonella serovars Salmonella Typhimurium and Salmonella
Typhi cause a self-limiting gastroenteritis and frequently fatal typhoid fever,
respectively. Salmonella infection is a major public health problem, causing up to
3 million cases of infection per year in the US alone (Coburn et al. 2007), and the
recent emergence of untreatable, multidrug resistant strains such as phage type
DT104 has further increased the threat to public health (Glynn et al. 1998). Also
pathogenic to humans, Y. pseudotuberculosis and Y. enterocolitica induce gas-
troenteritis in the human host, and Y. pestis is the causative agent of plague, an
acute and lethal disease responsible for at least three pandemics that killed an
estimated 200 million people (Perry and Fetherston 1997).

In addition to each other, Yersinia and Salmonella are closely related to E. coli,
one of the best studied model systems for biological research (Brenner et al. 1969;
Brenner and Falkow 1971; Brenner 1978; Sharp 1991; Lerat et al. 2003). This
phylogenetic relationship is advantageous in that: (1) well-characterized biochem-
ical pathways, (2) protein–protein interaction databases, (3) well-characterized
transcriptional regulatory and start sites, and (4) molecular biology tools established
for E. coli provide baseline information that can be applied to studies of Salmonella
and Yersinia. Our premise is that knowledge gained from coordinated analysis and
modeling of these two genera will lead to improved control and therapeutic treatment
strategies, not only for these specific pathogens, but also for related gram-negative
bacteria in general.

Before delving into the application of our systems-level approach to gain insights
into pathogenicity from the perspectives of both these bacteria and the host, as well
as into host–pathogen interactions, we introduce the key elements underlying our
systems biology approach.

2 Elements of a Systems Approach

Our systems-level approach utilizes iterative and complementary experimental and
computational methodologies to obtain sample matched, high-dimensional tran-
scriptome, proteome, and metabolome/lipidome data for developing predictive
models of pathogenicity for Salmonella and Yersinia species.

2.1 Experimental Considerations for a Biological Perspective

Experimental considerations for a systems-based analysis in which the number of
components simultaneously quantified is important must balance the desire for in
depth measurements and broad analyte coverage with conditions representative of
the biological environment. In the majority of scenarios, in vitro culture conditions
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that simulate environmental conditions encountered by the pathogen during infec-
tion represent a good experimental approach, as they are capable of generating large
quantities of samples to simultaneously quantify thousands of components (i.e.,
transcripts, proteins, and metabolites) for a systems analysis of relevant biological
interactions (Coombes et al. 2005; Ansong et al. 2008b; 2009; White et al. 2010;
Yoon et al. 2011). For example, when Salmonella is grown in an acidic minimal
media (low pH, low magnesium, and nutrient-deficient) to partially mimic the host
intracellular milieu, expression of many genes required for systemic infection are
appropriately regulated (Deiwick et al. 1999; Miao and Miller 2000). Similarly,
growth of Yersinia at 37 �C in calcium-deficient chemically defined best case sce-
nario (BCS) medium induces the type 3 secretion system (T3SS) required for
Yersinia virulence (Brubaker 1991; Straley et al. 1993; Perry and Fetherston 1997;
Cornelis 1998, 2002). Thus, in vitro growth in media with specific composition can
be used as a surrogate of the host environment during infection.

A second experimental approach is based on infection of cultured macrophages
(specifically RAW264.7 murine macrophage cell line) in vitro. Salmonella
remains within professional phagocytic cells during mouse infection, and previous
studies have shown that replication in macrophages is directly correlated to the
ability to cause systemic infection (Fields et al. 1986). Yersinia pestis also displays
an intracellular growth phase in macrophages, and the ability of Yersinia strains to
infect and replicate in macrophages has been correlated with virulence (Cavanaugh
and Randall 1959; Straley and Harmon 1984a, b; Fukuto et al. 2010).

The third experimental approach involves whole animal models such as mice.
Mouse models of infection for Salmonella and Yersinia are widely considered to be
viable surrogates of pathogenicity in humans. For Salmonella, the two most com-
monly used mouse models are C57BL/6 and Balb/c. Both of these strains are sus-
ceptible to S. Typhimurium infection and die following either intragastric (i.g.) or
intraperitoneal (i.p.) infection with the strain used in our work (14028 s; LD50 * 105

i.g., LD50 \ 101 i.p.). For Yersinia, commonly used susceptible mouse models
include Swiss–Webster mice and Balb/c mice, in which intranasal/aerosol challenge
and subcutaneous challenges represent pneumonic and bubonic modes of plague
infection, respectively. The LD50 doses for the subcutaneous (s.c.) and aerosol routes
are\101 and 2 9 104 colony forming units respectively (Welkos et al. 1995, 1997;
Worsham et al. 1995). We note that there are many other strains of mice that contain
mutations in specific anti-microbiocidal components normally expressed by pro-
fessional phagocytic cells that represent additional important resources in analyzing
host–pathogen interactions (Vidal et al. 2008).

2.2 Foundational Omics Technologies

Omics technologies have transformed molecular biology into a data-rich discipline by
enabling scientists to simultaneously measure multiple molecular components (e.g.,
proteins, metabolites, and nucleic acids) that operate in a network of interactions to
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generate cellular functions and phenotypic states (Joyce et al. 2006; Oldiges et al. 2007;
Cascante and Marin 2008; Ly et al. 2010; Zhang et al. 2010).

In the context of systems biology, transcriptomics is a critical enabling ana-
lytical method due to the high precision and relative ease of data generation. DNA
microarray transcriptome analysis platforms are now a common laboratory com-
modity due to the availability of high quality reagents (e.g., slides, cyanine dyes,
etc.), widespread adoption of short oligonucleotide probes (70-mers) and expo-
nential reduction in costs of oligonucleotide synthesis and commercial DNA
microarray instrumentation. A limitation of microarrays is that they restrict
expression profiling data to specific predicted gene annotations. Overcoming this
limitation are the next generation sequencing (NGS) transcriptome analysis plat-
forms that allow biologists to determine the primary sequence and relative
abundance of every expressed transcript in a cell (whole transcriptome profiling) at
an unprecedented level of sensitivity and accuracy (Wang et al. 2009; Martin and
Wang 2011; Ozsolak and Milos 2011). However, even this level of information is
insufficient for determining whether the transcript is translated into a protein, the
macromolecules that execute biochemical functions in all cellular systems.

Comprehensive knowledge regarding protein abundances in organisms, host
cells, and tissues is considered essential to the study of infectious diseases and
cellular response to stresses. This information provides a basis for understanding
genetic variants, gene functions, and action mechanisms, which are needed to
develop the means to diagnose, treat, and protect against infectious disease
organisms. While some information about relative protein expression levels may
be inferred from high-throughput analysis of the mRNA complement or tran-
scriptome (Adams 1996; Velculescu et al. 1997), measured mRNA levels do not
necessarily correlate with either the corresponding activity or abundances of
proteins (Anderson and Seilhamer 1997; Haynes et al. 1998; Gygi et al. 2000;
Schwanhausser et al. 2011). For example, *20 % at a minimum and potentially as
much as 50 % of the S. Typhimurium genome is post-transcriptionally regulated
(Sittka et al. 2008; Ansong et al. 2009). Protein functions may also be modulated
by post-translational modifications (e.g., phosphorylation, acetylation, etc.) and/or
by forming complexes with other biomolecules (e.g., proteins, RNA, lipids, etc.) or
small molecules (metabolites, dissolved gases, etc.). This information is not even
peripherally available from transcriptome analysis. As such, proteomics—the
study of the entire complement of proteins expressed by a cell under a specific set
of conditions at a particular time—is another key enabling technology in the
emerging science of systems biology.

As proper metabolic function underlies nearly every aspect of pathogenesis,
e.g., nutrient acquisition and survival within specialized compartments inside host
macrophages, metabolomics plays an important role in developing systems-level
understanding. Broadly defined, metabolomics is the quantitative determination of
time-related or stimuli-dependent changes in the small molecular weight com-
plement of an integrated biological system, cell, or cell types (Nicholson et al.
1999; Kueger et al. 2012). Metabolomics can be further subdivided based on
biochemical class, specifically metabolomic studies selective for lipids is termed
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‘‘lipidomics’’. The metabolome and lipidome are the molecules meant to be
directed by the transcriptome and in turn the proteome, with small molecules
playing critical roles in energy balance, intercellular communication, membrane
dynamics, osmoregulation, and many other life processes.

2.3 Computational Framework for Integrating
Biological Information

Extracting ‘knowledge’ from the volumes of omics data resulting from high-
throughput measurements is nontrivial (Palsson and Zengler 2010). Two major
network approaches have emerged to extract biological insight from this omics
ocean: one is inference based and the other, knowledge based. Both approaches
use an interconnected network of biological molecules to interpret omics data;
however, there are crucial differences in how the networks are constructed and in
the biological questions that can be studied. Inference-based approaches employ
statistical methodologies to construct network models from correlation or recur-
ring patterns in omics data (see Refs. (Margolin and Califano 2007; Bonneau
2008; De Smet and Marchal 2010) for reviews). Knowledge-based, which is also
referred to as reconstruction based, approaches are essentially two-dimensional
genome annotation efforts (Palsson 2004) that construct networks from bio-
chemical and genetic data (reviewed in (Reed et al. 2006; Feist et al. 2009; Hyduke
and Palsson 2010; Thiele and Palsson 2010)). Statistical inference methods benefit
from incorporation of all data in an omics set to guide hypothesis development
related to unknown interactions. However, these methods are complicated by the
fact that the component measurements are not independent and that they do not
account for biochemical and genetic causality (Margolin and Califano 2007).
A major shortcoming of inference-based methods is that they typically solve
underdetermined problems, thus they are not guaranteed to provide a unique
solution (De Smet and Marchal 2010). Network reconstruction employs estab-
lished biochemical, genetic, and genomic data (Reed et al. 2006; Feist and Palsson
2008; Oberhardt et al. 2009; Schellenberger et al. 2010) to assemble a knowledge
base of an organism’s molecular components and interactions (Thiele and Palsson
2010). Because knowledge bases are constructed from biological information,
whereas inference methods are based on statistical correlations or information
theory, knowledge bases provide a biological context for omics analysis (Lewis
et al. 2009). The major shortcoming of the knowledge base approach is that they
do not, currently, account for the activities of all genes in a genome, thereby
limiting the ability to discover novel relationships important to pathogenesis.

Our systems-level strategy utilizes both inference- and knowledge-based
approaches to investigate the molecular mechanisms underlying virulence as both
approaches have their own unique strengths that allow us to probe the regulatory
influences and biochemical mechanisms associated with virulence.
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3 Pathogen Perspective: Salmonella

Overview
Our overarching biological approach focuses on elucidating virulence mecha-

nisms necessary for Salmonella to cause systemic infection. The approach employs
in-silico network reconstructions that integrate omics data into a single coherent,
systems-level framework. In this section, we describe key steps in this process to
improve annotation of the Salmonella Typhimurium genome, develop a Salmonella
Typhimurium genome-scale metabolic reconstruction, and apply the omics-data
constrained Salmonella metabolic model for in-silico biology applications.

3.1 Proteogeonomics

Complete and accurate genome annotation is crucial as incorrectly annotated
genes and/or unannotated genes confound interpretation of experimental omics
analyses and result in non- or dysfunctional computational models. However,
determining protein-coding genes for most new genomes is almost completely
performed by inference using computational predictions that experience significant
error rates (Ansong et al. 2008a; Armengaud 2009; Payne et al. 2010). Com-
pounding this issue is a lack of experimental evidence to support predicted protein-
coding regions for the overwhelming majority of annotated genomes. Even when
available, experimental evidence is typically based on expressed RNA sequences,
such as from microarray or NGS experiments, which do not independently and
unequivocally elucidate whether a predicted protein-coding gene is translated into
a protein, or provide any reliable information on post-translational processing.

Bottom-up proteomics offers the ability to directly measure peptides arising from
expressed proteins representing the current best option for independently and
unambiguously identifying at least an important subset of the protein-coding genes
in a genome and can be used to experimentally validate and correct in-silico gene
annotations (Jaffe et al. 2004; Ansong et al. 2008a; de Groot et al. 2009; Wright et al.
2009). Toward this end, we complemented the current Salmonella Typhimurium
14028 in-silico annotation with bottom-up proteomics data (Ansong et al. 2011). The
data provide protein-level experimental validation for approximately half of the
predicted protein-coding genes in Salmonella and suggest revisions to several genes
that appear to have incorrectly assigned translational start sites.

The proteomics data also revealed 12 non-annotated genes missed by gene
prediction programs and provided evidence that suggested a role for one of these
genes in Salmonella pathogenesis. Moreover, the data-enabled characterization of
post-translational features in the Salmonella genome that included chemical
modifications and proteolytic cleavages. This information revealed a much larger
and more complex repertoire of chemical modifications in bacteria than previously
thought and included several novel modifications and more than 130 signal peptide
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and N-terminal methionine cleavage events critical for protein function. The
refined genome annotation facilitates omics analyses and is useful for developing
more complete models of metabolism and regulation.

3.2 Genome-Scale Metabolic Reconstruction

Metabolism arguably has the most complete network in Salmonella, relative to for
example gene regulatory or protein–protein interaction networks, and its proper
function underlies nearly every aspect of pathogenesis, e.g., nutrient acquisition
and survival within Salmonella-containing vacuoles of macrophages. Thus,
understanding metabolism under a variety of growth conditions provides us with
key insights and testable hypotheses regarding the molecular mechanisms Sal-
monella employs during host infection. Toward this end, we reconstructed and
examined the metabolic network of S. Typhimurium (Thiele et al. 2011). A met-
abolic network reconstruction contains all of the possible metabolic reactions
known to occur within an organism, although only a subset of these reactions is
likely to be active at any time. The S. Typhimurium metabolic reconstruction
contains 1270 genes, 1119 biochemically unique intracellular metabolites, and
2201 network reactions. Also considered in this model is the importance of
localization and movement of metabolites including distinct compartments for the
cytoplasm, periplasm, and inner and outer membranes. The metabolic recon-
struction by itself is a useful platform for biological discovery as discussed
immediately below; however, integrating global omics measurements relevant to
infection constrain the model to growth representative of infection allowing
detailed studies on phenotypic behavior and analysis of network properties rele-
vant to pathogenenesis as described in the following sections.

In an initial application, we employed the reconstruction to make a number new
of predictions regarding possible therapeutic targets in a synthetic gene deletion
analysis (Thiele et al. 2011). A number of 56 synthetic lethal gene pairs were
found to disrupt growth of S. Typhimurium in silico. Notably, several gene pairs
are known to be essential for virulence, but not for growth, and have known
inhibitors based on the enzyme database BRENDA, further underscoring the
applicability of the network reconstruction for applications such as identification
of candidate drug targets.

3.3 Metabolic Model-Guided Analysis of Omics Data

Genome-scale metabolic reconstructions are attractive frameworks for multiomic
analysis because they represent metabolism in chemically accurate terms and relate
enzyme activities to the genome. To gain insight into the changes in the functional
state of Salmonella’s metabolic network during infection, we grew S. Typhimurium
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14028 s in rich media and in acidic minimal media defined to mimic the intramac-
rophage environment after which the Salmonella metabolic model was used to
analyze sample-matched transcriptomics, proteomics, and metabolomics data gen-
erated from these samples. While the transcript and protein data was used to inform
reaction flux constraints under the conditions tested, the metabolite data informed on
the turnover of intracellular metabolites. This allowed further refinement of the
model by requiring that S. Typhimurium utilize the detected metabolites in the
allowed network states. Small metabolites may play an important role in immuno-
logical processes, and we observed a number of metabolites that resulted in modu-
lation of macrophage activation when used as substrates for cellular metabolism.
Analysis of sample-matched omics data using the Salmonella metabolic model
revealed Salmonella maintained the metabolic potential for high fluxes of intracel-
lular metabolites postulated to inhibit macrophage activation, presumably allowing
for adaptation to the host environment (Fig. 1).

3.4 Inference-Based Analysis of Omics Data

Our reconstruction-based (also known as knowledge-based) network approach is
complemented by using an inference-based network approach that employs sta-
tistical methodologies to construct network models from correlation or recurring

Fig. 1 Salmonella preferentially maintains metabolic pathways putatively associated with
immunosuppression in minimal media. Omics-data tailored condition-specific models of
Salmonella metabolism were analyzed with flux variability analysis. The y-axis shows the ratio
for each metabolite concentration as detected by GC–MS. The x-axis depicts the relative change
in the allowable ranges of flux through each metabolite as characterized by flux variability
analysis. Metabolites capable of suppressing macrophage activation are shown as blue boxes.
Metabolites capable of supporting macrophage activation are shown as red stars
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patterns in omics data. This complementary approach is important as it enables
hypothesis development related to unknown interactions.

As a demonstration of the utility of the inference-based modeling approach, the
context likelihood of relatedness (CLR) algorithm (Faith et al. 2007), which uses
mutual information to infer relationships between genes based on the coordination
of their expression profiles across different conditions, was employed to predict
proteins important to Salmonella pathogenesis (i.e., virulence factors) from sam-
ple-matched transcriptomics and proteomics data of Salmonella and knockout
mutants of 14 regulators required for virulence (Yoon et al. 2011). This approach
uncovered many of the known major virulence factors in Salmonella recapitulating
aspects of known Salmonella biology that had taken decades of traditional research
to arrive at as well as uncovering several novel network-predicted virulence factors
a subset of which importantly were experimentally verified demonstrating the
utility of the approach (Yoon et al. 2011).

3.5 Integrated Inference- and Knowledge-Based Analysis
of Omics Data

As the metabolic knowledgebase is limited to only those genes associated with
metabolism (1271 in the Salmonella metabolic reconstruction) it fails to exploit
potential clues to virulence programs present in the remaining *3000 Salmonella
genes. To overcome this limitation and increase the knowledge extracted from
proteome and transcriptome data, we developed an integrated approach that uses
the CLR statistical inference method in combination with the Salmonella meta-
bolic model (STM_v1.0). In this approach, CLR is utilized to infer a set of can-
didate ‘bottleneck’ genes, after which STM_v1.0 is deployed to assess the
phenotypic relevance of these genes to growth. A bottleneck gene is frequently
(relative to the other genes) found in the shortest path between two genes in the
network and they are thought to represent important mediators of system processes
(McDermott et al. 2009). The benefit of using CLR inferences with the defined
metabolic network is that although CLR does not necessarily infer an actual
biological network, it provides information about the influences of all genes
measured.

Application of the CLR algorithm to transcriptome data identified potential
bottlenecks that were analyzed in the context of the metabolic model to identify
the growth conditions in which deletion of a bottleneck would reduce or abrogate
growth. We performed in-silico growth simulations using flux balance analysis
(FBA) (Feist and Palsson 2010; Orth et al. 2010) or the minimization of metabolic
adjustments (MoMA) method (Segre et al. 2002) to assess the impact of gene
deletion on growth. Comparison with experimental observations testing the pre-
dicted phenotypic effects of the metabolic model and the relevance of the select set
of bottleneck genes to virulence showed the FBA method to be less accurate than
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the MoMA method which showed good agreement with experimental observations
(Fig. 2). This finding was not surprising because FBA predicts what the metabolic
network could achieve after the organism has evolved to cope with the genetic
manipulations while MoMA was developed to identify the growth rate achievable
immediately following a perturbation. These results demonstrate the power of
leveraging the unique strengths of two different network approaches to increase the
amount of knowledge extracted from omics data.

4 Pathogen Perspective: Yersinia

Overview
The studies and methodologies focused on Salmonellae provided a foundation

from which to study the less understood pathogenic organisms of the Yersinia genus.
In addition to elucidating virulence mechanisms necessary for Yersinia to cause
systemic infection, an overarching goal is to understand the differences in disease
manifestation among closely related species. In this section, we describe application
of the system biology approach described above to gain insight into Yersinia biology.

In Silico Growth Rate In Vitro

(Relative to WT) Phenotype

Strain FBA MOMA

14028s 100% 100% Growth

ΔatpA 76% 57% Weak Growth

ΔtpiA 98% 66% Weak Growth

ΔpurK 100% 100% Growth

ΔmetN 99% 98% Growth

ΔmetA 100% 100% Growth

ΔfrdA 100% 100% Growth

Δeno 74% 13% Weak Growth

ΔcyoA 90% 72% Growth

ΔgpsA 0% 0% Weak Growth

ΔgapA 66% 0% No Growth

Δpgk 66% 0% No Growth

ΔatpA/Δpgk 35% 0% No Growth

ΔatpA/ΔgapA 35% 0% No Growth

ΔatpA/ΔtpiA 55% 0% No Growth

Fig. 2 Experimental
phenotypes are consistent
with simulated phenotypes
for genes identified to be
important by coordinated
inference and genome-scale
metabolic analysis. FBA
(quicker to compute) and
MoMA (slower to compute)
are different approaches for
utilizing the metabolic
reconstructions to predict
phenotypes resulting from
knocking out metabolic
functions. The growth results
for 14 gene deletion mutants
relative to ‘‘wild type’’ (WT)
parent 14028 s are shown.
The red boxes indicate poor
agreement between growth
predictions and the
experimentally observed
growth result, whereas the
green boxes indicate good
agreement
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4.1 Proteogeonomics

The concept of annotation refinement introduced above can be extended to include
a comparative assessment of genomes across closely related species and the use of
multiple omics-data sources further enhancing the value of annotation improve-
ments. Transcriptomic and proteomic data derived from highly similar pathogenic
Yersiniae (Y. pestis CO92, Y. pestis Pestoides F, and Y. pseudotuberculosis PB1/+)
was used to complement the current in-silico annotation for each strain. Peptide
and oligo measurements experimentally validated the expression of nearly 40 % of
each strain’s predicted proteome and revealed 28 novel and 68 previously incor-
rectly annotated protein-coding sequences (e.g., observed frameshifts, extended
start sites, and translated pseudogenes) within the three current Yersinia genome
annotations (Schrimpe-Rutledge et al. 2012). The refined genome annotations are
immediately useful to facilitate omics analyses and develop more complete models
of metabolism and regulation.

4.2 Genome-Scale Metabolic Reconstruction

As a framework for integrating and analyzing omics data toward a systems
approach to understanding Yersinia pathogenesis, we completed a metabolic
reconstruction for Y. pestis CO92, a strain that is virulent to humans (Charusanti
et al. 2011). The metabolic network of Y. pestis possesses sufficient flexibility as to
endow the organism with the ability to survive and proliferate in its two hosts:
(1) the flea insect vector (growth at 26-28 �C) and (2) mammalian vectors such as
rodents and humans (growth at 37 �C). The reconstruction contains 815 genes, 678
proteins, 936 unique metabolites, and 1678 reactions, considers localization as for
Salmonella (see above), and includes two biomass objective functions that account
for differences in cellular biomass composition when Y. pestis is grown at the two
different temperatures.

We employed the reconstruction to analyze gaps in various Y. pestis CO92
metabolic pathways. The reconstruction identified two critical gaps in the lysine and
fatty acid biosynthesis pathways that needed to be filled in order for model simula-
tions to occur. This necessity prompted a search for alternative genes in Y. pestis
CO92 that could catalyze the same reactions as those catalyzed by the missing genes.
A search for paralogs of YPO0170, the missing gene in lysine biosynthesis,
uncovered YPO1962, a potential open reading frame with 59 % nucleotide identity
that might have the same catalytic ability; however, there were no apparent paralogs
for fabI, the missing gene in fatty acid biosynthesis, within the Y. pestis CO92
genome.

We searched for alternative enzymes by overlaying global transcript and pro-
tein expression data onto the reconstructed metabolic pathways in Yersinia as
illustrated for the transcript data in Fig. 3. Our reasoning was that any enzyme
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having the same catalytic function as FabI should be located near the fatty acid
biosynthetic cluster (YPO1595 to YPO1601), exhibit correlated expression with
genes in this cluster, and be annotated as hypothetical. The best match based on
these criteria turned out to be the hypothetical gene YPO1594. Other genes that
showed correlated expression, but were located farther away from the biosynthetic
cluster, were YPO3732 and YPO2055.

5 Host Perspective

During infection, pathogens attempt to hijack resources from the host, while host
cells attempt to limit the materials available for pathogen reproduction and viru-
lence. The importance of metabolism in host–pathogen interactions is exemplified
by the battle over free iron. While the host attempts to limit the iron available to
pathogens, pathogens have evolved high-efficiency chelators to scavenge available
iron from the active sites of a variety of metabolic enzymes, such as those used in
amino acid biosynthesis. However, the extent to which we can accurately measure
the complete molecular makeup of a pathogen during infection is limited.
Therefore, a systems-level model of host–pathogen interactions possesses the
potential to identify a key subset of molecular features that should be measured to
unravel the pathogen’s molecular decision-making processes during infection.

Fig. 3 Visual representation of integrated omics data and reconstruction. Temporal expression
pattern of identified fab genes (panel B) in the fab pathway (panel A) are shown including
putative fabI candidates YPO1954, YPO3732, and YPO2055. Each column represents ratio of
37 �C/26 �C across time (1 h, 2 h, 4 h, 8 h). The color scale ranges from green (total low relative
abundance) to red (high relative abundance)
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To better understand the metabolic features of the host during Salmonella
infection, we completed a genome-scale metabolic reconstruction for the murine
RAW 264.7 macrophage cell line (Bordbar et al. Mol Sys Biol 2012—in press).
This reconstruction contains 820 genes, 574 unique metabolites, and 1067 reac-
tions. Physiological metabolic rates of the reconciled metabolic network were
evaluated for biomass growth, ATP production, and NO synthesis and compared to
experimental values. Overall, our results indicate that the reconciled metabolic
network is predictive of physiologically relevant experimental rates when in vitro
experimental uptake rates are imposed.

In an initial application, the macrophage metabolic model was used to analyze
transcriptomics and proteomics data from the time course responses of RAW 264.7
macrophages to lipopolysaccharide (LPS) stimulation. Host cell response(s) to
Salmonella infection and to LPS treatment are similar in that they both result in
expression of multiple antimicrobial factors. This analysis resulted in the identi-
fication of metabolites and enzymes associated with immunomodulation. We have
also shown this using inference-based modeling of macrophages, which revealed a
common response to multiple immune challenges (McDermott et al. 2011a). To
determine if nutrient availability could affect macrophage activation, we per-
formed sensitivity analysis for a set of activation phenotypes as a function of in
silico medium composition. Our analysis identified a number of nutrients with the
potential to modulate macrophage activation such as glutamine, urea, and threo-
nine. This study demonstrates that the role of metabolic processes in regulating
host cell activation may be greater than previously anticipated and elucidates
underlying metabolic connections between activation and metabolic effectors.

6 Host–Pathogen Interaction

6.1 Integrated Host–Pathogen Model of Metabolism

Computational genome-scale metabolic models of individual pathogens or their
respective hosts are undoubtedly useful for integrating omics and physiologic data for
systemic, mechanistic analysis of metabolism. However, the next step toward under-
standing the interactions between a pathogen and its host requires integrated modeling
of both host and pathogen metabolic networks. To this end, we pioneered an approach
for integrative analysis of host–pathogen interactions that employs in-silico mass-
balanced, genome-scale models and tested it using the closely related Mycobacterium
tuberculosis (M. tb)-human alveolar macrophage interaction as a model system, as
resources related to this system were more mature (Bordbar et al. 2010). Briefly, we
constructed a cell-specific alveolar macrophage model iAB-AMØ-1410 from the
global human metabolic reconstruction, Recon 1 (Duarte et al. 2007). This model was
then integrated with an M. tuberculosis H37Rv model, iNJ661, to build an integrated
host–pathogen genome-scale reconstruction, iAB-AMØ-1410-Mt-661. Importantly,
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this integrated host–pathogen network enables simulation of the metabolic changes
during infection.

Deployment of the host–pathogen metabolic model to analyze high-throughput
data from infected macrophages representing three distinct M. tuberculosis
infectious states (latent, pulmonary, and meningeal) highlighted differences in
metabolism among the three different states (Bordbar et al. 2010). This pioneering
effort demonstrates integrated host–pathogen reconstructions can form a founda-
tion upon which understanding the biology and pathophysiology of a variety of
infections can be developed. Further, the foundational efforts described above have
now been performed to enable this approach with Salmonella and Yersinia with a
mouse macrophage cell line.

6.2 The Host–Pathogen Interface

The interplay between effector proteins secreted by the pathogen and host cells
exposed to these effector proteins are relevant to infection in many Enteropatho-
gens and as such can be useful in modeling host–pathogen interactions. An added
benefit is that some of these virulence factors may be potential new drug targets.

We applied our systems approach to characterize the Salmonella secretome,
using omics technologies, inference-based computation and biological experi-
mentation. In this case, we experimentally identified secreted virulence factors by
analyzing the extracellular medium from wild type Salmonella, a mutant that
promotes secretion (DSsaL), and a mutant that inhibits secretion (DSsaK)
(Niemann et al. 2011). Proteomics analysis of the secreted fraction identified the
overwhelming majority of known secreted virulence factors and revealed more
than 20 new putative secreted virulence factors. In parallel, we utilized SIEVE
(SVM-based identification and evaluation of virulence effectors), a machine
learning algorithm we developed (Samudrala et al. 2009; McDermott et al. 2011b),
to predict novel secreted effectors.

Coupling the SIEVE algorithm with the proteomics data proved to be an effi-
cient way to select novel proteins for characterization. We tested ten proteins
based on input from the SIEVE algorithm and proteomics data for secretion into
J774 macrophages using CyaA’ assays and confirmed that eight of the ten were
secreted into the macrophage cytosol. Additional in vivo infection studies
demonstrated that deletion mutants of six of the above eight confirmed secreted
proteins (DspvD, DsteE, DgtgE, DsteD, DsssA and DssaB) were attenuated for
virulence. Importantly, these results demonstrate the utility of a systems approach
for predicting proteins relevant to understanding host–pathogen interactions.
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6.3 Host–Pathogen Interactions in the Gut Microbiome

The commensal microbiota of the host represents a relatively unexplored contributor
to the host–microbe interactions during infection. As a complete understanding of
pathogenesis will undoubtedly need to consider the host microbiota, we undertook
an exploratory study to investigate the interplay between host, pathogen, and
commensal microbes during S. Typhimurium-induced gastroenteritis.

For these studies, we chose a mouse model of persistent Salmonellosis, which
requires no antibiotic treatment prior to infection and allows Salmonella coloni-
zation of the gut, allowing us to observe activities of the commensal microbial
population. Application of integrated proteomics, metabolomics, metagenomics,
and glycomics measurements revealed oral Salmonella infection disrupts the
commensal population, which allows S. Typhimurium to proliferate; concurrently,
the host immune system (specifically neutrophil infiltration and release of various
inflammatory markers) is activated (Fig. 4). Loss of commensal microbes (likely

Fig. 4 Model of host–pathogen-commensal interactions during S. Typhimurium-induced
gastroenteritis. Using a systems biology approach and the available literature, we developed a
model of the interplay between the mouse, S. Typhimurium, and the commensal population during
gastrointestinal infection. Prior to pathogen introduction, the commensal population thrives in the
homeostatic gut. Early in infection, S. Typhimurium proliferates, stimulates an inflammatory
response characterized by neutrophil activation, and disrupts this microbial community. As the
commensal population profile changes, so do metabolites in the gut that are normally metabolized
by the microbial community such as fucosylated glycans. S. Typhimurium senses and responds to
fucose availability during gastrointestinal infection, as evidenced by increased expression of
fucose utilization proteins. Finally, pathogen clearance from the gut occurs, allowing the
gastrointestinal environment to begin to return to pre-infection conditions
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due in part to the host inflammatory response) and their associated functions is
evident mid-way through infection, when metabolites such as fucose and other
sugars normally utilized by commensal bacteria accumulate in the gut. During this
time, Salmonella thrives, sensing increased host glycan release and utilizing
available fucose moieties, among other functions. Resolution of infection by later
time points is observed, with a decrease in S. Typhimurium abundance, re-estab-
lishment of metabolite composition, and outgrowth of indigenous microbiota.
Importantly, this model of interactions during Salmonella-induced gastroenteritis
provides a framework that is both consistent with known factors and provides new
insights into infection through integration of omics studies. We anticipate that
future endeavors will similarly take advantage of the increased knowledge that can
be gained through this systems-level approach.

7 Conclusion and Future Prospects

In this chapter, we have highlighted application of our systems biology approach
to investigate interactive host–pathogen mechanisms necessary for two closely
related pathogens Salmonella and Yersinia to cause systemic infection. With the
increasing body of knowledge and data arising from high-throughput omics
approaches, it is very important that more sophisticated computational approaches
be developed to use this information. For example, the integration of inference and
knowledge-based modeling approaches discussed above. Comprehensive system
models of Yersinia and Salmonella pathogenesis will have applications for anti-
biotic development, new strategies for therapeutic treatments, and further under-
standing of the complex interplay between pathogen and host and the microbiota
during infection. In addition to what has been discussed, the reconstruction of
other networks including transcriptional regulatory networks and more recently
transcription and translation processes (i.e. macromolecular synthesis) are
becoming established (Herrgard et al. 2004; Thiele et al. 2009). Methods for their
integration with the metabolic models discussed here are in development and
should provide a more comprehensive systems-level model enabling systems-level
simulations of host–pathogen interactions.
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ChIP-Seq and the Complexity of Bacterial
Transcriptional Regulation

James Galagan, Anna Lyubetskaya and Antonio Gomes

Abstract Transcription factors (TFs) play a central role in regulating gene
expression in all bacteria. Yet, until recently, studies of TF binding were limited to a
small number of factors at a few genomic locations. Chromatin immunoprecipitation
followed by sequencing enables mapping of binding sites for TFs in a global
and high-throughput fashion. The NIAID funded TB systems biology project
http://www.broadinstitute.org/annotation/tbsysbio/home.html aims to map the
binding sites for every transcription factor in the genome of Mycobacterium tuber-
culosis (MTB), the causative agent of human TB. ChIP-Seq data already released
through TBDB.org have provided new insight into the mechanisms of TB patho-
genesis. But in addition, data from MTB are beginning to challenge many simpli-
fying assumptions associated with gene regulation in all bacteria. In this chapter, we
review the global aspects of TF binding in MTB and discuss the implications of these
data for our understanding of bacterial gene regulation. We begin by reviewing the
canonical model of bacterial transcriptional regulation using the lac operon as the
standard paradigm. We then review the use of ChIP-Seq to map the binding sites of
DNA-binding proteins and the application of this method to mapping TF binding
sites in MTB. Finally, we discuss two aspects of the binding discovered by ChIP-Seq
that were unexpected given the canonical model: the substantial binding outside the
proximal promoter region and the large number of weak binding sites.
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1 Introduction

Transcription factors (TFs) play a central role in regulating gene expression in all
bacteria. Yet, until recently, studies of TF binding were limited to a small number
of factors at a few genomic locations. Although these data have provided a wealth
of detailed mechanistic insight, they have also been extrapolated and simplified to
form a set of widely help assumptions about the global nature of TF binding in
prokaryotes. Only recently have techniques become available to map TF binding
sites in an unbiased fashion. Chromatin immunoprecipitation followed by
sequencing (ChIP-Seq) provides the ability to globally map binding sites for TFs,
and the scalability of the technology enables the ability to map binding sites for
every DNA binding protein in a prokaryotic organism.

As part of the NIAID funded TB systems biology project http://www.broadinstitute.
org/annotation/tbsysbio/home.html, an effort to map the binding sites for every
transcription factor in the Mycobacterium tuberculosis (MTB) genome is underway.
MTB is the causative agent of human tuberculosis. With more than 8 million new cases
of active disease and nearly 1.5 million deaths annually, TB is a global health emer-
gency of overwhelming proportions (World Health Organization 2001). Mapping the
binding sites for all MTB TFs and using these data to reconstruct the regulatory
network of this organism promises to reveal mechanistic insight into TB pathogenesis
that could be used to speed the development of new and more effective drugs, vaccines,
and diagnostics. And the analysis of data from the mapping of 50 TFs has already led
to biological insights (Galagan et al. Submitted). But beyond the insights into MTB
biology, the ChIP-Seq data from MTB are also beginning to challenge the simplifying
assumptions of gene regulation in bacteria in general.

In this chapter, we review the surprising diversity of MTB TF binding sites being
discovered by ChIP-Seq and discuss the implications of these data for our under-
standing of bacterial gene regulation. We begin by reviewing the canonical model
of bacterial transcriptional regulation using the lac operon as the standard para-
digm. We then review the use of ChIP-Seq to map the binding sites of DNA-binding
proteins and the application of this method to mapping TF binding sites in MTB.
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Finally, we discuss two aspects of the binding discovered by ChIP-Seq that were
unexpected given the canonical model: the substantial binding outside the proximal
promoter region and the large number of weak binding sites. We review the
background literature that helps place these data into a biological context, and helps
extend the canonical prokaryotic regulatory model to encompass these new find-
ings. We also describe the public release and availability of these data at Tuber-
culosis Database (TBDB.org).

2 The Canonical Model of Bacterial Transcriptional
Regulation: The Lac Operon

In prokaryotes, the core event of transcription is the binding of a DNA-dependent
RNA polymerase to the promoter region of an operon. The core polymerase is a
multisubunit enzyme that is capable of transcription, but not the initiation of
transcription. Nor is the core polymerase enzyme capable of regulating the
selection of promoters to which it binds. Transcription initiation requires that the
polymerase interacts with a sigma factor to form a holoenzyme. Sigma factors also
represent the first level of transcriptional regulation in that they direct that holo-
enzyme to specific promoter sequences. Bacteria typically possess multiple sigma
factors that enable recognition of multiple sets of promoters in response to
changing cellular states. Additionally, bacteria possess many different TFs that can
bind to DNA and influence the transcription rate at different promoters. TFs
respond to environmental and cellular conditions and the activity of other regu-
latory proteins to orchestrate the genome-wide pattern of transcription. Under-
standing the interactions between TFs and the mechanisms by which TFs modulate
transcription is thus a central challenge for understanding the functioning of cells.

The classical model for studying the mechanisms of gene regulation in pro-
karyotes is the lac operon in Escherichia coli (E. coli). The lac operon encodes
three genes required for the digestion of lactose. Through a two-part regulatory
mechanism, E. coli only transcribes these three genes when necessary. Ground
breaking experiments by Jacob and Monod (1961) and later by Gilbert (Gilbert and
Muller-Hill 1966) provided the framework by which this regulation occurs. This
framework, in turn, has provided the paradigm for understanding regulation in
prokaryotes in general. The lac operon has been well described, and we only
review the core aspects here. The essential characteristic of this framework is the
binding of two different proteins to the lac operon promoter region: the lac
repressor and the catabolite activator protein (CAP).

The lac repressor represses the lac operon in the absence of lactose. In this
condition, the repressor protein binds tightly to an operator site in the promoter of
the lac operon just upstream of the transcription start site called O1 (Fig. 1a). This
binding is the central mechanism of repression as it sterically inhibits access to the
promoter by the polymerase. When lactose is present, the inducer allolactose is
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produced and binds to the lac repressor, rendering the repressor unable to bind.
CAP activates the lac operon in the absence of glucose. In this condition, cAMP is
produced and binds to CAP, enabling CAP to bind to a binding site in the promoter
upstream of the polymerase binding site (Fig. 1a). Interactions between CAP and
the polymerase facilitate binding of the latter to the promoter region, thus
activating transcription.

It is now understood that the full complexity of lac operon regulation is more
complex than this simplified model. Yet, the basics of this model drive much of the
interpretation of bacterial regulation. In particular, the canonical model implies that
TFs should bind primarily to the proximal promoter such that direct interactions with
the polymerase complex can mediate regulatory effects. As described below,
however, many examples exist of more complex mechanisms. Moreover, genome-
wide mapping data from chromatin immunoprecipitation (ChIP) studies for TFs are
suggesting that such mechanisms may be more common than previously thought.

Fig. 1 The lac operon model of bacterial transcription initiation regulation. a Canonical model
of regulation of the lac operon by the lac repressor and catabolite activator protein (CAP).
b Model of DNA looping of the lac operon. Schematic of DNA looping is shown as a simplified
schematic only. Many different topologies of the looped DNA are possible
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3 Chromatin Immunoprecipitation for Mapping DNA
Binding Sites

Chromatin immunoprecipitation followed by sequencing is a method for globally
mapping the binding locations of a protein on the genome sequence of an organism
(Fig. 2) (Johnson et al. 2007; Mikkelsen et al. 2007; Robertson et al. 2007a). ChIP
is the first step. This is performed on a population that can range from 104 to 107

cells (Park 2009). Proteins bound to the genomes of these cells are cross-linked to
DNA with formaldehyde. The cells are then broken open and the DNA sheared
through sonication or enzymatic digestion. DNA fragments bound by a protein of
interest (a transcription factor, for example) are immunoprecipitated using an
antibody to the protein. The antibody can either be selected to recognize the native
protein, or to recognize an epitope (or tag) genetically engineered into the protein
sequence (Kim et al. 2008; Mazzoni et al. 2011). Cross-linking is then reversed to
remove the proteins, the precipitated DNA fragments are isolated, and sequencing
used to generate reads from the ends of the fragments. Sequencing reads are
aligned to the corresponding genome sequence, and genomic locations from which
the DNA fragments are derived are identified as regions that are over-represented
with aligned reads. (An older technology, called ChIP–ChiP, uses hybridization to
a microarray to identify the location of DNA fragments).

Ideally, only genomic regions that were bound by the protein of interest would
display read coverage. In practice, DNA fragments will be nonspecifically isolated
and sequenced as well, resulting in a background coverage of reads aligning across
the genome sequence. To assess this background coverage, one or more control
experiments are typically used. Several different types of controls can be utilized
that assess different processes giving rise to background coverage. Mock ChIP
runs are frequently used; they include every step of the ChIP process with the
exception of the addition of the antibody. These experiments control for the many
non-antibody steps of ChIP that may lead to nonspecific DNA isolation. In cases
where antibodies are used against genetically tagged proteins, the same antibodies
can be used for ChIP against the strains that lack the genetic tag. Such experiments
assess the degree to which the antibody recognizes nonspecific targets. A genomic
DNA preparation can also be generated as a control. Sequencing of this genomic
DNA, as well as the other control preparations described, help control for the
differential efficiency of isolation and sequencing of different locations of the
genome. For example, certain genomic regions are highly susceptible to isola-
tion—perhaps owing to chromatin structure, base composition, or repetitive nat-
ure—that may appear as false-positive peaks in coverage relative to the rest of the
genome in control lanes.

Binding sites for the protein of interest are regions along the genome charac-
terized by greater read coverage in the protein ChIP-Seq experiment than the
background coverage. These can be identified using a wide range of available
computational tools (Pepke et al. 2009; Wilbanks and Facciotti 2010). The degree
to which the protein ChIP-Seq shows greater coverage than background is termed
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enrichment, and most algorithms effectively select a threshold on enrichment. In
some cases, the control data are used directly to calculate enrichment, while in
other cases a statistical model is built based on the control data. At any given
threshold, some regions may display enrichment due to chance fluctuations in
coverage, giving rise to false discovery of peaks. Thus, most algorithms also
estimate a false discover rate (FDR). For example, in the case where the back-
ground coverage is modeled by an explicit distribution, the coverage associated
with protein ChIP-Seq can be assigned a p value relative to this distribution.
Standard methods can then be used to select a p value threshold to control for FDR
(Benjamini and Hochberg 1995; Storey 2002, 2003; Storey and Tibshirani 2003).

ChIP-Seq also produces a strand specific signature of enrichment that can be
used to identify true binding peaks. When DNA fragments from ChIP are
sequenced, reads are typically generated from one end of the fragment or the other.
If the fragment is bound by the protein of interest, the binding site will occur
between the ends of the DNA fragment. Thus sequencing reads will align to one
side or the other of the binding site. Sequence reads are generated from 50 to 30.

Fig. 2 Schematic overview of Chromatin Immunoprecipitation followed by Sequencing for
mapping DNA Binding Sites. DNA-binding proteins are crosslinked to binding sites in a
population of cells. The cells are broken open and the DNA sheared through sonication or
enzymatic digestion. DNA fragments bound by a protein of interest (a transcription factor, for
example) are immunoprecipitated using an antibody to the protein. DNA fragments are isolated,
and sequencing used to generate reads from the ends of the fragments. Sequencing reads are
aligned to the corresponding genome sequence, and genomic locations from which the DNA
fragments are derived are identified as regions that are over-represented with aligned reads.
Because sequencing reads are generated from one end or the other of the DNA fragments in a
randomly selected fashion, reads from the forward strand align upstream of the binding site and
reads from the reverse strand align downstream
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Thus reads that are generated from the 50 end of the DNA fragment, upstream of
the binding site, will align to the forward strand of the genome reference. Con-
versely, reads from the 30 end of the DNA fragment, downstream of the binding
site, will align to the reverse strand. If coverage is visualized for the two strands
separately, this process gives rise to a bimodal enrichment profile: the coverage of
the forward strand will be shifted upstream with respect to the actual binding site,
while the coverage on the reverse strand will be shifted downstream (Fig. 2). The
distance between the forward and reverse coverage profile is determined by
the size of the DNA fragments sequenced, which can be estimated during the
sequencing process. Nonspecific binding, by contrast, often results in enrichment
that lacks this bimodal shift. This shift can thus be used to filter for localized
binding events. Specifically, the spatial cross-correlation between the forward and
reverse coverage can be calculated, and regions corresponding to the desired
binding will show a positive correlation at a spatial lag roughly equivalent to the
average DNA fragment size.

DNA binding proteins, especially TFs, typically bind to short DNA sequences
(on the order of 15 bp or less). Enriched peaks, however, typically span a region of
several hundred base pairs as a consequence of the larger fragment size generated
during ChIP (typically around 250 bp). Moreover, when multiple closely spaced
binding sites for a protein exist in a particular location, the read coverage for these
sites can merge into a single broad enriched region. Several different methods have
been used for identifying the specific binding site(s) within enriched regions. The
most straightforward method is to select the specific point of highest total read
coverage within an enriched region. Since forward and reverse read coverage
profiles are separated by the DNA fragment length, these two profiles can be
shifted toward each other by half the expected DNA fragment length and then
summed to ensure a single coverage peak. Due to variations in coverage or
multiple binding sites, however, the highest peak in an enriched region may not be
easy to determine or be an accurate estimate of the underlying binding sites.

An alternative approach is to treat binding site detection as a signal detection
problem. Conceptually, binding sites can be considered a point source input that,
through the process of ChIP-Seq, give rise to broader output signal of coverage.
Multiple binding sites give rise, to a first approximation, to an output coverage that
is the sum of the outputs of each of the individual binding sites. This process can
be modeled as a linear convolution. In this model, the output signal arising from a
point input is called an impulse response (or point spread function). In the case of
the ChIP-Seq, the impulse response is a consequence of ‘‘transmitting’’ the input
signal through the process of randomly sequencing the ends of large DNA frag-
ments that overlap the point source and ‘‘receiving’’ this transmission in terms of
coverage after aligning these reads. The impulse function essentially ‘‘blurs’’ the
output signal arising from a point input. Input signals are modeled as the sum of
multiple point sources, or impulse functions, that are each scaled to a particular
magnitude. In the case of ChIP-Seq, impulse functions correspond to binding sites
where the scaling associated with each site corresponds roughly to relative
enrichment (and thus relative occupancy as described above). The output signal is
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then the sum of the correspondingly scaled impulse functions, or a convolution in
mathematical terms (specifically a discrete convolution since DNA coordinates are
integer based).

The operation of recovering the binding site locations from regions of enriched
coverage is then a de-convolution–or the inverse process of convolution. In the
case where the impulse function is known, this process is straightforward
(Oppenheim et al. 1997). For ChIP-Seq, however, this function is not known and
depends in part on the details of each specific experiment. Thus, the impulse
function must be estimated at the same time that the coverage signal is being
de-convolved. This operation is termed a blind de-convolution (blind because the
impulse function is not known a priori), and techniques have also been developed
to solve this problem (Levin et al. 2011).

Blind deconvolution methods have been developed for ChIP-Seq processing
(Gomes et al. In Preparation; Lun et al. 2009). One method, called CSDeconv, uses
a re-estimation method to solve the blind de-convolution problem. The basic
approach begins by generating an initial estimate of the impulse function. This is
typically generated by selecting a set of peaks with high coverage that are then
used to fit a model of the impulse function based on an initial estimate of the
binding site locations in these regions. This estimated impulse function can then be
used to perform blind de-convolution on all enriched regions which results in new
binding site locations for all enriched regions. These new binding site locations are
then used to fit an updated model of the impulse function, and the process iterates
in this fashion until convergence criteria are reached.

The final output of this method is a list of binding sites with high spatial
resolution and accuracy (Lun et al. 2009). Based on a test using ChIP-Seq data for
the GABP transcription factor in human and the DosR transcription factor in MTB,
this approach is able to identify binding locations to within an average absolute
difference of less than 24 bp (Lun et al. 2009). Moreover, the method can accu-
rately predict multiply spaced binding sites within the same ChIP-Seq enriched
region. In the case of DosR, binding sites located less than 57 bp apart in the same
intergenic region could be resolved, while several closely spaced binding sites for
GABP were observed, two as close as 20 bp apart.

The model-based approach can also provide additional insight into the potential
roles of closely spaced binding sites. As described in more detail below, closely
spaced sites have been shown to mediate cooperative binding that can substantially
alter the apparent affinity of individual sites. The de-convolution approach
described above implicitly assumes that TFs bind individual sites independently of
all other sites. The approach can be generalized, however, to explicitly model
dependencies between sites for the same TF. Using this approach, it is possible to
predict known cooperative interactions between closely spaced sites for the DosR
transcription in MTB (Gomes et al. In Preparation).

More recently, a modification to ChIP-Seq, termed ChIP-exo (Rhee and Pugh
2011), has demonstrated the ability to experimentally resolve TF binding sites to
within single nucleotide resolution, while also providing greater sensitivity for
detecting binding sites. ChIP-exo utilizes the strand-specific 50–30 lambda (k)
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exonuclease to degrade DNA fragments isolated by ChIP. Bound proteins block the
exonuclease and produce fragments in which one strand borders the protein binding
site. The opposite strand remains intact and provides a template for sequencing. The
result is a set of sequencing reads tightly spaced around the binding site, and thus
whose coverage can be used to directly resolve the site with high spatial accuracy.
Moreover, DNA fragments that are unbound by proteins but are nonspecifically
isolated by ChIP are completely degraded which substantially decreases background
coverage, increases signal-to-noise ratio for true binding sites, and increases peak
prediction sensitivity. Although recently developed, ChIP-exo has produced binding
site mapping data with sufficient resolution and accuracy to begin to confirm the
complex pattern of TF binding suggested by ChIP-Seq data.

Finally, a variety of post-processing analyses are typically performed on ChIP-
Seq data. First, enriched regions can be used to predict binding site motifs using
a number of standard software packages (Bailey et al. 2009; Chen et al. 2008;
Machanick and Bailey 2011). Although most commonly performed as a post-
processing step after binding site locations have been identified, motif discovery
can also be incorporated into the binding site prediction. The latter approach has
the advantage that the underlying sequence motif can be used to enhance the
accuracy of binding site prediction (Gomes et al. In Preparation). Second, binding
sites can be used to infer potential functional relationships between TFs and target
genes. The canonical model in prokaryotes suggests that binding in the proximal
promoter region of a gene implies an interaction between the TF and that gene.
However, even this simple association has exceptions and is complicated by the
common occurrence of pairs of genes transcribed from a divergent promoter (in
which case the site could modulate either or both genes, or neither). But the task of
assigning binding sites to regulation has become far more challenging given the
diversity of binding site locations discovered by ChIP mapping, as described next.

4 Large-Scale Mapping of MTB Transcription Factor
Binding Sites

ChIP-Seq has been applied extensively to map TF binding sites in a range of
eukaryotic organisms. The data from these studies have provided a wealth of
information on the global binding patterns of TFs that have overturned many
previously help assumptions about the nature, diversity, and possible functions of
TF binding sites. Only recently, however, ChIP-Seq has been applied on a large
scale to globally map TF binding sites in prokaryotes.

The most extensive publically available source of TF mapping data for a
prokaryote using ChIP-Seq is the NIAID funded TB systems biology project
(URL). An important aspect of the pathology of MTB is the ability to survive
within macrophages of the human host for years without causing active disease.
The adaptations required for this rare ability are not fully understood. The overall
goal of the NIAID TB systems biology project is to comprehensively map the
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regulatory and metabolic programs that underlie this ability of MTB. Toward this
end, the project has released ChIP-Seq data mapping the binding sites of all 50
TFs, toward the eventual goal of mapping all 200 TFs in the MTB genome. These
data are all publically available at TBDB.org (see below).

The MTB genome is 4.4 Mb in length and contains approximately 4,000 genes.
The small size of the MTB genome in particular and bacterial genomes in general
serves as an advantage for ChIP-Seq mapping. ChIP-Seq coverage for binding
sites scales with the overall number of reads generated relative to the size of the
reference genome. A typical 40 bp sequencing lane on an Illumina GAIIx is
sufficient to provide an average of 500-fold coverage for the MTB genome. With
this degree of coverage, binding sites for individual TFs can be identified with
coverage that spans several logs in magnitude (Fig. 3). The differences in coverage
between different binding sites reflect the probability of occupancy of each site in
the population of cells on which ChIP-Seq was performed. Occupancy, in turn,
reflects a number of factors including the concentration and modification state of
the TF, the affinity of the binding site for the TF, the accessibility of the binding
site, and the availability of molecular co-factors. The high coverage that can be
generated for ChIP-Seq in MTB provides insights into the variation of these
factors on a genome-wide scale with unprecedented resolution (Fig. 3).

The resulting ChIP-Seq data from 50 TFs in MTB have confirmed several
surprises that have also emerged from extensive ChIP-Seq mapping of TFs in
nearly all other organisms. These surprises call into question some of the sim-
plifying assumptions of the classical model of bacterial transcriptional regulation.
In particular, the data are revealing that binding of TFs in MTB (1) occurs in many
more diverse genomic locations than expected based on the canonical model of
regulation, and (2) involves much more weak binding than previously known. The
detailed analysis of these findings is reported in a separate manuscript (Galagan
et al. Submitted). Here, we review the background literature that helps place these
data into a biological context, and helps extend the canonical prokaryotic
regulatory model to encompass these new findings.

5 Diverse Binding Locations

The canonical model of bacterial transcriptional initiation focusses on the role of
binding in the proximal promoter region. ChIP-Seq data resulting from the map-
ping of 50 of the approximated 200 MTB TFs confirms that binding in upstream

b Fig. 3 Example ChIP-Seq data set for the MTB transcription factor KstR. Each panel shows a
plot of read coverage across the genome at different zoom levels. The x axis is the genome
coordinate and the x axis is read fold coverage. The bars in the bottom two panels indicate the
region that is displayed in the next panel up. The top panel displays a region in MTB known to
contain two closely spaced binding sites; these sites are indicated by square boxes below the
binding region
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intergenic regions is enriched over what would be expected by chance. But sur-
prisingly, binding in this region is the exception. As shown in Fig. 4, binding to
intergenic regions represents less than 40 % of the binding events for any TF. The
majority of binding events occur outside of upstream intergenic regions.

A number of explanations are possible that are consistent with the canonical
model. The most straightforward explanation is the presence of errors in the
annotation of coding regions. The majority of genes in all prokaryotic genomes are
the result of computational predictions. Although the accuracy of computational
algorithms for predicting the presence of an open reading frame is generally high
(Delcher et al. 1999), the prediction of start codons remains a challenging problem.
For a given coding region, with the rare exception of codon redefinition (Bekaert
et al. 2010), the first stop codon is the essentially unambiguous end of the open
reading frame. By contrast, multiple start codons are nearly always possible for an
open reading frame, and the selection of the correct alternative is rarely obvious.
Generally, computational algorithms are biased to selected start codons that pro-
duce longer reading frames. Moreover, numerous examples of alternative start

Fig. 4 Distribution of binding site locations from MTB ChIP-Seq data. The top panel displays
the color coding used for categorizing binding site location, and displays an example region
showing binding for the MTB TF KstR. The bottom panel shows the distribution of binding site
locations for 49 MTB TFs
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codon usage have been documented, further complicating the problem. These
considerations suggest that, in some cases, binding sites that occur at the 50 ends of
annotated coding regions may in fact reflect intergenic binding relative to an actual
downstream start codon.

Another explanation consistent with the canonical model is the well-known fact
that promoter regions are not strictly limited to intergenic regions. Intergenic
regions comprise only a small fraction of MTB genome, and all prokaryotes are
similarly restricted in the amount of genomic real estate that is not occupied by
genes. Although canonical promoter signals are enriched in intergenic regions and
may be selected against in genic regions (Froula and Francino 2007; Huerta et al.
2006), many examples of promoter regions occurring in coding regions have been
described in prokaryotes (Koide et al. 2009). Most notably, as described below, the
lac operon on which the canonical model of regulation is based is known to
contain a binding site for the lac repressor downstream of the proximal promoter
region in the lacZ gene. Other examples include:

• In the bacterium B. subtilis, ahrC represses argCAEBD-cpa-argF operon
binding at two sites: argCo1 upstream (-60 to -9) and argCo2 within the coding
region (+120) of argC. In vitro, the second binding site is bound only at high
concentrations of the TF (i.e. the binding site within coding region has lower
binding affinity). However, in vivo, argCo2 is essential for high levels of
repression (Czaplewski et al. 1992).

• In the bacterium C. crescentus, the flagellar genes flaN and flaG are transcribed
from a divergent promoter that includes a number of conserved cis-acting
sequences. Two such cis-acting sequences, ftr2 and ftr3, are located within the
coding region of flaN, at positions +82 and +120 respectively. Mutations in
either of these sequences dysregulate the expression of flaN. Moreover, muta-
tions in ftr3 also dysregulate the expression of flaG although this cis-acting
sequence resides [300 bp from the start codon of flaG in the coding region of
the upstream flaN gene (Mullin and Newton 1993).

• In the archeon H. salinarium, a comprehensive analysis of transcription start
sites revealed extensive transcription initiation within coding sequences.
A significant fraction of such initiation could be associated with the binding of
known TFs inside annotated genes (Koide et al. 2009).

Although such examples are typically thought to be the exception, ChIP-Seq
mapping data suggests they may be more common than previously expected.
Furthermore, although the canonical view of transcriptional repression by TFs is
associated with binding to the promoter region and blocking polymerase access, an
analysis of E. coli TFs and their binding sites from the RegulonDB (Gama-Castro
et al. 2011) indicates that repression occurs more often through binding down-
stream of the proximal promoter (Collado-Vides et al. 1991; Madan Babu and
Teichmann 2003). Although downstream binding close to the promoter region may
result in the repression of transcriptional initiation by blocking access to the
polymerase complex, binding further downstream may also play a repressive role
by blocking transcriptional elongation (Browning and Busby 2004).
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These explanations based on local interactions with the proximal promoter,
however, are unlikely to fully account for the binding that has been observed. In
particular, the high frequency of binding sites for nearly all TFs that occur at a
distance from the proximal promoter region suggests an important role for longer
range interactions. Although interactions from distant binding sites are widely
known to play important roles in regulating the activity of promoters in eukary-
otes, such interactions are generally considered to be the exception in prokaryotes.
Yet, there is substantial evidence in the literature that functional binding in pro-
karyotes can and does occur at much larger distances from promoters (Belitsky and
Sonenshein 1999; Czaplewski et al. 1992; Dandanell et al. 1987; Dunn et al. 1984;
Flashner and Gralla 1988; Narang 2007; Ninfa et al. 1987; Oehler et al. 1990;
Reitzer and Magasanik 1986; Ueno-Nishio et al. 1983, 1984; Wedel et al. 1990).

Once again, the lac operon has provided a paradigm for understanding possible
mechanisms. Although the primary interactions of the lac repressor and CAP
provide the basis for the canonical model, a substantial body of the literature
makes clear that the regulation of transcription initiation even in this system is
substantially more complicated than the simplified model. Two general mecha-
nisms play key roles in a more complicated picture of transcription regulation:
DNA looping and cooperative interactions between distal and proximal binding
sites.

As noted above, the lac repressor in E. coli binds to a high affinity operator site
called O1 that overlaps the transcription start site. Binding of the lac repressor to
this site is sufficient for a degree of repression of the lac operon by the repressor in
the absence of inducer. These data, however, only describe part of the mechanism
of repression. In addition to the primary binding site O1, two additional lower
affinity binding sites for the lac repressor are also present (Reznikoff et al. 1974).
One site (O2) is located 401 bp downstream of O1 in the lacZ gene. The other site
(O3) is located immediately 92 bp upstream of O1 (Fig. 1a). Importantly, one of
either O2 or O3 in combination with O1 is required for full repression of lac by the
repressor (Narang 2007). This was revealed by experiments that demonstrated that:

• Removal of either O2 or O3 decreases repression by the lac repressor 2 to 3-fold
while removal of both decreases repression by over 50-fold (Oehler et al. 1990).

• The presence of either O2 or O3 in the absence of O1 is not sufficient for
repression (Oehler et al. 1990).

• Despite their low affinity, binding does occur to O2 or O3 although their effect on
repression is abolished when both are moved further than 3,600 bp from O1

(Oehler et al. 2006).
• Binding of the lac repressor to O1 is strengthened threefold by O2 (Flashner and

Gralla 1988).
• Binding of the lac repressor to O2 is strengthened 12-fold by O1 (Flashner and

Gralla 1988).

These data have led to model of lac operon regulation in which full repression
requires the formation of a stable DNA loop mediated by the binding of a lac
tetramer to O1 and either O2 or O3 (Fig. 1b). DNA looping is mediated by the
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formation of a lac repressor tetramer in which one dimer binds to the proximal site
and the other dimer binds to a distal site. Binding solely at either O2 or O3 in the
absence of binding at O1 does not result in repression, confirming that blocking
polymerase access to the proximal promoter is the primary mechanism of
repression, consistent with the canonical model. But binding to O1 is substantially
potentiated by cooperative repression resulting from binding to either one of the
distal operator sites and the consequent formation of an energetically favorable
DNA loop. Binding of the lac repressor to O2, in turn, provides a secondary
mechanism of repression by blocking elongation of the lacZ gene (Flashner and
Gralla 1988). Importantly, these cooperative interactions influence not only the
overall magnitude of binding, but also the kinetics of binding with respect to
inducer (Oehler et al. 2006), and thus heavily influence the degree of binding at
low inducer or repressor concentrations.

The mechanisms of cooperative binding and DNA looping also play a role in
the many other examples of long range interactions that have been described for
prokaryotes. These examples include:

• In E. coli, repression of the L-arabinose operon araBAD by araC requires a
binding site located 280 bp upstream of the araBAD operon which is located in
the coding region of araC (Dunn et al. 1984; Schleif 2003). AraC proteins bind
both sites and dimerizes to form a DNA loop (Dunn et al. 1984; Hahn et al. 1986;
Lobell and Schleif 1990, 1991; Martin et al. 1986). This repressive loop for-
mation requires that both sites be located on the correct face of the DNA double
helix. Within this restriction, the two sites can be located up to 500 bp apart or
directly adjacent to each other and still support looping (Lee and Schleif 1989).

• In B. subtilis, the RocR protein regulates rocG through a binding site loca-
ted *100 nucleotides downstream of the 30-end of the gene or 1.5 kb down-
stream of the rocG promoter. The binding site activates rocG transcription if
relocated 15 kb downstream or upstream of the rocG promoter. The same RocR
binding region is essential for regulation of the downstream rocABC operon;
thus, the same binding area works as a canonical, upstream activation sequence
of rocABC and novel, downstream activation sequence of rocG (Belitsky and
Sonenshein 1999).

• In E. coli, the glnALG operon is regulated by the NRI protein (also known as
glnG or ntrC) through five binding sites located at positions -259 to -60.
Binding sites 1 and 2 maintain their function if moved 700 bp upstream or
950 bp downstream of the promoter. Re-location of the regulatory region 3.1 kb
upstream (high affinity sites only) or 3 kb downstream of the promoter (low
affinity sites only) does not affect the activation of transcription at appropriate
NRI concentration levels (Ninfa et al. 1987; Reitzer and Magasanik 1986;
Ueno-Nishio et al. 1983, 1984; Wedel et al. 1990). Consistent with DNA
looping, binding site interactions require that sites be present on the same DNA
molecular and sites 1 and 2 lose their function if moved closer to the promoter.

• In E. coli, the deo operon is repressed through three deoR binding sites. While
one site is located at -8 (P2 operator), two additional sites are located at -606
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(P1 operator), and -885. Binding sites P1 and P2 are essential for transcription
factor function. Moreover, reporter constructs with P1 placed 1–5 kb down-
stream of the P2 show efficient repression (Dandanell et al. 1987). Again,
consistent with a mechanism involving DNA looping, cooperative interactions
between the two binding sites require that that they both be present on the same
DNA molecule.

• In K. pneumonia, the nifF and nifLA operons are transcribed from a divergent
intergenic region. Within this region, nifA binding to an upstream activator
sequence over 200 bp from the nifF proximal promoter activates nifF. Simi-
larly, two binding sites for NTRC are located over 140 bp from the proximal
promoter of nifLA and binding by NTRC to these sites activate this operon
(Minchin et al. 1988).

• In MTB, the gene Rv2034 is known to regulate the GroEL2 gene via a binding
site 746 bp upstream of the GroEL2 start codon (Gao et al. 2011).

A common theme that emerges from such reports is that binding sites located
more distant from the promoter appear to have weaker regulatory effects. This is
consistent with experiments in which binding sites are experimentally moved
(Dandanell et al. 1987; Ninfa et al. 1987; Reitzer and Magasanik 1986;
Ueno-Nishio et al. 1983, 1984). These results likely reflect constraints on the size
of DNA fragments that can be looped (Lee and Schleif 1989). These findings may
also explain, in part, why regulation from more distal binding sites has not been
more frequently reported. Binding with weaker regulatory effects would be more
difficult to detect with standard perturbation experiments, and their effects could
also be masked by stronger effects from more proximally located promoters.
Although such distant TF binding sites may thus be less functionally impactful, the
examples above suggest that they may remain functionally relevant nonetheless.

Finally, it is possible that TF binding sites in prokaryotes may also play roles in
beyond the classical activation or repression of transcriptional regulation. In
particular, in eukaryotes TF binding has been shown to modulate higher order
DNA packaging and accessibility through the modulation of chromatin structure
(Cao et al. 2010). Although bacteria lack histone proteins associated with
eukaryotic chromatin, a wide range of proteins that perform analogous tasks have
been described in prokaryotes (Browning et al. 2010; Dillon and Dorman 2010;
Rimsky and Travers 2011; Wang et al. 2011). These proteins, termed nucleoid-
associated proteins (NAPs), alter the degree of compaction, looping, and DNA
supercoiling of bacterial chromosomes through interactions that bend, wrap, or
bridge DNA (Dillon and Dorman 2010). Through such interactions, NAPs can
repress or activate the transcription of a substantial number of genes. Importantly,
as more NAPs have been characterized, the distinction between proteins that
modulate DNA structure and proteins that regulate transcription has become
blurred (Dillon and Dorman 2010).

Most recently, the EspR DNA-binding protein in MTB has been described that
emphasizes the ambiguity between the concepts of a classical TF and a NAP. EspR
was first described as a regulator of the espACD operon in MTB (Hunt et al. 2012),
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which is a component of the ESX-1 secretion system required for virulence (Pym
et al. 2003). The espACD operon has a transcription start site at -67 and is
activated by EspR binding at the promoter. However, maximal transcription is
achieved when EspR binds to the espA activating region (EAR) located between
-1004 and -884. Moreover, a deletion bringing the EAR region as close as *200
nucleotides to the promoter abolishes its function (Hunt et al. 2012).

The EspR protein contains a helix-turn-helix DNA binding domain typical of
many TFs and also a C-terminal domain that has been shown to mediate dimer-
ization (Rosenberg et al. 2011). Structural studies have led to a model whereby
EspR acts as a dimer of dimers in which each HTH domain in a dimer can bind to
distantly separated binding sites (Blasco et al. 2011). This model was corroborated
by atomic force microscopy which revealed DNA binding and DNA loop for-
mation in conjunction with EspR binding. DNA loop formation, in turn, provided
the likely mechanism for the ability of EspR binding at the EAR to activate the
espACD operon at a distance. These data also led to the proposition that EspR acts
in a manner more characteristic of an NAP.

The hypothesis that EspR acts as an NAP was further boosted by the results of
ChIP-Seq mapping (Blasco et al. 2012). The data from this experiment revealed
the EspR binds to over 165 loci in the MTB genome, and was distributed nearly
equally between intergenic and genic regions. Moreover, re-analysis of the EspR
binding data reveals a substantial overlap with the binding sites for Lsr2, a known
nucleoid associate protein in MTB (Colangeli et al. 2007, 2009; Gordon et al.
2010). Lsr2 is known to also play a role the regulation of the espACD operon.
Considered in the context of the canonical model of transcriptional regulation,
these data led to the hypothesis that EspR does not behave as a traditional TF but
instead regulates transcription globally as an NAP through long range interactions
and DNA structure modifications.

A number of considerations, however, suggest that EspR may not be as unusual
as suggested. As noted above, binding to genic and intergenic regions has emerged
as the rule rather than the exception for TFs. Indeed, the binding profile of EspR in
this regard is indistinguishable from the 50 other TFs that have been mapped in
MTB by ChIP-Seq (Fig. 4). Moreover, as described above, long range interactions
mediated by DNA looping has substantial precedent for other prokaryotic TFs. The
proposed mechanism of a dimer of dimers, in particular, is similar into the
mechanism described for the operation of the lac repressor. Finally, ChIP-Seq
mapping revealed a specific DNA binding motif more consistent with traditional
TFs rather than NAPs which tend to bind more nonspecific DNA sequences (Lsr2
binds general AT rich sequences in MTB, for example).

These considerations do not contradict the finding that EspR can mediate long
range interactions through DNA looping mechanisms, and thus may play a role in
global DNA structure. Rather, the data for EspR, considered in the context of the
surprisingly diverse binding for many other TFs in both prokaryotes and eukary-
otes, suggest that such behavior may not be unusual. If this were the case, much of
the surprising diversity in binding location emerging from ChIP-Seq studies in
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prokaryotes may be explained by a more general role of TFs in the modulation
of DNA structure.

6 Extensive Weak Binding

A nearly universal finding of TF ChIP-Seq studies is the unexpectedly large
number of weak binding sites that are found. Extensive weak binding has been
observed for TFs in every eukaryotic organism in which ChIP-Seq mapping of TFs
has been performed (Cao et al. 2010; Farnham 2009; Li et al. 2008; MacQuarrie
et al. 2011; Rhee and Pugh 2011; Robertson et al. 2007b; Tanay 2006; Zeitlinger
et al. 2007; Zhong et al. 2010). With the mapping of 50 MTB TFs, this observation
has been extended to prokaryotic organisms (Galagan et al. Submitted), and
indicates that extensive weak binding may be a general property of TFs. Owing in
part to its ubiquity, the physiological significance of this weak binding is exten-
sively debated.

The obvious concern associated with weak binding is that they may reflect
artifacts of the ChIP-Seq procedure. There are several aspects to this concern. One
is that the weak binding reflects random association of TFs with DNA locations
that have no natural affinity for the TF. The second is that the experimental
procedure is revealing DNA locations that do have an affinity for the TF, but that
would not normally be bound under natural circumstances. Owing to such issues, it
has been estimated that up to 30 % of binding sites identified by ChIP-Seq in
eukaryotes may be false positives (Rhee and Pugh 2011).

Conversely, a number of considerations suggest that many, if not most, weak
sites cannot be excluded as simple random binding. First, in cases where experi-
mental procedures have been optimized, the reproducibility of weak binding is very
high. In particular, ChIP-exo experiments on several human TFs have revealed
even more weak binding than ChIP-Seq, but with high reproducibility. In MTB,
comparisons of replicates of ChIP-Seq mapping for eight different TFs revealed
very high reproducibility in both the positions and amplitudes of binding sites
(Galagan et al. Submitted); the majority of binding sites were found with 50 bp of
one another in replicates and the correlation coefficient for comparisons for binding
site heights was typically greater than 0.9, even weak binding sites can be asso-
ciated with an underlying motif that bears some, albeit degraded, relationship with
the motif associated with the strongest binding sites for each TF (Rhee and Pugh
2011). And in studies in yeast using ChIP–ChIP, the strength of weak binding sites
was correlated with the strength of the underlying motif (Tanay 2006). Third, the
stereotypical shift between forward and reverse read coverage is identical in weak
and strong peaks, indicating that weak peaks correspond to localized binding.
Finally, in human studies using ChIP-exo where high spatial resolution was
possible, the locations of weak peaks were found to be nonrandom and instead
concentrated at fixed distances to genomic features (Rhee and Pugh 2011).
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Assuming that at least some weak peaks represent sequence-specific binding
sites with true affinity for the corresponding TF, the more contentious question is
whether or not such binding has physiological significance. The common criticism
is that much of the binding observed is too weak to be physiologically significant.
And evidence for this is the finding that only a fraction of binding sites found in
nearly all experiments can be assigned a function when the corresponding TF is
perturbed. But this criticism also raises subtle biological and operational issues.

Biologically, the issue is how to define a threshold for biological relevance and
whether such a threshold exists. The notion of a threshold for relevance implies a
digital behavior for biological systems such that a factor or binding site does or
does not have a regulatory effect (Rhee and Pugh 2011; Tanay 2006). Yet, cells are
analog systems in which behavior and functional impact can exist along a con-
tinuum. The relevance of sites that exist at the high end of the impact continuum is
easy to acknowledge, but sites with weaker impact may play a role in fine-tuning
aspects of a regulatory response that are less obvious but, nonetheless, real.
A continuum of effect renders the issue of a threshold for weak sites into an
operational question.

Operationally, selecting a threshold requires defining a level of functional effect
that is visible with the current methods used for perturbing and observing regu-
lation. The most common method has involved genetically knocking out a TF of
interest and then comparing the expression of genes in the knockout versus their
expression in wild-type cells using microarrays. But several issues are associated
with this approach. First, determining which gene is regulated by a given binding
site is a difficult problem. This is certainly true for eukaryotes where long range
interactions are common and the regulated gene may not be the closest gene to the
binding site. But as described above, this is also an issue for prokaryotes. Second,
the signal-to-noise ratio of microarrays is not unlimited. Thresholds for micro-
arrays are set by statistical considerations that in part reflect the sensitivity of the
array technology. A common criterion is to select only genes that display a greater
than 2-fold change in expression, yet, there is no reason to believe that all bio-
logically meaningful changes must be greater than 2-fold. More generally, it is
unlikely that any instrumentation-based threshold would happen to match the
biological thresholds for physiological relevance for all TFs, even if such bio-
logical thresholds existed. Third, TFs do not always act in isolation, but may
operate in combination with other factors to regulate a particular gene. In such
instances, perturbing any individual TF may not be sufficient to effect the
expression of a jointly regulated gene. Finally, the standard knockout experiment
only assays for regulatory effects long after the perturbation. Ignoring the possi-
bility for artificial compensation with the regulatory network, this approach is also
limited in that it only assays for effects that impact equilibrium expression levels.
This ignores regulatory effects that may play a role in expression dynamics, and in
particular the well-known role of regulatory network motifs (Alon 2006, 2007;
Kalir et al. 2001, 2005; Kashtan et al. 2004; Mangan and Alon 2003; Mangan et al.
2003; Milo et al. 2002; Rosenfeld et al. 2002; Roy et al. 2010; Setty et al. 2003;
Shen-Orr et al. 2002). Given these considerations, the inability to find a regulatory
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effect of a particular binding site must be conditioned on the limitations of the
method used to look for an effect.

In addition, growing positive evidence suggests that weak binding sites can
mediate physiological effects if assayed and analyzed in an appropriate manner.
One of the first global studies of this phenomenon was performed on ChIP–ChIP
data from yeast (Tanay 2006). Consistent with ChIP-Seq data in other organisms,
ChIP–ChIP in yeast revealed that weak binding sites likely represented the
majority of binding events for most TFs. The substantial noise associated with
ChIP–ChIP as compared to ChIP-Seq necessitates caution in the analyses of these
data. Yet despite this, a clear relationship was observed between the predicted
binding energy of promoters for different TFs and the regulatory effect of per-
turbing that TF. Most notably, this trend was observed even for promoters whose
effect fell below standard significance thresholds. In other words, a clear trend
existed relating the strength of promoters to the strength of a regulatory effect, and
the statistical threshold applied to each site individually masked this trend and the
weaker effects.

In addition, substantial evidence exists that weak sites may play a significant
role in modulating the effects of other binding sites through cooperative interac-
tions. As described above, numerous examples exist in prokaryotes that support
the role of weak binding sites in mediating long range cooperative interactions,
and the role of long range interactions in eukaryotes is well known. But cooper-
ative effects can also modulate the impact of weak binding sites in canonical
promoter regions as well. One elegant demonstration of this was based on the
analysis of artificial promoter sequences in yeast (Gertz et al. 2009). As part of this
study, synthetic promoter sequences coupled to fluorescent promoters were used to
test the impact of different combinations of binding sites for different TFs. The
interactions between a weak and strong binding site for Mig1, a TF not previously
known to participate in cooperative binding, were studied in particular detail. The
weak site selected was known to have low affinity for Mig1 and was shown to have
a weak regulatory effect when present alone in a promoter sequence. But pro-
moters containing the weak and strong binding site had an equivalent regulatory
effect as promoters containing two strong sites, which was stronger than the impact
of one strong site by itself. Thus, in this system, the weak binding site displayed
strong cooperativity with a strong binding site in the same promoter region.

These and other data suggest that one role of weak binding may be to modulate
the overall affinity of a promoter sequence for a transcription factor. Through
cooperative interactions, the magnitude of the occupancy of the promoter as a
whole can be increased beyond that which would be seen with any individual site.
And, as noted above for the lac operon, cooperative interactions can also sculpt the
kinetics of binding with more flexibility than is possible with a single site.
Moreover, if cooperative interactions are a significant functional consequence of
weak binding, then clustering of weak and strong binding sites would be expected,
and this is indeed a common observation in both eukaryotes (Rhee and Pugh 2011)
and MTB.
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7 MTB Binding Data Available at TBDB

The diversity of binding sites observed for MTB TFs suggests that bacterial reg-
ulation is likely more complicated than expected from the simplified canonical
model. Yet, much work remains to validate the potential functional implications of
these data. Toward the end of enabling research into these questions, ChIP-Seq
data for 50 MTB TFs generated by the NIAID TB systems biology project has
been released through the TBDB.org (Fig. 5).

TBDB is an online database providing integrated access to genome sequence,
expression data, literature curation and systems biology data for MTB and related
genomes (Galagan et al. 2010). TBDB currently houses genome assemblies for
numerous strains of MTB as well assemblies for over 20 strains related to MTB and
useful for comparative analysis. It also houses re-sequencing data for over 31
different MTB strains selected as part of the M. tuberculosis Phylogeographic
Diversity Sequencing Project. These data provide a global view of the genomic
diversity of MTB at the level of SNPs and indels. TBDB stores pre- and post-
publication gene-expression data from M. tuberculosis and its close relatives,
including over 3000 MTB microarrays, 95 RT-PCR datasets, 2700 microarrays for
human and mouse TB-related experiments, and 260 arrays for Streptomyces coe-
licolor. In addition, metabolic reconstructions have been performed on all organ-
isms in the site and these models are hosted as Biocyc Pathway/Genome databases
(http://biocyc.org/) in TBDB. To enable wide use of these data, TBDB provides a
suite of tools for searching, browsing, analyzing, and downloading the data.

TBDB also provides a growing set of tools for utilizing the ChIP-Seq data
generated by the NIAID TB systems biology project (Fig. 5). Through TBDB,
users can search for regulatory binding sites by regulator, by target, or by genomic

Fig. 5 MTB TF binding data are available at Tuberculosis Database (TBDB). Binding data for
50 TFs generated by the NIAID funded TB systems biology project have been integrated the
genome sequence and annotation of MTB and released at TBDB.org. Selected screen shots show
online tools available for searching, browsing, and downloading these data
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coordinate. Users can also browse a regulatory network constructed from these
data. From the results of any of these searches, users may view the regulatory
network for the gene of interest, select, and view raw ChIP-Seq data in the
dynamic real-time genome browser GenomeView (Abeel et al. 2012), view the
summary page for each experiment, or view static images of the ChIP-Seq peak
data. Users may browse experiments directly and view the entire genome for each
experiment. Users can also download all raw data (Fig. 5).

The data currently available through TBDB.org represent the first release of
ChIP-Seq mapping data for the NIAID funded TB systems biology project. The
ultimate goal of the project is to map all *200 predicted DNA binding proteins in
the MTB genome. As these additional proteins are mapped, data will continue to
be released through this site.
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The Role and Contributions of Systems
Biology to the Non-Human Primate Model
of Influenza Pathogenesis and Vaccinology

Carole Baskin

Abstract Nonhuman primates have proven to be valuable models in the study of
seasonal and highly pathogenic influenza virus infections, prophylaxis, and therapy.
Due to their close genetic relationship to humans, these animals share anatomic,
postural, physiological, and immune features with us of key importance when it
comes to progression and mitigation of respiratory infections. Their lower suscep-
tibility to natural influenza infection even presents an advantage in the laboratory
setting because of the need for immunologically na animals, and since nonhuman
primates are relatively genetically diverse within one species, their study provides an
essential complement to the body of knowledge acquired with inbred animal models.
However, ethical and cost considerations typically result in smaller experiments and
a need to look at additional levels of biological information in order to maximize
insights gained from these studies. Systems biology is a powerful tool for this pur-
pose, because it provides a much needed wide angle view of complex interactions
taking places in organisms which are more than the sum of their parts. This chapter
will describe the extent to which functional genomics and proteomics have suc-
cessfully integrated with other, more traditional tools in the areas of clinical pre-
sentation, pathology, and immunology during influenza infections in nonhuman
primates. It will also describe the unique contributions systems biology has made to
our understanding of host–virus interactions, as well as response to vaccination and
antiviral therapy.
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1 Introduction: How Systems Biology Helps us See the Covert
but Far-Reaching Effects of One Infected Cell

Medicine is undergoing a revolution that will take shape over the next several
decades: an individual’s medical record will no longer consist of a few data points
mostly collected during disease events, but of millions of pieces of information
accumulated over long periods of time while the person is healthy. So not only will
the focus of medicine shift from populations to individuals, a substantial portion of
the new information gained will be about health rather than disease. This will
enable us to understand the delicate balance of ongoing activities that collectively
result in the absence of disease for any one individual and avoid rampant mis- and
overdiagnosis. We will also learn to detect the subtle pre-symptomatic signs of
impending disease against the complex background noise of healthy cellular
processes earlier than ever before, heralding a new era in preventative and pre-
dictive medicine, and widening the window of opportunity for therapeutic inter-
vention. Indeed, I believe that a single event, such as the infection of upper
respiratory cells by influenza virions, has a detectable and unique signature, locally
and systemically, well before detection by conventional diagnostics and before a
critical mass of lung tissue is injured. Since neither the effects of seasonal strains
nor those of more virulent strains, such as the 1918 pandemic and H5N1 viruses
can be solely explained by the damage that occurs in cells where these viruses
replicate, it is critical to look at early host–wide effects of infection to understand
and successfully mitigate the course of the disease.

Our efforts, over the past few years, have shown that the information is there for
the taking and that we can start making sense of it. In studying infection of
nonhuman primates with seasonal and highly pathogenic influenza viruses, we
have gained clinically relevant insights about interactions between host and
pathogens. Some of these interactions were common to different viruses, while
others were unique or indicative—either by their nature or timing—of virulence,
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and thus helped refined our understanding of pathogenicity. We observed that even
mild infections had far-reaching effects pre-symptomatically, which could be
detected in noninfected tissues, including peripheral blood cells (Baas et al. 2006;
Tolnay et al. 2010). When we used proteomic in addition to genomic analyses, we
found a high level of concordance early in infection between gene expression and
translation, and less so as disease progressed. This suggests complex interplays
between these two processes that may provide valuable insights on how cells and
organisms attempt to maintain homeostasis during stressful events by using subtle,
subclinical protective mechanisms (Baskin and Katze 2008).

Mice, ferrets, guinea pigs, cotton rats, hamsters, and macaques have all been
used to study influenza viruses as well as the tools to prevent or combat infections.
Each model presents unique advantages and disadvantages (Bouvier and Lowen
2010). We chose to conduct experiments on nonhuman primates, in addition to
mice, for a variety of reasons: since we studied gene expression in response to
infection, we wanted a model as close as possible to humans genetically and at the
same time exhibiting a large degree of genetic diversity within one species as
humans do, something that commonly used laboratory mice would not provide.
We wanted a model that could be infected with unmodified low pathogenicity
influenza viruses, unlike mice, but not so easily that it would be difficult to find
seronegative animals, as is the case with ferrets. While signs of influenza infection
are outwardly more severe in humans, they are essentially identical, save for the
lack of sneezing in nonhuman primates. Finally, cell tropism of influenza viruses
during in vivo infections is similar in humans and macaques, including for highly
pathogenic avian influenza viruses (HPAIV) (Baskin et al. 2009; Chen et al. 2009;
Shinya et al. 2012). Other common features, such as the size and orientation of the
respiratory tract during waking activity, were judged likely to affect the speed and
nature of infectious spread, and therefore tipped the scale in favor of studying the
nonhuman primate model.

2 How ‘Omics’ Can Assist as Early Prognostic Tools

In humans, uncomplicated influenza is characterized by an acute onset of symp-
toms including fever from 100 �F to as high as 106 �F, chills, head and muscle
aches, lethargy, anorexia, coughing, and rhinorrhea. While systemic involvement
typically subsides a few days before respiratory symptoms improve, it is the
former that clinically differentiates influenza from other viral upper respiratory
tract infections, such as the common cold. Pulmonary complications of seasonal
influenza include primary viral pneumonia, with potential appearance of dyspnea
and hypoxemia, which can be followed by a secondary bacterial pneumonia,
characterized by recrudescence and worsening of systemic manifestations
(Bouvier and Lowen 2010). Viral shedding typically starts the day of infection,
peaks 2 days later, yet symptoms may not appear for another day or so. Conse-
quently, a window of time exists during which a person is contagious without
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being aware s/he is infected and occasionally, infections are completely asymp-
tomatic, although viral shedding still takes place. This characteristic of influenza
infections justifies the need for sensitive and accurate pre-symptomatic diagnos-
tics, so that individuals who may have been exposed to an emergent influenza virus
can be quarantined and the appropriate treatment implemented without delays.

Nonhuman primates are susceptible to infection with a number of unadapted
human influenza A isolates, including viruses of the H1N1 subtype (Bouvier and
Lowen 2010). This has been demonstrated by sampling sera of macaques and other
species in areas where they are kept as pets or where human and nonhuman
primate populations cohabit. Results of the study showed that the animals had been
infected with a number of common human infectious illnesses. Additionally,
epidemics of these diseases, including influenza, occur commonly in captivity
when protective measures are lacking (Jones-Engel et al. 2001).

It was, therefore, no surprise when macaques experimentally infected with a
seasonal strain of influenza developed signs consistent with the human disease,
including listlessness, anorexia, and nasal drip (Baas et al. 2006; Baskin et al.
2004, 2007). Most interestingly, we observed that there was co-upregulation of a
number of interferon-induced or interferon signaling genes in lung tissue and
peripheral immune blood cells as early as 2 days after infection (Fig. 1). We found
that many of these genes were also translated to proteins when we performed a
proteomic analysis on lung tissue. These results were remarkable in view of the
low pathogenicity of the virus, the absence of viremia, and the relatively minor
nature of the lesions present in the lungs. Yet, the transcriptional signal in
peripheral blood was clearly discernable amongst the more ‘routine’ traffic of
immune cells. When macaques were infected with highly pathogenic viruses, such
as the H5N1 HPIA, 1918 pandemic virus, or recombinant versions of the latter
(Baskin et al. 2009; Cillóniz et al. 2009; Kobasa et al. 2007; Rimmelzwaan et al.
2001), the animals quickly developed the rapidly progressing lung disease that
characterizes human infections with these viruses. Examples of signs observed
included dramatically increased respiratory rates and a decrease by as much as
36 % in lung oxygenation, as measured by pulse oximetry, all indications of
severely impaired lung function. As with the seasonal virus, the presence of
several key cytokines and chemokines in serum coincided early on with high
expression in lung tissue.

In a different study looking at the effect of vaccination with a novel, replication-
deficient live influenza vaccine, we collected bronchial epithelial cells through a
bronchoscope and performed gene expression analysis. Two days after vaccination
with the modified live vaccine, we observed strong up-regulation of interferon-
induced genes in these cells (Fig. 2). By the time the animals were challenged with
a homologous virus (day 21), gene expression had returned to baseline. However,
2 days after the challenge (day 23), the same set of genes was induced again,
although less so than in unvaccinated animals or animals which had received a
killed vaccine. The vaccination and inoculation process only briefly and minimally
exposed bronchial epithelial cells to the replication-deficient virus (the killed
vaccine was administered intra-muscularly) or the challenge virus, as evidenced by
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the lack of viral mRNA detected in these cells after inoculation and/or infection.
Yet, the cells exhibited striking transcriptional induction soon after these events.
This response was prescient of the strong protection elicited by the modified live
vaccine: post-infection pathology in the lungs was minor in nature and extent and
this finding was reflected the differences observed in gene expression and serum
antibody levels (Baskin et al. 2007).

Fig. 1 Two days after
infection with seasonal
influenza, there is
co-upregulation of interferon-
regulated and antiviral genes
in peripheral blood cells and
affected lung tissue of two
macaques used in this
experiment. Modified from
Baas et al. (2006)
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This experiment raised again the possibility of looking to gene expression in
clinical samples for predicting the course of infectious diseases. Although a
common gene expression response to different causes of acute lung inflammation
was identified in rodents and nonhuman primates (Pennings et al. 2008), dedicated
responses were found as well, which were specific to pathogen types. These results
were consistent with another study comparing gene expression in peripheral
mononuclear cells of human patients, which found gene expression profiles to have
diagnostic value (Ramilo et al. 2007). One should remember, however, that patient
responses to an emergent influenza virus vary from asymptomatic to deadly,
seemingly in an unpredictable manner, supporting the argument that we need to
focus less on viral identity or load to determine prognosis and more at individual
host responses to understand the pathogenesis and predict the course of these
infections. The best example was the 1918 pandemic influenza virus, which killed
over 50 millions individuals, with previously healthy young adults exhibiting the
worst outcomes (Loo and Gale 2007). Since a main feature of the 1918 strain
infections was dysregulation of the immune response, individuals with the most
robust immune systems were, therefore, the most vulnerable. This type of diver-
gent pattern cannot be anticipated from the epidemiology of seasonal influenza
viruses, and it is unknown whether it will repeat itself in the event of an H5N1

Fig. 2 Gene expression analysis on bronchial epithelial cells shows up-regulation of interferon-
induced genes 2 days after vaccinating with a replication-deficient live influenza vaccine and
2 days (day 23 of protocol) after challenge with a homologous influenza virus. Adapted from
Baskin et al. (2007)
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pandemic because the population affected is still too small currently to make this
type of prediction, despite similarities in the pathology and clinical course with the
1918 virus. It is now possible to use real-time PCR at points of care to diagnose
influenza infections, at least by subtype, so it seems that the true value of gene
expression analysis in blood or other clinical samples is prognostic, rather than
diagnostic. It may allow medical personnel to provide care tailored to the devel-
oping host response almost immediately after exposure, for an improved outcome
and better management of existing resources.

3 The Immune Response to Low and High-Path Influenza
Viruses: Role of Systems Biology in the Study of Very Early
yet Critical Differences in Host Response

Respiratory epithelial cells and leukocytes infected with influenza virus A respond
to the insult in part by secreting interferon, whose production starts within a couple
of hours and activates antiviral defenses in neighboring cells, limiting viral spread,
and eliminating a large proportion of the original viral load. Concurrent release of
cytokines and chemokines serve to attract innate immune cells to infected tissues.
Consistently, genes with functions relevant to neutrophils and macrophages were
significantly up regulated in the lungs of macaques 4 days after infection with
seasonal influenza (Baskin et al. 2004). Dendritic cells play a central role in the
subsequent development of an adaptive immune response, because they are
directly stimulated by interferon and migrate from tissue to local lymph nodes to
present antigens to T cells. In the same study, genes with functions relevant to
dendritic cells were highly activated at day 4, which is the general time frame for
initiation of the adaptive response. In macaques exposed to an NS1 truncated
influenza virus used as a modified live vaccine, there was strong evidence of early
dendritic cell maturation, which could not be explained solely by the live nature of
the vaccine since it replicated poorly. Instead, it is likely that the truncation of NS1
resulted in poor suppression of interferon gene transcription by the virus (Kochs
et al. 2007).

In support of this hypothesis, we observed the strong transcriptional induction
of interferon induced and related genes shortly after inoculation with the experi-
mental vaccine and this was quickly followed by a 7-fold increase in percentage of
virus-specific CD4+ T cell circulating in peripheral blood, immunoglobulin G
production, and transcriptional induction of T- and B cell pathways in lung tissue
(Baskin et al. 2007). After challenge with a homologous virus, these animals
exhibited lower transcriptional induction of interferon and inflammatory pathways
in bronchial cells and lungs, compared to animals which had not been vaccinated
or received a killed vaccine, suggesting that the ability of a host to respond to
infection with robust virus-specific immunity directly helps decrease interferon
production and inflammation. During H5N1 HPAI infections in macaques,
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prolonged induction of the innate immune response was apt to be primarily caused
by vigorous viral replication taking place throughout the 7 days of the study,
targeting type II pneumocytes which are prone to secreting large amount of
cytokines, in addition to interferons. However, the en masse apoptosis of dendritic
cells, discovered by pathology examination of lungs and tracheobronchial lymph
nodes, may also have contributed to this phenomenon by impairing antigen pre-
sentation, and therefore optimal development of an adaptive response (Fig. 3).

Another macaque study, which looked at gene expression in lungs after infection
with the fully reconstructed 1918 pandemic virus, also showed a protracted innate

Fig. 3 Gene expression analysis in lungs of macaques infected with either H5N1 HPAI, seasonal
influenza recombined with either two or three genes from the 1918 pandemic virus, or the
seasonal virus as a control, demonstrates strong and protracted transcriptional induction of
interferon-induced and other inflammatory genes in the H5N1 infected animals. Adapted from
Baskin et al. (2009)
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immune response (Kobasa et al. 2007), and a follow up experiment comparing this
virus with H5N1 HPAI determined that even within hours of infection, highly
pathogenic viruses induced interferon, chemokines, and cytokine pathways in a
similar manner (Cillóniz et al. 2009). An extensive proteomic analysis performed on
lungs of macaques infected with H5N1 confirmed that many of these proteins were
not only transcribed, but also translated (Brown et al. 2010). When considering that
innate immunity is supposed to be self-limiting to the extent that induction of
inflammatory responses by an infectious event is to be followed by dampening of
this response (Brown et al. 2007), the knowledge we gained from these genomic and
proteomic studies about infections with highly pathogenic influenza viruses is
suggestive of one or several of the following scenarios: despite the high induction of
the innate immune response early on, this response is unable to control replication of
these viruses, leading to the ‘runaway’ inflammatory response seen on gene arrays
and confirmed by proteomic analysis and pathology; something specific to these
viruses impeded the negative feedback that normally prevents an excessive
inflammatory response; perhaps through interference with antigen presentation or
interference with effective circulation of lymphocytes due to interferon-induced
margination, the hosts are unable to mount or implement an effective virus-specific
adaptive response in time to control viral replication and inflammation before
extensive tissue damage takes place.

Immunity is comprised of a complex set of integrated responses arising from a
dynamic network of thousands of molecules subject to multiple influences (Gardy
et al. 2009). Therefore, an immune response cannot be understood by only
focusing on discrete biochemical events. It should be thought of as a complex
‘color by numbers’ design: important interactions are not easily distinguishable
from those less decisive until we view each in the context of the others. Systems
biology highlights where isolated events converge to drive the clinical course of a
disease and provides information on genes previously unknown to be involved in a
process and transcriptional or translational occurrences, which may deserve further
study through a reductionist approach. It also helps quantify these events and to
unravel the impact of natural variations in a population (Shapira and Hacohen
2011). In conclusion, study of the gene categories and pathways transcriptionally
or translationally activated by an event can reveal much about the biological
processes underlying a phenomenon of interest. Gene expression studies, in par-
ticular, hold the potential to provide early and accurate predictions of developing
pathologies, mounting immune responses, and clinical course of a disease.

4 Pathology of Influenza Infections: Systems Biology
Enhances Findings of Conventional Analyses

Genomic and proteomic studies in tissues directly or indirectly affected by an
infection can provide a snapshot of all ongoing events and thereby complement
conventional pathology. Macroscopic pathology provides information on the extent
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and possible etiologies for observed lesions, but often little else. Microscopic
pathology is informative but typically requires time consuming stains to be diag-
nostic and a preconception of what we are looking for, which may ultimately limit
the insights we obtain. In this regard, systems pathology can provide means to
shorten the path to a diagnosis and provide clues of ongoing events that lead to a new
understanding on ongoing processes. In influenza-infected tissues, several events
take place concurrently: viral replication and consequent cytopathic effect on
infected cells; innate and adaptive immune responses; consequences of these
responses on infected and noninfected cells; and tissue repair or permanent damage.
For instance, in a study of seasonal influenza in macaques, gene expression profiling
in lungs revealed the upregulation of genes related to neutrophil and monocyte or
macrophage function in the same time frame as an influx of neutrophils and mac-
rophages was observed in lungs by microscopic pathology (Baskin et al. 2004).
Likewise, transcriptional activation of inflammatory cells and apoptotic pathways
coincided with gross and histopathological signs of inflammation, with tissue
damage and concurrent signs of repair. Examination of local lymph nodes showed
that endothelial cells of most blood vessels were hypertrophic and had large
vesiculated nuclei, both evidence of high synthetic activity. Consistently, gene
expression showed upregulation of genes relevant to antigen presentation, and T and
B cell proliferation. Finally, in this study, expression profiles in lung tissue sug-
gested early presence and activation of cytotoxic T cells, believed to be of benefit to
viral clearance early on and potentially harmful later and of natural killer cells,
which also play an important cytotoxic role early in infection. Genes related to the
functions of these cells were highly induced early on and much less so by day 7, a
feature of this uncomplicated influenza infection that nonspecialized pathology may
not have easily detected.

In a subsequent study which looked at earlier time points during infection of
macaques with seasonal influenza, genomic and proteomic studies allowed us to
make new observations which supplemented conventional pathology. For instance,
we observed that the presence of influenza virus in a tissue section was more
predictive of gene expression and translation than the presence of pathology (Baas
et al. 2006). Furthermore, T- and B cell pathways were activated early in infected
tissues, both with and without pathology, before significant infiltration by lym-
phocytes took place. This induction may have been indicative of a role of B cells
in antigen presentation in addition to antibody production.

As previously discussed, we could not have predicted the response of bronchial
cells to an NS1-truncated influenza virus based on early evidence of infection by
the modified virus or lack thereof, or based on any pathology, yet we observed a
strong induction of interferon-dependent pathways on gene arrays, which was
predictive of the highly protective immune response produced by the experimental
vaccine. On the other hand, the lack of transcriptional activity related to an innate
response in lung tissue after challenge correlated well with the lack of pathology in
animals in this vaccine group (Baskin et al. 2007).

When comparing infections between HPAI and 1918 pandemic recombinant
influenza viruses (Baskin et al. 2009), histopathology was an essential tool in
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identifying the lung cells primarily targeted by each virus, and in detecting
apoptosis in dendritic cells, which were steadily disappearing from lung tissue in
the H5N1 group. While inflammatory gene induction was highly consistent with
ongoing lung pathology, gene expression arrays captured the strength of that
induction, which was often above the upper limit of detection of the array analysis
software. It also provided information on the unique kinetics of the transcriptional

Fig. 4 Heat map of Z-scores of spectral counts for 400 increased proteins in macaques infected
with H5N1 HPAI, a 1918 pandemic virus recombinant, and organized into eight clusters by using
the K-means algorithm. The eight clusters are color coded relative to the condition (s) in which
proteins were most highly expressed. The number of proteins within a cluster is located to the left
of the cluster bar. Adapted from Brown et al. (2010)
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induction brought about by the H5N1 infection: in this group, a slight relative
decline in innate and inflammatory gene induction took place 4 days after infec-
tion, only to resurge to even higher levels 3 days later. When we looked at protein
translation in these same animals, we observed that the protein response correlated
well with disease progression and pathology. Interestingly, differences in innate
and inflammatory protein translation between the H5N1 group and others 2 days
after infection were even more striking than gene expression had suggested
(Brown et al. 2010) (Fig. 4). Proteomics also provided evidence of the strong spike
in immune cell proliferation process 7 days after infection with the H5N1 virus,
something that pathology alone would not have easily discerned amidst the severe
ongoing tissue damage. At the same time, it highlighted signs of tissue repair in the
group infected with seasonal influenza virus and even in the group infected with
the 1918 pandemic virus recombinant, albeit through different pathways.

Macaques infected with a reconstructed 1918 pandemic virus exhibited high
and fairly constant interferon induced and innate immune gene expression from
days 3 to 8 after infection, again suggesting the unrelenting quality of the response
this virus causes (Kobasa et al. 2007). Another study comparing infection between
the 1918 and H5N1 HPAI viruses at early time points showed that both viruses
elicited roughly similar induction of interferon pathways, although activation was
slightly higher at 12 h with the reconstructed 1918 virus but lower by 24–48 h. At
24 h, inflammatory and apoptotic pathways were also more activated in the 1918-
infected animals. After that point, cell death induction decreased in that group,
whereas it increased in the group infected with the H5N1 HPAI virus. Since this
latter caused relatively less pathology, this pattern suggests that apoptosis ulti-
mately may serve to limit viral replication and pathology, a finding confirmed
through the use of tunnel assays, viral titration, and conventional pathology
(Cillóniz et al. 2009). This study is a perfect example of the use of systems biology
as a tool to provide direction for conventional analyses.

5 From Diagnosis to Prevention: Is There a Role
for Systems Biology?

Taken together, our experiments in macaques suggest a prognostic value of gene
expression and translation analyses early in infection with influenza viruses, even
when using fairly un invasive samples such as peripheral blood and bronchial
epithelium. Systems biology also enabled us to predict the protective response to a
modified live vaccine a mere 2 days after administration. Indeed, the unique
advantage of genomic studies is their ability to detect trends in host response almost
immediately after an event, whether pathologic, therapeutic, or preventative in
nature. Even if every over-expressed gene does not ultimately become translated into
a functional protein, the reality is that the data, thanks to its size and granularity,
accurately reveals the overall direction of a host response. Integration of several data
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sets across diverse resources to focus on genes behaving similarly further reduces
uncertainty. Several such studies have been undertaken, which combined data from
human (Jenner and Young 2005) or animal (Pennings et al. 2008) experiments and
allowed identification of genes co-activated in during infections, and specifically
lung inflammation caused by a variety of pathogens, including viruses.

Recently, there has been increased interest in manipulating the innate immune
response to control infectious or neoplastic diseases at the earliest stage. As the
branch of the immune system that is the most conserved across species, the innate
response is critical, powerful, and exhibits a complex system of redundant checks
and balances, which when they fail may result in acute pathology of extreme
severity or in some of the most debilitating chronic conditions (Brown et al. 2007).
The Institute for Systems Biology (Seattle, Washington) has described an in-house
interaction database comprising 5,200 bio-molecules and 17,600 interactions
directly relevant to the innate immune response. Considering this complexity,
trends in response to a stimulus are more easily identified through the use of
systems biology than by studying specific reactions, at least initially. This is all the
more so that the environment surrounding a cell, such as contact with immune
cells or factors and exposure to hormones or extrinsic compounds, can have a
profound effect on response to a pathogen. Further, many pathogen-encoded
proteins directly interact with molecules of the innate immune response and some
of these interactions are species specific in nature (Gardy et al. 2009). Conse-
quently, successful understanding and modulation of the innate immune response
in acute or chronic inflammatory events without impairment of its protective role
is considered one of the next big frontiers of medicine (Brown et al. 2007). With
this goal in mind, methods are being developed for systematic downstream anal-
ysis of high-throughput data sets, heralding a new era of integration of systems
biology and reductionist approaches.

In regard to drug discovery, systems biology is viewed as a generation tool for new
hypotheses. Specifically, it is believed to have the potential to change the current
target-based drug development paradigm back to proving a drug’s efficacy and safety
in live biological systems directly, thereby greatly increasing the efficiency of the
pharmaceutical pipeline (Butcher 2005). For instance, systems biology enables
simultaneous screening of many different pathways and targets potentially affected
by a drug in hosts in which it is effective, and provides a platform for downstream
identification of mechanisms of action and side effects. Essentially, systems biology
can help pharmaceutical companies get to the answers of: ‘Does it work, does it hurt,
and why?’ faster than by focusing on putative targets first and trying to validate their
relevance in live biological systems later, which is still a required step prior to
approval for release.

The promise of systems biology for vaccine development is also significant.
The search for vaccines against a number of incurable diseases, such as AIDS, has
largely failed, which highlights the need for new vaccine strategies, beyond the
‘isolate, inactivate, inject’ paradigm. One reason for the lack of success is the
failure to do comprehensive immune profiling after vaccination that lead to
accurate identification of correlates of protection in the immune response to

The Role and Contributions of Systems Biology 81



potential vaccines. Systems biology tools can accelerate vaccine development by
identifying predictors of immunogenicity and new mechanisms that underlie
protective immune responses. It would help characterize good and poor responders
well beyond the few biomarkers that are currently used and even allow for cus-
tomization of vaccination regimens by appropriate selection of adjuvant, antigen
dose, and even route of administration in order to elicit optimal immunity
(Trautmann and Sekaly 2011). In fact, this concept has led to the new field of
systems vaccinology.

6 Conclusion: The Role of Systems Biology in the Trend
Toward Predictive and Personalized Medicine

Systems biology is still in its infancy as a means of scientific discovery, and even
more so as a clinical tool of prevention, diagnosis, and therapy. However, all signs
point to the fact that it stands to play a role in science and medicine that is
becoming increasingly difficult to deny, despite the challenge of parsing, inter-
preting, and storing large data sets. Our limited studies in a model that is of high
relevance to humans have helped show the potential of systems biology and its
applications in human medicine, through understanding of the systemic effects of
local subcellular events that can be used to predict the course of a disease such as
influenza and provide an actionable head start for triage and therapy. These
experiments also lead to unique insights on pathways affected by disease, spe-
cifically providing information on immune or cellular processes predicting out-
comes of preventative efforts and influencing disease course and pathology, none
of which were easily and quickly discernible with conventional tools.

Lee Hood described his vision of personalized medicine, what he calls ‘P4’
medicine: predictive, preventive, personalized, and participatory (Hood 2011).
The predictive part has to do with identifying the first network perturbed by disease,
which may not be the one producing the biomarkers currently considered pathog-
nomic of a condition, but perhaps another whose induction may be completely
pre-symptomatic. Biological systems are more than simple collections of proteins
which interact in a linear manner. Instead, they are complex, intricately interacting
sets of functional and at times redundant pathways that collectively produce
coherent behaviors, which may be unique to an individual. There lies the most
important contribution of systems biology to modern medicine so far: the grasp of
the highly individual nature of responses to environmental changes, whether the
variations are due to different genetic makeup, age, or prior events, whose effects
may be cumulative. Even despite these variations, new unifying models can be
developed with the essential help of carefully designed animal experiments and of
clinical studies. These models will aid in acquiring an enhanced and more
comprehensive understanding of disease mechanisms at the subcellular level, as
long as the following conditions are met: we embrace but do not become paralyzed
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by the increased complexity and size of available information on any one patient;
and the need for simplified decision making in clinical settings does not cause us to
ignore aspects of this information which should produce personalized, rather than
generic therapeutic decisions.

Systems biology as a clinical tool will require unification of sample and data
analysis methods and platforms. The lack of standardization in accepted biomarkers
for certain conditions is already a problem during diagnosis and drug safety testing
(FDA 2004). The volume of data generated with ‘omics’ tools is likely to heighten
challenges in this regard and necessitate an enhanced effort toward adoption of
common standards. The use of systems biology will also require a new level of
teamwork and communication between basic scientists, pre-clinical scientists, and
clinicians, and between clinicians of different disciplines. Such collaborative efforts
are already commonplace in state-of-the-art hospitals and are not unusual for private
practitioners, but a stable network of complementary expertise will be required to
function as a clinician, at a level never before experienced. This collaboration will
also need to include the patient in ways that it never has before, if data collection is to
take place at well times in addition to during disease, which is a critical component of
predictive medicine. In conclusion, systems biology, provided the right tools and
approaches, will almost undoubtedly change the way science is done and medicine is
practiced in the next few decades.
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‘Omics Investigations of HIV and SIV
Pathogenesis and Innate Immunity

Robert E. Palermo and Deborah H. Fuller

Abstract In the 30 years since the advent of the AIDS epidemic, the biomedical
community has put forward a battery of molecular therapies that are based on the
accumulated knowledge of a limited number of viral targets. Despite these
accomplishments, the community still confronts unanswered foundational ques-
tions about HIV infection. What are the cellular or biomolecular processes behind
HIV pathogenesis? Can we elucidate the characteristics that distinguish those
individuals who are naturally resistant to either infection or disease progression?
The discovery of simian immunodeficiency viruses (SIVs) and the ensuing
development of in vivo, nonhuman primate (NHP) infection models was a tre-
mendous advance, especially in abetting the exploration of vaccine strategies. And
while there have been numerous NHP infection models and vaccine trials per-
formed, fundamental questions remain regarding host–virus interactions and
immune correlates of protection. These issues are, perhaps, most starkly illustrated
with the appreciation that many species of African nonhuman primates are natu-
rally infected with strains of SIV that do not cause any appreciable disease while
replicating to viral loads that match or exceed those seen with pathogenic SIV
infections in Asian species of nonhuman primates. The last decade has seen the
establishment of high-throughput molecular profiling tools, such as microarrays
for transcriptomics, SNP arrays for genome features, and LC–MS techniques for
proteins or metabolites. These provide the capacity to interrogate a biological
model at a comprehensive, systems level, in contrast to historical approaches that
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characterized a few genes or proteins in an experiment. These methods have
already had revolutionary impacts in understanding human diseases originating
within the host genome such as genetic disorders and cancer, and the methods are
finding increasing application in the context of infectious disease. We will provide
a review of the use of such ‘omics investigations as applied to understanding of
HIV pathogenesis and innate immunity, drawing from our own research as well as
the literature examples that utilized in vitro cell-based models or studies in non-
human primates. We will also discuss the potential for systems biology to help
guide strategies for HIV vaccines that offer significant protection by either pre-
venting acquisition or strongly suppressing viral replication levels post-infection.
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1 Introduction

The ability of HIV/SIV to evade host responses, rapidly destroy key immune
functions, hijack the immune response for its own benefit, and establish latency
presents an enormous challenge that, to date, has not been adequately addressed
through traditional approaches that focus on studying specific immune
responses as independent correlates of viral control. From both a pathogenetic
and preventive perspective, the first molecular and cellular events that occur
upon mucosal exposure to HIV/SIV or vaccination are likely critical. HIV/SIV
will cross the mucosal barrier in a matter of hours, disseminate locally within
the first few days, and then progress systemically into the blood within the first
few weeks of exposure. Once the virus enters the very first cells in the mucosa,
however, the window for adaptive immunity to respond in time to abort or
prevent viral dissemination and establishment of latency may be too short. In
contrast, the innate immune system comprises the network of cells and factors
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that respond more immediately to HIV exposure and provide the first line of
defense. Dendritic cells are one of the first cell types to encounter HIV in the
genital tract and play central role in sensing the virus, inducing antiviral defenses,
recruiting cells, and stimulating adaptive immunity (Wilkinson and Cunningham
2006). Innate responses likely provide some protection against infection but
importantly, they have considerable impact on the nature of adaptive responses that
develop and function to establish viral set point and set the course of disease.
Although early innate and adaptive responses are critical for viral control, these
mechanisms are, paradoxically, also the sources for inflammation and the activation
and recruitment of target cells susceptible to HIV infection that can alternatively
enhance viral replication and dissemination (Staprans et al. 2004). For this reason,
traditional methods that focus on studying one specific antiviral response as an
immune correlate of viral control may fail to consistently predict protection, espe-
cially if the response stimulates inflammation.

Studies in humans and nonhuman primates (NHP) indicate that it should be
possible to develop a vaccine that prevents sexual transmission of HIV. The HIV
ALVAC/AIDSVAX vaccine trial in Thailand (RV144), employing a viral vector
prime and recombinant protein boost, afforded 31 % efficacy (Rerks-Ngarm et al.
2009). Although this level was not sufficient to support vaccination of the general
public, the results provided the first evidence that an HIV vaccine can prevent
infection in humans. Studies in nonhuman primates also suggest a more efficacious
vaccine is feasible. As in the Thai trial, some vaccines that have been tested for
protection in SIV or SHIV nonhuman primate models for AIDS have afforded
sterile protection against infection or profound and durable control of viral rep-
lication (Barnett et al. 2010; Barouch et al. 2012; Belyakov et al. 2001; Daniel
et al. 1992; Fuller et al. 2002; Lai et al. 2011; Manrique et al. 2011; Patterson et al.
2004). Designing a vaccine that can achieve better protection, however, will
require a more complete understanding of the HIV/SIV-host interactions, factors
contributing to pathogenesis, effective mechanisms of antiviral immunity and
vaccine action, and correlates of protection. Indeed, an understanding of early
details in HIV–host interaction may illuminate vaccine strategies that more
potently engage the innate immune system, thereby yielding a superior adaptive
response.

Elucidating the broader network of responses that influence pathogenesis and
prevention of HIV infection is critical for designing novel therapeutic and pre-
vention strategies. Because systems biology enables the integration of large
datasets from multiple analyses, it represents an exciting new frontier to elucidate
how innate and adaptive immune responses to HIV are induced by infection or
vaccination, coordinately regulated, and influence protection and pathogenesis.
Here, we discuss how systems biology is being employed to define these immune
interactions and how this information may lead to new insights into HIV/SIV
prevention and disease.
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1.1 Systems Level Investigations

The term Systems Biology has progressively acquired a breadth of meanings.
Perhaps at its most complex and challenging, it can be termed the characterization
of a biological model by multiple high-throughput molecular profiling techniques,
and the ensuing use of mathematical techniques to find relationships/associations
between the measured molecular entities (Aderem et al. 2011; Tisoncik et al.
2009). These molecular entities are typically measured by class-specific tech-
niques (e.g. mRNA levels; protein abundances, possibly including post-transla-
tional modifications; lipids or other metabolites; histone modifications, etc.), and
the mathematical approaches may determine relationships within the same class of
analyte (e.g. mRNA—mRNA) or between classes (e.g. mRNA—protein; pro-
tein—metabolite). Inasmuch as the biological model generally tracks the system in
response to a perturbation or stimulus, the modeling may ultimately yield a
framework that reveals previously unappreciated associations between the mea-
sured components, and furthermore may be predictive of how the system would
respond under as yet untested conditions (‘‘hypothesis-generation’’). For a
translational impact in biomedical research, this assessment of the system must
ultimately integrate (predict, explain) the phenotype of the biological entity under
study. When dealing with the simplest systems such as uniform cell populations,
the measured molecular entities can be the phenotype; for example a cytokine
produced, or a response with a well-characterized molecular etiology such as
apoptosis.

In considering the systems biology as applied to whole organisms, the com-
plexity in the endeavor increases. High-throughput measurements are generally
performed on samples composed of multiple cell types, and may contain com-
ponents not endogenous to the tissue being examined. The responses of the tissue
at hand may arise from bioactive materials produced or regulated elsewhere in the
organism, and exhaustive characterization of all the tissues/compartments in the
organism is impossible. Rigorous uniformity of experimental conditions is difficult
to achieve, and this includes variation arising from genetic diversity in outbred
species (e.g. nonhuman primates, human subjects). Likewise, the phenotypes to be
integrated take on a much greater complexity and are likely elicited by many
contributing processes. Nonetheless, the methods of systems biology can still find
application in producing statistically significant correlations of molecular features
to complex phenotypes. Again this serves the remit of hypothesis generation, and
can possibly identify a subset of molecular features with potential diagnostic or
prognostic applications. This latter form of systems biology is well exemplified by
recent studies relating gene expression changes in blood following vaccination to
the resulting immunogen-specific cellular or humoral immune responses (Gaucher
et al. 2008; Nakaya et al. 2011; Querec et al. 2009).
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As we have described previously, our approach in systems biology investigations
encompasses both extremes of model complexity (cf. Fig. 1) (Aderem et al. 2011;
Tisoncik et al. 2009). Simple, in vitro cell-line models offer the best experimental
consistency along with ease of execution under differing conditions (perturbations).
For understanding the host response to viral infection, it can also provide the means
to assess the impact of the virus on a cell type that is the primary target for infection
and replication. After characterizing the response in this constrained setting, one can
then assess the portability of the characteristics to the in vivo context where the
target cells will be just one cell type within the sample. Moreover, signaling is
occurring between cells, and this can include ensuing immune surveillance of the
infected cells. This approach has been the basis of our Center for the systems
virology of highly pathogenic respiratory viruses (Aderem et al. 2011). Results from
this endeavor have included our publications on the conserved elements of the host
response to highly pathogenic avian influenza, where we discuss linking tran-
scriptional networks determined in cell culture infections to the immune response
and regulatory programs that are observed in the respiratory tissues of mice and
macaques when infected with the same virus (McDermott et al. 2011).
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Fig. 1 Current systems biology approaches can span extremes of biological scale and
complexity. Cell-based, in vitro experimental models offer the greatest level of experimental
control and the potential for very comprehensive high-throughput measurements; these may then
be utilized in mathematical models that can identify critical molecular pathways and crucial
system components. For in vivo models, many investigators employ statistical methods to obtain
correlations of molecular features to observed phenotypes, or to refine prognostic classifiers to
apply in related in vivo settings. Ideally, these approaches have synergy: detailed cell-based
systems biology investigations should predict the responses of such cells in an in vivo context,
and thereby help parameterize more complex mathematical models. Should the cell-based
predictions not be consistent with the in vivo observations, further elaboration to the in vitro
systems may be necessary
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1.2 Distinctions in Innate Immunity

The innate antiviral response is that sensing and control capacity that does not
require prior ‘‘schooling’’ in the distinction of self versus nonself. The sensing
molecules have evolved to recognize pathogen-associated molecular patterns
(PAMPs) and this capacity is not altered by diversification or affinity maturation as
occurs in the adaptive arm of the immune system and which require the somatic
genome alterations that occur in B and T cells.

However, even within the broader category of innate immunity, there is an
important distinction in these innate sensing capabilities. In absence of a delete-
rious mutation, all cells possess a capacity for antiviral sensing by RIG-I-like RNA
helicases, including RIG-I and MDA5 (Yoneyama and Fujita 2009). These pro-
teins recognize structural elements contained in viral RNA with downstream
signaling events that result in the transcription of interferon-b as well as other
antiviral effector molecules. Secreted IFNb then triggers the Type I interferon
response in the infected cell as well as being a paracrine regulator to nearby cells.
The Type I response results in the expression of other interferon-stimulated genes
(ISG’s), of which many are additional antiviral effectors. Signaling in the RIG-
I-like receptor pathway also results in the increased expression of inflammatory
genes due to the nuclear translocation of NFjB, and leads to the activation of the
inflammasome. The Type I interferon response and the initial inflammatory
response are important in bringing the virally infected cell under the scrutiny of
other components of the immune system, through either the secretion of chemo-
kines and cytokines that recruit immune cells to the infection locus, or by changing
cell surface features that help immune cells target the infected cell. Prominent in
this later category is up-regulation of components in the antigen-presentation
machinery, including major histocompatibility complex (MHC) molecules; this
then increases the display of antigenic peptides derived from viral proteins. It is
also worth remarking that the RIG-I-like receptors are also implicated in the
antiviral response to DNA viruses (and other pathogens with DNA genomes). This
is an indirect sensing mechanism that occurs after RNA polymerase III transcribes
portions of the pathogen’s DNA, yielding RNA transcripts that engage the RIG-I
like receptors, thereby broadening the role of this pathway in the general response
to intracellular pathogens. (Chiu et al. 2009)

In contrast to these generally manifest pathways, the toll-like receptors (TLRs)
are a category of PAMP sensors generally expressed in a subset of immune cells,
and their role is most clearly understood in specialized the context of antigen-
presenting cells (APCs) such as dendritic cells (DCs) and macrophages (MØs)
(Kawai and Akira 2010; Moresco et al. 2011). As transmembrane receptors, TLRs
enable activated DCs and MØs to sense pathogens in their environment rather than
within their cytosol. Some TLRs reside on the exterior cell surface and detect
components on the exterior of bacteria or viruses. The TLRs critical for antiviral
sensing are TLR3 (detecting double stranded RNA; dsRNA), TLR7 (for single
stranded RNA; ssRNA), and TLR9 (unmethylated CpG DNA). To detect the
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genomes of pathogens these receptors are localized to the endosomes, where they
can sense the RNA and DNA patterns released from endocytosed virions, bacteria,
or such components from engulfed cells and cellular debris. Downstream signaling
from these TLRs involves the components of either the MyD88 or TRIF pathways,
and results in gene expression driven by the transcription factors IRF3, IRF7, and
NFjB. Activation of the IRF3/IRF7 heterodimeric transcription factor can drive
the expression of interferon-b (Ifnb), analogous to the downstream effects from the
RIG-I like cytosolic receptors. But in the case of plasmacytoid dendritic cells
(pDCs), there is also extensive amounts of interferon-a (Ifna) produced, driven by
the IRF7 homodimer transcription factor. Following viral infection of an organism,
Ifna levels are typically far greater than Ifnb; therefore, this Ifna production by
pDCs is the primary driver of the disseminated Type I interferon response and
serves to induce a broad state of antiviral preparedness.1 Within these specialized
antigen-presenting cells, the consequences of NFjB-driven transcription and
inflammasome activation are more impactful, with the production of Ifnc, Tnfa,
IL6, IL12, and other inflammatory cytokines. This results in the homing and
activation of neutrophils, NK cells, macrophages, and lymphocytes, orchestrating
an initial immune response that either clears the infection or keeps it in check until
the adaptive response has developed sufficiently to eliminate the pathogen.

2 Investigations of Innate Immunity to HIV and SIV

The Katze laboratory has a long history of investigating virus–host interactions,
innate antiviral signaling, and the Type I interferon response (Katze et al. 2002;
Korth et al. 2005). Much of this work has centered on examining these processes at
stages in advance of the involvement of specialized cells of the immune system.
To make a pugilist metaphor, how much of a fight can an infected cell put up on its
own, and how would it encourage assistance from other cells better at detection
and containment?

2.1 In vitro Investigations

One important antiviral mechanism the Katze group has studied extensively is
translational control, as occurs by the interferon-induced protein kinase PKR (gene
symbol EIF2AK2) (Gale and Katze 1998; Katze 1995). Constitutively expressed at
low levels, it is strongly up-regulated in the Type I response, and it affects

1 We have attempted to follow a convention where genes and their transcripts are denoted by
their HUGO gene symbols, which are typically all upper case. If referring to a protein,
conventional abbreviations are used. E.g. IFNB versus Ifnb.
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translational shut-off upon binding dsRNA as would be present in viral genomes or
replicative intermediates. Numerous viruses have developed strategies to both
overcome the translational blockade that would be imposed by PKR, as well as
eliminating host mRNAs that would compete with viral transcripts for the protein
synthesis resources. Our early studies with HIV showed how this lentivirus may
subvert translational arrest by inducing the more rapid turnover of host mRNAs, and
by down-regulating the abundance of PKR (Agy et al. 1990; Katze and Agy 1990).

The advent of microarray technology in the 1990s provided the means to forego
the ‘‘gene-by-gene’’ investigation of such experimental systems, offering instead
platforms to simultaneously interrogate thousands of mRNA transcripts (Katze
2002). After demonstrating the initial application of cDNA microarrays to observe
expression changes in an HIV-1 infected CD4 ? T cell line, we published one of
the first more comprehensive expression analyses of this infection model using an
in-house array design that assessed expression of 4,600 cellular RNA transcripts
(Geiss et al. 2000; van ’t Wout et al. 2003). An important attribute of this in vitro
cell-line model was generating a homogenous cell population with [90 % of the
cells initially infected and synchronously transiting the viral life cycle. Despite the
limitations as compared to contemporary technologies, this early array study
yielded a number of salient observations. First, despite clear evidence of a uniform
infection of the cells and the production of protein-coding viral transcripts as early
as 8–12 h post-infection (hpi), there were no significant changes in host gene
expression until 24 hpi. Within the 409 host differentially expressed genes
(DEGs), there was up-regulation of negative cell cycle regulators and down-
regulation of positive regulators, reflecting the G2 arrest of infected cells. Though
most transcription factors (TFs) were down-regulated, a small group of T cell
associated TFs were up-regulated (ELF4, GATA3, SP140, TAL1) along with
others previously associated with HIV infection (Jun, RELB).

Moreover, despite the general decrease in transcripts for many metabolic
enzymes, numerous genes in the cholesterol biosynthetic pathway were up-regu-
lated. This impact on the cholesterol biosynthetic pathway was ascribed to the
action of the Nef viral accessory gene (van ’t Wout et al. 2005). It was later
demonstrated that a functional Nef gene was required to result in this induction of
multiple cholesterol synthesis genes, which are generally regulated by the sterol-
responsive element-binding factor 2 (Taylor et al. 2011). The importance of Nef in
tuning the lipid composition of host cell membranes, including the enrichment of
lipid rafts, is now well evidenced from multiple investigations and appears to be an
important mechanism for facilitating virus propagation (Brugger et al. 2007).

In addition to developing functional genomics capabilities with arrays based on
human genome sequences, the Katze laboratory was also an important contributor
to genomics tools for nonhuman primate studies (Gibbs et al. 2007; Magness et al.
2005). The importance of nonhuman models for AIDS was a very significant
driver in this latter endeavor, and in collaboration with Agilent Technologies, the
laboratory designed the first oligonucleotide microarrays based on nucleic acid
sequences for the Indian-origin rhesus macaque. The first design derived from an
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EST sequencing effort by the laboratory covered only a modest number of
transcripts; however, the second design based on the draft rhesus genome was
more comprehensive and could simultaneously profile over 18,000 macaque
transcripts (Wallace et al. 2007). In addition, the array was annotated with the
corresponding human gene symbols, allowing the ready interpretation of results
based on the much richer documentation for human genes. These arrays have
found extensive application in characterizing NHP biomedical models for influ-
enza and Ebola viruses, and as will be discussed below, for NHP models of AIDS
(Baskin et al. 2007; Cilloniz et al. 2011; Cilloniz et al. 2009; de Lang et al. 2007;
Kobasa et al. 2007; Safronetz et al. 2011).

2.2 In Vitro Infections in Primary Cells

These rhesus macaque arrays have also been employed in characterizing in vitro
infections in primary cells from rhesus and pigtail macaques. In the first array
study, we performed a synchronous infection with SIVmac239 in rhesus macaque
PBMCs, and the study illustrates the challenges in transitioning the systems
approach from a cell line system to primary cells (Thomas et al. 2006). For
example, for undetermined reasons the infection was only effective in two of three
different donor animals; furthermore, in situ staining showed that at maximum Gag
production, only 3–5 % of the cells were infected, despite cytometric character-
ization that CD4 ? T lymphocytes constituted *30 % of the cells. Many func-
tional genomics studies are performed on samples that are mixtures of cell types,
and must be interpreted as the amalgamated response of all the constituents.
Expression changes are interpreted as the transcriptional response of cell types that
are logically expected to be in the sample, or as might be the case with infiltrating
immune cells, the DEGs may reflect the change in the proportions of cell types in
the samples.

This example of in vitro infection of PBMCs can be interpreted as the response
of the lymphocytes and myeloid cells within the context of low levels of infection.
Despite the low percentage of infection, the comparison of infected to mock-
treated cells for each animal showed hundreds of differentially regulated genes,
with the greater number of changes actually occurring well in advance of peak of
viral replication. For the 184 DEGs identified at this early time point, many of
them were associated T and B cell signaling, antigen presentation, and integrin
signaling. These results contrast with the observations from the in vitro cell-line
experiments both in the earlier kinetics of the response, and the clear abundance of
genes in the adaptive immune response. We cannot rule out that some of these
distinctions may reflect the differences between the cell-line versus primary CD
4 ? T cells, as well as the differing virus types (HIV-1 vs. SIVmac239). But another
simple explanation is that the response observed in the in vitro infection of the
rhesus PBMCs does not originate in initially infected CD4 ? T cells but rather
chiefly represents the transcriptional response of other cells, such as monocytes,
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macrophages, and dendritic cells that have become activated/infected after
encountering the virus. In addition to their own transcriptional programs, these
cells may then secrete factors that activate uninfected T cells and B cells in the
sample. However, one common attribute in this study with primary cells as
compared to the cell line results is the absence of any clear transcriptional sig-
nature for early innate sensing by the RIG-I-like receptors.

A similar set of observations attended another study performed in primary
macaque PBMCs, on this occasion utilizing cells from pigtail macaques (Macaca
nemestrina)—a species that generally experiences more severe sequelae to len-
tiviral infection, and in vivo can even support limited levels of HIV-1 replication
(Agy et al. 1992; Batten et al. 2006; Frumkin et al. 1993). The study was a
comparison of expression profiles for pigtail PBMCs following infection with
either SIVmac239 or HIV-1LAI (Li et al. 2007). As in the prior study with in rhesus
PBMCs, only a small percentage of cells were infected, and yet comparison of
expression levels for the infected versus mock samples revealed a large number of
DEGs for each virus. Likewise, the timing of the expression changes relative to the
viral replication kinetics suggests that most of the gene expression changes orig-
inate from cells other than infected CD4 ? T cells. Also as in the prior examples,
there are no expression changes to indicate any innate immune responses origi-
nating from RIG-I-like signaling from initially infected cells. Interestingly, though
the HIV-1 replication levels based on Gag production were significantly lower
than for the SIV strain, the expression changes in the HIV-1 infected cells showed
stronger, early up-regulation of antigen-presentation pathways and NK surface
markers. This suggests that the M. nemestrina host factors may be more sensitive
and responsive to determinants presented by the HIV strain than to those on the
macaque-adapted SIV strain. This is in general keeping with the understanding
that establishing a primate lentivirus infection is a complex interplay between the
virus and species-specific restriction factors, as well as the capabilities of the virus
to modulate the specialized cells associated with antigen presentation and adaptive
immunity.

2.3 Characterization of In Vitro Systems by Proteomics

To add to the systems view of the virus/host interaction during HIV-1 infection,
the Katze Laboratory has also undertaken proteomics investigations of in vitro
infection models. Although the initial production of a protein is subordinate to the
production of its encoding mRNA, comparative analyses often reveal many
instances where protein abundance is poorly correlated to the corresponding
mRNA levels (Gygi et al. 1999; Tian et al. 2004). In addition, many viruses have
evolved mechanisms to advantageously target specific host proteins for destruc-
tion, such as the Vif-mediated degradation of the lentivirus restriction factor
APOBEC3G (Henriet et al. 2009; Sheehy et al. 2002). Using the lymphoid cell line
CEMX174, uniform infections were performed with HIV-1LAI, and using LC/MS
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proteomics techniques the protein abundance changes were determined at the peak
of viral protein production 36 hpi, with [ 94 % of the cells actively producing
virus (Chan et al. 2007). Of *3200 identified proteins, 687 were determined to
show statistically significant abundance changes as compared to mock-infected
samples; within the differentially regulated set, 83 proteins had been previously
identified with known interactions with HIV viral proteins Integrase and Vpu.
Functional enrichment analysis identified changes in a large number of proteasome
constituents and ubiquitination enzymes that would potentiate the G1/S cell cycle
arrest, and alterations of the RAN pathway for nuclear membrane trafficking with
net changes that would favor nuclear export, potentially facilitating the export of
viral mRNAs.

An analogous proteomics investigation was subsequently performed using
isolated primary human CD4 ? T cells obtained from five individuals, with
infection by HIV-1LAI performed at high MOI, with sampling at 8 and 24 hpi to
study a single replication cycle within the synchronously infected cells (Chan et al.
2009). While there were only 25 differentially regulated proteins at 8 hpi, notable
among them were up-regulated proteins in energy production and protein syn-
thesis, with several ribosomal protein in the latter category. These observations of
early increases in ribosomal and energy production proteins were also recapitu-
lated by the laboratory in a proteomics study using a lymphoblastoid cell line at
4 hpi with HIV-1LAI, suggesting that very early after HIV infection, a T cell
undergoes a shift to increased protein synthesis (Navare et al. 2012). In contrast at
24 hpi, from a total of 138 differentially modulated proteins, 24 are down-regu-
lated components in the ribosome and components in the protein synthetic path-
way. This extensive negative regulation of protein biosynthetic machinery was not
as evident in the aforementioned functional genomics studies, and highlights the
added information garnered from applying a different high-throughput analytical
technology. Moreover, this alteration may in part explain prior observations
concerning the shut-off of host protein synthesis in later stages of infection (Agy
et al. 1990). At 24 hpi in these primary cells, there were also signs of dysregulation
in mitochondrial components and anti-apoptotic 14-3-3 proteins, observations that
coincide with the cells being poised for apoptosis. This may contrast with
experiments in cell lines, where genetic alterations may reduce the responsiveness
of the cells to pro-apoptotic signals.

2.4 Transcriptional Analysis By Next-Generation Sequencing

Transcriptional profiling by next-generation sequencing (NGS) enables the highly
sensitive measurement of transcript levels and by adjusting the cDNA library
preparation, the method can interrogate just polyadenylated transcripts (typically
mRNAs; mRNA-seq) or it can measure the entire compliment of RNA species,
both protein coding and noncoding (total RNA-seq) (Mortazavi et al. 2008; Sultan
et al. 2008). RNA-seq offers advantages of increased dynamic range, greater

‘Omics Investigations of HIV and SIV Pathogenesis and Innate Immunity 97



sensitivity, and better precision compared to array methodology; in particular, the
latter features make it a superior technique for quantitative comparison of low-
abundance transcripts. In addition, unlike arrays the data collection does not
depend on prior knowledge of the sequences to be detected, and therefore can lead
to transcript discovery (Trapnell et al. 2010), an aspect that is leading to the
annotation of many new noncoding RNAs (ncRNAs) along with the deepening
appreciation that these ncRNAs change in abundance under many biological
conditions including viral infection and the immune response (Guttman et al.
2009; Mercer et al. 2009; Pang et al. 2009, 2010).

For these reasons we utilized mRNA-seq to examine the transcriptional changes
in a CD4 ? T cell line infected with HIV-1LAI. As in prior studies, we strove for
sample homogeneity by generating a uniform ([ 90 %) synchronously infected
population of cells, and sampled them during the first round of viral replication at
12 and 24 hpi. We then performed mRNA-seq to compare the transcriptional
changes in infected cells versus time matched mock-infected samples. Table 1
provides a summary of the experiment. At 12 hpi, production of the Gag protein is
just becoming measurable, and yet viral RNA already accounts for *18 % of total
mapped reads; at 24 hpi approaching the peak of viral production, the proportion
of viral reads had increased to *38 %. While the level of viral RNA at 12 hpi
would appear to be a tremendous perturbation to the cells, the number of differ-
entially expressed genes is still remarkably small with only 43 up- and 63 down-
regulated DEGs (Table 1). Over 90 % of the DEGs from 12 hpi also pass the
statistical threshold at 24 hpi, and as illustrated in Fig. 2, these exhibit the same
directionality relative to mock, with the majority having increased differentials.
The functional annotations showed enrichment in T cell differentiation, with six of

Table 1 mRNA-seq analysis of differentially expressed host genes in HIV-infected SUP-T1
cellsa

No. of DE genesb

12 hpi 24 hpi

Up-regulated genes
1 \ FC B 1.5 37 1386
1.5 \ FC B 2.0 5 1040
FC [ 2 1 246
Total up-regulated 43 2672
Down-regulated genes
1 \ FC B 1.5 36 1079
1.5 \ FC B 2.0 24 851
FC [ 2 3 404
Total down-regulated 63 2334
a Triplicate samples for each condition and time point were analyzed by mRNA-seq, with data
collected as 75 bp single-end reads, with *30 million reads per sample. Reads were mapped to
the human genome and gene expression levels were derived using RefSeq transcript annotations
b Normalized transcript abundance level were analyzed in limma for 9992 total gene loci detected
in at least one biological condition. All genes listed have Benjamini-Hochberg-corrected p-values
of less than 0.05
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seven genes down-regulated. This negative impact on T cell functionality expands
within the large number of DEGs at 24 hpi with down-regulation of both central
signaling nodes such as LCK as well as surface receptors including CD2, CD3,
CD4, CD8, and CD28.

The number of DEGs at 24 hpi represents a massive reprogramming of the cell,
even if one limits consideration to just transcripts with [ 1.5-fold changes. Many
of the down-regulated genes are involved in RNA processing including numerous
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Fig. 2 mRNAseq results for differentially regulated genes at 12 and 24 hpi in HIV-1LAI infected
SupT1 CD4 ? lymphoblastoid cells. Values shown are log2(ratios) for each individual infected
replicate relative to averaged mock-infected samples at each time point. Genes were segregated
by direction of change relative to mock infection at 12 hpi. Hierarchical clustering was done
within each directional group. Purple font indicates genes that were not also DE at 24 hpi, while
gold font indicates genes that were also DE at 24 hpi with changed directionality at 24 hpi.
Annotations indicate over-represented categories in DAVID. Black squares indicate matches to
top-scoring categories in each DAVID annotation cluster, while gray squares indicate matches to
related categories in the same DAVID cluster as the top-scoring category. Reproduced with
permission from Chang et al. 2011
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components within the RNA splicing machinery or involved in RNA transport.
These alterations may abet the production of unspliced viral RNA, and may be
corrupting the RNA transport mechanisms to enable the full-length unspliced viral
genome to exit the nucleus for both protein production and virion packaging.
Remarkably, the up-regulated genes from 24 hpi show little enrichment in func-
tional characteristics, and are so broadly distributed across pathways and functions
as to fail to achieve statistically significance. Finally, even with the sensitivity and
precision afforded by mRNA-seq, there is no evidence in the transcriptional pro-
filing for an innate response. At the 12-hpi time point, there are no up-regulated
transcripts that would have arisen downstream from engagement of the RIG-I-like
signaling pathway. Even at 24 hpi, there is still no indication of an innate immune
response or the typically associated inflammatory processes.

2.5 Other Examples from In Vitro Infection Models

2.5.1 CD4 1 Cell Lines and Primary CD4 1 T Cells

A review of the literature on microarray studies to analyze HIV-1 infection in
CD4 ? T cell lines and primary cells does not reveal any inconsistencies with our
contention that HIV-1 infection does not trigger an early antiviral response in these
cells. Unfortunately, in multiple instances the low levels of infection reported in
the models qualify the interpretation of many studies. Corbeil and colleagues
published an early example in 2001, where effort was made to perform a syn-
chronous, high MOI infection using HIV1LAI in a CEM cell line that was modified
to express green fluorescent protein driven by the HIV-1 LTR (CEM-GFP)
(Corbeil et al. 2001). Despite the high MOI and the use of polybrene to enhance
infection, at 24 hpi only *30 % of the cells were positive for viral replication,
rising to ca. 90 % by 48 h; therefore, the model represents multiple rounds of
infection at later time points. The CEM CD4 ? lymphoblastoid cell line is the
same background employed in array study described as part of the Katze efforts,
and both studies used CXCR4-tropic viruses. Some aspects of the studies are quite
similar, such as the observation that most expression changes occur late in the
course of infection and are dominated by down-regulated genes in the infected
cells. However, the Corbeil study, using an early generation Affymetrix array, did
report observing hundreds of differentially regulated genes at times between 0.5
and 16 hpi; this differs from the Katze results where very few DEGs were
observed before 24 hpi ,and the disparity may arise from the greater number of
replicates and stricter statistical criteria and used in the Katze study. The earlier
publication makes passing comment that these early DEGs included the antiviral
genes interferon alpha 12 (IFNA21) and the interferon inducible gene MXB.
Unfortunately, there is no further articulation of this result, no direction is specified
for these expression changes, and it is sparse representation for an antiviral
response. Therefore, in absence of a highly efficient, synchronous infection and
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better statistical criteria, there seems little evidence for early PAMP-triggered
signaling events. A similar qualification attends the paper by Yin et al. on analysis
of CEM-SS cells infected with HIV-1IIIB, where aspects of gene expression were
examined at 7 and 18 days post-infection (dpi) (Yin et al. 2004). While the pro-
portion of infected cells was ca. 90 % at both time points they represent quite
different stages in the course of the infection as most cells undergo apoptosis at the
earlier lime point, whereas at 18 dpi the culture is primarily an outgrowth of
viable, chronically infected cells. Nonetheless, at neither time point were there
representatives of strongly up-regulated genes that typify early transcriptional
events downstream of innate antiviral sensing) such as ISG15 and ISG54.

For study of primary CD4 ? leukocytes, the study by Imbeault et al. used bead-
based negative selection on PBMCs to obtain a population of cells enriched in the
CD4 ? marker, and then infected the stimulated cells with HIV-1NL4-3 or with an
isogenic variant produced under conditions where the virion would incorporate
ICAM-1 into the viral envelope (Imbeault et al. 2009). Here again, the efficiency
of infection appeared quite low with only *10 % of the cells positive for p24
production 5 days post-infection with the parental HIV-1NL4-3, even with contin-
uous exposure to the virus. For array measurements, samples were taken at 8 and
24 hpi; infections were done using cells from five donors; however, the samples
were pooled for the microarrays, thereby giving only one expression measurement
for each condition. The authors reported 404 DEGs impacted by HIV infection,
with 80 % of the expression changes occurring at the later time point. The
investigators placed particular emphasis on the up-regulation of p53 that was
observed with both the 8- and 24-h data. They attributed the increased expression
of p53 to Type I interferon signaling, and biochemical assays of Type I interferon
levels did show increased levels (albeit still quite low) that peaked ca. 6 h after
infection. However, the assertion that Type I interferon signaling has occurred in
the model is not strongly supported as there was no up-regulation of other genes
more archetypical for this pathway. Nonetheless, the biochemical and bioassay
data on interferon production is an interesting finding that merits reexamination.
A complication to the interpretation is the presence of *10 % CD14 ? myeloid
cells in the CD4 ? enriched cells used for the measurements. These CD14 ? cells
are likely monocytes, macrophages, or myeloid dendritic cells, and the authors
acknowledge the possibility that the features they attribute to Type I interferon
signaling could originate from these adventitious myeloid cells or even from co-
purified CD4 ? plasmacytoid dendritic cells.

To contrast with the work by Imbeault, two other publications examined
expression changes in human PBMCs. The first study by Vahey and colleagues was
a carefully executed, synchronous infection with a high MOI of HIV-1RF, using
PBMCs from three different donors (Vahey et al. 2002). Array comparisons of
infected to mock samples were performed at 1, 12, 24, 48, and 72 hpi, using an
Affymetrix GeneChip that measured levels of 12,627 transcripts. As with the
previously described experiments using macaque PBMCs, the extent of virus
infection appears to have been limited to a small percentage of the cells. The report
does note the regulation of 57 immune response genes from 1 to 48 hpi; at 12 hpi
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these include granulysin (GNLY), and macrophage colony-stimulating factor 1
(CSF1), suggesting that some of the most prominent expression changes are not
from CD4 ? T cells. The only antiviral gene noted is MX1, observed as up-reg-
ulated at 48 hpi, which is anomalously late for an early antiviral response. Another
study with primary PBMCs was reported by Gupta et al., evaluating gene expres-
sion at 7 days post-infection at MOI 0.01, where only *7 % of the CD4 ? cells
were infected (Gupta et al. 2011; Venkatachari et al. 2008). The statistical analysis
of infected versus mock for six donors gave 444 DEGs, spanning functional cat-
egories such as apoptosis/cell cycle, MAP kinase pathways, and SRC kinases, but
no indication of RIG-I-like signaling or a Type I antiviral response.

2.5.2 In Vitro Macrophages

In vivo, macrophages are regarded as likely reservoirs for HIV-1 inasmuch as
infected macrophages appear to be much longer lived and do not succumb to virally
induced apoptosis or cytopathic effects. The ease of isolating primary monocytes
has made it more common for expression studies of HIV-1 infection to be performed
with monocyte-derived macrophages (MDMs), ideally from multiple donors. One
of the first such studies, using the CCR5-tropic BaL strain made the intriguing
observation that a large number of interferon-stimulated genes are up regulated from
2 to 16 h after synchronous infection, as well as other genes that are plausibly
downstream of PAMP sensing by either RIG-I-like receptors or TLR receptors
(Woelk et al. 2004). This was based on array studies with cells from a single donor,
and then corroborated by qRT-PCR with cells from two additional donors. Up-
regulated genes included IRF7 (twofold), ISG15 (threefold), IFIT1 (fourfold); and
while the percentage infection was not reported, the rapid kinetics clearly link the
increased expression to the primary encounter between virus and macrophage.

Unfortunately, other studies have generally used low multiplicities of infections
and have examined the expression changes after several days and multiple rounds
of viral replication, and even at these later time points only a small percentage of
cells appear to be infected. Despite these drawbacks, Vazquez et al. performed
expression analysis 6 h postinfection of MDMs with HIV-lBAL (Vazquez et al.
2005). This study was limited by use of a filter-based array with narrow coverage,
but DEGs were stringently required to be [ twofold regulated in six donors. They
noted early increases in transcripts for inflammatory cytokines such as TNFA, IL8,
and IL12—all indicative of an early response from pattern-recognition receptors.

2.5.3 In Vitro Dendritic Cells

Dendritic cells play a crucial role in the early antiviral response with the plas-
macytoid subset being potent producers of Type I interferon-a following
engagement of their TLR receptors (Szabo and Dolganiuc 2008). In addition,
dendritic cells have been determined to play a role in the dissemination of HIV or
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SIV to CD4 ? T cells via cell-to-cell transfer. The interaction of HIV-1 with
dendritic cells has been characterized as having two phases: in the early phase
(\ 24 h), the virus is endocytosed by its capture on C-type lectin receptors and
gets trafficked to vacuoles and/or lysosomal compartments where it is degraded,
whereupon the exposed viral genome can trigger a response via TLR signaling.
The second phase appears to correspond to the actual infection of the DC, which
requires fusion of the viral membrane and delivery of the capsid into the cytoplasm
at which stage the viral features would come under the possible surveillance of the
cytosolic RIG-I-like signaling pathway (Turville et al. 2004).

This biphasic process is evident in microarray expression profiles reported by
two different research groups. Both studies utilized monocyte-derived dendritic
cells (MDDCs) that were infected at an immature stage, as opposed to a mature
DC that has already experienced pathogen stimulation, and thereupon changed its
phagocytic- and antigen-presentation properties. In the study by Solis et al.,
MDDCs were infected with primary isolates representing clades A/E, B, and C,
and expression changes assessed at 2, 6, 24, and 72 h after synchronous infection.
Compared to time-matched mocks, the larger number of expression changes
occurred at 2 and 6 hpi, involving genes in transcription, signal transduction, cell
proliferation, and the immune response. The expression changes implicate
increased NFjB activity along with up-regulation of inflammatory genes such as
IL1A, IL1B, IL6, and INDO. The number of DEGs declined at 24 h and then
showed resurgence at 72 hpi at which time there was still indication of
up-regulated NFjB actively as well as increased expression of pro-apoptotic
factors. Direct comparison to other studies is difficult due to the use of a custom
array design. While there does appear to be some PAMP-induced signaling at early
time, the gene expression features do not appear indicative of robust TLR sig-
naling as might be typified by LPS-treatment (Napolitani et al. 2005). Interest-
ingly, these investigators reported the only appreciable differences between the
different cIades occurred at 72 hpi, when viral gene products are beginning to
reprogram the infected cell.

A similar study design was employed by Harman et al. who characterized the
synchronous infection of MDDCs with the R5-tropic, lab-adapted strain HIV-1BaL

and characterized the differential gene expression at 6, 24, and 48 hpi. In addition,
they included aldrithiol-inactivated virus as a comparator, providing a means to
distinguish viral sensing events versus changes attributable to HIV-1 infection.
This model system also showed greater expression changes at early and later time
points and an apparent lull at 24 h. With the inactivated virus, the temporal pattern
reflected just the initial 6 hpi episode of transcriptional changes. The high degree
of overlap seen in the 6 hpi DEGs for live and inactivated virus makes it clear that
this early time point represents responses prior to viral membrane fusion and entry
of the capsid to the cytosol. Among the processes up-regulated at 6 hpi are genes in
endosomal pathways and associated GTPases. Up-regulated immune response
genes included ISG15, IRF1, MX1, OAS1, and STAT3. MHC class II genes also
increased expression levels. All these features indicate some manner of antiviral
activating signal has been transduced during at this early time point, but these
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effects have disappeared by 24 hpi. Cells infected with the live virus increase the
number of DEGS at 48 hpi, a stage when the cells are beginning genomic inte-
gration of proviral DNA: accordingly, a number of up-regulated genes are asso-
ciated with double-stand DNA repair (XRCC5; XRN1). The authors put particular
emphasis on gene expression changes in genes that would result in reduced pro-
teolytic activity in the lysosomal compartments. The up-regulated genes at 48 h
also clearly show increased transcriptional activity by NFjB as well as increased
expression of a number of genes downstream from innate sensing pathways and/or
Type I interferon signaling. The expression analysis at 48 h also shows the up-
regulation of MHC II genes has not persisted implying that the maturation process
of the MDDC has been altered following HIV-1 cytoplasmic entry and genomic
integration.

In summary, the systems level analyses indicate that HIV-1 or SIV infection of
CD4 ? lympohoid cells triggers no or minimal PAMP sensing, and the first signs
of altered gene expression by the host are merely the beginning of a vast repro-
gramming of the infected CD4 ? lymphocyte. This eventually results in necrotic
or apoptotic death of the infected cells, but with few hallmarks of inflammation
arising from the infected cells themselves. The covert nature of the infection could
be due to the sequestering of the viral genome and reverse transcription inter-
mediates within the capsid as it is transported to the nuclear membrane, whereupon
the pre-integration dsDNA complex is delivered to the nucleus (Arhel 2010). Once
this has occurred, the opportunity for detection by cytoplasmic nucleic acid sen-
sors has passed. No triggering occurs thereafter, since transcripts for viral gene
products look like conventional capped, polyadenylated mRNAs. There is more
evidence of an early, innate antiviral response upon HIV-1 infection of macro-
phages and myeloid dendritic cells, which could lead to inflammatory signaling.
The interaction of HIV-1 with dendritic cells appears unique inasmuch as initial
virus attachment via C-type lectins does not target it exclusively for degradation
within lysosomal compartments. Even if HIV does initially trigger TLR signaling
in DCs, the ensuing infection of the cell by engulfed, active virus alters the process
of DC maturation that TLR signaling would have initiated.

2.6 In vivo Investigations with Nonhuman Primates

2.6.1 Contrast of SIV Infection in Natural Hosts versus Pathogenic SIV
Models

In striking contrast to HIV infection in humans and SIV infection in rhesus
macaques, nonhuman primates that have been naturally infected with SIV for
thousands of years do not progress to AIDS (Chahroudi et al. 2012). SIV infection
in these natural hosts produces high viral loads, but is nonpathogenic with animals
maintaining healthy CD4 ? T cell counts (Apetrei et al. 2011; Silvestri et al.
2003). This is in contrast to progressive HIV/SIV infection, where high viral load
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leads to loss of CD4 ? T cells, immune dysfunction, and progression to AIDS.
SIV infection in natural hosts also differs from HIV/SIV infection in rare elite
controllers that do not progress to AIDS by maintaining durable control of viral
replication at very low levels (Deeks and Walker 2007). Contrasting the mecha-
nisms contributing to protection from AIDS in natural hosts to mechanisms driving
progression to AIDS in pathogenic SIV models could lead to new insights for HIV
therapy or prevention.

Natural hosts currently under study include sooty mangabeys (SM) and African
green monkeys (AGM) (Chahroudi et al. 2012). Like pathogenic HIV/SIV
infections, SIV infection in these species leads to high viremia, early loss of
mucosal CD4 ? T cells, and high levels of immune activation during acute
infection (Silvestri et al. 2003). However, a key distinguishing feature in natural
hosts is that the initial immune activation that occurs after infection resolves
within about 4–8 weeks despite ongoing viral replication, whereas progressive
SIV infection in macaques is characterized by unresolved chronic immune acti-
vation that leads to impairment in immune function and CD4 decline. Thus, rapid
resolution of immune activation in natural hosts may be the key factor that allows
these animals to avoid progression to AIDS. Understanding the mechanisms
underlying the resolution of immune activation in natural hosts is currently a
subject of intense study by systems biology approaches that may lead to identi-
fying new agents that can suppress chronic immune activation in HIV infection.

2.6.2 Functional Genomics and Immunological Characterization of SIVagm.sab

in African Green Monkeys Versus Pigtail Macaques

Our own investigations into the host response in natural SIV infections compared
the African Green Monkeys (Chlorocebus sabeus, AGMs) versus the Asian
macaque species Macaca nemestrina (pigtail macaques, PTs) after intravenous
infection with the same inoculum of SIVagm.sab92018 (Favre et al. 2009; Lederer
et al. 2009). While strains of SIVagm are broadly disseminated in AGM populations
on the African continent, they are absent from the subspecies resident in the
Caribbean islands. Experimental infections with this strain conducted in AGMs
derived from these Caribbean populations have been well characterized, with no
evident pathogenesis, despite high viral loads at both the acute peak and chronic
stages of the infection (Diop et al. 2000; Pandrea et al. 2006). Animals experience
transient CD4 ? lymphocyte depletion in the gut; however, longer term these
populations are restored; CD4 ? T cell numbers in other compartments are
unaffected by the infection (Pandrea et al. 2007). This same strain in M. nemes-
trina results in viral replication kinetics and viral load levels similar to the natural
hosts; however, this species experiences a rapid decline of CD4 ? T cells in all
compartments (Goldstein et al. 2005). Early after infection, PTs establish a per-
sistent slate of immune activation and many animals succumb to AIDS-like
symptoms.
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For a detailed immunological and functional genomics study, we performed a
longitudinal analysis with four animals of each species, with blood, lymph node,
and colon samples obtained at -14, +10, and +45 dpi. Ratiometric array mea-
surements were obtained for the post-infection samples, where the expression
levels in an animal’s tissue were compared to the individually matched baseline
sample from day-14. Both species exhibited robust gene expression signatures
post-infection; this was especially pronounced in the lymph nodes (LNs)
where *2,500 genes showed a C twofold change relative to baseline regardless
of species or time post-challenge. Despite this nominal equivalence in the number
of regulated transcripts, statistical comparisons at each time point showed the
greatest number of differences between species for the day 10 LNs (610 genes).
The most prominent functional categories identified by gene ontology analysis
were immune responses and cell death. Subsets within these broader categories did
not reveal a species bias towards enhanced or suppressed FAS-mediated apoptosis.
However, the PTs clearly exhibit greater up-regulation of genes involved in cas-
pase activation, DNA damage, and oxidative stress. In the pathogenic context of
the pigtail macaques, the genes in the immune response category distinctly show
increased expression; these implicate a Th1 response, cytotoxic T cell activity, and
Ifnc signaling. In contrast, AGMs showed up-regulation of the anti-inflammatory
cytokine IL10 and the anti-inflammatory regulator NLRP3, with overall expression
changes implicating a more active control of the inflammatory response and a shift
to homeostasis of the lymphoid compartment.

In assessing aspects of the innate host response, scrutiny of the Type I inter-
feron genes reveals a stark contrast, with substantially increased expression of
these transcripts in the lymph nodes of AGMs on day 10 post-challenge versus
significantly lower levels in this same compartment on 45 dpi. (cf. Fig. 3a). The
AGM lymph nodes do not show this pattern of temporal regulation for interferon-c
(IFNG), nor for the Type I or Type II interferon receptors. The lymph nodes from
the infected pigtail macaques do not show this consistent up-regulation at the
earlier time point, although as noted earlier the PTs exhibit great expression of
IFNG than do the AGMs at 10 dpi. Moreover, this pattern does not recur in the
expression patterns for blood or colon for either species, highlighting the unique
kinetics and localization in the AGMs. However, as shown in Fig. 3b, in exam-
ining the Type I interferon-stimulated genes (ISGs) in the tissues of the infected
AGMs, we do observe similar kinetics with generally elevated expression levels on
day 10 and a decline by 45 dpi; the pattern appears in lymph nodes, blood, and is
particularly conspicuous in colon. On day 10, the expression ratios of these genes
in the natural hosts are comparable to (for blood), or greater than (for colon and
lymph node) the observations for the pathogenic context. The PTs do show
increased expression in these ISGs relative to their pre-challenge state, but this
elevated expression level persists even after the viral load has declined to set point
at 45 dpi.

The observed Ifna plasma levels for both AGMs and PTs are in accord with
these observations. For AGMs, plasma Ifna spikes at 10 dpi and then returns to
baseline, whereas with PTs the levels peak with similar kinetics immediately
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post-challenge then decline only slightly to plateau at an elevated state through the
rest of the time course. The inference from the expression data in Fig. 3a is that the
Type I interferon primarily originates within the lymph nodes for AGMs. This is
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Fig. 3 Early induction of Type I interferon in African green monkeys following infection with
SIVagm. Heatmap representations showing relative gene expression ratios for African green
monkeys (AGMs) and pigtail macaques (PTs) following intravenous challenge with SIVagm.sab92018.
Expression ratios are expressed relative to baseline samples collected from the animals 2 weeks
prior to infection. a Relative gene expression levels for Type I and Type II interferons and
corresponding receptors, from lymph node samples at 10 and 45 days post-infection. Results are
organized by species and day, with individual animal replicates shown. Gene denoted with * had
p-values \ 0.05 in a one-sided t test comparing AGM expression levels on the two time points. In
addition, a Fishers exact test for this high proportion of significance outcomes returns a
p value \ 0.001. b Temporal profiles of indicated interferon-stimulated genes in blood, colon, and
lymph node samples for infected AGMs and PTs. Shown are the weighted averages for the animals
at the indicated times. Both panels are rendered as log10(ratios), with saturation in the color scheme
at ± fourfold. See ref. (Lederer et al. 2009) for experimental details
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supported by other published studies that determined that plasmacytoid dendritic
cells increase in the lymph nodes of AGMs during the acute phase of SIV infection
and that during this interval the pDCs have matured to a state highly competent for
Ifna production (Diop et al. 2008). The situation for the PTs is more cryptic
inasmuch no Type I interferon transcripts appear up-regulated in any compart-
ment, in contradistinction to the persistently elevated protein abundance in plasma.
This may be the consequence of increased protein production attendant to small
increase in transcript abundance, with the latter changes falling within the noise
threshold of the microarray experiments.

It also bears noting that the early Type I interferon signaling in the pigtail
macaques happens in concert with the up-regulation of many acute phase and
inflammatory response genes. As described earlier, in the lymph nodes many of
these expression changes conform to the developing Th1 response. This inflam-
matory response in PTs is also starkly evident in the statistical comparison of the
transcript levels in the colon at 10 dpi; 33 such acute phase/inflammatory genes are
up-regulated at this stage and the majority are sustained at these increased levels
to 45 dpi. Network analysis of these genes finds many of them associated with
NFjB signaling (Fig. 4), and the presence of TLR2 and CD14 suggests a role for
myeloid cells in this response.
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Fig. 4 Expression of genes associated with acute phase response/NFjB signaling in colon of
pigtail macaques on day 10 following infection with SIVagm.sab92018. a Network analysis showing
connections between genes related to transcription factor NFkB, overlaid with expression data
from in silico averages for PTs at day 10. b Line drawing showing differences in expression
values for the networked genes, illustrating the elevated levels of these inflammatory genes in
PTs vs. quiescent character for AGMs at the same time point. Panel A is reproduced with
permission from Lederer et al. 2009
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Two other systems level, functional genomics investigations of natural
infection models have yielded very similar outcomes. The study of Jacquelin et al.
contrasted the responses of AGMs intravenously infected with SIVagm.sab92018 vs.
the course for rhesus macaques (RMs) challenged IV with SIVmac251 (Jacquelin
et al. 2009). These investigators were able to obtain expression results on blood
and lymph node samples taken as early as 1 day post-challenge, when the infected
AGMs already showed strong up-regulation of a large number of ISGs typically
associated with Type I interferon response. However in the RMs, increased
expression of this category of genes was delayed until the ensuing time point at
6 dpi. Using a highly sensitive functional assay for Type I interferon, the authors
were able to show AGMs exhibited an initial small peak in plasma levels at 2 dpi,
followed by a second much higher peak at 9 dpi before returning to baseline within
days. Rapid control of the innate response in the natural infection of sooty man-
gabeys inoculated with SIVsmm was also the conclusion reached by Bosinger et al.
using an animal model that contrasted the natural infection versus pathogenic
challenges of rhesus macaques with either the same inoculum of SIVsmm or with
highly virulent SIVmac239 (Bosinger et al. 2009). Unlike SIV-infected PTs, infected
rhesus macaques do not exhibit chronically high plasma levels of Ifna, and instead
manifest one peak at *10 days post-challenge. As with the PTS, the origin of the
initial Type I interferon is less evident, and the underlying expression changes may
proceed with differing kinetics or compartmentalization than were accessed in
these studies. Nonetheless in these experiments, as in the aforementioned studies
with pigtail macaques, animals continue to show persistent up-regulation of ISGs
and acute inflammatory response genes likely driven by NFjB transcriptional
control. We observed a similar pattern in our own longitudinal comparison of gene
expression changes in the blood of rhesus macaques infected with SIVmac251

(Palermo et al. 2011).

3 Further Exploiting Systems Level Investigations in NHP
Models for AIDS Pathogenesis and Immunity

An effective HIV vaccine or therapeutic will need to induce multiple immune
defenses that can synergistically interfere with the ability of the virus to gain or
maintain a foothold in the host. For therapy, systems biology approaches are
currently being employed to define the mechanisms underlying progression versus
lack of progression to AIDS in natural hosts versus pathogenic SIV models and in
HIV/SIV progressors versus elite controllers. The results from these experiments
will likely reveal novel immune targets or pathways that could be manipulated to
either dampen immune activation/inflammation (natural hosts) or enhance immune
control of viral replication (elite controllers). Referring again to Fig. 1, and the
differing scales of biological systems we have examined here, the in vitro
experiments suggest that the infection of CD4 ? lymphocytes is not the driver of
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the protracted inflammatory signaling that results in bystander T cell death and
immune exhaustion for pathogenic infections of HIV/SIV. Certainly there are
inflammatory consequences from engagement of the adaptive immune system in
targeting infected CD4 ? lymphocytes. But is this persistent engagement a suf-
ficient explanation for the chronic immune activation since the immune exhaustion
is not a consequence of other chronic viral infections?. From the AGM/PT com-
parison, there is the indication that regulation of the Type I interferon response
particularly from DCs differs between the species. Therefore, it may be worth
examining if the difference between natural versus pathogenic infections rests on
distinctions in responses of the antigen-presenting cells that can initiate and
orchestrate the immune response (i.e. DCs and macrophages), with the further
refinement whether such differences are inherent or particular to the infected
APCs. Recent reports concerning reduced levels of Tnfa production by monocytes
in SIV-infected sooty mangabeys bear on this question (Mir et al. 2012).

A systems approach may be especially important for interrogating the pivotal
host–virus interactions and immune responses at the initial mucosal site of HIV/
SIV exposure. HIV infection is spread primarily via vaginal or rectal sexual
transmission, and the gut is the primary reservoir of virus that persists even during
therapy with potent antiretroviral drugs. It is now widely accepted that protection
from mucosal infection or prevention of immune dysfunction in the gut may be
essential for an effective vaccine or therapeutic. Indeed, a critical advantage in
natural hosts that do not progress to AIDS is maintenance of mucosal immunity
and gut integrity. Experiments in nonhuman primates have shown that immune
responses to vaccination and correlates of viral control in the SIV model can differ
substantially between the mucosa and blood (Fuller et al. 2012; Loudon et al.
2010). However, to date we still have only a limited understanding of what hap-
pens in the mucosa during the critical earliest stages of infection when the virus is
trying to gain its first foothold into the host or its interactions with gut cells once
infection is established. An inherent obstacle, especially in humans, is access to
sufficient mucosal samples. This has limited our ability to adequately interrogate
this compartment by traditional methods. In contrast, systems biology enables
investigation of a broad range of immune functions and pathways with small
samples. Studies are now underway in nonhuman primates to study the very first
responses to SIV infection in the mucosa. The results from these studies may prove
especially relevant to efforts aimed at developing new therapeutic drugs, micro-
bicides, and vaccines that can eliminate or block the virus in the mucosa.

The RV144 trial and vaccine successes in nonhuman primates suggest we may
already have some of the right tools to prevent HIV infection. What is now needed
are new strategies, such as adjuvants, that can enhance the efficacy of these
promising vaccines. However, identifying an adjuvant that increases host defenses
without producing undue inflammatory responses, which would benefit the virus,
is a tricky balancing act. Use of systems biology approaches to characterize the
host response to vaccination and to contrast the differences between vaccinated
individuals that are protected versus those that fail to be protected are needed to
identify adjuvants that can walk that line.
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Abstract Aging population demographics, combined with suboptimal vaccine
responses in the elderly, make the improvement of vaccination strategies in the
elderly a developing public health issue. The immune system changes with age,
with innate and adaptive cell components becoming increasingly dysfunctional. As
such, vaccine responses in the elderly are impaired in ways that differ depending
on the type of vaccine (e.g., live attenuated, polysaccharide, conjugate, or subunit)
and the mediators of protection (e.g., antibody and/or T cell). The rapidly pro-
gressing field of systems biology has been shown to be useful in predicting
immunogenicity and offering insights into potential mechanisms of protection in
young adults. Future application of systems biology to vaccination in the elderly
may help to identify gene signatures that predict suboptimal responses and help to
identify more accurate correlates of protection. Moreover, the identification of
specific defects may be used to target novel vaccination strategies that improve
efficacy in elderly populations.
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1 Introduction

The immune system continuously transforms itself throughout life. Imprints from
encounters with infectious organisms accumulate over a lifetime and in parallel,
the host environment changes with age, rendering the system increasingly dys-
functional. This immunosenescence is of importance because of evolving popu-
lation demographics. In industrialized countries, the percentage of individuals over
65 years, a few percent in 1900, will exceed 25% by 2050 (WHO 2002). Infections
are a major cause of morbidity in the elderly; vaccinations, previously a corner-
stone of public health policies targeting children, are increasingly developed for
adults, thus the spectrum of routine and travel adult vaccinations has widened.
Despite the success of childhood vaccination in reshaping the infectious landscape
of youth, vaccination in older adults has been partly successful at best. Impor-
tantly, mechanisms of protection can be very different, ranging from the produc-
tion of neutralizing antibodies to prevent infection, to cellular immunity to control
latent infection. The rapidly progressing field of systems biology offers opportu-
nities to delineate the mechanisms of immunosenescence in the context of vaccine
responses, and may help to more accurately predict immunogenicity in the elderly
(Nakaya et al. 2012; Pulendran 2009; Pulendran et al. 2010). Such global insights
may be used to tailor vaccination strategies specifically to the aging population.
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2 Problems with Immune Responses in the Elderly

In the most simplified model, successful vaccine responses require activation of
dendritic cells (DC), T cell activation and differentiation into effector cells and
long-lived memory T cells. T cell help can also regulate B cell activation, dif-
ferentiation, and antibody production. Obviously, the system has many potential
vulnerabilities that could be the cause of defective immune responses in the elderly
(Fig. 1).

2.1 Immune Cell Generation

The immune system is highly dynamic, with regenerative and homeostatic
mechanisms subject to change with age. Assessment of whether cell subset
numbers decline with age relies almost entirely on peripheral blood analysis in
humans. With this reservation, numbers of myeloid DC (mDC) do not appear to
decline (Jing et al. 2009), consistent with the observation that aging hematopoietic

Fig. 1 Immunosenescence-associated defects in vaccine responses. Potential vulnerabilities in
DCs, T cells, and B cells during immune responses to vaccination in the elderly. BCR, B cell
receptor; DC, dendritic cell; IFN, interferon; TCR, T cell receptor; TLR, Toll-like receptor
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stem cells (HSCs) are biased toward the production of myeloid cells (Pang et al.
2011; Wang et al. 2012). In contrast, plasmacytoid (pDC) numbers are reduced
(Jing et al. 2009). T cells are most affected by aging, as thymic function dra-
matically decreases throughout life. Unlike in mice, thymic function in the healthy
adult human is not a prerequisite for maintaining a naïve T cell compartment;
homeostatic proliferation accounts for most T cell generation, likely even in the
young adult (den Braber et al. 2012). Consequently, the total number of naïve
CD4+ T cells declines only moderately with age, and most individuals maintain
substantial numbers into their 70s. CD8+ naïve T cells are lost more rapidly than
CD4+ T cells (Czesnikiewicz-Guzik et al. 2008). This more rapid decline was
initially thought to be related to the expansion of end-differentiated effector T cells
specific for cytomegalovirus (CMV) (Sauce et al. 2009). However, recent data
show that this is independent of CMV infection (Nikolich-Žugich et al. 2012). The
difference between CD4+ and CD8+ T cells extends to the memory compartment,
with numbers of central memory CD4+ T cells being relatively robust, while CD8+

T cells show a shift toward end-differentiated effector cells (Czesnikiewicz-Guzik
et al. 2008).

Unlike thymic production of T cells, percentages and numbers of B cell pre-
cursors in the bone marrow remain relatively stable with age (McKenna et al.
2001; Rossi et al. 2003), but there is a significant decrease in mature B cells in the
peripheral blood (Ademokun et al. 2010). As with T cells, there is a shift in the
composition of the B cell pool—the percentage and number of switch memory
B cells is reduced in elderly individuals. Whilst the percentages of naive and IgM
memory B cells increase or remain constant, absolute numbers are decreased
(Frasca et al. 2008).

In addition to total numbers, repertoire diversity is an important determinant
of protective immunity. Based on clonal population sizes of human naïve T cells
expressing identical TCRs, the development of holes in the repertoire, as
observed in mice following infection (Yager et al. 2008), is unlikely to occur in
humans. CD4+ TCR diversity is maintained for many years without any con-
traction. However, at a later age, naïve CD4+ T cell turnover increases, numbers
decline, and the repertoire sharply contracts (Naylor et al. 2005). Peripheral
selection during homeostatic proliferation may bias and contract the naïve rep-
ertoire, as has been shown for murine CD8+ T cells, thereby influencing the
quality of immune memory (Rudd et al. 2011). There is also a decrease in BCR
diversity, which has been associated with poor health and frailty in old age
(Gibson et al. 2009), and which may result in imperfect antigen fit and subop-
timal responses to vaccination.

In summary, despite thymic involution, the numbers and diversity of CD4+

T cells are relatively unchanged in early aging, whereas subset imbalances in the
CD8+ compartment are more obvious. In contrast, in older age ([75 years),
T cell numbers and diversity appear to be severely limiting. Obviously, such
a defect presents a difficult challenge to overcome by improving vaccine
strategies.
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2.2 Immune Cell Activation

The early innate stages of a vaccine response include the maturation of DCs, and
the activation of T cells supported by co-stimulatory signals and cytokines. Toll-
like receptor (TLR)-mediated activation of DCs is reduced in elderly individuals in
terms of cytokine production and co-stimulatory molecule expression (Nyugen
et al. 2010; Panda et al. 2010). It is unclear whether the defects extend to other DC
functions, such as antigen presentation, cross-presentation, and DC migration,
although in vitro chemokine-induced migration of DCs has been shown to be
impaired (Agrawal et al. 2007). Notably, DCs in the elderly are already consti-
tutively activated and secrete cytokines (Della Bella et al. 2007), suggesting that
the host environment contains activating mediators that may induce negative
feedback loops and desensitize DCs.

Depending on the tissue, recruitment of memory T cells to the site of antigen
presentation may be impaired in the elderly. In the case of skin, which is an
immunogenic microenvironment increasingly considered for vaccinations, the
observed defect was not inherent to the homing ability of T cells. Rather, defective
production of TNF-a by dermal macrophages led to a failure to activate dermal
blood vessels (Agius et al. 2009).

In contrast to aged murine T cells which exhibit severe defects in calcium fluxes
during activation (Miller et al. 1987), age-related differences in human T cell
activation are subtle and are frequently explained by differences in T cell differ-
entiation. Effector CD8+ T cells lack co-stimulatory molecules and express
co-inhibitory receptors (Ouyang et al. 2003; Tarazona et al. 2000; Xu et al. 2005).
Unlike naïve cells, memory CD4+ T cells generally disfavor the ZAP70-LAT-ERK
pathway upon TCR stimulation, which has important implications for negative and
positive feedback loops (Adachi and Davis 2011). There are, however, changes to
T cell function with age that are independent of differentiation. With age, the ability
of naïve CD4+ T cells to generate an ERK response is reduced owing to the
increased expression of the dual specific phosphatase DUSP6, resulting in reduced
TCR sensitivity (Goronzy et al. 2012; Li et al. 2007). The defect is less pronounced
for CD4+ memory T cells, which already disfavor the ERK pathway. Reduced TCR
sensitivity can be critical if antigen or co-stimulatory signals are limiting, or if the
diversity of the TCR repertoire limits the availability of suitable TCRs.

2.3 Immune Cell Proliferation and Differentiation

Vaccine responses depend on the ability of T and B cells to expand and differentiate.
Several mechanisms contribute to reduced proliferative capacity in age, including
telomere attrition, reduced telomerase expression, and increased expression of
co-inhibitory receptors (Cavanagh et al. 2011; Honda et al. 2001; Valenzuela and
Effros 2002; Vaziri et al. 1993; Voehringer et al. 2002). Gene expression arrays have

Systems Biology of Vaccination in the Elderly 121



identified metallothioneins as one protective mechanism that preserves proliferative
capacity. Expression of metallothioneins is regulated by the zinc concentration-
dependent transcription factor MTF-1, suggesting that zinc metabolism could be
targeted to improve lymphocyte proliferation in the elderly (Lee et al. 2008).

Factors regulating T cell differentiation include initial TCR signal strength
(Rogers and Croft 1999) and cytokine-mediated STAT signals (O’Shea and Plenge
2012). STAT signaling changes with age (Fulop et al. 2006; Longo et al. 2012),
but the consequences for T cell differentiation are currently unclear. Recently, age-
dependent expression of DUSP4 has been shown to affect T effector cell function,
in particular to impair helper cell activity for B cell responses (Yu et al. 2012). The
expression of this phosphatase is regulated by AMPK and therefore the metabolic
state of the cell, which may be reduced in the elderly. Interestingly, recently
identified signatures predicting vaccine responses included regulators of glycolysis
and protein synthesis (Querec et al. 2008). Together with the recent recognition
that T cell differentiation correlates with metabolic pathways (Finlay and Cantrell
2011; Pearce et al. 2009), these results from systems biology approaches identify
cellular metabolism as a focus of interest.

Several studies have shown a decrease in antibody titers in elderly individuals
(Sasaki et al. 2011; Stiasny et al. 2012). This suggests that the reduced antibody
response observed in the elderly is primarily due to quantitative rather than
qualitative antibody defects. However, many molecular studies have shown
intrinsic B cell deficiencies that accumulate with age. These include a loss of the B
lineage-specific effector molecule EBF, and decreased binding ability of B cell
specific activator protein (BASP). These defects were reversed following trans-
fection of precursor cells with active STAT5, again indicating that the STAT
pathway may be affected in the elderly (Lescale et al. 2010). It is likely that
quantitative and qualitative changes to B cell populations both contribute to
suboptimal responses, depending on the vaccine and the recipient.

3 Systems Vaccinology

Systems biology approaches can be used with the aim of understanding the
complex interactions between all components of a biological system, and using
this information to generate rules that predict subsequent behavior of the system
(Kitano 2002). With the advent of high-throughput technologies that allow us to
assess perturbations in the transcriptome (sets of transcripts), proteome (proteins),
and metabolome (metabolites) after vaccination, large amounts of data can be
collected and integrated using computational methods, in order to understand the
response of the system to vaccination as a whole, rather than as individual parts.
The goal of systems vaccinology is to gain a more global representation of the
immune response to vaccination, with the hopes of identifying mechanisms of
action of current successful vaccines and to use this information for the rational
design of novel vaccines (Nakaya et al. 2012; Pulendran et al. 2010). This is

122 S. S. Duraisingham et al.



particularly pertinent to elderly populations, where current vaccines are often sub-
optimal in preventing disease. Given the multiple potential vulnerabilities of the
aged immune system described above, understanding the specific points of
weakness of different types of vaccines in the elderly may allow more specific
tailoring of vaccines to improve efficacy in the elderly.

3.1 Proof of Principle

Yellow fever virus (YFV) vaccine is one of the most effective vaccines ever made.
A single immunization is known to induce neutralizing antibody titers that last up
to four decades, as well as cytotoxic T cells, and a balanced Th1 and Th2 cell
cytokine profile. Its efficacy in protecting against infection with yellow fever is
roughly 90%. Two pioneering studies helped to unravel the molecular mechanisms
associated with YFV vaccination (Gaucher et al. 2008; Querec et al. 2008).
Microarray analyses of peripheral blood mononuclear cells (PBMCs) isolated from
the blood of healthy adults vaccinated with YFV revealed a molecular signature,
induced 3–7 days after vaccination. This signature was composed of genes
encoding proteins involved in the antiviral response, typified by activation of the
type I interferon pathway, as well as complement and inflammasome-related genes
(Gaucher et al. 2008; Querec et al. 2008). Moreover, an early innate signature that
was able to predict the magnitude of the CD8+ T cell response, in an independent
study using a separate cohort of vaccinees who received YFV, was identified; this
signature included EIF2AK4, which is involved in the cellular stress response
(Querec et al. 2008). Subsequent mechanistic studies have revealed a critical role
for EIF2AK4 in regulating CD8+ T cell responses to YFV and some other viruses
(Nair et al.—in preparation). We also identified signatures that were capable of
predicting the neutralizing antibody response to YFV. For the antibody response
predictive signature, TNFRSF17 a gene that encodes for BCMA, a protein known
to regulate plasma cell differentiation, was identified (Querec et al. 2008). This
study establishes the proof of concept of using systems biological approaches to
identify signatures that predict the immunogenicity of a vaccine.

We also performed a subsequent study using the seasonal influenza vaccines,
live attenuated virus vaccine (LAIV), or trivalent inactivated vaccine (TIV); as
distinct from the YFV study, this represents responses that are likely to be recall
responses. Similar to YFV, LAIV induced a type I interferon signature, which may
be common to live attenuated viral vaccines, whereas TIV induced a signature
comprising genes known to be induced during the plasma B cell response. This
signature was able to predict the subsequent hemagglutinin antibody (HAI) titers
(Nakaya et al. 2011). Notably, the expression of the gene encoding TNFRSF17,
which was a component of the predictive signature to YFV, was also identified as a
signature for TIV. This suggests that there may be common signatures that predict
antibody responses to several vaccines. Furthermore, we identified that the
expression of the gene encoding CAMKIV a few days after vaccination was
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inversely correlated with the magnitude of the later HAI titers (Nakaya et al.
2011). Subsequent mechanistic studies using mice deficient in CAMKIV revealed
a key role for this molecule in regulating antibody responses to TIV.

These studies demonstrate the concept of how systems biology approaches can
be used to predict the immunogenicity of vaccines, and generate ideas for novel
hypotheses regarding the mechanisms of action of these vaccines.

4 Vaccines for the Elderly

The vaccination schedule recommended for US populations by the Centers for
Disease Control (CDC) for all age groups is depicted in Fig. 2. The majority of
routine vaccinations are given in childhood, with adults receiving an annual
influenza vaccination and a tetanus/diphtheria booster every 10 years. The
elderly additionally receive zoster and pneumococcal vaccines. Several vaccines,
such as yellow fever, meningococcal, and hepatitis A vaccines, are also rec-
ommended for all individuals traveling to specific endemic areas. Since an
estimated 15% of travelers are [65 years old (Hill 2000), travel vaccinations are
also an important preventative health measure in some older individuals. Here
we explore suboptimal responses in the elderly to different types of vaccines,
including inactivated virus, polysaccharide, conjugate, live attenuated virus, and
subunit vaccines.
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60 65 70 75 >80
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Fig. 2 Lifetime routine vaccination schedule. Adapted from the Centers for Disease Control and
prevention (CDC)
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4.1 Influenza Vaccination

Influenza results in 3,000–49,000 deaths annually in the US, with 90% of deaths
occurring in those[65 years (CDC 2010a). Vaccination with trivalent inactivated
influenza vaccine (TIV), containing split virus from the circulating strains of
influenza A (H1N1 and H3N2) and B, is currently recommended for the elderly.
A recent meta-analysis indicated that clinical efficacy of TIV in healthy adults is
around 60% (Osterholm et al. 2012), whereas in elderly populations it is thought to
be lower, with estimates ranging from 17 to 53% (Goodwin et al. 2006). TIV
represents a model of an inactivated vaccine used in elderly individuals that have
likely had prior exposure to antigenically similar virus strains, thus responses are a
mixture of primary and recall responses. TIV mainly elicits serum antibodies
against the HA protein (HAI titers) which correlates with protection against
influenza (Hirota et al. 1997). Older vaccinees have been shown to have signifi-
cantly lower serum HAI titers post-vaccination (Goodwin et al. 2006).

Evaluating immune responses to most vaccines in the elderly is confounded by
the fact that most vaccinees have had prior exposure to pathogen or vaccine, which
will almost certainly impact the magnitude of response to vaccination. Individuals
that had received TIV one year prior to re-vaccination had higher baseline serum
HAI responses, which negatively correlated with the post-vaccination number of
antibody-secreting cells (ASCs) and HAI titer change (Sasaki et al. 2008). Vaccine
responses are therefore a function of both immunosenescence and history of
pathogen exposure.

Recent studies have suggested that a decrease in the number of ASCs post-
vaccination is responsible for the reduced serum HAI titers observed in elderly
individuals. No difference in antibody avidity or antibody secretion on a per cell
basis was observed, suggesting that weaker humoral responses in the elderly may
be due to a quantitative defect in ASC numbers, rather than qualitative differences
in antibody functionality (Sasaki et al. 2011). However, other studies have found
that elderly vaccinees receiving seasonal or pandemic influenza vaccinees, had
lower proportions of switched memory B cells in the blood and lower B cell
expression of activation-induced cytidine deaminase (AID) mRNA, which is
involved in class switching and somatic hypermutation. Moreover, pre-vaccination
AID expression, induced by CpG stimulation, correlated with the subsequent HAI
response, suggesting that an intrinsic defect in B cell function in the elderly may
contribute to poor humoral responses (Frasca et al. 2010, 2012).

Although HAI titers are useful as a correlate of protection at the population
level, this may not be the best predictor for protection in the elderly. As such, HAI
titers were unable to distinguish between elderly individuals that developed
influenza and those that did not; some that developed influenza had ‘protective’
titers (McElhaney et al. 2006). TIV mostly elicits antibody responses; however,
cytotoxic T cells have been implicated in controlling the severity of influenza
infection (McMichael et al. 1983). Additionally, pre-existing CD4+ T cells specific
for influenza internal antigens were found to negatively correlate with influenza
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illness severity and virus shedding. These individuals were all seronegative to the
challenge strain prior to infection, suggesting that memory T cells may limit illness
severity even in the absence of pre-existing antibodies (Wilkinson et al. 2012).
Elderly individuals were also found to have fewer IFNc-secreting influenza-
specific CD8+ T cells, and many of these cells had a senescent/late differentiation
phenotype (Wagar et al. 2011). Whether the increased susceptibility to influenza
disease in the elderly is also a consequence of diminished T cell responses is
uncertain. Other immunological parameters identified by a more global systems
biology approach may provide a more accurate predictor of protection, especially
in elderly populations.

4.2 Pneumococcal Polysaccharide Vaccination

In the US in 2009 there were 5,000 Streptococcus pneumoniae-related deaths, with a
disproportionate effect on the elderly; vaccination is recommended for[65 year olds.
Until recently, only Pneumovax-23 (PPSV23) was licensed for use in the elderly.
PPSV23 contains capsular polysaccharides from 23 bacterial serotypes that cause 80%
of invasive disease (CDC 2010b). Efficacy against invasive disease, characterized by
bacteremia and meningitis, in the general elderly population is 60–80%; however,
PPSV23 does not appear to be effective in preventing pneumonia (Ortqvist et al. 1998).
Efficacy is also dramatically lower in older ([85 years) or immunocompromised
elderly individuals (Melegaro and Edmunds 2004; Shapiro et al. 1991).

Although the exact correlates of protection are unclear, serum IgG and opso-
nophagocytic antibody titers (OPA titers) are used as surrogate markers (Jodar
et al. 2003). The OPA assay measures the ability of serum anti-capsular antibodies
to opsonize pneumococci in order to be killed by phagocytes. Opsonizing anti-
bodies have been implicated in protection from pneumonia in human patients
(Musher et al. 2000) and animal models (Guckian et al. 1980). Passive transfer of
opsonizing human antibodies to neonatal mice correlated with protection from
bacteremia (Johnson et al. 1999). Capsular polysaccharides, which are T-inde-
pendent antigens, cross-link B cell receptors to stimulate clonal expansion and
antibody production, but lack the ability to induce memory (Mazmanian and
Kasper 2006). Several studies have shown that PPSV23 vaccination induces
similar levels of serum IgG in young and elderly vaccinees. However, aging seems
to affect the functional quality of antibodies, as demonstrated by a decrease in
OPA titers (Romero-Steiner et al. 1999; Rubins et al. 1998; Schenkein et al. 2008).
Although serum IgM levels induced after vaccination are low, a significantly lower
level of IgM has been described in elderly vaccinees (Park and Nahm 2011; Shi
et al. 2005). Interestingly, depletion of IgM from young sera eliminated OPA titer
differences between the young and elderly (Park and Nahm 2011), suggesting that
decreased IgM levels in the elderly may account for the reduced opsonizing ability
of their serum. The PPS-specific IgG variable heavy chain (VH) gene repertoire
was also found to differ between the young and elderly after vaccination (Kolibab
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et al. 2005). The functional consequences of this are unclear, but may be a sign of
differences in both intrinsic gene rearrangement mechanisms, and lifetime expo-
sure to multiple serotypes, which would shape the memory B cell antibody rep-
ertoire through clonal expansion, and therefore affect post-vaccination antibody
diversity.

Immunity induced by PPSV23 appears to decline 3–5 years after vaccination
(Shapiro et al. 1991), which is unsurprising given the T-independent nature of the
antigen. Re-vaccination of elderly individuals with PPSV23 resulted in an increase
in antibody titers that was less than that observed after the first dose, suggesting
hyporesponsiveness rather than boosting (Torling et al. 2003). Furthermore,
PPSV23 vaccination resulted in a decrease in blood memory B cell frequency. One
possible explanation of this may be that repeated administration of a T-indepen-
dent antigen drives memory B cells to terminal differentiation without replenishing
the memory B cell pool, leading to hyporesponsiveness (Clutterbuck et al. 2012).

4.3 Pneumococcal Polysaccharide-Protein
Conjugate Vaccination

The 7- and 13-valent polysaccharide-protein conjugate vaccines, Prevnar (PCV7
and PCV13), have been previously licensed for use in children; recently PCV13
has also been licensed for use in the elderly. PCV13 contains capsular polysac-
charides from 13 serotypes conjugated to diphtheria-CRM197 protein to form a
T-dependent antigen. The carbohydrate component can stimulate B cell receptors,
and antigen presentation of the protein component by the same B cell can activate
T cell help for B cell class-switching, affinity maturation and B cell memory
(Mazmanian and Kasper 2006). Recently, it has been shown that TCRs can
directly recognize carbohydrate fragments when they are anchored to MHCII by a
conjugate-peptide, offering a new explanation of how conjugate vaccines may
recruit antigen-specific T cell help (Avci et al. 2011). Vaccination of elderly
individuals with PCV7 led to higher OPA titers compared to PPSV23 (de Roux
et al. 2008). Re-vaccination of PPSV23-primed elderly individuals with PCV7
induced greater OPA titers compared to PPSV23 (Jackson et al. 2007), suggesting
that T-dependent antigens may elicit qualitatively superior antibodies and may be
used as a booster without inducing hyporesponsiveness.

Despite these advances, questions still remain unresolved as to precisely how
these vaccines work. Systems biology approaches may be used to compare sig-
natures induced by polysaccharide versus conjugate vaccines, thereby offering
mechanistic insights into how T-independent and T-dependent antigens elicit
immunity. Additionally, evaluation of these vaccines in the elderly may help to
explain the molecular basis for the decline in antibody functionality with age,
which may be used to improve vaccine efficacy in the most vulnerable elderly
populations.
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4.4 Varicella Zoster Vaccination

Primary infection with varicella zoster virus (VZV) causes chickenpox—a disease
which affected 4 million people annually in the USA prior to the introduction of
childhood vaccination (Jumaan et al. 2005). On clearance of disease symptoms,
the virus establishes life-long latency within dorsal root or trigeminal ganglia
which typically remains subclinical. A decline in cell-mediated immunity (CMI),
either following immunosuppression or as a result of aging, can result in a loss of
viral control, reactivation of the virus, and herpes zoster (shingles) (Arvin 2005).
Lasting post-herpetic neuralgia (PHN) is the most burdensome aspect of shingles
and occurs in 20% of cases. As the lifetime risk of zoster is between 22 and 32%
(Chapman et al. 2003), PHN is a significant cause of morbidity.

Unlike immunity to influenza infection, which requires high levels of neutralizing
antibodies, protection against reactivation of latent VZV and the development
of shingles is thought to be independent of antibody and instead requires robust CMI.
A vaccine targeting shingles is approved for use in adults [60 years. Zostavax
utilizes the same strain of live attenuated virus as in the chickenpox vaccine, but at
approximately 14 times the dose. Results from clinical trials suggest that the vaccine
is effective, reducing incidence of shingles by up to 51.3% and incidence of PHN by
up to 66.5% (Oxman et al. 2005). The efficacy of this vaccine in a population, which
typically exhibits low immune responses to vaccination, suggests that it will be
useful as a model to monitor vaccine responses in the elderly and identify correlates
and predictors of efficacy. An important caveat is that this vaccine relies on the
reactivation of already extant immune memory rather than the initiation of a primary
response to previously unseen pathogenic antigens.

The mechanisms of action of the vaccine and unequivocal correlates of protection
have not been established to date. The vaccine does induce the production of VZV-
specific antibodies and the expansion of VZV-specific T cells (Weinberg et al.
2009). The kinetics of CMI after vaccination have not been fully studied despite the
importance of CMI in maintaining viral latency. Preliminary data suggest that the
age of the vaccinee may strongly influence duration of protection. Results from our
lab suggest that there is little, if any, viremia and low innate immune activation
following VZV vaccination (Goronzy et al. unpublished observations).

4.5 Tetanus Toxoid, Diphtheria Toxoid, and Acellular
Pertussis Vaccination

Tdap/Td vaccines consist of purified tetanus and diphtheria toxoids and pertussis
antigens, adjuvanted with aluminum hydroxide, combined in a single vaccine.
Immunity to tetanus, diphtheria, and pertussis antigens wanes over time, with those
[40 years of age having lower serum antibody titers (Theeten et al. 2007); as
such, a booster is recommended for adults every 10 years. This vaccine elicits
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boosting of a pre-existing memory response established by previous vaccinations.
Protection against tetanus and diphtheria is considered to be mediated by toxin-
neutralizing antibodies, whereas the mechanisms of protection against pertussis are
not clear. One booster dose is sufficient to result in 95–100% seroprotection rates
in adults [40 years (Van Damme and Burgess 2004); however, the magnitude of
the response tends to decrease with age. A recent study showed that a proportion of
Tdap recipients[65 years did not achieve a response to two pertussis antigens and
that tetanus and diphtheria antibody responses were lower in the [75-year-old
subset (Weston et al. 2012). Thus, even booster responses to adjuvanted subunit
antigens are diminished in the elderly, which may suggest a fundamental change in
the way antigen is recognized by the innate immune system, or changes in
maintenance of the memory compartment.

4.6 Other Vaccinations Given to the Elderly

4.6.1 Yellow Fever Vaccination

The YFV vaccine containing the live attenuated YF-17D strain is recommended
for individuals traveling to endemic areas (Staples et al. 2010). In contrast to TIV,
pneumococcal, and Tdap vaccines, YFV represents a model of primary immune
responses, since most people in nonendemic areas will be immunologically naive
to YFV. Since YF-17D is a live virus, it likely locally replicates and induces a
strong innate immune response characterized by triggering several TLRs, as well
as RIG-I and MDA-5, on multiple DC subsets and a type I IFN response (Querec
et al. 2008, 2006). Neutralizing antibodies are induced and seroconversion is
achieved in 97–100% of vaccinees 30 days after vaccination, with no significant
difference between the young and elderly (Monath et al. 2005). However, closer
examination reveals that antibody titers are slower to develop in the elderly, such
that 10 days after vaccination there are significantly lower antibody titers in the
elderly (Roukens et al. 2011).

Although elderly vaccinees eventually seroconvert, individuals [60 years carry
an increased risk of systemic adverse effects (sysAE), which in more serious cases is
characterized by viral dissemination to vital organs (Khromava et al. 2005; Lindsey
et al. 2008; Martin et al. 2001). SysAE were found to be associated with higher
viremia in the elderly (Roukens et al. 2011). Several cases of sysAE have also been
reported in individuals with thymic disease (Barwick 2004), suggesting that T cells
may play a role in preventing sysAE. A potential role for innate responses in sysAE
was also demonstrated in a case report where the individual had elevated numbers of
blood inflammatory CD14+CD16++ monocytes, increased plasma cytokine/chemo-
kine levels (IL-1a, IL-6, CXCL10, CCL2, CCL5), and mutations in the CCR5 gene
(expressed on monocytes) and its ligand CCL5. The patient also had increased
viremia that persisted for 34 days after vaccination, whereas the virus is usually
cleared by days 7–11. Increased antibody and antigen-specific CD8+ T cell responses
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were also observed, and persisted longer than in healthy vaccinees. Moreover, the
numbers of inflammatory monocytes remained ten-fold higher compared to healthy
vaccinees well after viral clearance (Pulendran et al. 2008). Given that the frequency
of na CD8+ T cells substantially decreases during aging, a dysfunctional innate
response, a suboptimal primary CD8+ T cell response and a delayed humoral
response may prevent efficient control of viral replication, resulting in a greater risk
of high viremia and disseminated sysAE. This suggests that immunosenescence may
affect not only vaccine immunogenicity, but also vaccine safety.

4.6.2 Meningococcal Vaccination

A quadrivalent polysaccharide vaccine (Menomune) is available for use against
the encapsulated bacteria Neisseria meningitides. Conjugate vaccines (Menactra
and Menveo) are available but are not yet licensed for use in those[55 years old.
The principle of how these vaccines work in terms of eliciting a T-independent or
a T-dependent response are thought to be similar to the pneumococcal vaccines
described previously, with a notable exception. In contrast to PPSV23 where the
antibody response is qualitatively (opsonophagocytic titers) but not quantitatively
(binding antibody titers by ELISA) affected, a MenC polysaccharide vaccine was
shown to elicit lower levels of antibody measured by ELISA as well as lower
functional serum bactericidal activity (SBA) titers in older vaccinees (Hutchins
et al. 1999). Therefore, some caution must be used when grouping vaccines into
broad ‘types’ (e.g. polysaccharide), as clearly immunosenescent responses differ
for each pathogen.

4.6.3 Hepatitis A and B Vaccination

Hepatitis A vaccine, comprised of inactivated hepatitis A virus (HAV) adsorbed to
aluminum hydroxide, induces seroconversion rates of nearly 100%. Typically, in
older adults one HAV dose leads to lower antibody responses and requires
boosting (Reuman et al. 1997). Although seroconversion is achieved after 2–3
doses, mean antibody titers are still lower in vaccinees [40 years old (McMahon
et al. 1995).

Subunit hepatitis B vaccines containing the viral surface antigen (HBsAg)
adjuvanted with aluminum hydroxide are given in a series of three doses. The
proportion of individuals achieving seroprotective levels ([10 mIU/ml) and the
titers of anti-HBsAg antibodies are considerably lower in older individuals
(Tohme et al. 2011; Wolters et al. 2003). Consequently, inactivated virus and
subunit vaccine responses also appear to be impaired in the elderly. However,
whether there is any clinical significance of the seroprotective, but lower levels of
anti-HAV and anti-HBsAg antibody titers in terms of duration of immunity is
unknown. It is thought that even when circulating anti-HBsAg antibodies drop
below seroprotective levels, some protection may be afforded by the presence of
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memory B cells; assessment of memory B cell induction in the elderly may,
therefore, also be useful (West and Calandra 1996).

5 Systems Biology Approaches to Identifying Signatures
of Immunogenicity in the Elderly

Future studies aim to integrate information from transcriptomic, metabolomic, and
proteomic approaches as well as immunological assays such as multi-parameter
flow cytometry, ELISpots, and multiplex-cytokine profiling collected from young
and elderly human vaccinees (Fig. 3). Utilizing this information, there are several
key questions that can be addressed using systems vaccinology.

There are profound changes in many aspects of the immune system with age,
including changes in cell numbers, receptor repertoire, activation, differentiation,
and function (See Sect. 2). What are the fundamental differences in the immune
systems of younger and older individuals at baseline? And can these differences be

Fig. 3 A potential approach to systems biology studies in human vaccinees. Transcriptomic,
proteomic, metabolomic, and cytokine-profiling information collected from young and elderly
vaccinees can be used to identify early molecular signatures that may predict the subsequent T
and B cell responses
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combined into a signature that can predict the vaccine response? The baseline
immune status of an older individual will be the result of both intrinsic immu-
nosenescent defects as well as the history of exposure to pathogens or previous
vaccines. As with influenza vaccination, where the baseline HAI titer negatively
correlates with the subsequent HAI response (Sasaki et al. 2008), a more
sophisticated algorithm that incorporates indicators of prior exposure (e.g. HAI
titer) as well as transcriptomic information on intrinsic cellular defects may be
used to more accurately predict the vaccine response.

In addition to baseline differences between young and elderly individuals, what
are the factors that come into play during an ongoing immune response that
contribute to poorer vaccine efficacy in the elderly? The immune response to
vaccination in the elderly can be thought of in terms of the following equation:

Immune responses in the elderly = function [Innate sensing and response]
[Precursor frequency of antigen-specific T and B cells] [Proliferative capacity of
antigen-specific T and B cells] [Functional capacity of antigen-specific T and B
cells] [Host microenvironment].

DCs from elderly individuals may differ in their ability to sense pathogens and
in their functional response. A detailed understanding of the pattern recognition
receptor (PRR) signaling networks in response to vaccines in young versus aged
DCs may pinpoint specific molecular defects that can be targeted to restore or
improve DC function and vaccine efficacy in the elderly. The antigen-specific T
and B cell precursor frequency, which is affected by the na cell output, previous
antigen experience and homeostatic proliferation and survival, would differ in the
elderly. Sequencing of Ig heavy chain genes from antigen-specific B cells isolated
from young and elderly vaccinees, could be used to explore changes in antibody
repertoire diversity that may affect antibody function such as binding specificity
and affinity (Wiley et al. 2011). The proliferative ability and functional capacity of
T and B cells, such as the type and quantity of cytokines secreted, cytotoxic
ability, and the quantity and quality of antibodies secreted may also contribute to
decreased vaccine efficacy. These factors will also depend on changes at the
population and single-cell level. For example, how much of the inferior response
seen in the elderly is due to defects in proliferative and functional ability on an
individual cell basis, and how much is due to a decrease in the number of
otherwise functionally competent cells? Antigen-specific tetramer+ T cells could
be isolated from young and elderly vaccinees and deep sequencing carried out to
understand the molecular basis for any intrinsic functional defects. Multiple-
parameter single-cell mass cytometry could also be used to compare the quanti-
tative differences in cell subsets and differences in phenotype and signaling of
T and B cells from young and elderly vaccinees (Bendall et al. 2011). The host
microenvironment in terms of cytokine/survival factor secretion by stromal cells,
and the architecture of lymphoid and peripheral tissues may change with aging,
which could affect cellular migration and in situ activation of immune cells.
Systems vaccinology approaches often rely on analysis of peripheral blood, which
makes the effect of tissue factors difficult to assess directly. However, insights
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from peripheral blood (e.g. changes in homing receptor expression) may help to
generate hypotheses that could be tested further in animal models.

One application of systems vaccinology would be to identify the early robust
signatures that could predict suboptimal responses in the elderly. For example,
how do the molecular signatures identified with TIV vaccination in healthy young
adults (Nakaya et al. 2011) compare to those in the elderly, and can they still
predict HAI responses? Furthermore, identification of genes and pathways elicited
by vaccination that are unique to the young or the elderly, or common to both
groups may offer insights into immunosenescence. Such signature differences
could highlight the specific vulnerabilities in the aged immune system that could
be the basis for generating novel hypotheses for future mechanistic studies to
explore. For example, the YF-17D vaccine is known to trigger the cellular stress
response, and genes of this pathway form part of the signature that predicted the
CD8+ T cell response (Querec et al. 2008). Given that elderly individuals are
known to have dysfunctional naive CD8+ T cell responses, which may contribute
to the increased risk of systemic adverse effects seen after YFV vaccination, it
would be interesting to ascertain whether the cellular stress response is also
impaired in the elderly. Ultimately, the aim is to identify specific defects in the
aged immune system that could be targeted with novel vaccination strategies (see
Sect. 6) that improve efficacy in the elderly; such approaches may need to be
customized for individual vaccines or certain ‘types’ of vaccines (e.g. live atten-
uated viral), depending on the mechanism of action of each vaccine.

Correlates of protection are often defined by a certain quantity of neutralizing or
opsonizing antibody (e.g. influenza and pneumococcal); however, for some vac-
cines the correlates are less well defined and most likely include T cell responses
too. In many cases, it is likely that a combination of antibody, CD8+ and diverse
CD4+ responses are involved; systems biology could be used to define more
sophisticated correlates of protection, based on the combination of multiple
parameters. This is particularly important in elderly populations where traditional
correlates may not be as reliable, such as HAI titers (McElhaney et al. 2006), and
may help to improve our understanding of the link between immunogenicity and
efficacy of each vaccine. Additionally, the identification of early innate signatures
that predict immunogenicity, and ultimately efficacy in the elderly, could be
incorporated into a ‘vaccine chip’ that would predict nonresponders within a few
days of vaccination (Pulendran et al. 2010). This could be a crucial public health
tool to identify the most vulnerable elderly individuals who could be targeted for
re-vaccination or closer follow-up care.

Another advantage of collecting ‘-omics’, data from large numbers of elderly
vaccine trial participants, is that this information may eventually also be used to
answer more fundamental questions about immunosenescence, as well as human
aging in general. Identification of intrinsic defects in cellular function that accu-
mulate with age could be understood at a more molecular level. However, a caveat
of such vaccine studies is that the chronological age of an individual may not be
equivalent to their biological age. Study participants are more likely to be healthy
elderly individuals and as such, immune responses may differ significantly to

Systems Biology of Vaccination in the Elderly 133



responses in the frail elderly; caution must be used when extending study findings
to the frail elderly, who are the population most in need of more successful
vaccination strategies.

6 Strategies to Overcome Defective Vaccine Responses
in the Elderly

The rational design of novel vaccination strategies will depend on identifying
critical defects, which will differ depending on the age of the recipient and the type
of vaccine. Most obviously, aged individuals with a severely diminished and
diversity-contracted repertoire of T cells will require a different approach than
individuals who have reduced innate immunity. The type of vaccine response,
whether neutralizing antibodies or CMI, is equally important. Systems biological
analysis of vaccine responses is an important tool to customize these approaches
and improve and widen the strategies that are currently envisioned.

6.1 Innate Immune Activation by Adjuvants

Most current preclinical and clinical studies aim to identify adjuvants that can
activate innate immune cells, including DCs. Innate immune activation shapes the
quality and magnitude of the ensuing adaptive immune response. The attenuated
YF-17D strain, one of the most powerful available vaccines, is an extremely potent
activator of innate immunity (Querec et al. 2006). mDC responses to TLRs are
diminished with age, type I interferon-producing pDCs may be reduced (Jing et al.
2009), and vascular activation in the skin is impaired (Agius et al. 2009).
Numerous targets also exist among pattern recognition receptors and other danger
sensing receptors. As a proof-of-concept, the CpG-adjuvanted hepatitis B vaccine
stimulating TLR9, boosted vaccine efficacy compared to the conventional vaccine
in those age [40 years (Sablan et al. 2012). However, given that age-related
defects in TLR signaling may involve the triggering of negative feedback loops by
constitutive stimulation, it is currently unclear whether adjuvants will be able to
overcome this defect.

6.2 Improving Vaccine Delivery

Strategies to increase vaccine doses or to promote sustained antigen delivery
have the potential to overcome defects such as delayed recruitment of immune
cells or reduced sensitivity of TCRs and BCRs. Aluminum-based adjuvants are
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widely used to prolong release of antigen. The squalene MF59 adjuvant has been
shown to be superior to unadjuvanted influenza vaccine in the elderly (Faenzi
et al. 2012; Ikematsu et al. 2012). Viral and nonviral self-amplifying vaccines
are under development and may eventually find application in the elderly,
despite their compromised immunity. Increased vaccine doses have proven
beneficial for the prevention of herpes zoster. However, a second dose 6 weeks
following primary vaccination has no further effect (Vermeulen et al. 2012).
Higher influenza vaccine doses have been explored as a means of increasing
responsiveness in the elderly—high-dose TIV increases HAI titers in adults
[65 years (Chen et al. 2011; Couch et al. 2007), but these responses are still
lower than young adult responses to standard-dose TIV, and increased titers may
only be observed for a limited set of antigens and not confer improved protection
(Palache et al. 1993).

6.3 Improving T and B Cell Activation, Expansion,
Differentiation, and Survival

Increased vaccine doses may be in part necessary to bypass neutralization by pre-
existing antibodies, which are frequent in the elderly in particular for influenza
vaccination (Feng et al. 2009), but they will also have a direct effect on T cells by
increasing signal strength and overcoming decreased TCR sensitivity or imperfect
fit owing to repertoire restriction. Similarly, improved co-stimulatory signals fol-
lowing DC activation will have positive effects on T cell activation and differen-
tiation. Direct targeting of T or B cell defects may be possible, as already
exemplified by the success of direct CD28 stimulation to activate melanoma-spe-
cific T cells, albeit with currently unacceptable autoimmune side effects (Hodi et al.
2010). More specific targeting of T cells, through inducible rather than constitutive
co-stimulatory molecules, may overcome some of the risks of autoimmunity.
Recent success has been documented with the BCG vaccine, the efficacy of which
can be increased with the co-administration of OX40L fusion protein (Snelgrove
et al. 2012). Obviously, a balance between the risk of autoreactivity and vaccine
efficacy has to be found, which may be different for the elderly than for young
adults. Signatures identified by systems biology approaches hold the promise to
define defects and pathways that can be directly targeted. Possible examples already
identified are the inhibition of DUSP6 to improve T cell activation and T helper cell
function for B cell activation, and induction of metallothioneins by zinc supple-
mentation to improve clonal expansion. Intriguing is the observation that metabolic
pathways influence the outcome of a vaccine response (Pearce et al. 2009; Querec
et al. 2008; Yu et al. 2012), which could be a promising target for intervention.
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7 Conclusions

Aging of the immune system is accompanied by changes in the frequency, repertoire
diversity, activation, and differentiation of cell subsets including DCs, T cells and B
cells. As such, many vaccines that are effective in younger adults are suboptimal in
the elderly, which is particularly important for diseases that are of major public health
concern, such as influenza and pneumonia. Responses to other types of vaccines (live
attenuated, polysaccharide, conjugate or subunit) are also reduced in the elderly.
Systems biology approaches, which have been shown to be useful in predicting
immunogenicity in the young, could be a useful tool when applied to the elderly.
Future systems biology studies in the elderly may offer insights into mechanisms of
immunosenescent responses and help to identify better correlates of protection. This
could also be used in the rational design of novel vaccines that target specific defects
in the elderly, thus improving vaccine efficacy.
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Systems Biology Analyses to Define Host
Responses to HCV Infection and Therapy

Reneé C. Ireton and Michael Gale Jr.

Abstract While 170 million people worldwide are chronically infected with
HCV, the response rate to the current treatment regimens of pegylated IFN-a (IFN)
in combination with ribavirin is only approximately 55 % of all HCV patients
undergoing therapy. This IFN-based therapy is now slated to serve as the backbone
for future combination therapeutics involving direct-acting antiviral compounds,
including HCV protease inhibitors, viral polymerase inhibitors, and other small
molecules. It is essential that the application of IFN be improved for overall
enhancement of therapy outcome to effectively cure HCV infection. Systems
approaches, including genomics and network modeling, are particularly powerful
tools that are now being used to dissect the underlying mechanisms of successful
or failed treatment response in an effort to design improved IFN-based therapeutic
regimens. Furthermore, systems applications can be used to define virus-host
interactions and map their variation within viral and host genomes, leading to
identification of targets for novel therapy strategies. Using these approaches, we
have defined distinct hepatic expression and tissue distribution of innate immune
signaling molecules and gene networks that associate with IFN-based treatment
outcome for HCV infection. This chapter will focus on using systems approaches
to understand the host response to both HCV infection and therapy to drive the
development of improved HCV therapeutics.
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1 HCV Infection and Current Therapy

The millions of Hepatitis C virus (HCV) infections that occur annually around the
globe are difficult to treat due to the ability of the virus to adapt to its only known
natural hosts—humans. Hundreds and perhaps thousands of years of evolutionary
time have allowed HCV to develop sophisticated and efficient ways to evade the
human immune response, despite its small genome (Pybus et al. 2001, 2009; Smith
et al. 1997). A positive strand RNA virus of the Flaviviridae family, HCV has a
9.6 kb genome that encodes a single 3,000 aa polyprotein. The translated HCV
polyprotein is processed by host peptidase and viral proteases to produce:
(1) structural proteins (Core, E1, and E2) that form new viral particles and,
(2) nonstructural (NS) proteins that support viral RNA replication (Wieland and
Chisari 2005). HCV infections are often insidious to the host, causing progressive
liver damage, and are the leading indication of liver transplantation in the Western
World (Hoofnagle 2002).

1.1 HCV Infection: Pathogenesis and Disease Outcome

HCV infections impact global health significantly, with an estimated 170 million
people around the world chronically infected. Only 15–25 % of HCV infected
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individuals spontaneously clear the virus. Most people who are exposed to the virus
and develop an acute infection will progress to a chronic infection, which can have
devastating repercussions on the health of the individual. Decades of uninhibited,
ongoing virus replication in host hepatocytes typically results in chronic hepatitis,
fibrosis, progressive cirrhosis, and an increased risk of liver failure and liver cancer
(Seeff 2002). Liver tissue of chronically infected HCV patients typically contains
infiltrates of CD4+ and CD8+ T lymphocytes, B lymphocytes, NK cells, NK T
cells, and myloid cells, including Dendritic cells (DCs) and plasmacytoid DCs,
which create a necro-inflammatory environment. Fibrosis develops within the areas
of necro-inflammation, leading to cirrhosis and liver failure (Lloyd et al. 2007). Up
to one-fifth of chronically infected patients develop end-stage liver disease, and are
at high risk of developing hepatocellular carcinoma (Ikeda et al. 1998).

While HCV appears to primarily infect hepatocytes, traces of the virus have
been detected in Kupffer and endothelial liver cells (Blight et al. 1994). Other
peripheral tissues have also been found to contain the virus in infected hosts:
including peripheral blood leukocytes, lymph nodes, and epithelial cells of the gut
and brain (Forton et al. 2004; Cabot et al. 2000; Laskus et al. 2000; Deforges et al.
2004). However, infections occurring in nonliver tissue are not robust, as the virus
does not appear to efficiently replicate to the point of effectively producing
infectious virus in these peripheral tissues. Many potential HCV receptors and
co-factors have been identified (LDLR, DC-SIGN, GAG, SRBI, tetraspanin CD81,
claudin-1, and occludin) (Tan and He 2011). Despite a large effort to determine the
precise cellular receptors and factors required for productive infection, only sup-
plying all the known HCV receptors on murine cells results in virus entry, but not
replication (Ploss et al. 2009). Therefore, host factors or replication conditions
found specifically in human hepatocytes must contribute to HCV replication
during infection.

1.2 Biology and Efficacy of Current Antiviral Therapy

Acute HCV infections are often not clinically diagnosed due to the lack of
symptoms that would promote a clinic visit by the infected individual. However,
once HCV infection has been identified, typically after clinical symptoms of liver
dysfunction appear some years after an acute exposure, the current standard of care
is to treat the patient with parenteral injection of pegylated interferon-a and the
oral nucleoside analog Ribavirin over a typical 48-week treatment course. This
treatment is based on the known antiviral activity of Type 1 Interferons (IFN) in
general, and has been aggressively applied in various forms to HCV patients since
1986. IFNs are cytokines naturally produced by the host during virus infection, and
they serve to trigger antiviral, anti-proliferative, and immunomodulatory host
responses through the induction of hundreds of interferon-stimulated genes (ISGs).
During treatment, administration of exogenous IFN does not directly act on the
virus, but instead triggers the production of various ISGs that have antiviral
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activity or impact lipid metabolism, proteolysis, apoptosis, and inflammation (Feld
and Hoofnagle 2005). Furthermore, type-1 IFNs can promote cellular immune
responses such as memory T cell proliferation, dendritic cell maturation, Natural
killer cell proliferation, and have anti-apoptotic affects on T cells. The therapeutic
effects of IFN are greatly enhanced by HCV patients who concurrently receive
Ribavirin capsules orally on a daily basis. Ribavirin is a guanosine analog that is
phosphorylated within the host cell. The mechanism of action of Ribavirin in
combination therapy is not well-defined, but studies have indicated that it can
accelerate the clearance of infected cells, reduce HCV infectiousness, amplify the
IFN-a responses, and shift host immune responses to infection toward a Th1
response and away from a Th2 response (Pawlotsky 2009). Recent studies have also
suggested that Ribavirin increases virus mutation rates to such an extent that it is
thought to force the production of less fit viral species that are less able to escape host
immune responses. However, clinical studies have found no evidence of accelerated
HCV mutagenesis in HCV patients undergoing Ribavirin therapy (Chevaliez et al.
2007; Lutchman et al. 2007), suggesting that other, nonmutagenic mechanisms of
action likely confer Ribavirin antiviral properties against HCV in vivo.

A perplexing complication of the current standard of care is that treatment
response is impacted by the infecting HCV genotype of a given patient. To date,
six major genotypes of HCV (HCV 1–6) have been classified and generally differ
from each other by 30–35 % on the nucleotide level (Simmonds et al. 2005).
Patients with genotype 1 infection exhibit a lower response rate to therapy (about
40 % response, at best), wherein patients infected with HCV genotype 2 or 3
exhibit a response rate of nearly 80 % (Hnatyszyn 2005). The factors determining
treatment outcome among patients infected with different HCV genotypes are not
well understood, but have been associated with specific virus-host interactions that
control immune defenses against infection (Li et al. 2011; Asselah et al. 2010;
Jouan et al. 2012).

In 2011, the FDA approved the use of two new direct-acting antiviral therapeutics,
telaprevir and boceprevir, which inhibit the HCV NS3/4A protease, in the treatment
of HCV infection. The inclusion of either of these two inhibitors into the standard
IFN-a plus ribavarin treatment was able to significantly increase the sustained
virological response rates in patients infected with HCV genotype 1 (McHutchison
et al. 2009; Jacobson et al. 2011; Poordad et al. 2011; Kwo et al. 2010). However,
despite these improved treatment effects, both drugs aggravate the standard of care
treatment side effects (see below) and only seem to improve the responses of patients
infected with genotype 1, thus limiting the overall improvements to HCV therapy.

1.3 Improved HCV Therapies are Needed

The need for developing improved HCV treatment therapies is obvious when
considering infections from all HCV genotypes—overall only 55 % of HCV
patients respond to treatment, while improvements to therapy using the new direct-
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acting antivirals are currently limited to certain patient subsets. This disappointing
efficacy rate is compounded by the harsh, undesirable side effects experienced by
patients undergoing treatment. IFN-based, treatment-induced side effects such as
fever, chills, muscle aches, joint pain, headaches, nausea, diarrhea, hair loss, and
mental depression often make it exceedingly difficult for patients to complete the
full recommended standard of therapy over the 48-week regimen. Whereas a
shorter treatment duration of 24 weeks may have similar efficacy in some patients
(see below), the side effects of treatment remain daunting and still serve to reduce
therapy compliance. The indicated standard of therapy today is based on the
genotype of the infecting virus. HCV patients infected with genotype 1 or 4
receive 1–3 injections of pegylated IFN weekly for 48 weeks, while patients
infected with genotype 2 or 3 are recommended to undergo treatment for
24 weeks. Often patients cannot tolerate the unwanted side effects of interferon
therapy, and prematurely discontinue the course of therapy, putting them at a
higher risk of relapse than if they completed the therapy (Shiffman et al. 2007).
With the advent of new direct-acting antivirals as therapeutics, it has become
evident that the high mutation frequency within the population of virions in the
host (see below, Sect. 1.4) can cause an HCV infection that is initially responsive
to treatment to eventually become resistant (Pawlotsky 2011). Thus, despite the
recent advances in therapy, novel HCV therapeutics are still urgently needed in the
clinic to aid the millions of people worldwide who are coping with HCV
infections.

1.4 HCV Evasion of the Host Response

The low frequency of HCV-infected individuals who are able to fully resolve the
infection underscores the remarkable success of HCV to subvert the host response
to infection. The host response overall comprises the innate and adaptive immune
responses, and HCV infection dysregulates each to mediate a chronic infection
course. Remarkably, by using only its genome and 10 mature proteins, HCV has
the ability to establish long-term chronic infections in hepatocytes by interplaying
with the host cellular machinery to replicate and produce progeny virions while
actively evading the host innate and adaptive immune responses. HCV uses both
genomic variability and its multifunctional proteome to evade and inhibit innate
and adaptive immunity components of the host responses.

Extreme variation in the HCV genome is one powerful immune evasion
mechanism. This large variability is caused by replication errors that generate the
production of genetically-distinct, but closely related, viral genomes or ‘‘quasi-
species’’. Like other RNA viruses, HCV replication is an error-prone process that
generates 10-4 to 10-5 mutations per nucleotide per replication cycle (Pawlotsky
2006), which can produce an average of 1012 virions per day during infection
(Neumann et al. 1998). Variable quasispecies along with high viral turnover allow
HCV to evade host immune detection by helping prevent host immune
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surveillance factors from detecting the virus and generating a strong immune
response. Furthermore, the constant generation of genetically distinct quasispecies
provides HCV a remarkable means to readily adapt to selective pressure applied by
the natural host response or treatment with antiviral therapy. Recent studies have
documented the ability of viral quasispecies in the HCV viral protease NS3/4A to
evade immune detection and impart resistance to treatment, while also detailing
individual variant impact on overall viral fitness (Verbinnen et al. 2010; Lopez-
Labrador et al. 2008; Soderholm et al. 2006; Soderholm and Sallberg 2006; Susser
et al. 2009; Xue et al. 2012; Welsch et al. 2012; Ruhl et al. 2011; Uebelhoer et al.
2008; Romano et al. 2010; Shimakami et al. 2011). In addition, viral quasispecies
that have mutations in MHC class I-restricted epitopes can impact the ability of
TCR to bind the epitope-bound MHC complex, thus blocking the host’s ability to
mount a significant T cell response (Timm et al. 2004; Bowen and Walker 2005b;
Cox et al. 2005; Tester et al. 2005; Ray et al. 2005). Finally, variation in the HCV
quasispecies may permit the virus to evade humoral immunity by containing
mutations that prevent the generation of neutralizing antibody responses (Zhang
et al. 2009). The extreme variation and continuous evolution of the HCV genome
generates a high level of complexity when considering host–virus interactions and
developing appropriately targeted therapeutics.

Another mechanism by which HCV evades host immunity is by antagonizing
innate immune signaling to modulate host inflammatory and cytokine responses.
HCV specifically targets the RIG-I dependent viral sensing program in a mecha-
nism that ultimately inhibits the expression of a/b IFNs and ISGs generally
responsible for limiting HCV replication and initiating mature humoral and cel-
lular host immune responses (Liu and Gale 2010). RIG-I, a specific pathogen
recognition receptor (PRR), detects a short ds RNA and/or poly-uridine motif of
HCV (Saito et al. 2008) and induces downstream signaling via the CARD adaptor
protein, termed MAVS (Sumpter et al. 2005) to induce IRF-3 activation and
subsequent IFN production. HCV viral NS3/4A protease directly antagonizes this
process cleaving MAVS and ablating RIG-I-dependent production of IFNa/b (Foy
et al. 2003, 2005; Loo et al. 2006; Meylan et al. 2005).

HCV infection also imparts dysregulation of adaptive immunity through
alteration of humoral immune programs, epitope drift among viral quasispecies,
and imposing a state of immune exhaustion among antigen-responsive T cells
(Bowen and Walker 2005a; Walker 2010). In terms of humoral immunity, constant
genetic drift of HCV quasispecies leads to the outgrowth of antibody escape
variants that can persist even in the face of a robust humoral immune response.
Moreover, the virus-indued generation of anti-HCV antibodies leads to a HCV-
typical pathology called cryoglobulin anemia in which viral antigen–antibody
complexes deposit in the joints of the HCV patient where they form precipitates
that mediate an inflammatory response. Engagement of HCV with surface CD81
and likely surface immunoglobulin on B cells also can potentiate B cell signaling
and disposition to a proliferative phenotype linked to Non-Hodgins lymphoma that
can appear in patients with chronic HCV infection (Hartridge-Lambert et al. 2012).
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Coupled with T cell exhaustion, the immunoregulatory features of HCV upon B
cell and T cell effector actions serve to support chronic infection.

2 Overview of Systems Approaches to Understanding
the Host Response to HCV Infection

In the decade since systems biology was first incorporated into the formal lexicon
of biomedical research, use of systems approaches has expanded exponentially as
considerable progress has been made in developing methods to generate mea-
surements on a global scale and in advancing the computational framework to
support systems analyses (Chaung et al. 2010). Arguably, the complex integration
between virus and host that defines HCV infection outcome is ideal for the
application of systems approaches for understanding the virus–host interactions
that support HCV infection. While a systems approach is not always appropriate
for all research applications in biomedicine, the encompassing global nature of
such an approach holds the promise of significantly advancing our understanding
of HCV infection and developing new therapies. HCV infections and outcomes are
impacted by variations induced by a wide variety of biological sources (Fig. 1),
each which can complicate the abstracting of conclusions made from nonsystems
approaches from bench top to the clinic. An advantage of using a systems
approach to understand HCV is that such an approach can embrace these large
sources of biological variation and, at times, can harness it to generate a deeper
understanding of the system. For example, a study comparing host genomes and

Fig. 1 Sources of biological variation during HCV infection that impact infection outcomes
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HCV infection outcomes can reveal novel host factors that impact HCV disease
progression. By viewing HCV infection on a global scale, we can gain an
expanded view of virus–host interactions— information that can be used in the
practical development of improved HCV therapeutics. Systems approaches can
help us fully characterize the mechanisms HCV uses to evade the host immune
response. Furthermore, by globally defining the host response, we can broaden our
perspective of the essential host response, which may lead to new avenues for
HCV targeted therapy. Likewise, the study of biological variation during HCV
infection, when viewed in a broad context, can allow us to define patterns that can
be used clinically to predict disease course and clinical outcomes. As discussed in
the sections below, systems approaches when applied to understanding the host
response to HCV infection can contribute immensely to our ability to rationally
design improved HCV therapeutics.

The definition of systems biology can vary widely (Chaung et al. 2010).
Therefore, for our purposes here we will define systems biology as the generation
of biological systems networks from the integration of data generated from con-
ducting measurements across a system-wide level. Systems-wide measurements of
HCV infection can be generated from a wide variety of platforms (Fig. 2),
including genomics, proteomics, transcriptomics, and so on. This data can then be
integrated to provide global models by generating network and mathematical
models as well as to aid in biomarker discovery. In particular, our most pressing
needs are to understand HCV-host interactions within the context of: (1) time
(active versus chronic infection; innate response vs. cellular response during
infection; and disease state), (2) geography and ethnicity, and (3) cellular

Fig. 2 Design of systems approaches
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populations/tissues within the host. As described below, systems approaches are
already being used to help define therapy outcome in HCV patients and improve
our understanding of virus–host interactions.

3 Using Systems Biology Applications to Define Virus–host
Interactions of Host Response Control

Our level of understanding HCV–host interactions has the potential to blossom
through the implementation of systems approaches to address fundamental ques-
tions in HCV research. Few studies have taken a true systems approach as defined
in the section above; however, as more scientists become fluent in using systems
approaches, we expect this number to change dramatically. Below we describe
some examples of how systems approaches or studies that incorporate systems-
wide measurements have advanced our understanding of HCV–host interactions.

3.1 Defining Host Factors that Correlate with Disease
Stage/Pathogenesis

One of the most perplexing aspects of HCV infection in the human population is
the wide variation of disease outcomes post-infection. Systems approaches are
ideal for teasing out this variation and can be used to define the underlying host
factors that are associated with disease. In a study by Diamond et al. (2007), a
quantitative nanoproteomics platform was used to identify differentially expressed
proteins in HCV-infected liver tissue at different stages of fibrosis. After the
identification of 210 proteins with expression profiles that associated with fibrosis
stage, a functional pathway and network mapping of these proteins identified the
dysregulation of two key cellular processes that were associated with fibrosis: the
mitochondria processes of oxidative phosphorylation and fatty acid oxidation and
the host response to oxidative stress. While both of these host cellular process have
been linked to HCV infection by other approaches, the systems-base dataset can
lay the foundation for additional systems studies that focus on the molecular
mechanisms that link these pathway networks to liver disease progression.

Genomics platforms have also been used to identify host factors associated with
disease progression. A functional genomics study of HCV and HCV/HIV
co-infected individuals was able to identify a gene expression signature that
separated a subset of patients from the group (Walters et al. 2006). Interestingly,
the gene expression patterns in this subset were similar to the expression profiles
obtained from HCV patients who developed fibrosis within 1 year of liver trans-
plant (Smith et al. 2006). Functional analysis of the gene networks in this
expression signature identified a downregulation of the FAS pathway and impaired
type I and II IFN responses. A follow-up study by this group using a microarray
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platform that allowed a wider transcriptomic coverage of samples from core
needle liver biopsies was able to identify specific intrahepatic expression signa-
tures that were associated with HIV/HCV co-infection in patients (Rasmussen
et al. 2012b). Additional recent studies have focused on using genomic, proteomic,
and computational analyses to identify molecular signatures that associate with
disease progression in transplantation patients. Interestingly, a longitudinal tran-
scriptional profiling study of liver biopsies from 57 HCV-infected patients by
Rasmussen et al. found that patients who eventually develop the most severe liver
disease demonstrated transcriptional profiles with broad repression of genes
involved in immune responses, cell-cycle regulation, and antigen presentation and
that these genomic alterations occur before liver disease progression could be
detected by histology (Rasmussen et al. 2012a). A similar proteomics study by
Diamond et al. on liver biopsy and serum samples from HCV-infected liver
transplant patients found 250 differentially regulated proteins in patients with
rapidly progressive fibrosis, with an enrichment of proinflammatory proteins and a
decrease in proteins involved in detoxification of reactive oxidants. Furthermore,
this study found that patients who develop severe liver injury have an altered
amount of metabolites associated with oxidative stress in their serum, indicating a
possible application for predicting early progression to fibrosis (Diamond et al.
2012). Such studies can be used as a starting point for biomarker studies that
indicate disease progression or to provide the foundations for research agendas
focused on understanding the underlying mechanisms that cause progression to
fibrosis in select individuals.

3.2 Use of HCV Infection Model Systems to Identify Novel Host
Responses to Infection

Since most acute HCV infections in humans go undetected, it is extremely difficult to
study the early host response to infection in human subjects. Furthermore, applying a
systems approach to human tissue samples is difficult due to the typical requirement
of large amount of sample (both physical size and numbers of individual samples) to
generate system-wide measurements. As an alternative, scientists have begun to use
systems biology approaches to evaluate HCV infection models such as HCV rep-
licon cells or chimpanzees and have identified novel host responses to infection. Of
particular interest in these studies have been the innate immune response factors that
likely shape the long-term immune response to long-term infection.

The development of HCV replicon cell lines (Lohmann et al. 1999) and HCV
replication-permissive Huh-7 hepatoma cell lines revolutionized the HCV research
field by enabling the in vitro evaluation of genomic HCV RNA replication. The
application of high-throughput genomics characterizing these model systems has
generated extensive resources for system biology approaches. Available genome-
wide datasets specifically include host–virus interaction networks and gene
expression changes induced by infection (Blackham et al. 2010; de Chassey et al.
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2008; Nishimura-Sakurai et al. 2010). The generation of these resources provides a
good foundation for implementing systems approaches to understanding HCV
infection using in vitro infection model systems.

In 2011, MacPerson et al. used an interesting systems approach of the HCV
replicon system to identify host factors that impact HCV replication (MacPherson
et al. 2011). In this work, the group performed genomic analysis of cell lines that are
hyperpermissive or resistant to HCV infection to define host factors that determine
cellular permissiveness to infection. By overlaying this information with a proteo-
mics study where they identified 236 host factors that are associated with the HCV
replication complex in the membraneous web of infected cells, the authors were able
to implicate that changes in the expression of APOE, DDOST, and PPIA may con-
tribute to cellular resistance to infection. Using host–virus interaction networks, they
were also able to identify a subset of the host replication factors from the proteomics
screen (e.g., APOE and CALN) that interact with HCV proteins and are known to be
involved in HCV production. From this work, the authors were able to put forth a
candidate list of antiviral and proviral genes, some which were novel: tubulin-a
(antiviral), NCEH1 (antiviral), and VSNL1 (proviral). Furthermore, functional
classification of the genome-wide expression studies found that secreted glycopro-
teins are linked to HCV infection, and network analysis also provided evidence that
host factors involved in protein folding, such as heat shock proteins, could be linked
to HCV infection susceptibility and impact virus protein production. Other host
factors that were linked to HCV infection susceptibility were involved in innate
immune response, the secretion of signal peptides, and viral entry. Further detailed
analysis of these factors and their related networks in HCV infection could lay the
foundation for novel drug development platforms.

While in vitro systems can offer a platform with less variation, and thus can
provide what could be considered cleaner datasets, they remain limited in scope.
In vitro systems cannot provide information on how HCV functions in its natural
infection environment where it is exposed to a milieu of different host cell pop-
ulations nor do they provide a wide-angled view of how HCV infection interacts
with the host on the level of the total organism. The application of systems
approaches to chimpanzee models of HCV infection has the potential to provide a
panoramic view of HCV infection over the course of infection as well as in discrete
organ systems (e.g., immune system, liver etc.). Of particular interest is the fact
that more than 60 % of chimpanzees inoculated with HCV are able to rapidly clear
the virus, making them an interesting model for identifying host factors involved
with viral clearance (Bassett et al. 1998, 1999; Lanford et al. 2001).

To date, most approaches using the chimpanzee model of HCV infection have
involved only genome-wide transcriptional analyses. However, linking systems-
wide transcriptional changes and viral quantities in particular tissues of the infected
animal has provided new insights into the systematic host response triggered by HCV
infection. An initial study of chimpanzee host response to HCV infection docu-
mented genomic changes and viral RNA in liver biopsies as well as serum levels of
ALT, viral RNA, and HCV antibodies over both early (2-days post-infection) and
later time points (up to 14-weeks post-infection) during the course of infection
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(Bigger et al. 2001). While only a single chimpanzee, which effectively cleared the
virus, was evaluated in the study, the authors were able to track the course of
infection, and found that the virus was cleared from the blood between weeks 6 and 8
post-infection, an event which corresponded to seroconversion for anti-HCV anti-
bodies. Interestingly, despite being cleared in the blood, the virus remained in
infected hepatocytes until week 14 post-infection. Functional profiling of the
genomics data found that IFN response genes could be detected as early as 2 days
post-infection and that overall IFN response genes fell into three patterns of
expression: (1) peak early at day 7 post-infection, then declined, (2) peak late at week
6 post-infection, and (3) peak early and sustained until viremia was cleared. These
results suggest that different regulatory pathways and/or cell populations may be
contributing to the IFN response over the course of infection. The authors observed
that the peak serum ALT levels did not coincide with the declines in the viral RNA in
the serum or liver, suggesting that viral clearance was not associated with extensive
hepatocellular death.

A different study with a broader scope of chimpanzee response to HCV
infection was conducted (Su et al. 2002) with the evaluation of host responses
from three HCV-infected chimpanzees with three different infection outcomes:
persistent infection, transient viral clearance, and sustained clearance. Functional
analysis of the genes unique to each outcome identified IFN-c-induced genes and
genes involved with antigen processing, antigen presentation, and adaptive
immune responses that were uniquely associated with transient or sustained viral
clearance. When evaluating the early gene expression changes in the persistently
infected chimpanzee versus the chimpanzees that had transient and sustained viral
clearance, the authors of this study noted that genes associated with lipid
metabolism were correlated with the onset of viremia in the transient and sustained
viral clearance outcomes and the initial increase in HCV RNA levels. The group
went on to validate this finding in HCV replicon systems, finding that small
molecules designed to perturb lipid metabolism can modulate HCV replication and
possibly identifying a new area of exploration for novel antiviral therapies.

3.3 miRNA–mRNA Host Networks in HCV Infection

A novel computational approach to understanding host networks activated during
HCV infection was recently taken with the microarray and computational profiling
of micro-RNA (miRNA) in liver tissues from HCV infected individuals (Peng et al.
2009). Micro-RNAs, a class of small noncoding RNA molecules that regulate gene
expression, have been recently implicated in HCV infection. Some micro-RNAs,
such as miR-122, have been found to be required for HCV RNA replication in the
liver (Jopling et al. 2005), while others, such as miR-196 and miR-488 can directly
prevent viral replication (Pedersen et al. 2007). The approach taken by Peng et al.
provides a systematic profiling of host miRNA expression during HCV infection
and allowed the identification of mi-RNA associated regulatory networks that were
associated with HCV infection. In this approach, Peng et al., profiled the expression
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of miRNAs and mRNAs in uninfected and HCV-infected human liver tissue
samples. By combining the inverse expression patterns between the miRNAs and
mRNAs as well as computational prediction of miRNA binding targets, they were
able to identify 38 miRNA–mRNA regulatory modules. Biological functions of
these identified regulatory modules were extrapolated from functional analysis of
the predicted miRNA targets using a protein-interaction network. Overall, these
biological functions included innate immune responses, cell cycle check point, and
negative regulation of the initiation of translation. miRNA expression analyses will
continue to play a part in system approaches to understanding HCV infection and
even have the potential to be developed into new HCV therapies.

3.4 Exploring the Impact of Host Response
on the HCV Genome

Genetic drift of HCV to escape host immune responses is a well-documented event
that occurs during HCV infections, but the underlying host factors that shape that
genetic drift are not as clearly defined. Recent studies using the chimpanzee model of
HCV host infection have characterized the host response while simultaneously
sequencing the virus genome over time. Such an experimental design has shed some
light on the host-driven impact on viral evolution. A study of MHC I and II restricted
epitopes in persistently infected chimpanzees revealed that despite amino acid
changes in the NS3 protein that caused decreased activation, proliferation, and
cytokine production by epitope-specific CD4 T cells in these animals, these changes
were uncommon (Fuller et al. 2010). Instead, in each individual, the frequency of
mutational escapes in MHC class II-restricted epitopes is much less common than
class I-restricted epitopes, indicating that the lack of CD4 T cell response in per-
sistent HCV infections is not caused by virus escaping CD4 detection. A similar
study that characterized the CD8 T cell response and viral genome over the course of
infection found that the ratio of nonsynonymous to synonymous mutations, which is
a measure of selective pressure, increased 50-fold in class I-restricted epitopes
compared to the rest of the HCV genome (Callendret et al. 2011). This finding
suggests that CD8 T cells exert a strong selective pressure on the viral evolution of
HCV during infection. Thus, wide-angled views provided by systems approaches
such as those described above are contributing much to our understanding globally
how host and HCV factors impact each other during the course of infection.

4 Systems Approaches to Defining/Predicting Therapy
Outcomes in HCV Patients

With the revolution of high-throughput, high resolution, biological assays requiring
increasingly miniscule amounts of biological specimens to generate measurements,
the age of individualized medicine is looming ever closer. While the ability of the
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clinician to use patient-specific genome or proteome information to determine the
best treatment options is still in the future, systems biology approaches have begun to
inch the concept of individualized medicine into a reality. As noted above in the
introduction to this chapter, the low rate of treatment responses by HCV patients to
the current approved HCV therapies, especially among those infected with specific
HCV genotypes, indicates that variation within the infecting host or virus may
account for HCV treatment failures. By nature, systems approaches can harness these
sources of variation and use them to identify host or virus factors that may impact
treatment outcomes. Below we highlight a number of studies that have used systems
approaches to evaluate the various therapeutic outcomes in patients undergoing HCV
therapies.

4.1 Systems Approaches to Understanding Interferon Therapy

We know that interferon-based therapies are effective in achieving sustained viral
response in some, but not all, HCV patients. Therefore, understanding how the
host systems respond to this therapy will provide a huge benefit to discerning how
this response can effectively overcome infection. For this reason, several studies
have used systems approaches to characterize IFN response in both human and
chimpanzee model systems.

A seminal study by Katze and co-workers used isotope-encoded affinity tag
ICAT-based proteomics to identify IFN-regulated proteins in the human hepatoma
Huh7 cell line (Yan et al. 2004). In this work, they performed a global quantitative
proteomic analysis of Huh7 cell extracts that had been cultured in the absence or
presence of IFN. This proteomics approach identified 1,364 proteins in the cells.
By overlaying the ICAT quantification data from the proteomics study with a
genomics dataset of genes that contain the interferon-stimulated response element
(a signature of IFN-inducible genes), the authors identified 78 proteins that were
likely regulated by IFN. The application of data mining tools such as gene
ontology (GO) and Cytoscape allowed them to determine that the identified pro-
teins that increased with IFN treatment tended to be involved in antiviral defense
and immune response signaling networks while proteins that decreased with IFN
tended to be involved with metabolism and growth. Interestingly, a novel obser-
vation from this work was that a number of the IFN-induced proteins were
involved with G-protein coupled signaling pathways, suggesting that IFN treat-
ment may impact these pathways. Overall, this approach identified 39 novel
proteins that were previously unknown to be interferon responsive. However, the
findings from this study may have limitations in their practical application to
clinical advances as they were based on measurements generated from immor-
talized cell lines that are known to have inherent cell signaling defects.

The limitation of using cell lines as an infection model system has been
addressed with a similar genomics analyses that was performed in primary
chimpanzee tissues treated with IFN (Lanford et al. 2006). A strength of this study
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is that it assessed the kinetics of the transcriptional response to IFN-a. By
conducting genomic measurements across tissue types (e.g., liver and PBMCs) and
with ex vivo systems (primary chimpanzee and human hepatocytes), the authors
were able to track tissue and cell-type specific transcriptional changes induced by
exposure to IFN. This work demonstrated that the IFN-induced response is rapidly
downregulated in vivo, is indistinguishable between chimpanzee and humans, and
was tissue specific. Such a study helps us put together how antiviral therapy
responses impact the viral life cycle and shape the observed kinetics of viral
clearance during therapy. Studies of viral infection kinetics have noted that viral
titers tend to decrease significantly in the first 24–48 h of therapy, after which they
generally rise again. These two events could correlate with first the quick induction
of ISGs after the initial IFN treatment, which would impact virus replication, and
the gradual resurgence of virus could correspond to the downregulation of IFN
responsiveness.

4.2 Harnessing Host Genomics to Predict Treatment Outcome

Systems approaches are beginning to help us link individual host responses to
predict treatment response. Recent advances in genomics technologies, in which a
half-million variations in individual genomes can be compared, have increased the
resolution in genomics studies and enhanced our ability to detect variation. For
example, in 2009, the results of genome-wide association studies designed to
identify genomic variations linked to HCV treatment outcomes identified SNPs
near the IL-28B gene as strong predictors of treatment success in patients infected
with HCV genotype 1 (Ge et al. 2009; Tanaka et al. 2009; Suppiah et al. 2009).
Since then, allelic variants in IL28B have been linked to natural clearance of HCV
and the outcome of liver transplant patients (Thomas et al. 2009; Coto-Llerena
et al. 2011). Controversial studies have also indicated that IL-28B alleles also may
be associated with HCV viral load and progression to cirrhosis, but additional
studies are needed to confirm these connections (Soriano et al. 2012).

The exact mechanism by which IL-28B alleles influence HCV treatment response
is unclear, but the fact that IL-28B encodes IFNk-3, a type III interferon that is
induced during virus infection and stimulates the production of antiviral ISGs, is
intriguing. Several groups using gene expression profiling have found a correlation
between hepatic expression of ISGs and treatment response (Asselah et al. 2005;
Chen et al. 2005; Feld and Hoofnagle 2005). Low baseline ISG expression indicates a
positive response to interferon therapy and suppression of viral loads, whereas
upregulation prior to therapy is predictive of a treatment failure. Indeed, pre-
assessment of future nonresponder gene expression profiles found that these patients
have maximal baseline ISG expression levels that remain flat with IFN treatment
(Sarasin-Filipowicz et al. 2008). However, whether the relationship between ISG
expression and IL-28B gene expression is a causal or independent predictor of
treatment outcome remains to be fully resolved (McGilvray et al. 2012). Thus, future
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studies are needed to better understand the exact link between IL-28B SNPs and
HCV treatment outcomes.

Additional studies have used the plethora of genomics data to determine gene
expression patterns with predictive value for HCV therapeutic outcomes. Com-
pared to using IL-28B genotyping alone as a predictor of treatment outcome, the
gene classifiers were better at indicating therapeutic response (Dill et al. 2011;
McGilvray et al. 2012). Interestingly, one study found that immunostaining levels
of the human myxovirus A protein 1 (MxA) in macrophages of liver biopsies from
HCV patients had an exceptionally high negative predictive value for treatment
outcome and was inversely correlated to ISG expression in hepatocytes, indicating
the potential importance of cellular crosstalk within tissues during treatment
(McGilvray et al. 2012). In the future, better predictive models of HCV therapeutic
outcomes will be built as more classifiers are identified from -omics studies and
plugged into the existing models or developed into new, independent models.

Few studies have truly employed systems approaches to understand HCV
therapy. However, some recent work has demonstrated the power in using such an
approach (Lau et al. 2012). To better understand the host response to acute IFN-a
treatment in HCV-infected patients, Lau and co-workers integrated datasets from
multiple data gathering platforms: gene expression profiling of hepatocytes and
PBMCs from treated patients, serum viral kinetics, bioinformatic analysis, and
mathematical modeling of viral decay. In this study, they profiled the acute
response to IFN-a treatment in eight HCV patients who were chronically infected
with HCV genotype 1. Patients in the study were classified as rapid virological
responders (RVRs), early virological responders (EVR), and nonresponders (NR)
based on HCV RNA kinetics that were measured in the initial 12 weeks of ther-
apy. As noted in other studies, genomic expression profiles of the NR had a high
basal level of ISG expression in pre-treatment samples compared to the EVRs and
RVRs. Pathway modeling of the identified differentially expressed genes in the NR
samples indicates that Stat-1 is a central regulatory node for the high ISG basal
expression in these patients. Furthermore, NR patient liver samples analyzed 24 h
after IFN treatment displayed very little differences in their gene expression pat-
terns compared to the pre-treatment samples. In contrast, a similar evaluation of
EVR and RVR patient samples revealed a large number of genes displayed sig-
nificant changes in expression after IFN treatment in a pattern that differentiated
these samples from the NR-derived samples. Importantly, the NR patients had a
high ‘‘set point’’ ISG expression pattern pre-treatment that lacked further induction
with IFN treatment. Network modeling of EVR and RVR patient responses to IFN
indicates that the increase in IFN-a signaling occurs through an amplification of
IRF-7 signaling (Fig. 3).

Interestingly, when Lau et al. completed a similar analysis on PBMCs and then
compared these data to the genomics results obtained from the liver of the same
patient, they discovered that, unlike the liver tissues, pre-treatment ISGs in
PBMCs were similar between the NR and the SVR and EVR, with little ISG
expression in the pre-treatment samples and then a strong induction in the first
3–12 h. Therefore, both the pre-treatment ISG set-point and the acute responses to
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IFN treatment are different between PBMCs and liver tissue, indicating a tissue
compartmentalization of the IFN-induced response.

The high expression of specific ISG pre- and post-IFN treatment in NR patients
was confirmed by immunohistochemical analysis of HCV patient liver tissues. With
these studies, Lau et al. also observed that the tissues had three distinct staining
patterns that were associated with treatment outcome. EVR and RVR patient tissues
had a strong staining pattern that occurred through the majority of the hepatocytes in
the tissue sample. NR patients had one of two staining patterns: (1) a ‘‘cell specific’’
response where adjacent cells expressed different ISG levels, or (2) a ‘‘focal’’
response where only response foci displayed different levels of ISG. Importantly, the
ISG expression level differences were observed between the hepatocytes and the
liver-resident macrophages, called Kupffer cells. Further analysis of these tissues
showed that Kupffer cells were expressing IFN-b, and when combined with the
results from other studies, indicates that Kupffer cells may take up HCV and trigger
IFN-b expression. From this work, it was proposed that endogenous expression of
hepatic IFN drives a high ISG set point, which would permit a state of cellular
tolerance to IFN and impact treatment outcome. Indeed, when constitutive IFN
exposure of HCV was modeled in an HCV replicon cell system it was found that IFN-
induced cellular responses were blunted with periodic IFN exposure, although the
expression of IFN-a/b receptor levels remained stable. In other studies, Chisari and
co-workers found that HCV can similarly stimulate IFN production from

Fig. 3 Summary of pathway modeling to reveal processes of gene regulation of ISG setpoint
among NR patients with chronic HCV infection
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plasmacytoid DC via direct cell interaction and exosomal transfer of HCV RNA to
the DC. In this case, the viral RNA was engaged by TLR7 to drive IFN production
(Takahashi et al. 2010). This model reveals that DCs can also take up HCV RNA and
produce IFN as a result. Thus, resident macrophages/Kupffer cells as well as plas-
macytoid DCs and other DC subsets likely serve to produce IFN locally in the liver.
This hepatic IFN then drives ISG expression to impart innate immune tolerance to the
actions of therapeutic IFN, rendering a reduced efficacy of antiviral therapy against
HCV infection. Together, systems biology approaches to defining hepatic host
responses suggest that chronic exposure to IFN may contribute to a state of tolerance
to IFN-a, preventing the hepatocyte from fully suppressing HCV and leading to
treatment failure (Fig. 4). Importantly, these studies demonstrate how the careful
application of systems approaches can contribute to our understanding of disease and
the appropriate design of treatment options.

5 Future Impact of Systems Biology on HCV Therapy Design

Since the advent of systems biology into biomedical research, we have made
significant initial progress in using this powerful approach to understanding host
response to HCV infection and improving HCV therapies. This early work has
generated glimpses of the systematic changes that occur in the host during HCV
infection and treatment. However, much work remains to be accomplished in the
HCV field and systems approaches will no doubt have a major impact in shaping

Fig. 4 Model of innate
immune tolerance in chronic
HCV patients undergoing
treatment, based on data from
Lau et al. Endogenous IFN-b
is produced by Kupffer cells
or other myeloid cells, such a
plasmacytoid DCs, IFN then
drives paracrine ISG
expression in hepatocytes and
within the liver. This creates
a high set point of ISG
expression in the liver and
innate immune tolerance of
IFN (Takahashi et al. 2010;
Lau et al. 2012)
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how we understand HCV infection and treat HCV disease. Likely, systems
discoveries in HCV host response and infection outcome will impact: biomarker
discovery, the development of novel therapies, clinical treatment procedures (i.e.,
diagnosis, predicting course of infection and outcome, and monitoring treatment
response), and vaccine development (correlates of immunity).

Challenges remain in the effective implementation of information generated
from systems approaches into our basic understanding of HCV. Data analysis
using systems approaches are, by nature, complex and the huge amounts of output
can make the generation of overarching conclusions difficult. Many current sys-
tems studies only provide an expanded, wide angle view of HCV infection, making
it difficult to hone-in on specific areas that can practically be applied in HCV
therapy development. Rather than simply providing a holistic view of infection,
future studies using systems approaches need to focus on identifying specific
factors that impact infection outcome. Only when this laser focus of intent is used
to filter through the noisy data produced by systems approaches, will we realize the
full force of systems biology in developing powerful HCV therapeutics and
treatment strategies.
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Systems Biology Approach for New
Target and Biomarker Identification

I-Ming Wang, David J. Stone, David Nickle, Andrey Loboda,
Oscar Puig and Christopher Roberts

Abstract The pharmaceutical industry is spending increasingly large amounts of
money on the discovery and development of novel medicines, but this investment
is not adequately paying off in an increased rate of newly approved drugs by the
FDA. The post-genomic era has provided a wealth of novel approaches for gen-
erating large, high-dimensional genetic and transcriptomic data sets from large
cohorts of preclinical species as well as normal and diseased individuals. This
systems biology approach to understanding disease-related biology is revolution-
izing our understanding of the cellular pathways and gene networks underlying the
onset of disease, and the mechanisms of pharmacological treatments that ame-
liorate disease phenotypes. In this article, we review a number of approaches being
used by pharmaceutical and biotechnology companies, e.g., high-throughput DNA
genotyping, sequencing, and genome-wide gene expression profiling, to enable
drug discovery and development through the identification of new drug targets and
biomarkers of disease progression, drug pharmacodynamics, and predictive
markers for selecting the patients most likely to respond to therapy.
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1 Introduction

Systems biology is an interdisciplinary approach examining complex interactions
among different components in a biological system. Its goal is to determine pre-
diction rules governing a system’s behavior under different conditions. The phar-
maceutical industry is currently facing tremendous challenges from many
directions including an imminent ‘‘patent cliff’’ (Harrison 2011), declining research
and development (R&D) productivity, low public perception, and increasing reg-
ulatory hurdles (Kola 2008). To be able to successfully respond to these challenges,
the industry has to adopt significant paradigm shifts and innovative approaches in
drug R&D to cut the cost of development, to find targets with better efficacy, and to
identify biomarkers which can predict response and adverse events (AEs). Many
recent technological advancements including transcriptional profiling, next-gen-
eration sequencing (NGS), and other high-throughput genomics analysis platforms,
such as the single nucleotide polymorphism (SNP) array (i.e. SNP chip) for gen-
ome-wide association studies (GWAS) and RNA interference (RNAi) screening,
have further enabled the systems biology approach to impact future drug discovery
and development. For example, applying the systems approach could help identify
the mode of action and potential toxicity of compounds under development, which
would allow companies to terminate unfavorable development projects early. The
systems approach could also help to identify human subpopulations who may not
respond to certain therapeutics, which would bring us closer to the goal of achieving
personalized medicine (Trusheim et al. 2011).

Merck Research Laboratory (MRL) was among the first research institutes to
perform integrated analysis of large scale genomics data sets, and to apply the
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results toward practical drug development (Dai et al. 2005; Schadt et al. 2009; van’t
Veer et al. 2002, 2003; van de Vijver et al. 2002). We summarize herein the current
status of selected areas within the systems biology arena, and include our recent
efforts in biomarker and target identification.

2 Gene Signatures Used for Predicting and Understanding
Diseases

Genome-wide gene expression profiling has launched a new era of understanding
of human diseases at the molecular level (Keller and Attie 2010; van’t Veer and
Bernards 2008; van’t Veer et al. 2002). Coherent patterns of gene expression
observed across large cohorts of human samples provide an information rich
source of data for understanding of molecular subtypes of human diseases and
their drivers. Its utility was first recognized in oncology, where distinct tumor
subtypes develop in the same histological environment and their differential
response to therapies presents a significant hurdle for drug development (Bertos
and Park 2011). Indeed, genome-wide gene expression of large cohorts of tumor
samples revealed heterogeneous patterns of gene expression and multiple inde-
pendent groups of coherently expressed genes or ‘metagenes’ (Huang et al. 2003).
Some of these ‘metagenes’ are related to key physiological properties of the tumor,
such as the rate of proliferation, presence of immune components, or adhesion.
Other patterns can be traced to pathway activation status, such as the state of the
RAS pathway (Loboda et al. 2010), Myc signaling (Huang et al. 2003), or the
degree of epithelial-to-mesenchymal transition (Loboda et al. 2011) (see Sect. 2.2
below). These molecular patterns reveal complex tumor biology comprised of
multiple independent dimensions that need to be captured for correct diagnostic
and prognostic decisions.

2.1 Cancer Prognostic Signatures

In each tumor type, the most variable, clinically and biologically relevant gene
expression patterns were used to define molecular tumor subtypes. For example,
among breast tumors, luminal and basal types were defined, each of which was
further divided into subtypes using a combination of key patterns such as prolif-
eration and ER signaling (Sorlie et al. 2003). This molecular subtyping is clearly
just the tip of an iceberg of a much more complex set of subtypes driven by
different oncogenic events, and further characterized by additional physiological
properties. Surprisingly, even a very high-level molecular characterization turns
out to be clinically useful in prognosis of primary and metastatic tumors. It was not
obvious that such early prognoses could be made, since most gene expression
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profiles are generated from primary tumors, and it is not guaranteed that the
biology captured at that early stage would be useful for making predictions of the
future metastatic behavior of the tumor. Fortunately, the biology of tumor subtype
and its behavior turn out to be to a high degree predetermined at first diagnosis of
the tumor, which allows for prognostic predictions at least in some tumor types,
such as breast tumors (van’t Veer et al. 2002). Several diagnostic assays such as
MammaPrint (Mook et al. 2007), PAM50, OncotypeDx (Koscielny 2008) have
been developed for prognosis based on this principle, and hundreds of thousands of
women have been tested with these diagnostic assays.

2.2 Overlap Between Alzheimer’s Disease and Physiological
Aging Signatures

Similar to the work in oncology, genome-wide gene expression profiling of large
cohorts of brain tissue have been used to reconstruct the development of
Alzheimer’s disease (AD), and these profiles have been compared with the process
of normal aging (Podtelezhnikov et al. 2011). Gene expression variation in a
cohort of brains from normal and AD-affected individuals could be almost com-
pletely explained by a few transcriptional biomarkers that capture the top principle
components of variation. These include genes statistically associated with neu-
ronal loss, glial activation, lipid metabolism, and inflammation. Among the key
patterns contributing to disease progression, the small but exceptionally tightly
correlated metagene, called Inflame, contains about 250 genes upregulated with
AD, including many inflammation markers, such as IL1b, IL10, IL16, IL18,
multiple HLA genes, as well as markers of macrophages, such as VSIG4,
SLC11A1, and apoptosis, such as CASP1/4, TNFRSF1B (p75 death receptor)
(Podtelezhnikov et al. 2011).

Together, these biomarkers provide a detailed description of the aging process
and its contribution to AD progression. The results of such analysis can be sum-
marized in the form of a state transition model shown in Fig. 1. Aging starts with
up-regulation of APOE and other lipid metabolic genes, signifying the transition
from N0 to N1. The following upregulation of the Inflame biomarker, composed of
inflammation genes, is associated with transition from N1 to N2. The brains in
these states (i.e. N1, N2) were diagnosed as normal, because the subjects did not
yet exhibit any cognitive impairment associated with AD. The next transition,
from N2 to A1, is associated with massive disruptions in metabolic pathways, and
an observed marked acceleration of aging then follows. Some brains, however,
avoid transitioning to A1 and continue to age into N3. Another transition to AD
state A2 can happen later. This transition may appear later than A1 in a particular
brain region, and happen much earlier in some other brain regions.

The proposed model is most consistent with an age-based hypothesis of AD
that postulates three fundamental steps: initial injury aggravated by age, chronic
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neuroinflammation, and subsequent transition of most brain cells to a new state
(Herrup 2010). These key stages of the disease were independently observed and
associated with transcriptional changes in our analysis of the brain transcriptome.
We also identified a striking resemblance of the biological processes behind the
disease progression biomarkers to an epithelial-to-mesenchymal transition (EMT)
(Kalluri and Weinberg 2009). The AD processes are most similar to EMT type 2,
which is dependent on inflammation-inducing injuries for initiation and propa-
gation. Associated with tissue regeneration and organ fibrosis in kidney, lung, and
liver, EMT type 2 generates mesenchymal cells that produce excessive amounts of
extracellular matrix (ECM). Similarly, a transition of AD brain into a tissue
enriched with mesenchymal cells produces a large amount of ECM containing
beta-amyloid. This model of the disease implies that multiple independent genetic
factors, as well as infections and/or injuries may accelerate consecutive transitions
leading to disease. It also suggests different therapeutic strategies for early and late
disease stages.

3 The Systems Biology Approach Applied to Human Genetics

We have been witnessing great advances in the generation and analysis of genetic
data used to identify the molecular underpinnings of biological traits. With the
publication of the first draft of the human genome in 2001, we embarked on a
journey of high-throughput data acquisition. Since genetics is founded on the study
of variation, it was clear then that a single human sequence would do very little for

Fig. 1 Alzheimer’s disease progression model. The trajectories of biological age (BioAge)
changes as a function of time, reflect the relatively constant rate of aging in nondemented subjects
(black), and acceleration of the rate of aging in AD (red). The dots represent the postmortem state
of the brain captured by gene-expression profiling. The state transition model defines several
broad categories for normal brains N0–N3, and for diseased states A1 and A2. The sequence of
transitions and associated gene expression biomarkers are shown by arrows: lipid metamolism
(Lipa), inflammation (Inflame), neurogenenerative stress (NdStress), and EMT signaling specific
to Alzheimer’s disease (Alz)
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geneticists in terms of defining the genetics of complex diseases. Lander and
Schork (1994) argued strongly for association studies to unravel the genetics of
complex traits in human populations. From that seminal paper, entire companies
have been formed (e.g. Affymetrix and Illumina) with the sole purpose of pro-
ducing SNP chips for interrogating the entire genome at more than 106 loci.
Additionally, the International HapMap Consortium (Frazer et al. 2007) set out to
catalog human variation, and has been embraced by the biomedical community in
hopes that identifying variation will be useful for understanding the genetics of
complex traits. In 2005, one of the first genome-wide association scans (Klein
et al. 2005) was published, illustrating the power of an unbiased view of the
genome. However, this study and its design quickly became outdated, and the
number of patients being recruited into GWAS studies expanded to more than
10,000 individuals (McGregor et al. 2007). Simultaneously, it was recognized that
variation in gene expression also plays an important role in complex traits. Most
importantly, gene expression variation has been observed in almost all natural
populations studied thus far (Genissel et al. 2008; Gilad et al. 2006; Oleksiak et al.
2002). The impact of phenotype has been profound with respect to gene expression
variation. Much like the more obvious structural polymorphisms caused by
nonsynonymous mutations and/or indels, variation in gene expression can lead to
equally extraordinary changes in phenotype (Bergland et al. 2008; Gompel et al.
2005; McGregor et al. 2007; Oleksiak et al. 2002; Stern 1998).

Although studies focusing on human disease have benefited from the high-
throughput revolution, in general, these advances, thus far have lead to somewhat
disappointing results. Specifically, genomic studies have found that complex traits
are affected by a large number of loci, with any single locus having only a minor
explanatory power, leaving most of the variation unaccounted for. This pattern
holds for numerous diverse and unrelated traits across many different organisms
(Gilad et al. 2008).

In recent years, the integration of genetics and gene expression data to unravel
complex traits has taken off, although the heritability of the genetics of gene
expression has been met with some debate. To investigate this phenomenon, two
groups independently used the Centre d’ Etude du Polymorphisme Humain (CEPH
families) database derived from transformed lymphoblasts. Using either Affyme-
trix short-oligonucleotide (Morley et al. 2004) (http://www.affymetrix.com/
index.affx) or Agilent long-oligonucleotide (Cheung et al. 2003; Monks et al.
2004) arrays (http://www.agilent.com), it was concluded that a large proportion of
gene expression varied between individuals (Cheung et al. 2003; Monks et al.
2004) and with a surprisingly low heritability. It has been suggested (Schadt, EE,
personal communication) that these results were driven in part by the fact that the
cell lines from which the gene expression data was acquired were ‘‘long-term
transformed’’, and, therefore, far from the state they might have been if gene
expression had been determined directly without transformation. Indeed, it does
appear that the heritability of gene expression in these studies with the CEPH
transformed cell lines was surprisingly low (Cheung et al. 2003; Monks et al.
2004; Morley et al. 2004). Relatively, high heritability of gene expression has
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otherwise been observed in many different taxonomic groups (Brem et al. 2002;
Schadt et al. 2003), and most importantly, in humans (Emilsson et al. 2008).
Emilsson et al. (2008) have shown that heritability in gene expression can be
captured simultaneously in different tissue compartments (blood and adipose),
even if different compartments have compartment-specific gene expression pat-
terns. Although the initial studies of gene expression from lymphoblasts were not
informative in terms of measuring the heritability of expression patterns, we now
know it is possible. For example, Bill Cookson’s lab at the National Heart and
Lung Institute, Imperial College, London used lymphoblast gene expression with
GWAS to identify ‘‘genes’’ associated with childhood asthma (Dixon et al. 2007;
Moffatt et al. 2007). One of the major differences between the lymphoblasts used
in this study and the study using the CEPH families is the age of the transformed
cell. The CEPH cell lines were relatively old, and thus affected by the vagaries of
cell line maintenance and artificial selection.

In view of recent studies, enhanced understanding of the genetics of gene
expression does seem to facilitate the dissection of complex traits. For example,
the identification of expression quantitative trait loci (eQTLs) (eSNPs) allows for
the orthogonal mapping of SNPs that are significant in genome-wide association
studies allowing one to point toward the mechanisms of disease (Moffatt et al.
2007; Schadt et al. 2008) (see Sect. 3.2 below). SNPs associated with gene
expression in lymphoblasts can also be used to determine sensitivity to chemo-
therapeutic agents (Huang et al. 2007) given the caveats of above. It has become
clear that to derive meaningful and actionable biology from these high-throughput
studies, we will need to map together as many orthogonal data sets as possible to
squelch the false positives.

3.1 Value of Traditional Genetics

Within the pharmaceutical industry, the field of genetics is primarily utilized in
two areas: drug target identification and pharmacogenetics. While the interest in
pharmacogenetics has increased in recent years, and can only be expected to grow,
the pharmaceutical industry may be slower to adopt systems biology methodolo-
gies in this realm, due to the characteristics which make a pharmacogenetic marker
useful. Pharmacogenetics markers, or the use of genetic variants to predict indi-
vidual response to drugs, usually focus on either compound efficacy or AEs pre-
dictions. In the case of genetic predictors of compound efficacy, the identified
variants need to be both relatively common in the general population and addi-
tionally have a ‘‘large’’ effect size; those not fulfilling both criteria are considered
unlikely to be used in common clinical practice. For example, even if a genetic
variant perfectly predicts ‘‘non-response’’ in patients, if it is only carried in 1 % of
the population, physicians are unlikely to use it; similarly a marker that is com-
mon, but only increases by 20 % the chance of classifying a patient as being a
‘‘responder’’, would be unlikely to gain wide acceptance. Complex systems
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biology-based pharmacogenetic markers with large numbers of SNPs and patients
falling along continuums in terms of response would be extremely challenging to
utilize in clinical practice, leaving the focus at this time on identifying simple
(1–2 genetic variants or SNPs) markers which explain a large portion of variance
in selected responses.

In the area of drug target identification, the field of genetics is far more likely to
be utilized in the near future. From a recent analysis of the roughly 500 human
genes that have been successfully utilized as drug targets, approximately 50 %
have been shown to be linked to human diseases (Wang et al. 2012b). This is
substantially higher than the proportion of human genes in the genome as a whole
that have been linked to disease (roughly 11 %). While it would be difficult to
definitively prove the reason for this association, it is likely that in many cases the
gene in question (being causal for disease) is unequivocally in the correct pathway
for phenotypic modification to ameliorate the disease in question; the remaining
factors determining its utility as a drug target would be tied to ease of drugability.
In cases where a single mutation in a gene causes an extreme phenotype or disease,
selection of the target is more or less straightforward (again assuming availability
of druggable domains in the protein). However, in complex diseases which have a
large number of genetic risk factors with small odds ratios (ORs), the choice of
which gene/s to pursue as targets is not clear. Therefore, methodologies (such as
systems genetics) which can illuminate critical pathways involved in disease eti-
ology may also prove to be useful for drug target identification in complex
diseases.

While GWAS have been successful in identifying loci associated with well
defined diseases, most of the ‘‘hits’’ have had small ORs, frequently less than 1.5
(Hindorff et al. 2009).Considering the small size of the individual effects, the
number of associations has been smaller than expected, leading to the question of
‘‘missing heritability’’ in many diseases, where the observed heritability based on
GWAS results is significantly lower than the predicted heritability (Manolio et al.
2009). While the reason for this discrepancy is not clear at this time, it seems
unlikely that it would be caused by additional common loci which have not yet
been discovered. Many GWAS consortia have genotyped patients and controls in
the tens of thousands (Estrada et al. 2012; Saxena et al. 2012) and several possible
(and not necessarily contradictory/exclusive) explanations have been suggested.
For example, interactions between genes/variants could explain a large proportion
of the missing heritability if the genes are members of rate-limiting pathways
(where a trait depends on multiple pathways) each of which may be a strictly
additive trait, dependent upon multiple genes (Zuk et al. 2012). Correct gene
assignment into biological pathways depends upon the associated SNPs identified
in GWAS being assigned to the correct gene. While this explanation appears easy
on the surface, the fact that GWAS arrays have been designed to tag haplotypes
and not individual genes is not always appreciated, and has undoubtedly led to
incorrect assumptions concerning which genes have been implicated by certain
GWAS. Upon completion of a GWAS, SNPs identified as ‘‘hits’’ are usually
assigned to the nearest gene, without consideration for the fact that the SNP in
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question may be in tight linkage with another SNP several to hundreds of kb away
(Christoforou et al. 2012). A clear example of the issue can be seen in recent AD
GWAS. The APOE e4 allele has unequivocally been linked to AD in over 100
studies (Bertram et al. 2007); however in large GWAS the most significant SNPs
(while in tight linkage with the APOE e4 allele) have been located physically
closer to APOC1 (Naj et al. 2011), TOMM40, and PVRL2 (Harold et al. 2009).
Although imputation lessens this effect to some extent, the correct assignment of
SNPs to genes remains an issue if linkage is not taken into account during GWAS
analysis (Christoforou et al. 2012).

3.2 The Genetics of Gene Expression

The systems biology approach developed by Eric Schadt (Emilsson et al. 2008;
Schadt et al. 2003, 2008) and colleagues in the Genetics Department within Merck
MRL focuses on coalescing data from all levels along the central dogma chain
(DNA–RNA–Protein–Metabolite) in an attempt to pull the true positive SNPs from
the plethora of false positives. Based on this approach, one place to start in
determining SNPs of interest is the intersection of SNPs associated with traits and
SNPs associated with gene expression: we term the latter type expression SNPs
(eSNPs), and they form the foundation of this integrative genomics approach to
understanding the molecular underpinnings of complex traits.

There are two commonly used methods to identify genes that associate with
disease. The first method relies on the measurement of gene expression such that
genes that associate with trait/phenotype/disease are found to be either up- or
down-regulated, with respect to disease state. Although these regulated genes are
interesting with respect to trait/phenotype/disease, they do not provide us with an
understanding of the causal relationship between disease and gene. That is to say, a
proportion of those correlated genes will be reactive to the trait, but not causal. The
second method involves the use of genome-wide association studies (GWAS).
These studies identify, in an unbiased fashion, loci that associate with disease. The
problem that typically arises in these studies is that linkage disequilibrium around
the marker can include many genes. The question naturally arises: which gene
plays a role in the disease or trait of interest? One method that Merck pioneered
and currently uses in an effort to create rank order lists of genes according to
biological relevance combines gene expression data with SNP data, assuming that
if variable expression of a gene correlates with a disease-associated SNP, then the
gene is more likely to be driving the variability of the disease trait. However, we
should remain cautious even when a disease SNP correlates with an eSNP. Con-
versely, correlation between a gene and trait may indicate that the gene is worthy
of further investigation and investing of more resources to secure a validation even
when no association between the gene and a SNP is found.

Within MRL, the eSNPs discovery program is fairly straightforward. A GWAS
is performed with gene expression from a genome-wide expression panel
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functioning as the trait. That is, marker-by-marker association tests are conducted
with gene expression treated like a standard outcome (e.g. height). We typically
genotype 500–1,000 K SNPs from a population of *1,000 individuals and then
query the data set to find genes whose expression correlates with the loci being
genotyped. For example, with 1,000 K SNPs and a 20,000 gene expression pattern,
the marker-by-marker analyses will result in 20 billion linear models (not
including permutations required for false discovery rate (FDR) estimates); not an
easy undertaking with typical computational resources. However, Merck has taken
a brute-force approach, using massively parallel computing, which has involved
the systematic compilation of lists of eSNPs from many tissues. As of today,
Merck has identified eSNPS from blood, brain, liver, and adipose (Table 1) and is
actively working on lung and HCV infected livers.

3.3 Removing the Noise with Orthogonal Data: An Example

The Harold et al. (2009) laboratory kindly provided all SNP and p value pairs for
AD from their GWAS performed on 16,000 individuals for Merck to conduct an
additional analysis. With such a large number of individuals participating in this
study, the researchers still only found modest odds ratios for any significant loci,
even though there has been a very high estimate of heritability of AD (Gatz et al.
2006). Using previously published or publically available data, we set out to
capture the molecular pathways that drive the disease. First, we translated all
significant SNPs from Harold et al. into genes by asking which SNPs from the
GWAS are members of an eQTL complex, and then we filtered these SNPs further
by asking which subset of those SNPs also occurs in the brain as an eQTL. For the
next step/layer, we expanded the corresponding gene list by intersecting our
GWAS brain eQTL list with published interaction data to generate a network
where we deem the edges of the network to be high quality (Proteome, NetPro,
BIND, Reactome, KEGG, BioGRID, IntAct, Ingenuity, HPRD, DIP & MINT)
(Fig. 2), giving rise to a richer and more complex view of AD. The process allows
for highlighting the key genes capturing the complex molecular underpinnings of
Alzheimer’s disease. Figure 3 depicts a network view of AD with every single

Table 1 The number of eSNPs discovered in MRL on a tissue-by-tissue basis

Tissue Tissue Specific Shared Total (%)

Blood 410 1940 21
Brain 1,282 3,584 36
Adipose 3,545 9,163 39
Liver 3,602 8,827 41
Total 8,839 2,3514 38

Many eSNPs discovered appear to be tissue specific while others are shared between two or more
tissues. These numbers are an absolute minimum—thus the actual number may be larger
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gene being part of an eSNP complex in which the SNPs themselves were captured
in the Harold (Harold et al. 2009) GWAS at a p value less than 1.0E - 03. The
large red nodes are frequently discussed in the context of AD and they are part of
an eSNPs complex in the human brain. One hypothesis for the surprisingly low
odds ratio in the findings from Harold et al. is that there may be a large amount of
epispastic interactions among the loci in the human genome, and the network in
Fig. 3 captures it. The fact that greater than 90 of the SNPs that fall into eQTL
complex form a single coherent network suggests that we are capturing key genetic
players in Alzheimer’s disease.

3.4 NGS: Technologies

The use of NGS for whole genome sequencing (WGS) and whole exome
sequencing (WES) in large diseased cohorts should circumvent some of the issues
previously mentioned, and will hopefully point to genes that will be the next
cohort of targets to be followed for drug development. Genes containing frame
shifts, large in/dels, missense, or nonsense mutations that are either associated with
extreme phenotypes or are shown to be causal for disease development will be
obvious candidates; however, data from WGS and WES studies may also enable
pathway analysis for the understanding of complex diseases. Data from the 1,000
Genomes Project suggest that individuals carry roughly 250–300 loss-of-function
variants in their genome (2010; Buchanan et al. 2012), although subsequent
analysis has lowered this estimate to roughly 100 loss-of-function variants per

Fig. 2 The workflow to
arrive at the network depicted
in Fig. 3
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individual (MacArthur et al. 2012). Analysis of large cohorts via WGS or WES
combined with a focus on mutations affecting protein coding will bypass the
question of linkage, directly implicating genes with diseases. In the case of
complex diseases, this should enable pathway analysis beyond that possible with
GWAS results alone.

An example of this methodology has been applied in autism. Autism spectrum
disorders have a strong genetic component, but for the majority of cases, the
genetic cause is unknown. Recently, WES was performed in 209 families with
autism (for 677 total exomes) to identify autism candidate genes; 126 truncating or
severe missense mutations were detected (O’Roak et al. 2012). This number of
candidate drug targets would be impossible to follow up on individually in a
meaningful way. Much like the AD example above, these authors mapped their

Fig. 3 The network of genes that come up in Harold et al. (2009) forming a coherent network,
where the network is defined by orthogonal data and the genes that come from those SNPs that
are members of a previously defined eSNP complex. Red nodes are genes that are also part of an
eSNP complex from the brain
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results onto a protein–protein interaction map showing roughly 40 % of the hits
mapped to a highly interconnected network largely implicating the b-catenin
signaling pathway (a developmental regulator involved in neuronal development).

4 Identification of an ‘‘Inflammatome’’ for Drug Target
and Biomarker Discovery

Recent surveys have indicated that lack of efficacy, and toxicity, are two of the
major causes of failure in drug development (Kola 2008; Kola and Hazuda 2005;
Kola and Landis 2004). Since efficacy is usually established using pre-clinical
models, it is critical to identify and validate drug targets based on reliable animal
models and connect the resulting data to efficacy proof of concept (POC) in
humans early in the development process. In addition, robust biomarkers capable
of reporting such efficacy need to be in place before engaging large clinical trials.

Disease target gene identification is a complicated process without a standard
protocol. Efforts have been made to identify disease-specific targets directly from
human patient populations based on high-throughput genetic associations (Roses
et al. 2005) and many computational methodologies employing pathway- or net-
work-related approaches to mine publically available databases have been pro-
posed and executed (Dezso et al. 2009; Kim et al. 2011b; Ortutay and Vihinen
2009; Roses et al. 2005; Tiffin et al. 2008). However, most pharmaceutical
companies still rely on a literature-based approach to find new targets for their
drug pipelines. We describe in this section, our effort to identify a reference gene
set for future drug target and disease-specific biomarker consideration by an
integrated analysis of comprehensive lists of both animal and human genomics
data sets available to us. This approach is unique in that it is the first systematic
investigation of multiple tissues derived from multiple disease models combining
gene expression profiling data with statistically causal genetic networks across
rodents and humans, which could have a higher translational value in delivering
better targets and disease biomarkers.

4.1 Inflammatome: A Representative Inflammatory
Gene Signature

It is well-established that most common diseases not previously thought to be
associated with inflammation, such as atherosclerosis (Weber and Noels 2011),
cancer (Walczak 2011), diabetes (Hess and Grant 2011; Wen et al. 2012), obesity
(Stienstra et al. 2012), osteoarthritis (Kapoor et al. 2011), sarcopenia (Peake et al.
2010), and stroke (Iadecola and Anrather 2011), all have a significant component
of inflammation. To ensure our effort would result in a broad coverage of major
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Table 2 Rodent disease models included in the inflammatome analysis

Overlap with
inflammatome

Tissue FDRa

(%)
#
Genes

Up-
regulated

Down-
regulated

Up-
regulated

Down-
regulated

Inflammatome
(mouse)a

2,505 1,511 994 1,511 994

Inflammatome
(rat)b

2,486 1,397 1,089 1,397 1,089

OVA Lung 1 3,989 2,037 1,952 790 354
IL-1b Tg Lung 15 3,681 1,851 1,830 732 256
TGFb-Tg Lung 2 3,483 1,799 1,684 505 265
ApoE KO HFD Aorta 12 3,995 1,983 2,012 744 263
ob/ob Adipose 10 3,314 1,696 1,618 358 218
db/db Adipose 15 3,626 1,514 2,112 454 287
db/db Islet 1 3,861 1,983 1,878 400 250
CGN

inflammatory
pain

Skin 10 4,273 1,853 2,420 538 318

Chung neuro pain DRG 1 4,353 1,844 2,509 579 404
Stroke Brain 5 4,240 1,990 2,250 598 347
Sarcopenia Muscle 5 3,790 2,053 1,737 379 235
LPS Liver 2 3,717 1,790 1,927 467 203
a False discovery rate (FDR) was calculated for each individual data set
b The inflammatome signature (2,505 mouse genes) was identified by a two-way ANOVA
approach (p \=1.0E - 9, Benjamini-Hochberg corrected)
c The 2,505 mouse inflammatome genes map to 2,486 rat genes

Table 3 Additional published disease gene signatures significantly overlapping with the
inflammatome

Species Disease/tissue Common genes p Value Reference

Mouse Arthritis/synovium 1,339 2.3E–180 (Geurts et al. 2009)
Cancer/bladder 1,180 2.0E–148 (Kim et al. 2011a)
Glomerulonephritis/kidney 606 1.3E–145 GSE969
Cancer/prostate 582 9.0E–144 (Bacac et al. 2006)
Colitis/colon 946 2.4E–131 (Schmidt et al. 2010)
Cancer/breast 736 4.8E–128 (Liu et al. 2009)
S. aureus infection/blood 953 2.3E–76 GSE19668

Human Cancer/brain 1,341 1.2E–86 (de Tayrac et al. 2009)
Psoriasis/skin 1,347 1.7E–75 (Yao et al. 2008)
Colitis/colon 1,486 3.4E–72 (Arijs et al. 2009)
Cancer/breast 867 5.2E–71 (Pedraza et al. 2010)
Cancer/ovary 1,312 3.3E–67 GSE12172
Cancer/kidney 1,180 7.5E–63 GSE14762
HIV infection/lymph node 785 7.4E–59 (Li et al. 2009)
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disease areas, we started our gene expression analysis on rodent inflammatory
disease models of 12 data sets derived from 11 models including three respiratory
diseases (asthma, emphysema, and pulmonary fibrosis), two metabolic diseases
(obesity and diabetes), two pain-related diseases (CGN-induced inflammation pain
and Chung neuropathic pain), atherosclerosis, LPS-treated liver injury, age-related
sarcopenia, and stroke. As listed in Table 2, only the most disease-relevant tissue
from each model was profiled with a total of nine tissues on the list. Using the two-
way ANOVA approach, we selected a representative signature of 2,505 genes in
mouse (which map to 2,483 rat genes) across 12 disease model-tissue combina-
tions as well as disease-specific signatures. Among the 2,505 genes, there are
1,026 genes consistently up- or down-regulated in at least 10 data sets. An
annotation of this representative signature indicated that it is highly enriched in
macrophage genes and genes associated with inflammation and immune response,
thus was termed the ‘‘inflammatome’’ (Wang et al. 2012c)

As expected, the inflammatome signature significantly overlaps with disease
signatures derived from each individual model included in the analysis (Table 2).
Furthermore, a comprehensive comparison with data available in the public
domain showed that it is also significantly overlapping with many disease signa-
tures from both mouse [e.g. arthritis (synovium) (Geurts et al. 2009), glomerulo-
nephritis (kidney), colitis (colon) (Schmidt et al. 2010), bacteria-infected blood,
and several types of cancer (bladder, breast, and prostate) (Bacac et al. 2006; Kim
et al. 2011a; Liu et al. 2009)] and human [e.g. psoriasis (skin) (Yao et al. 2008),
colitis (colon) (Arijs et al. 2009), HIV-infected lymph node (Li et al. 2009), and
several types of cancer (brain, breast, kidney, and ovary) (de Tayrac et al. 2009;
Pedraza et al. 2010)] (Table 3) which broadens the association of the inflamma-
tome to additional major disease areas such as cancer, autoimmune, and infectious
diseases.

A comparison among the inflammatome, a list of drug target genes (currently on
market and under investigation) according to GeneGo (http://www.genego.com/),
and a list of genes based on cataloged GWAS studies (www.genome.gov/
gwastudies, accessed on May 8, 2012) was conducted to assess the potential use-
fulness of the inflammatome. The results showed that the inflammatome includes
178 out of 803 drug target genes and 545 out of 3,886 GWAS candidate genes; both
of these overlaps are significant. It is interesting to point out that two genes, Ppara
and Prkaa2 (Ampk) with agonists on the market or under development, are down-
regulated in all 12 inflammatome data sets; whereas two other genes, Syk and Jak2
(Mocsai et al. 2010; Quintas-Cardama et al. 2011), both with inhibitors under
development for multiple disease areas, are up-regulated in at least 11 data sets.
This preliminary analysis provided confidence that the inflammatome signature is
highly enriched in current drug targets and GWAS genes for common diseases, and
could be potentially utilized as a gene set for selecting new drug targets.
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4.2 Macrophage-Enriched Metabolic Network Module

Gene expression alone can not distinguish whether variations in mRNA are causal
or reactive to the associated phenotype; whereas analysis including genotype, along
with gene expression, and other complex trait data in segregated populations could
allow inferring causal relationship and construction of genetic networks which have
more predictive power. MRL was among the first research institutes to apply this
type of integrated systems biology approach both in rodents (Chen et al. 2008b;
Derry et al. 2010; Mehrabian et al. 2005; Schadt et al. 2003, 2005; Yang et al. 2009;
Zhu et al. 2004) and in humans (Dobrin et al. 2011; Emilsson et al. 2008; Schadt
et al. 2008; Zhong et al. 2010a, b), to identify gene networks perturbed by sus-
ceptible loci which then lead to disease. One interesting module identified this way
was called the macrophage-enriched metabolic network (MEMN) module (Chen
et al. 2008b; Emilsson et al. 2008). The MEMN module is composed of *1,200
genes in mice and *2,500 genes in humans, with a highly significant overlap.
Expression of these genes is coregulated in liver and adipose, and many MEMN
genes have a causal relationship with disease traits associated with metabolic
syndrome. The presence of multiple inflammatory genes and macrophage activa-
tion pathways suggest that the MEMN module plays a role in macrophage infil-
tration of liver and adipose tissue. Coexpressed modules such as the MEMN are
found to be enriched for defined biological pathways with genes associated with
disease traits, and for genes linked to common genetic loci (Lum et al. 2006).

It was subsequently demonstrated that when nine MEMN module genes were
individually perturbed by a transgenic or knockout approach, eight of them
exhibited a phenotype of abdominal obesity (Yang et al. 2009). Atherosclerosis
plaque formation and rupture are directly related to macrophage dysfunction and it
was shown that an atherosclerotic plaque signature which can separate inflamed
from noninflamed plaque shares common features with the MEMN module (Puig
et al. 2011). Recently, Min et al. (Min et al. 2012) performed coexpression net-
work analysis for adipose and blood in humans with metabolic syndrome found a
significant overlap between the metabolic syndrome networks and the MEMN
module. These results confirm the central role of the MEMN module in metabolic
disease, and provide examples of the value of networks in dissecting disease
complexity. It is, perhaps, not a surprise that more than 30 and 20 % of inflam-
matome genes are in common with human and mouse MEMN module genes,
respectively.

4.3 Inflammatome Genes are Enriched in Multiple Tissue Gene
Networks in Both Mouse and Human

An effort was made to further explore how inflammatome genes perform in other
tissue-derived networks by first looking into a Bayesian network (BN) built from
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adipose tissue of a B6 9 C3H mouse F2 cross (Cervino et al. 2005). It has been
shown that Bayesian networks can be used to extract complex information (e.g.
gene expression, genotype, and disease-related traits) from noisy data to derive
causal relationships among genes of interest (Zhu et al. 2004). Of the *2,500
inflammatome genes, 854 are present in the B6 9 C3H adipose BN and 406 genes
are directly connected in a subnetwork. When the analysis was expanded to an
adipose network built from 12 independent mouse F2 crosses, more than 65 % of
the inflammatome genes (1,659) were found to be present and directly connected;
many supported by data from more than one F2 cross. Similar analyses were
performed in liver and muscle networks reconstructed from 12 and 8 F2 crosses
with 1,517 and 1,145 inflammatome genes present in the resulting BN, respec-
tively. A comparison among all three BNs identified 874 genes in common
(Fig. 4), suggesting strong causal relationships among members of this gene set
across multiple tissues.

Similar integrated network analyses were subsequently conducted using large data
sets acquired from various human cohorts, with 181 common inflammatome genes
present in one analysis including three human cancer BNs from breast, liver, and lung
(Dai et al. 2005; Lamb et al. 2011) (Fig. 4), of which 130 are overlapping with the 874
common mouse network genes, indicating a translational value of this gene signature.

4.4 Potential Applications of the Inflammatome Signature

The inflammatome signature, therefore, represents a list of disease-associated genes
with many members directly connected in causal genetic networks reconstructed
from multiple tissues in both human and mouse. In a sense, it extends the coverage

Fig. 4 Inflammatome genes are highly enriched in multiple mouse and human tissue or disease
gene networks. Among *2,500 inflammatome genes, 130 common genes were overlapping
among the six Bayesian networks shown above
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of MEMN (i.e. adipose and liver in the metabolic syndrome disease) to multiple
diseases including many affected tissue types. Since inflammatome signature over-
laps significantly with gene signatures derived from additional disease and tissue
combinations, such as cancer (bladder, brain, breast, kidney, ovary, and prostate) and
infectious diseases (Staphylococcus aureus-infected blood and HIV-infected lymph
node), its importance could go beyond diseases not covered by the contributing 11
models. Further investigation and validation of key driver genes [described in details
in (Zhu et al. 2008)] from this list could help in identifying targets, such as Syk and
Jak2 (Mocsai et al. 2010; Quintas-Cardama and Verstovsek 2011), which can be used
for development of therapeutics in multiple disease areas.

In addition to identifying a representative inflammation-related gene set, the
approach used for identification of the inflammatome could be modified to derive
disease-specific genes for biomarker discovery and to study distinct disease-specific
pathways and mechanisms. For example, when combining a cartilage data set obtained
from human osteoarthritis (OA) patients with the seven mouse data sets used in the
inflammatome analysis, we were able to identify asporin (ASPN) as a potential OA-
specific disease marker. Expression of asporin is highly regulated in chondrocytes
(Duval et al. 2011), and an aspartic acid repeat polymorphism in asporin was found to
inhibit chondrogenesis and increase susceptibility to osteoarthritis in multiple Asian
populations (Kizawa et al. 2005; Shi et al. 2007; Song et al. 2008).

5 Blood Gene Profiling as a Powerful Tool for Clinical
Biomarker Identification

Genome-wide transcriptomic analysis of disease can identify disease- and treatment-
specific gene signatures which could then be translated into biomarkers for use in
clinical practice (Allantaz et al. 2007; Deng et al. 2006; Scherer et al. 2003; van’t Veer
and Bernards 2008). Diseased samples from target tissues, however, are usually dif-
ficult to acquire and it is even more challenging to obtain control samples from healthy
donors. For the pharmaceutical industry, this limitation is particularly daunting when
conducting large-scale clinical trials. The high cost and low throughput of direct tissue
biopsies simply makes transcriptomic analysis inaccessible and impractical in most
late phase clinical trials, and surrogate samples, such as peripheral blood, need to be in
place when appropriate, for biomarker research and development.

5.1 Enabling Technological Advancements for Blood
mRNA Profiling

Profiling blood samples is not without issues. Blood mRNAs tend to be degraded
and some transcripts are induced during sample preparation. These sample
collection and processing issues were mostly resolved by the commercialization
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of two reagents, PAXgeneTM (Rainen et al. 2002) and TempusTM (Prezeau et al.
2006). A direct comparison of the two systems had been reported which indicated
that the method of blood collection and RNA purification could impact gene
expression profiles (Asare et al. 2008). The other problem associated with whole
blood transcriptomic studies is significant profiling artifacts due to the over-
abundance of globin mRNAs (Tian et al. 2009). Most earlier blood profiling
studies employed peripheral blood mononuclear cells (PBMC) to circumvent the
globin mRNA issue (Burczynski and Dorner 2006; Mohr and Liew 2007). How-
ever, preparing PBMC is still tedious enough to prevent that approach from being
adopted during large clinical trials; in addition, the preparation does not include
potentially critical disease-related blood cell types such as neutrophils and
eosinophils. At least, four RNA preparation and labeling methods which remove
or block globin mRNAs during the microarray assay have been developed and
utilized by investigators to effectively mitigate the negative impact of excessive
globin transcripts (Parrish et al. 2010; Vartanian et al. 2009). These technological
advancements have greatly improved the ability to reliably identify mRNA-based
biomarkers from whole blood in a feasible way during clinical trials (Chaussabel
et al. 2010; Julia et al. 2009; Marshall et al. 2010; Mendrick 2011; Pankla et al.
2009; Pascual et al. 2010; Quartier et al. 2011; Tattermusch et al. 2012).

5.2 Baseline Blood Profiling as a Reference

To use blood profiling as a tool for disease or treatment biomarker discovery, it
is important to first establish an understanding of variation in gene expression
patterns among healthy individuals. To achieve this goal, blood samples from 75
normal volunteers were surveyed by using cDNA microarrays and the main
variation in gene expression was found to be associated with relative proportions
of specific blood cell subsets. Other contributing factors identified in the study
included age, gender, and the time of day when samples were collected
(Whitney et al. 2003). In the same study, it was found that immunoglobulin (Ig)
gene expression was negatively correlated to donor age, and the expression of a
subset of IFN-inducible genes was highly variable among donors. A subsequent
blood profiling study of 15 normal individuals with samples collected at mul-
tiple time points also showed high variability of IFN-inducible genes and those
expressing higher baseline levels had lower response to IFN in vitro (Radich
et al. 2004). Recent gene expression and pharmacogenomic studies demonstrated
that genes associated with IFN pathways could determine susceptibility to dis-
ease or pathogen and response to certain treatments (Assassi et al. 2010; Everitt
et al. 2012; Hambleton et al. 2011; Reif et al. 2008; van Baarsen et al. 2008;
Zaas et al. 2009).
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5.3 Analyzing Blood Profiling Data

Significantly modulated signatures were usually selected based on the standard
statistical methods such as t test, and analysis of variance (ANOVA) for gene
expression profiling data analysis. In some cases, gene signatures associated with
clinical endpoints were identified by correlation analysis and a statistical method,
Significance Analysis of Microarrays (SAM), based on an adjustable FDR, which
has been adapted specifically for genome-wide transcriptomic analysis (Tusher
et al. 2001). More sophisticated analyses such as the ‘metagene’ approach as
mentioned earlier, were developed to connect microarray data with biological
annotations or clinical phenotypes (Huang et al. 2003) for hypothesis generation;
and another gene expression ‘deconvolution’ method was used to precisely mea-
sure the proportions of immune cell types in blood (Abbas et al. 2005, 2009). In a
recent study, Zaas et al. (2009) performed a sparse latent factor regression analysis
on human peripheral blood gene expression from patients infected with closely
related rhinovirus, respiratory syncytial virus, and influenza A and derived a
classifier gene set which could distinguish individuals with symptomatic acute
respiratory infections (ARIs) from uninfected individuals, and viral from bacterial
ARIs with [95 and 93 % accuracy, respectively.

A module-based algorithm developed specifically for blood transcriptome
analysis was reported by Chaussabel et al. who employed gene expression profiles
from 241 PBMC patient samples with eight different diseases. Twenty-eight
co-expressed gene modules were identified and genes within the majority of
modules were associated with a particular cell type, biological pathway, or
process. The algorithm uses a color intensity-scoring system based on the
percentage of probe sets within the module with significant p values (Chaussabel
et al. 2008). More recently, the same team updated their modular analysis using
410 whole-blood samples from nine disease data sets and came up with 260
modules which could potentially provide more detailed annotations for blood
profiling data (Banchereau et al. 2012). In addition, a score dubbed ‘Molecular
Distance to Health’ (MDTH) that measures genome-wide expression perturbation
in patients in comparison to healthy individuals was constructed in combination
with the revised modules to facilitate the correlation with clinical parameters.

5.4 Integrated Blood Gene Module and Metagene Approach

We integrated the experience learned (Radich et al. 2004; Whitney et al. 2003) and
analytical methodologies developed (Abbas et al. 2005, 2009; Chaussabel et al.
2008; Huang et al. 2003) from previous studies with our in-house proprietary data
sets and operations to perform blood-related microarray data analysis. For example,
instead of the original reported color intensity-scoring system (Chaussabel et al.
2008), we developed a module-scoring algorithm which took the average of all

188 I.-M. Wang et al.



gene expression levels within the module and represented it as one number to
facilitate correlation analysis. Additional ‘metagenes’ associated with aging (Hong
et al. 2008) and other clinical endpoints based on published as well as proprietary
data sets were constructed to enrich our capacity for data interpretation and
hypothesis generation in several infectious disease and vaccine preclinical and
clinical studies.

Most of the reported vaccine-related blood profiling studies focused on iden-
tifying genes which predict vaccine efficacy (Bucasas et al. 2011; Gaucher et al.
2008; Nakaya et al. 2011; Palermo et al. 2011; Querec et al. 2009; Vahey et al.
2010). Expression levels of two genes, eukaryotic translation initiation factor 2 a
kinase 4 (EIF2AK4) and solute carrier family 2, member 6 (SLC2A6) were
associated with antibody titers and antigen-specific CD8 ? T cell responses in
yellow fever YF-17D vaccine trials (Querec et al. 2009), whereas expression levels
of two other genes, TNF receptor superfamily, receptor 17 (TNFRSF17) and
CD38, were able to predict antibody titers after immunization with trivalent
influenza vaccine (TIV) or yellow fever vaccine (YF-17D) (Nakaya et al. 2011;
Querec et al. 2009). Furthermore, it was shown that expression of the CAMK4
kinase was negatively correlated with later antibody titers, and vaccination of TIV
in Camk4-deficient mice-induced higher antigen-specific antibody titers than in
wild type mice (Nakaya et al. 2011).

The initial focus of our NHP vaccine study was to identify blood gene
expression biomarkers associated with the AEs including both systemic (e.g.
myalgia, headache, fever, and fatigue) and local (e.g. pain, redness, and swelling)
AEs. We ranked several marketed vaccines including Adacel, Menactra, Havrix,
Prevnar, and RabAvert along with Merck’s experimental flu vaccine V512 and
HIV vaccine MRKAd5gag, according to the severity of the AEs they induced in
humans and then correlated gene expression signatures induced by these vaccines
in NHP with the AEs. By using the data analysis approaches described above, we
were able to identify gene modules and metagenes associated with AEs and val-
idated the findings using a second set of six additional vaccines (Wang et al.
manuscript in preparation) not included in the training set. We recently reviewed
publically available transcriptomic data associated with vaccinated human and
NHP whole blood or PBMC, and found some consistent results to our nonhuman
primate (NHP) data sets (Wang et al. 2012a), suggesting a potential translatable
value of the preclinical model used in our vaccine development programs.

5.5 Blood Gene Profiling in Clinical Practice

Blood-based mRNA biomarkers have been investigated in almost all disease areas
with promising results for detecting and monitoring disease and treatment out-
comes (Chaussabel et al. 2010; Fang 2007; Han et al. 2008; Hanash et al. 2011;
Julia et al. 2009; Marshall et al. 2010; Pankla et al. 2009; Pascual et al. 2010;
Quartier et al. 2011; Tattermusch et al. 2012). Efforts were made even in areas not
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obviously or traditionally connected with blood, such as in neurological diseases
(Kurian et al. 2011; Le-Niculescu et al. 2009; Runne et al. 2007; Scherzer et al.
2007) and drug toxicology (Bushel et al. 2007; Fannin et al. 2010; Huang et al.
2010; Lobenhofer et al. 2008). The biomarker discovery process is usually initi-
ated with genome-wide expression profiling to identify significantly modulated
gene sets, followed by employing more stringent criteria to down-select a small
subset of genes for assay development (Barth and Hare 2006; van’t Veer and
Bernards 2008). Although concerns remain about the consistency of transcription
profiling (Tang et al. 2010), progress made in the past few years has resulted in
tremendous improvement in accuracy, sensitivity, and reproducibility of blood
gene assays.

Commercially available blood mRNA assays are now available for detecting
multiple diseases (Novak et al. 2012), and an 11 blood gene mRNA signature for
predicting rejection following cardiac transplant has been approved by the FDA
(Yamani et al. 2007a, b). More communication and collaboration among phar-
maceutical industry, academia, diagnostic companies, and regulatory agencies will
be needed to standardize profiling study design, data analysis/interpretation, and
assay development to utilize this easily accessible tissue to its full capacity in the
clinical setting.

6 Future Directions and Conclusions

Due to its high stability, reproducibility, and consistency among individuals (Chen
et al. 2008a), plasma miRNA has recently attracted a lot of interest as potential
biomarkers for physiological conditions such as drug-induced tissue injury
(Laterza et al. 2009) and for disease diagnosis (Cortez and Calin 2009), especially
cancer detection (Schrauder et al. 2012). The role other types of noncoding RNA
(ncRNA) plays in human disease is being actively pursued (Esteller 2011) and
should be closely monitored.

Advancement in next-generation sequencing (NGS) technologies in the past
few years (Metzker 2010) has dramatically reduced the cost and time of data
acquisition, opening up new areas of systems biology research such as whole
genome (Cirulli and Goldstein 2010; Pleasance et al. 2010), whole exome (Clark
et al. 2011), whole transcriptome (Ozsolak and Milos 2011) analysis of human
patient cohorts which have already impacted medical research in an unprecedented
way (Chin et al. 2011; Meyerson et al. 2010; Pleasance et al. 2010). In the
infectious disease area, researchers could now expand their understanding of
pathogens by performing WGS (Forgetta et al. 2011; Relman 2011) during disease
progression. A recent study tracked mutations accumulated in S. aureus genome
over a 13-month period in an infected host who progressed from carriage to
disease, and identified a cluster of mutations that caused truncation of bacterial
proteins which could be the cause of pathogenicity (Young et al. 2012). This type
of information, when validated in a large cohort, could be utilized for designing
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new therapeutics or integrated with host response to generate testable hypotheses
of why certain subpopulations are more susceptible to disease.

Metagenomic sequencing of microbiome (Qin et al. 2010; Virgin and Todd
2011) and immune repertoire sequencing (Benichou et al. 2012; Boyd et al. 2009;
Klarenbeek et al. 2010; Logan et al. 2011) represent two additional promising
research areas enabled by the NGS technology. Sequencing the human gut
microbiome, for example, could gain more detailed understanding of the micro-
bial–human interaction which plays an important role in energy metabolism and
immunity in the host. It has been increasingly appreciated that an imbalanced gut
microbiota could partially result in many diseases, such as Clostridium difficile
infection (CDI), inflammatory bowel disease (IBD), and the metabolic syndrome.
Fecal microbiota transplantation (FMT) (Borody and Khoruts 2011) could
become a well-established therapeutic option, once we have a more thorough
understanding of the gut microbiome. Immune repertoire sequencing (Rep-seq)
(Benichou et al. 2012) has been used in (1) monitoring residual disease and
immune reconstitution in chronic lymphocytic leukemia (Boyd et al. 2009; Logan
et al. 2011); (2) understanding diversity of T and B cell repertoires (Boyd et al.
2010; Robins et al. 2010; Venturi et al. 2011; Wang et al. 2010); and (3) producing
antibodies targeting specific antigen (Reddy et al. 2010). Further investigation of
Rep-seq data obtained under infection and vaccination conditions could facilitate
understanding of the protective immune response and shed light in future vaccine
or therapeutic antibody development.

New sequencing technologies are being developed in a rapid pace and at least
two important novel platforms, one using single-molecule nanopore technology
(Oxford Nanopore) (Clarke et al. 2009) and the other applying a complementary
metal-oxide semiconductor (CMOS) process (Ion Torrent) (Rothberg et al. 2011),
became commercially available recently. These platforms could further reduce
costs, increase sequencing speeds, and enable systems-based genomics analysis of
large patient cohorts. Applying innovative technologies in well-coordinated
studies of appropriate preclinical models and human subjects could result in the
identification of efficacious targets and robust biomarkers for predicting and
reporting responses, which will increase the successful rate of drug development.
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Insights into Proteomic Immune Cell
Signaling and Communication
via Data-Driven Modeling

Kelly F. Benedict and Douglas A. Lauffenburger

Abstract Over the past decade, studies applying data-driven modeling approaches
have demonstrated significant contributions toward the integrative understanding of
multivariate cell regulatory system operation. Here we review applications of
several of these approaches, including principal component analysis, partial least
squares regression, partial least squares discriminant analysis, decision trees, and
Bayesian networks, and describe the advances they have offered in systems-level
understanding of immune cell signaling and communication. We show how these
approaches generate novel insights from high-throughput proteomic data, from
classification to association to influence to mechanisms. Looking forward, new
experimental technologies involving single-cell measurements of cytokine
expression beckon extension of these modeling techniques to inference of immune
cell–cell communication networks, with a goal of aiding development of improved
vaccine therapeutics.
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1 Introduction

The human immune system is complex at all scales, spanning the molecular level of
translational and transcriptional events within cells, intracellular protein signaling
interactions, cell–cell communication via soluble cytokines, and organ function. In
recent years, systems biology approaches have yielded new kinds of insight into
different components of the immune system through findings that emphasize a
multivariate integrative perspective on systems-level properties and function.

Many of these new insights have been generated using theory-driven, also
called knowledge-based approaches, where mathematical models are constructed
based on theorized hypotheses (Fig. 1). In this approach, published literature and
previous experimental results are used to guide construction of the mathematical
model. Choice of model boundaries, important input/output relationships, key
species, and parameter values are all selected based on prior knowledge and
hypotheses governing the system of interest. Interactions between species are
described with mathematical relationships, often in the form of differential
equations. These theory-driven approaches enable crucial hypothesis-testing of
system-level properties and evaluation of parameter values in the broad context of
an entire signaling network (Benedict et al. 2011), both of which are difficult to
obtain with experimental work alone. In the field of immunology, a deep body of
the experimental literature and broad range of experimental assays for measuring
transcriptional and intracellular protein signaling events have allowed for valuable
use of theory-driven approaches, including understanding how various IjB pro-
teins affect NFjB signaling dynamics (Hoffmann et al. 2002), evaluating APO-
BEC3G- and Vif-based therapeutic strategies for HIV infection (Hosseini and
Gabhann 2012), elucidating the role of shared receptor components, ligand com-
petition, and feedback loops in IL-7 signaling (Palmer et al. 2008), and under-
standing how Th and Treg IL-2 feedback loops and signaling dynamics shape
different cellular microenvironments (Busse et al. 2010).
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As we move forward in understanding the human immune system, it will be
crucial to evaluate the immune system at multiple scales, beyond intracellular
signaling to cell phenotypes, cell–cell interactions, and in vivo tissue function. In
contrast to intracellular cell signaling pathways which have been comparatively
well-characterized, in order to understand immune system function at multiple
scales we will need to quantitatively identify key elements of systems that we have
little current knowledge of, including relevant systems-level interactions, appro-
priate boundaries, and important input/output relationships. Data-driven modeling
approaches offer a valuable complementary approach to theory-driven models and
enable identification and study of poorly characterized systems using data obtained
directly from a given system to quantitatively characterize it. In data-driven
approaches, hypotheses are derived directly from mathematical analysis of
experimental data in contrast to theory-driven approaches that utilize prior
knowledge (Fig. 1). Mathematical relationships are delineated to link system
components to each other as well as to important system input or output param-
eters. This is done based on data alone and without prior knowledge of system
function. Data-driven approaches also offer the ability to integrate data obtained
from different sources and across different physiologic scales, which will be
critical for moving toward in vivo study of immune system function.

PCA

PLSR / PLSDA

Decision Trees

Bayesian Networks

THEORY-DRIVEN

Equations

Differential 

Hypotheses are derived from 
mathematical analysis of 

experimental data

Mechanism

Mathematical model is derived 
from theorized hypotheses
(rooted in prior knowledge)

DATA-DRIVEN

Boolean/Fuzzy Logic 

(can readily be applied in either mode)

Landscape of computational modeling approaches in biology:

diverse approaches will be needed, depending on data and question

Classification

Influence
Association

Fig. 1 Data-driven modeling techniques can give a wide range of insight into biological events.
Type of insight gained is not dependent on specific technique used, but rather on questions asked
and type of data used, as illustrated by recent work that has used a number of techniques to gain
different types of insight
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Insights gained from data-driven approaches applied to immunological systems
can span a broad spectrum of specificity, from broad, high-level classification and
prediction to association, influence, and even new mechanistic insight (Fig. 1).
Previous work (we review here) using data-driven techniques such as principal
component analysis (PCA), partial least squares regression (PLSR), partial least
squares discriminant analysis (PLSDA), decision trees, and Bayesian inference
networks (Table 1) has shown that the type of insight gained from data-driven
modeling approaches is not dependent on the specific type of analysis used, but
rather on the questions asked, the nature and quantity of available data, and the
contextual settings in which the approach is utilized.

One useful application of data-driven techniques is as a methodology for
classifying or predicting important biological events. This is especially useful in
clinical settings where it is necessary to rapidly and efficiently differentiate
between different immune states or cell types, such as the examples we review
here, including differentiation between different types of infections (Prilutsky et al.
2011), or screening high quality cells for use in cell therapy (Rivet et al. 2011). In
these settings, distinguishing between biological states is of greater importance
than knowledge of specific mechanisms governing these differences. Since,
accuracy is of higher importance than detailed mechanisms, these approaches
often require larger amounts of data but less biologically meaningful parameters.

Identifying new system boundaries requires association of unknown system
components with an important system behavior or output of interest. Data-driven
approaches can be used to identify important associations across different physi-
ologic scales and with different types of experimental data. For instance, given a
large complex data set comprising measurements of molecular regulatory activi-
ties, data-driven approaches can extract groups of molecular activities that are
statistically associated with a given cell phenotype or behavior. They can also
associate signaling events with tissue- and patient-level characteristics, such as
disease state, prognosis, or likelihood of response to treatment. Even if associa-
tions between events and states are not different enough to be used as a robust
predictive tool, they can still generate new hypotheses for follow-up studies,
especially when biologically meaningful data is used.

Maps of molecular regulatory activities, such as proteomic signaling or transcrip-
tional processes, have been traditionally created based on the intuitive aggregation of
results from separate experimental studies, each of which focused on different parts of
the map. In contrast, data-driven techniques can systematically generate influence
maps based on only high-throughput experimental data, usually with data obtained
before and after some perturbation. For example, given a set of protein signaling
measurements made in a resting state that are also measured after perturbation of
different signaling nodes, data-driven techniques can generate a predicted connectivity
map of influence for all molecular species measured in the data. Though the approach
does not require prior knowledge, prior knowledge is useful to guide the selection of
biological measurements to include in the high-throughput data used to create the
influence map. The more biologically meaningful the data is, the more biologically
meaningful the influence map will be.
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Data-driven techniques can also identify important new systems-level mecha-
nisms, especially when coupled with careful follow-up experiments. Such insight
is best gained when the data that are used for the model is biologically meaningful,
and model predictions are confirmed with interventional follow-up experiments.
For example, this type of approach can identify new combinatorial protein sig-
naling events relevant to a phenotype or behavior. Combinatorial events identified
can then be used to generate new hypotheses for system-level mechanisms, such as
feedback loops and other pathway crosstalk, that can be verified with specific
stimulators or inhibitors.

The value of data-driven approaches in clinically relevant immunological
settings has been demonstrated at the transcriptional level with the use of human
immune cell microarray data for prediction of patient responses to yellow fever
and seasonal flu vaccines (Querec et al. 2009; Nakaya et al. 2011). These studies
demonstrate the value of data-driven approaches in predicting patient responses
and hint at the potential for identifying critical new mechanisms of action. Recent
advances in experimental technology have allowed for the acquisition of high-
throughput proteomic signaling measurements from biological specimens and the
subsequent assembly of large complex data sets that are similar in size to
microarray data. In this review, we focus on the use of data-driven approaches in
evaluation of proteomic data, especially as it becomes more broadly available in
high-throughput form. Evaluation of proteomic data will be especially important
as we continue to study the immune system at different scales.

Here, we review recent studies that demonstrate applications of data-driven
modeling using a wide range of techniques, including PCA, PLSR, PLSDA,
decision trees, and Bayesian inference (Table 1). We highlight how the questions
asked, the contextual setting, and the data available help determine the type of
insight that can be gained using different techniques.

2 Classification/Prediction Insights

The ability to distinguish between biological events or states can be a valuable
diagnostic tool, even without accompanying knowledge of associated mechanistic
differences. Data-driven modeling approaches have the capacity to differentiate
events or classes based on linear combinations of multiple features. This is often
more powerful than traditional approaches in immunology that identify differences
based on one or two features. Below we highlight several examples from the recent
literature, where data-driven modeling of proteomic events was employed to
enhance either classification or prediction in immunology applications.
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2.1 Assessment of Cytotoxic T Cell Age for Adoptive T Cell
Therapy of Cancer

The power of a multivariate approach has recently been demonstrated for appli-
cations in adoptive T cell therapy used to treat melanoma, non-Hodgkin’s lym-
phoma, chronic lymphocytic leukemia, and neuroblastoma. In adoptive T cell
therapy, tumor-specific CD8+ T cells harvested from a given patient are clonally
expanded ex vivo and transferred back to the patient to promote an anti-tumor
response. One major difficulty of the approach is loss of in vivo tumor specificity
during clonal expansion of the T cells, and the transition of expanded cells to
senescent states.

A recent study (Rivet et al. 2011) employed multivariate analysis to determine
T cell senescence based on cell surface markers and intracellular protein signaling
events in four healthy donors. A newly developed microfluidic device allowed for
flow cytometric measurement of CD28, CD27, cell shape, and cell size in parallel
with the dynamic phosphorylation of six proteins (CD3, CREB, ERK, LAT, Lck,
and Zap70) downstream of T cell activation signaling at eight time points, from
0.5 to 7 min. After stimulation with IL-2 and bead-based anti-CD3+, CD8+ T cells
reached replicative senescence after 12 population doublings and this was asso-
ciated with changes in some individual measurements, including a decrease in the
proportion of cells in S/G2 phases, decreased cell size, increased variance in cell
shape, a decreased number of cells expressing CD28, decreased mean fluorescent
intensity (MFI) of CD27 expression, and a global decrease in the magnitude of
peak activation levels of all proteins.

Though there were changes in individual measurements, none of the signaling
or surface expression markers were individually sufficient to distinguish popula-
tions based on days in culture. Though the expression of surface markers CD28
and CD27 generally decreased with age, they could not robustly differentiate
senescent T cell populations because their quantitative expression level varied
greatly between donors. Clusters generated by hierarchical clustering methods
were also donor-specific and unable to identify groups of markers related to age
that would be predictive across all donors.

Though individual measurements were unable to identify factors related to T cell
age across all donors, a PLSR model suggested that multivariate combinations of
protein expression measurements were able to identify robust differences associated
with T cell senescence across all donors. In the PLSR model, 48 signaling
measurements, CD28, CD27, and CD3 expression levels, and flow cytometry
measurements of cell shape and size were regressed against T cell days in culture and
number of population doublings. Multivariate combinations of these measurements
were sufficient for prediction of both T cell days in culture and population doublings
metrics, with a goodness of fit of R2 = 0.96 and variance captured with Q2 = 0.78.
Together, the first two principal components were most informative for separating
data based on T cell age (Fig. 2a). A plot of the loadings of the first principal
component revealed that a combination of heterogeneity in cell shape, CD57
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expression, and basal level of phosphorylated-ERK were associated with increased
T cell age (Fig. 2b).

Cross validation was used to assess the robustness of the model in predicting
unknown data. In this approach, data from each donor were iteratively omitted
before the PLSR model was trained to data from the remaining three donors.
Regression was performed on the mean of the four different model predictions
resulting in an R2 value of 0.84 for model predictions of days in culture and an R2

value of 0.94 for model predictions of population doublings, suggesting the model
would be useful for prediction of unknown data.

Signaling information alone was sufficient to make predictions, as a model with
only signaling information was able to predict days in culture and population
doublings with regression coefficients of 0.84 and 0.94, respectively. Early instant
derivatives of ERK and Zap70 around 1–1.5 min were most informative for pre-
dictions made with the signaling model. Likewise, the model with cell surface
marker data was also able to make good predictions, with regression coefficients of
0.78 for predicting days in culture and 0.98 for predicting population doublings.

A PLSR model was also used to explore the relationship between surface
marker expression and signaling information. Two models were generated to
determine if (1) surface marker expression could predict signaling information and
(2) signaling information could predict surface marker expression. Results indi-
cated that surface marker expression was not sufficient to predict signaling
information (R2 = 0.27, Q2 = 0.1). In contrast, signaling information was suffi-
cient for predicting surface marker expression (correlation coefficient ranging from
0.75 to 0.91). The instant derivative of ERK phosphorylation was most associated
with CD27 MFI and there were strong correlations between Lck phosphorylation
and CD28 expression. Early signaling dynamics of ERK, Lck, and LAT were also
highly related to CD28 expression.

Overall, this approach illustrated how multivariate analysis of high-throughput
proteomic data can overcome inter-donor variability to distinguish populations of
CD8+ T cells that are most useful for T cell therapy, where previous univariate
analysis of surface markers was not able to do so. PLSR allowed for the integration
of data from different assays and across different scales, including population-level
dynamic phosphor-signaling events and single-cell flow cytometry measurements
related to shape and size. New combinatorial boundaries and interactions were
discovered that may be associated with T cell senescence, including the signaling
proteins Lck and ERK, and the surface markers CD28, and CD27. Though the key
focus of this work was multivariate analysis for classification and prediction of
T cell senescent states, it also provided new hypotheses for systems level mech-
anisms involving cell surface markers (CD28 and CD27) and early signaling
dynamics of ERK, Lck, and LAT. It demonstrated how PLSR and high-throughput
proteomic data can be used together to discover new associations between immune
cell surface marker expression and downstream signaling events. Follow-up
experimental work could use these hypotheses to identify new systems-level
mechanisms.
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2.2 Differentiation Between Bacterial and Viral Infection
with Chemiluminescent Signatures of Circulating Phagocytes

Rapid and sensitive differentiation between bacterial and viral infections in
patients is crucial for limiting adverse side effects, controlling antibiotic resistance,
and reducing healthcare costs. Current diagnoses rely on time consuming methods

Fig. 2 a Using 48 dynamic cell signaling measurements, cell surface markers, and flow
cytometry measurements of cell shape and size, PLSR was able to differentiate CD8+ T cells
based on time in cell culture. b The first principal component indicated that heterogeneity in cell
shape, CD57 expression, and basal level of phosphorylated-ERK was most associated with a
longer number of days in culture (Rivet et al. 2011). Reprinted with permission from The
American Society for Biochemistry and Molecular Biology
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that are not always sensitive or specific, such as bacterial culture, X-ray scans,
PCR for viral antigens, and white blood cell counts (Prilutsky et al. 2011).
A promising new diagnostic tool to aid clinicians in differentiating between
bacterial and viral infections involves the use of multivariate analysis of whole-
blood measurements of reactive oxygen species (ROS) production by phagocytes,
immune cells that play an important role in defense against bacterial and viral
infections. After encountering a pathogen, phagocytes increase their production of
ROS, which can be measured by light emission, or chemiluminescence (CL), upon
the addition of luminol. Since previous work had indicated that the metabolic
activity of phagocytes was different in bacterial and viral infection, Prilutsky et al.
(2011) examined whether multivariate analysis of CL measurement of ROS
generation by phagocytes might be a rapid, sensitive method for distinguishing
between bacterial and viral infections.

The approach was tested on 69 infected patients: 33 with diagnosed bacterial
infections from X-rays and positive blood culture findings, and 36 with probable
viral infections (nonbacterial). Six healthy patients were used as controls. Luminol
and zymosan were added to fresh whole blood and CL was measured for three
systems of ROS measurement, termed standard, priming, and aging. Experimental
CL curves were recorded and kinetic parameters were calculated from each curve
including: (1) extracellular ROS generation connected to phagocytosis, (2) intra-
cellular ROS generation connected to phagocytosis, and (3) intracellular ROS
generation not connected to phagocytosis. Parameters (1) and (3) were each split
further into two components. Overall data for each patient included 82 different
parameters derived from the three standard, priming, and aging systems. The CL
curves indicated an increased intracellular ROS generation in bacterial infections
compared to viral infections. In contrast, CL curves from viral infection indicated
an increase in extracellular ROS generation.

Among all infected donors, 51 were selected for training the model and 18 were
used to test the predictive power of the model. A C4.5 decision tree algorithm was
used to classify the patients as viral, bacterial, or control cases based on the 82
kinetic parameters derived from the CL curves. Tenfold, stratified cross-validation
was applied in ten iterations to determine the model’s predictive ability in the
training data. Overall, the C4.5 decision tree algorithm was able to accurately
classify 94.7 % of the data in the training set and 69.2 % of the data in cross
validation, making it a better predictive model when compared to other machine
learning methods for classification that were tested, including Support Vector
Machines and Naïve Bayes classification.

The decision tree (Fig. 3) identified CapSA (the capacity of the aging system)
to be the most important parameter for differentiating bacterial infection from
healthy control. RelEff_SA (the relative effectiveness of the aging system com-
pared to the standard system) appeared in two different decision nodes (Fig. 3) in
the decision tree and was most important for distinguishing bacterial from viral
infections, as it was higher in most bacterial infections. RelEff_SP (the relative
effectiveness of the primed system when compared with the standard system) was
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also important and found to be higher in some of bacterial cases when compared
with the viral cases.

Three parameters were most important in differentiating viral cases from others:
Time_nonPhago1_SA (the time to peak of the last portion of non-phagocytosis-
related CL of the aging system), SlopeSP (the ratio of the peak magnitude to time
required to reach this point), and RelEff_SA (the relative effectiveness of primed
and aged systems), both of which were lower in viral infections compared to
bacterial. Using the C4.5 decision tree algorithm, 88.9 % (16 out of 18 patients) of
data in the test set were correctly classified with 75 % prediction accuracy for test
bacterial cases and 100 % accuracy for test viral cases.

This work was a superb illustration of how measurements with little biological
meaning may be extraordinarily valuable in clinical settings if they enable dif-
ferentiation between two clinical states. Though the kinetic parameters derived
from chemiluminescent curves provided little information regarding metabolic
events in phagocytes in response to viral and bacterial pathogens, in combination
with a decision tree algorithm they were a powerful diagnostic tool for rapid and
sensitive differentiation between viral and bacterial infection in clinical settings.

3 Association Insights

Often the main components of a system of interest in immunological research are
largely unknown. Donor-to-donor variability and differences in methods of
experimental measurement make it difficult to isolate the most important protein
signaling events driving a given immune phenotype, disease state, or behavior.
Data-driven modeling approaches used in combination with high-throughput data
sets allow for the selection of fundamental systems-level interactions associated
with a phenotype of interest. Though new associations may not provide direct
mechanistic insight, they indicate new interactions, boundaries, input, and output
that may be most relevant to a given behavior. This sets a new framework for
future experimental studies and knowledge-based modeling efforts.

3.1 Association of Protein Expression with CD8+ T Cell
Phenotype

Cytotoxic CD8+ T cells are key coordinators of the immune system that mediate
the killing of pathogen-infected cells. A number of experimental methods have
been developed to study the function of CD8+ T cells, but donor-to-donor vari-
ability and limitations in experimental technology have made it difficult to
determine the breadth of their function in relation to phenotype. Cell surface
markers CCR7 and CD45RA have been identified as consistent markers for
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different subsets of CD8+ T cells that have been exposed to antigen or are antigen
naïve, respectively. However, surprisingly little is known about the number and
types of cytokines secreted by different CD8+ T cell subsets, and how this function
is related to antigen specificity and killing ability.

Newell et al. (2012) developed a new experimental technology to obtain high-
throughput protein expression measurements from different CD8+ T cell subsets
and used PCA to associate protein expression with various T cell subsets. CD8+
T cells from six healthy donors were exposed to heavy metal isotope-labeled
antibodies before processing by high-throughput mass spectrometry. This enabled
measurement of the expression of 36 or more proteins, compared to the 10–11
proteins usually monitored by traditional flow cytometry methods. Using this
method they were able to measure 17 surface markers (CD3, CCR7, CD11a, CD7,
CD8, CD27, CD28, CD29, CD43, CD45RA, CD45RO, CD49d, CD57, CD62L,
KLRG1, and HLA-DR), 10 intracellular species (IL-2, GM-CSF, MIP-1a, MIP-1b,
granzyme B, CD69, perforin, TNF-a, IFN-c, and CD107a/b) and three other

Fig. 3 A decision tree algorithm was able to classify infections in as bacterial, viral, or control
based on 82 kinetic parameters derived from chemiluminescent curves measured in whole blood
from 75 patients. Reprinted from Pritlusky et al. (2011), with permission. Copyright 2011
American Chemical Society
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parameters (DNA content, cell length, and live/dead) within CD8+ T cells from
different subsets of (classified by CCR7 and CD45RA expression) and with dif-
ferent antigen specificity, identified by labeling with MHC tetramers.

Principal component analysis was employed to look for association of 25 of the
protein expression measurements with the established CD8+ T cell surface
markers CCR7 and CD45RA (to mark na, central memory, and effector subsets)
after stimulation with PMA and ionomycin. When plotted in the multivariate,
principal component space, these 25 measurements were able to differentiate
CD8+ T cells based on lineage across all six healthy donors. PCA of data from six
donors indicated that the first two principal components accounted for 50 % of the
variance, and the first three accounted for 60 %. Component 1 was most repre-
sentative of naïve versus memory status of cells, component 2 separated based on
differentiation status, and component 3 distinguished variation within the central
memory subset. Overall, data from all six donors formed a ‘‘Y-shaped’’ pattern in
the principal component space with naïve, central memory, and effector cells
occupying distinct regions of the shape consistently across six different donors
(Fig. 4). This pattern was not dependent on any one of the 25 parameters, as
removing them individually had no effect on overall scores.

In a separate analysis, peptide-MHC tetramers were used to label T cells from
these six donors according to antigen specificity for CMV, EBV, and flu (Newell
et al. 2012). The same 25 protein expression measurements were made after
treatment with PMA and ionomycin. These antigen-specific T cells were able to
express 56-106 different combinations of the cytokines measured (compared to
512 possible combinations). In general, flu-specific cells tended to make TNF-a,
but not MIP-1b compared to CMV- and EBV-specific cells. Also, CMV-specific
cells were less likely to make IL-2 when compared with EBV- and flu-specific
cells, while flu-specific cells were more likely to make GM-CSF. Despite the wide
range of cytokines secreted, antigen-specific T cells occupied different areas in the
principal components space, similar to the manner in T cells lineage subsets
occupied different regions of the principal component space. One interesting result
from the study of antigen-specific cells was that none of the antigen-specific cells
occupied a multivariate space associated with a subset of central memory cells that
were also CD49d-negative. Since CD49d has been identified as an integrin
involved in cellular trafficking, one new hypothesis generated from this result was
that antigen-specific CD8+ T cells all used the CD49d integrin for trafficking
purposes, and therefore none were CD49d negative.

This work was crucial for robustly defining new systems of protein interactions
that were highly relevant and specific to the function of different CD8+ T cell
phenotypes, even without direct mechanistic insight. Past work has illustrated that
it is difficult to discern robust functional differences due to donor-to-donor vari-
ability. The broad panel of proteins measured and multivariate approach used in
this study was able to extract important functional differences despite normal
variability between individual healthy donors. These 25 proteins now defined new
boundaries of a system relevant to the study of CD8+ T cell phenotypes and can
fuel additional study with follow-up experiments or knowledge-based modeling
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approaches. Future work using this data might employ PLSDA to determine
specific patterns of protein expression that best differentiate between antigen-
specific cells and/or CD8+ T cell subsets. In addition, PLSDA with cross vali-
dation would allow for a more robust assessment of the predictive ability of these
protein expression markers for distinguishing between different CD8+ T cell
subsets.

3.2 Association of Single-Cell Dynamic Cytokine Secretion Events
with T Cell Subsets

With experimental collaborators, our group has recently used PCA of high
throughput, dynamic cytokine secretion measurements from CD3+ T cells to
determine whether various cytokine secretion events can be associated with
different T cell subsets (Han et al. 2012). Dynamic cytokine secretion measurements
were obtained using a novel assay platform called ‘‘microengraving,’’ where single
CD3+ T cells were isolated from the peripheral blood of healthy donors into an array
of subnanoliter wells such that most wells contained only one cell. Antibody-coated
glass slides placed over the arrays were used to capture secreted cytokines from each
well, and quantitative secretion rates were calculated from the total amount of
cytokine captured over a given time period. Cells in the array were subsequently
stained with fluorescent antibodies and imaged to determine the differentiation state
based on surface markers CD3+, CD8+, CCR7, and CD45RA, and the viability of
the cells. In this study, quantitative secretion rates of IFN-c, IL-2, and TNF-a from
single human CD3+ T cells were measured 2, 4, 6, 8, 10, 12, 14, and 16 h after
stimulation with phorbol 12-myristate 13-acetate (PMA) and ionomycin. Results
showed that cytokine secretion occurred in stochastic bursts, with the time of

Fig. 4 PCA applied separately to data from three healthy donors indicated that 25 protein
expression measurements were able to differentiate various CD8+ T cell subsets. T cell subset
location in the multivariate space was similar for all three donors. Reprinted from Newell et al.
(2012), with permission. Copyright 2012, Elsevier
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initiation varying between cells, likely due to variation in the expression level of
kinases, transcription factors, or slow epigenetic modifications.

Principal component analysis was performed on dynamic cytokine secretion
rates at the eight time points for CD3+ CD8- T cells. Overall, analysis of dynamic
data from eight time points was more effective for classifying T cell subsets (naïve,
central memory, effector, effector memory) than PCA of time-integrated data over
6 h (41 ± 1 % misclassification error compared to 33 ± 1 % misclassification
error) which would be similar to a the singular time point used when making
traditional flow cytometry measurements. Interestingly, PCA was better able to
classify T cell subsets by cytokine secretion when the secretion data were time-
aligned (58 ± 4 %) versus unaligned [41 % misclassification error (Fig. 5)].

This work demonstrated that multivariate analysis of quantitative, dynamic
single-cell cytokine secretion measurements may be more informative for the
study of T cell subsets than traditional flow cytometry methods, since PCA of
dynamic measurements was more effective in classifying T cell subsets. This work
also indicated that IFN-c, IL-2, and TNF-a were differentially secreted between
T cell subsets, even though direct insight into the mechanisms governing their
release were not obtained. The fact that the time-aligned secretion data better
distinguished between subsets than the raw data also provided important new
perspective on the dynamics of cytokine secretion: namely that it occurs in
stochastic, fast bursts rather than sustained secretion that initiates at the same time
among stimulated cells. This information on single-cell secretion activity would
have been masked in a study of populations of cells and difficult to extract from
this complex data set without multivariate analysis. Though it was not explored in
this study, an interesting addendum would be to identify major differences in
loadings of the principal components in the models used for classifying different
T cell subsets. For example, which time points and cytokine secretion events were
most important for discriminating between the different subsets? This information
could provide new hypotheses for mechanistic differences between CD3+ T cell
subsets and ideas for future data-driven and knowledge-based modeling. PLSDA
would also provide insight into which linear combinations of secretion events/time
points best discriminated between subsets.

3.3 Association of Immune Cell Protein Signaling with Donor
Age and Race

Longo et al. (2012) used multivariate analysis to identify protein signaling events
in various immune cell types that may be associated with age or race. Whole
PBMCs from 60 healthy adult donors were stimulated for 15 min with one of 12
different immune modulators (IFN-a, IFN-!, IL-4, IL-10, B cell activator anti-
IgD, IL-2, IL-6, IL-27, CD40L, R848, LPS, and PMA). Multi-parametric flow
cytometry was used to quantify eight different phospho-signaling events (p-Stat,
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p-Stat3, p-Stat5, p-Stat6, p-Akt, p-S6, p-NF-jB, and p-Erk) in different subsets of
immune cells, including all viable cells, monocytes, lymphocytes, B cells, CD3-
CD20- lymphocytes, CD8+ T cells, CD4+ T cells, CD45RA- CD8+ T cells,
CD45RA- CD4+ T cells, CD45RA+ CD8+ T cells, and CD45RA+ CD4+ T cells.

Univariate correlations between signaling events in different immune cell types
were determined by calculating Pearson correlation coefficients for different sig-
naling events in each cell type to create a basic map of immune function in healthy
donors. In general, signals were positively correlated within each immune cell
population rather than between different populations.

Principal component analysis was performed to identify signaling nodes that
might be associated with age or race. Data from the 60 healthy donors were split
evenly into training and test sets. Multi-linear regression was used to identify
individual nodes associated with age or race before principal components analysis
was performed to identify groups of associated signaling nodes. For age and race,
separately PCA models were created using training data and then applied to test
data. Inspection of the first principal component of the PCA age model showed
many age-associated signaling nodes were within the T cell subset and one node
was in the B cell subset. IFN-a activation of pStat5 in CD8+ CD45RA+ cytotoxic
T cells, IL-2 activation of p-Stat5 in CD4+ CD45RA+ in T helper cells, IL-27
activation of p-Stat5 in CD8+ CD45RA+ cytotoxic T cells, and IL-4 activation of
p-Stat6 were all associated with age in the model of the training data, and sub-
sequently validated in the test data set. In the race-associated model, two signaling
nodes were validated in the test set: anti-IgD/LPS stimulation of pAkt in B cells
and anti-IgD/LPS stimulation of pS6 in B cells. Both were higher in European
Americans compared to African Americans.

Overall, this work was able to identify signaling nodes in diverse cell types that
may be associated with age or race, and created a functional map of signaling
nodes induced by various stimuli in different immune cell types. The rich data set
generated in this study begs for further multivariate analysis and data-driven

Fig. 5 PCA of quantitative cytokine secretion rates of IL-2, IFN-c, and TNF-a measured at eight
time points (time-aligned) were better able to classify CD3+ T cell subsets than secretion rate
information integrated over 6 h (integrated data). PCA of time-aligned data was better at
classifying subsets than PCA of raw data. Reprinted from Han et al. (2012), with permission
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modeling. In addition to the PCA used to identify main signaling nodes driving
variation within the data set, it would be informative and interesting to perform
PLSDA to determine patterns of signaling nodes that best differentiate donors of
different races. Likewise, it would be interesting to apply PLSR to determine
patterns of cytokines most associated with age. PLSDA could be used to identify
patterns of activated signaling nodes that best differentiate between immune cell
types or between the different stimuli used. This type of analysis would enable the
identification of patterns of signaling nodes (as opposed to individual signaling
nodes) that best differentiate classes of immune cell types, and would generate new
hypotheses for follow-up mechanistic studies. Also exciting would be potential
follow-up experiments suggested by the authors that include measurements made
at different time points. Additional experiments at longer time scales would enable
the interaction of various immune cell types over time, allowing the exploration of
how immune cell–cell interactions may evolve over time in diverse cell types.

4 Influence Insights

Diagrams illustrating influence and connectivity between species have been tra-
ditionally created using intuition and prior knowledge from experiments conducted
in different settings. Here, we describe how recent work has employed various
data-driven modeling techniques to methodically determine network connectivity
of intracellular protein signaling and cytokine expression events from high-
throughput data.

4.1 New Influence Maps for Intracellular Protein Signaling
in Human Primary Naive CD4+ T Cells

Traditional methods for creating connectivity maps of protein signaling pathways
have involved intuitive reconstruction of collective results from separate studies.
Sachs et al. (2005) illustrate how Bayesian inference algorithms can systematically
generate influence maps from high-throughput protein signaling data without prior
knowledge of a signaling system. In this study, flow cytometry was used to
quantify 11 protein signaling events downstream of the receptors CD3, CD28, and
LFA-1 in thousands of primary human CD4+ T cells after treatment with 9 dif-
ferent stimulatory or inhibitory agents (Fig. 6: Measured pRaf S259, pErk1/pErk2
T202/Y204, p38 T180/Y182, pJnk T183/Y185, pAkt S473, pMek1/pMek2 S221/
S217, pCREB, pPKA, pCaMKII, cleaved caspase 10/2, pPLC-c Y783, pPKC
S660, PIP2, and PIP3 after activation with either a-CD3, a-CD28, ICAM-2, PMA,
b2cAMP or inhibition with G06976, a PIP2 inhibitor, U0126, and LY294002). The
large data set generated was analyzed with a Bayesian network inference
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algorithm to create a new signaling inference map (Fig. 7) with 17 high-confi-
dence contributory arcs between the 11 species measured. Of the 17 influence arcs
generated by the algorithm, 15 were ‘‘expected’’ (extensively described in the
literature), 2 were ‘‘reported’’ (mentioned in some reports but not extensively
described), and only 1 of the influence arcs were ‘‘reversed’’ (the opposite of
literature reports). Three known influence arcs reported in the literature were
missed by the model (Fig. 7).

The Bayesian algorithm was able to identify different types of relationships
between protein signaling events. Several links identified by the model were direct
enzyme-substrate relationships, including the phosphorylation of Raf by PKA and
the phosphorylation of MEK by Raf. The model also allowed for the recognition of
influence arcs involving protein species that were not directly perturbed in the
study. Raf was not perturbed by any of the activators or inhibitors used, but the
model still accurately deduced a causal influence arc from Raf to MEK. The model
was also able to identify indirect influence connections involving species not
measured by experiments in the study. For example, the model correctly deduced

Fig. 6 A high-throughput proteomic data set was created by measuring protein phospho-
signaling events (orange) after stimulation (green) or inhibition (red) of signaling nodes
downstream of CD3, CD38, or LFA in naive CD4+ T cells. Reprinted from Sachs et al. (2005),
with permission
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PKA and PKC activation of MAPK p38 and JNK, even though these activation
steps utilized MAPK kinases that were not explicitly measured. The Bayesian
algorithm was able to ignore network connections that were explained by other
influence arcs. For example, although Erk activation is downstream of Raf, the
model did not create an arc from Raf to Erk because Erk activation was mediated
by the arcs from Raf to MEK and MEK to Erk.

One influence arc identified by the model but not reported in the literature for
CD4+ T cells was the activation of Akt by ERK. The post-analysis literature
searching revealed that this had been previously reported in colon cancer cells
lines. To confirm model findings that this event was also important in CD4+
T cells, the authors inhibited Erk1 or Erk2 with small interfering RNA (siRNA)
and measured levels of S473-phosphorylated Akt as well as PKA activity (which
the model did not find to be influenced by Erk). As predicted by the model, p-Akt
was reduced after siRNA inhibition of Erk1, but the activity of PKA was
unchanged after inhibition of Erk.

The authors of this work highlighted how the high-throughput data used in this
study were well-suited for the Bayesian inference technique used because of three
specific attributes: firstly, the large size of the data set with measurements from
thousands of cells permitted high-confidence inference of causal influence between
signaling events, despite the inherent noise in biological data; secondly, flow
cytometry measurements made in single cells avoided population averaging effects
that occur when using methods such at Western blots; and finally, multiple
stimulatory and inhibitory perturbations enabled better identification of protein–
protein influence relationships. In order to highlight these points, the authors
created three additional test data sets including (1) a data set without any inter-
ventional steps (1,200 points versus 5,400 in the original data set), (2) a population
averaged data set without single-cell events, and 3) a much smaller data set, with

Fig. 7 Given high-throughput proteomic data, a Bayesian influence algorithm was used to create
and influence map for all protein species measured in the study. Reprinted from Sachs et al.
(2005), with permission
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data randomly excluded, that was similar in size to data obtained from Western
blots (only 420 points versus 5,400 in the original data set). Bayesian maps con-
structed from these sets were largely inferior to the influence map constructed from
the original data set. For example, the map generated from the set without inter-
vention only identified 10 undirected arcs, with eight arcs expected or reported and
10 arcs missing. The small, 420-point data set failed to infer many known asso-
ciations, and identified many inexplicable, possibly incorrect connections com-
pared to the full 5,400-point data set. The model generated from the population-
averaged data set missed five influence arcs when compared to the model gener-
ated from the single-cell data set of the same size.

This work illustrated the ability of Bayesian network analysis to systematically
generate new protein signaling influence diagrams from high-throughput protein
signaling measurements. Although prior knowledge was used to identify protein
signaling measurements that would give the most biological insight, the influence
diagram was generated by the Bayesian network inference algorithm from the
high-throughput data alone, independent of prior knowledge about the signaling
system. Connections and relationships identified by this study were biologically
relevant to CD4+ T cell signaling, because the high-throughput data used were
itself biologically meaningful. The overall focus of this work was to identify broad
influences and cross-talk among signaling pathways downstream of CD4+ T cell
activation. Follow-up experiments using siRNA knockdowns confirmed the
Bayesian inferences identifying Erk activation of Akt as an important new sig-
naling relationship in CD4+ T cells.

4.2 Influence Maps of Cytokine Expression in CD4+ T Cells

Recently, decision tree analysis has been employed to explore the relationships
between different cytokine expression events in activated CD4+ T cells (Simon
et al. 2012). Mice were immunized with recombinant glucose-6-phosphate isom-
erase (G6PI) with Freund’s complete adjuvant and CD4+ T cells were harvested
from lymph nodes 21 days after immunization. Harvested cells were stimulated
with G6PI for 6 h and cytokine secretion was blocked for the last 4 h. The
expression of six cytokines (GM-CSF, TNF-a, RANKL, IL-2, IL-17, and IFN-c)
was measured with flow cytometry and a correlation matrix was generated to
illustrate co-expression relationships between the different cytokines. A correlation
matrix was not sufficient to accurately describe the combinatorial, hierarchical
relationships between three or more cytokines.

To obtain combinatorial, hierarchical relationships between the cytokines, a
decision tree algorithm was employed to explore relationships between MFI of
each cytokine with those of the other five. A separate decision tree was generated
for each cytokine with each node in the tree representing other cytokine expression
events that were highly associated with expression of the cytokine of interest. The
tree generated for IFN-c expression indicated that TNF-a was the most important
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of the five other cytokines measured for distinguishing IFN-c-expressing cells
because 62.8 % of these cells had a TNF-a MFI greater than 6621, while only
6.65 % of IFN-c negative cells had a TNF-a MFI greater than 6621. GM-CSF was
the next most important cytokine for distinguishing IFN-c expression: 92 % of all
IFN-c-expressing cells also had a GM-CSF MFI less than 863 (Fig. 8). Similar
analyses were done for all six cytokines. Other results for each cytokine are
illustrated by decision trees found in the published work (Simon et al. 2012).

This work illustrated how decision trees can be used to map influence rela-
tionships for cytokine communication networks in immune cells. We are currently
employing this methodology for understanding the response of different patient
cohorts to viral infections in terms of the dynamics of multiple cytokine effects
among various immune cell subpopulations applied to data sets similar to those
described in a recent publication (Ndhlovu et al. 2012).

5 Insight into Mechanism

Insight gained from data-driven modeling techniques can go beyond association,
yielding new systems-level mechanistic insight and identifying combinatorial
events involved in immune system phenotype and function. Results can then be

Fig. 8 A decision tree indicates the hierarchy of importance of different cytokine expression
events in expression of IFN-c. Of the five cytokines measured, TNF-a and GMCSF were most
important for predicting expression of IFN-c. Reprinted from Simon et al. (2012), with
permission
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used to guide focused literature searches and follow-up experiments with specific
pharmacological stimulators and inhibitors to confirm model findings and identify
new systems-level mechanisms involved in immune processes. Data-driven tech-
niques are especially promising for identifying new mechanisms relevant to
in vivo settings, where compensatory mechanisms may mask the importance of
certain network signaling events. The approach also offers the opportunity to
associate molecular-level protein signaling mechanisms with cell and tissue-level
phenotype and function, which is often difficult to achieve using knowledge-based
modeling.

5.1 Identification of a New Autocrine Cascade Involved
in TNF-Induced Apoptosis

Tumor necrosis factor (TNF) is a cytokine capable of initiating both cell death and
survival via different pathways. Experimental work has identified crosstalk
between death and survival pathways, but systems-level interactions have not been
well-characterized, and are especially complex when considering the presence of
paracrine and autocrine signals. Using PLSR, Janes et al. (2006) were able to
identify a novel TNF-induced autocrine cascade associated with TNF-induced cell
death and survival.

HT-29 human colonic adenocarcinoma cells were treated with 10 combinations
of TNF-a, insulin, or EGF at sub-saturating (low) or saturating (high) concentra-
tions. Cell extracts were harvested at 13 time points, seven from 0 to 2 h and six
from 4 to 24 h. Using Luminex-based assay, 19 quantitative protein activity
measurements were made at each time point including IKK, JNK1, MK2, pY1068
EGF receptor, total EGF receptor, pS217/221 MEK, ERK, pIRS-1, pS473 Akt, Akt
kinase activity, total Akt, phospho Forkhead transcription factor, and cleaved
caspase 8. Discriminant partial least squares regression (DPLSR) was performed to
identify signaling events that were quantitatively associated with different stimuli
and the results were visualized in the principal component space (Fig. 10a). The
first principal component differentiated all stimuli from mock conditions; the
second and third principal components best differentiated between stimuli. Map-
ping the signals on the multivariate space revealed several unexpected interactions.
Notably, EGFR and downstream signaling events (ERK, MEK) mapped equidis-
tantly from TNF-a and EGF stimulation (Fig. 9a). A literature search revealed that
TNF can induce the shedding of EGF ligands from the cell membrane into the
surrounding media. ELISA measurements identified a TNF-induced increase in the
production of the EGFR ligand TGF-a with fast kinetics, suggestive of a post-
translational mechanism for production. Other experiments showed that TNF-
induced TGF-a production was able to stimulate downstream EGFR signaling,
since cells treated with TNF-a and an EGFR-blocking antibody reduced MEK
ERK signaling.
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Another unexpected interaction highlighted by the principal component score
plot was that IKK activity was surprisingly distant from TNF-a, a previously
identified inducer (Fig. 9a). Closer inspection of the signaling data revealed that,
unlike the other known TNF-induced signals JNK1 and MK2, IKK was unique in
that it had a second phase of activation that occurred 4–24 h after TNF stimulation.
Careful literature searching revealed reports of late-phase NFjb activation in
keratinocytes that was stimulated by autocrine discharge of IL-1a. Based on this
knowledge, the authors designed additional experiments to confirm TNF-induced
IL-a release, IL-1a activation of IKK, and the dependency of late-phase IKK
activation on IL-1a. They were also able to use careful experimental design to
show that the release of IL-1a was dependent on autocrine shedding of TGF-a. All
together the work resulted in identification of a new autocrine cascade, critical to
TNF-induced cell death (Fig. 9b).

Overall, this study illustrated how multivariate analysis can be coupled with
focused literature searching and follow-up experiments to provide new insight into
systems-level mechanisms governing the functions of a signaling network. In this
study, the approach led to the discovery of a new autocrine cascade where TNF-a
induces rapid TGF-a shedding and subsequent stimulation of EGFR and IL-1a
(Fig. 9b). This work illustrates the power of the combination of data-driven
modeling with careful experimental design. Experiments alone can be sufficient to
identify and confirm new interactions; however, in this study the identification of
broadened associations and linkages to network function were only possible with
visualization of the complex signaling data set in a multivariate space.

5.2 Identification of New Mechanisms for Regional and Temporal
Variation of the Apoptotic Response to Inflammatory
Cytokines in the Small Intestine

Data-driven modeling techniques can be especially useful for discerning important
multivariate correlations in vivo systems where compensatory mechanisms may
mask important mechanistic events.

To gain systems-level insight relevant to the pathogenesis of inflammatory
bowel disease, Lau et al. (2011) used a multivariate approach to identify new
protein signaling mechanisms that accounted for regional differences in the
apoptotic response of the mouse small intestine to inflammatory cytokines. Anti-
body-based TNF-a inhibition has been used clinically to treat chronic inflamma-
tion associated with inflammatory bowel disease, supporting the concept that TNF
signaling is critical to the function of the small intestine and the disease phenotype.
However, specific relationships between complex TNF-a signaling and tissue
inflammatory phenotype are not completely understood, and may vary in different
cell types and tissue microenvironments within the small intestine.
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In this study, healthy mice were injected intravenously with a 5 lg bolus of
recombinant TNF-a to induce phenotypic changes in the small intestine that were
similar to inflammatory bowel disease. Immunohistochemical staining of cleaved
caspase 3 and phosphorylated histone 3 (pH3) revealed that the response that was
induced varied along the length of the intestine, with apoptosis being more
prevalent in the duodenum and proliferation more prevalent in the ileum. A time
course of TNF-induced apoptosis indicated that the ileum was inherently
unaffected by TNF-a, whereas the time course of TNF-induced apoptotic effects in

Fig. 9 a DPLSR of protein signaling events after stimulation with insulin, EGF, and TNF-a
revealed that surprisingly, EGFR ligands ERK, and MEK (labeled 7 and 8) mapped equidistant
from TNF-a and EGF stimulation and IKK (labeled 1) mapped surprisingly distant from its
known inducer TNF-a. b Focused literature searching and follow-up experiments resulted in
discovery of a novel autocrine cascade mechanism involving TNF-induced shedding of TGF-a
ligand, TGF-a stimulation of EGFR, and subsequent activation of both IL-1a and IL-1ra to
promote or inhibit cell death, respectively. Reprinted from Janes et al. (2006), with permission
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the duodenum indicated a dose-dependent response. In the duodenum, a high TNF
dose resulted in an abrupt, early peak in apoptosis, whereas a low dose resulted in
a delayed and more gradual peak. Western blot and immunohistochemical analysis
suggested that increased expression of TNFR1 in the duodenum could be
responsible for the differential apoptotic responses. However, work using TNFR
knock-out animals revealed that there was no direct relationship between TNFR1,
TNFR2, and the different TNF-induced apoptotic effects in the duodenum and the
ileum.

To determine whether differences in protein signaling could be associated with
phenotypic changes in the small intestine, a Luminex-based assay was used to
quantitatively measure 14 phospho-protein signaling events (including Ijba, RSK,
Stat3 s, JNK, MEK, p38, Akt, c-Jun, Stat3Y, S6, ERK1/2, and ATF2) in the
duodenum and ileum of 55 healthy mice at different time points after infusion of
low (5 lg) and high (10 lg) doses of TNF. Hierarchical clustering organized the
data set into groupings by the spatial regions of the small intestine (duodenum and
ileum). PLSDA was used to determine whether linear combinations of different
protein signaling events were able to predict the TNF-induced apoptotic phenotype
of tissues. Samples were classified into three groups: (1) no apoptosis and
proliferation (ileum after systemic TNF dose), (2) late apoptosis and arrest (duo-
denum after a systemic TNF dose of 5 lg/ml), and (3) early apoptosis (duodenum
after TNF dose of 10 lg/ml). PLSDA was used to determine which of the mea-
sured protein signaling events best classified the data based on phenotypic
responses of the small intestine. PLSDA successfully classified these groups, with
latent variable 1 best separating the data based on spatial location within the small
intestine (ileum versus duodenum) and latent variable 2 best separating the early/
late apoptosis data from the duodenum in response to low versus high TNF dose
(Fig. 10a). Key loadings in the first latent variable were transient phosphorylation
of MEK, ERK, and p38 which were associated with resistance to proliferative
arrest in the ileum; ATF2 and c-Jun were associated with apoptosis in the
duodenum (Fig. 10b). In contrast, late phosphorylation of ERK, MEK, and RSK
were associated with the early apoptotic peak in the duodenum. Altogether, this
information suggested the presence of two different stages of MAPK activation
that occur in the small intestine after systemic TNF stimulation, with early MEK
and ERK responsible for the maintenance of proliferation and resistance to
apoptotic arrest in the ileum. This early activation did not occur in the duodenum,
resulting in apoptosis. After a higher dose of TNF in the duodenum, MEK-ERK-
RSK signaling was necessary for preserving homeostasis. Thus, MAPK signaling
may play different roles in the small intestine in different contexts. To test these
hypotheses, the authors performed additional experiments treating animals with a
MEK inhibitor (PD325901) 2 h before TNF injection. When the PLSDA model
was applied to this data set, MEK-inhibited duodenal samples that received the
lower dose of TNF were classified as duodenal samples that received the higher
dose, suggesting that MEK inhibition shifted the apoptotic peak of these samples
from late to early (Fig. 10c and d). Altogether, multivariate analysis indicated that
ERK signaling was a key mediator in the resistance of the ileum to proliferative
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arrest, and the duodenum’s early apoptotic response to low doses of TNF-a.
Treatment with a MEK inhibitor confirmed this finding, shifting ileum responses
of the 14 signaling events toward the early apoptotic duodenum response region in
the multivariate space. Likewise, MEK inhibition resulted in a shift of the early
apoptotic response of the duodenum to low dose TNF-a to the late apoptosis region
of the control duodenum response to high-dose TNF-a (Fig. 10c and d).

To illustrate the power of the multivariate approach, Lau et al. generated an
artificial MEK inhibition data set that would be representative of a reductionist,
univariate approach. In this data set, all signaling measurements were kept the
same as they were measured in the data generated without MEK inhibition, with
the exception of Erk phosphorylation which was set to zero. PLSDA of this
artificial data set, and visualization in the multivariate space, was not able to
capture the shifts in duodenal responses that were captured in the actual data set.

Fig. 10 a PLSDA of protein signaling in the mouse small intestine after systemic TNF infusion
revealed spatial (duodenum versus ileum) and dose-dependent (10 versus 5 lg) differences in
apoptotic effects that were associated with MEK signaling (b). Follow-up experiments with a MEK
inhibitor (PD325901) confirmed the finding, as low-dose TNF administered with a MEK inhibitor
induced duodenum responses similar to those induced by high-dose TNF (c and d). Reprinted from
Lau et al. (2011), with permission
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This work demonstrated the value of a multivariate approach by comparing
multivariate results to results that would have been obtained from a more tradi-
tional, univariate reductionist approach. When compared with the multivariate
approach, the univariate approach was unable to capture all differences in small
intestine TNF-a induced, MEK inhibited signaling responses, and small intestine
TNF-a induced responses. This highlights the importance of data-driven modeling
approaches for the discovery of new, systems-level signaling mechanisms relevant
to in vivo tissue phenotype and function. As illustrated in this study, data-driven
approaches may be especially relevant to signaling studies in vivo settings where
compensatory signaling mechanisms often preclude the detection of network
perturbations induced by disease or during pharmacologic intervention in uni-
variate data sets. A multivariate approach offers the additional advantage of
allowing for the association of molecular-level protein signaling events with cell
phenotype and tissue function, something that is often difficult or impossible to do
with knowledge-driven and/or experimental approaches alone.

6 Combining Data-Driven and Theory-Driven Approaches

Finally, we present an unusual example where data-driven modeling is used in
combination with knowledge-based modeling to take synergistic advantage of the
broad organizational and statistical power of the former and the mechanistic
specificity of the latter.

6.1 Decision Tree Analysis for Evaluating the Effects of Initial
Conditions on an ODE Model of FasL Induced Apoptosis

The combination of data-driven and knowledge-driven modeling approaches can
be yield a powerful method for determining the importance of initial conditions in
the behavior of a signaling pathway. Hua et al. (2006) used combined mechanistic
and data-driven modeling approaches to study the Fas pathway and its regulation
of cell death, which has important implications in cancer and autoimmune dis-
eases. Here, data-driven approaches were employed to determine the effect of the
initial conditions of species on the output of an ODE-based model. A simplified,
mechanistic knowledge-based ODE model from a previous study (Hua et al. 2005)
was used to predict caspase 3 activation resulting from signaling events down-
stream of FasL stimulation (Fig. 11). In order to determine the effect of initial
conditions on FasL signaling pathways, the values of nine key initial conditions
were shifted either 10-fold higher or lower than baseline using a Monte Carlo
algorithm. One million different modeling simulations were performed with the
various initial conditions and the output of each simulation expressed as fold-
change in activated caspase 3 over baseline conditions.
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The simulation results varied considerably and depended on the initial condi-
tions. In order to simplify the analysis, a k-means clustering algorithm classified the
output as: (1) high FasL sensitivity (a fast increase in cleaved caspase-3 with
addition of FasL), (2) medium FasL sensitivity, and (3) low FasL sensitivity (slow or
no increase in cleaved caspace-3 output with addition of FasL). A decision tree
algorithm determined the role of initial conditions (nodes) in high (III), medium (II),
or low (I) FasL sensitivity (clusters) and the resulting tree gave a hierarchy of
importance of nodes for each of the FasL sensitivity clusters (Fig. 12).

The decision tree identified XIAP and Fas initial conditions as the most
important for determining the sensitivity of caspase 3 activation to FasL, and
demonstrated that the importance of the initial condition of one species is highly
dependent on the initial concentrations of other species. For example, the tree
specified a range of 3.1to 5.2-fold increase from baseline of XIAP initial condi-
tions, over which the Smac initial concentration affected the FasL sensitivity of the
system (Fig. 12). When the initial concentration of XIAP was greater than 5.2-fold
higher than baseline, the system was always insensitive to Fas regardless of the
initial conditions of other species or Smac, because there was always excess XIAP
to bind cleaved caspase-3. When XIAP was below 3.1-fold over baseline, the
initial concentration of Smac also did not matter because XIAP levels were so low
that they were not able to sequester caspase-3 and caspace-9, regardless of Smac
concentration (Fig. 12). A univariate sensitivity analysis was applied to the ODE
model and identified Fas and Flip as the two species that the model output was
most sensitive to. Interestingly, Fas and Flip also appeared important for many of
the outcomes of the decision tree, confirming the concept that their initial

Fig. 11 A FasL signaling modeled with ODEs, in which caspase 3 activation is induced by Fas
ligand. Reprinted from Hua et al. (2005), with permission
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set-points were important for the sensitivity of the output to initial conditions of
many of the other species.

The decision tree in this study was validated with a test set that was created by
running the ODE-simulation 1,000 times more, then tested against the generated
decision tree to determine how well it was able to predict an independent data set.
Overall, the decision tree was able to correctly predict the sensitivity outcome
based on initial conditions for 71 % of the test data, much higher when compared
to the 33 % prediction accuracy that would be expected from random chance
prediction of three different clusters.

One exciting aspect of this study was an analysis that was done to determine the
minimum number of changes in initial conditions that would be necessary to
switch the sensitivity of the Fas pathway from one direction to another. The
authors defined the total number of species that would need to be modified to
change a cellular behavior as the COST. They computed the COST for transition
between different sensitivity states (clusters of the tree), and reported them
(Table 2). Their findings suggested the most efficient way to switch a cell from one
state of Fas sensitivity to another. One example highlighted was the switching of a
cell from a Fas-insensitive to a sensitive response. COST analysis suggested the

Fig. 12 A decision tree indicates the hierarchy of importance of various initial conditions in
network low (I), medium (II) and high (III) FasL sensitivity (square clusters) based on fold
change from baseline from initial conditions of various model species (represented at nodes),
including XIAP, Fas, Flip, Smac, Bcl2, and Casp 8. To read the tree: if statement at a node is true,
proceed right on the tree. Reprinted from Hua et al. (2005), with permission
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most efficient way to perform the switch would be to start with leaf I6, and increase
the Fas and caspase-8 initial conditions to transition it to the sensitive response in
leaf III1 with a cost of 1.77 (Table 2 and Fig. 12). The authors also highlighted that
overall, the cost for transition from one state to the other was greater than one,
indicating that more than one species must be altered in parallel to change the
sensitivity of the network.

7 Looking Forward

We hope that the examples we have discussed here offer readers a stimulating
foundation for the kinds of problems that can be readily addressed using the
various established data-driven modeling approaches. As we move forward in
understanding the human immune system at multiple scales, one exciting prospect
offered by proteomic data-driven modeling is the ability to broadly characterize
cytokine microenvironments and relate them to important immune system phe-
notypes and disease states. This would represent a ‘‘top-down’’ approach to
evaluating immune cell–cell interactions, in contrast to traditional work that typ-
ically takes a ‘‘bottom-up’’ approach, focusing on detailed protein signaling events
in single immune cells or homogenous populations of a single cell type. In a
bottom-up approach, system behavior is intuitively or computationally recon-
structed based on knowledge of individual events within cells. Data-driven mod-
eling presents the opportunity to characterize the immune cell–cell interactions
with a ‘‘top-down’’ approach by associating patterns of cytokine secretion with an
entire system of interacting immune cell types without requiring detailed knowl-
edge of mechanisms governing individual cell signaling events, the specific
mechanisms of cell–cell interaction, or even the cytokine secretion events asso-
ciated with each cell type. This could be applied to cultured whole peripheral
blood mononuclear cells (PBMCs) or to environments created in different tissue
types. Though the approach lacks specific mechanistic insight into the roles of
individual cell types or signaling events, it may identify new, robust systems-level

Table 2 COST matrix A COST matrix indicates the most efficient ways to transfer between low
and high FasL sensitivity by altering initial conditions

I1 I2 I3 I4 I5 I6 I7 I8 I9

III1 2.18 2.67 1.92 1.67 1.00 1.77 1.92 1.94 1.95
III2 2.01 1.52 2.50 2.50 1.52 2.51 2.49 2.50 1.52
III3 2.98 2.49 2.00 1.00 2.50 1.87 1.92 1.88 2.99
III4 3.31 3.79 2.65 3.61 2.18 1.96 1.65 3.60 1.00
III5 3.07 3.55 3.07 2.61 1.95 2.61 2.60 2.48 1.46
III6 2.98 3.22 1.99 2.22 1.00 2.77 1.99 1.96 1.59
III7 3.39 3.23 2.16 2.67 2.76 2.00 2.17 3.17 3.00
III8 3.64 3.15 3.01 2.03 3.30 2.47 2.65 1.54 4.51

For example, the average number of species that would need to be modified to transition from
cluster I1 (low Fas sensitivity) to III1 (high Fas sensitivity) would be 2.18. Reprinted from Hua
et al. (2005), with permission
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behavior and provide a unique perspective that is relevant to in vivo immune
system function. A top-down approach could be especially useful for the devel-
opment of new vaccine strategies that alter cytokine microenvironments, in con-
trast to current strategies that target one immune cell type.

With respect to the development of modeling methodology and implementation
in the coming years, two clearly beckoning challenges can be easily identified.
Both challenges can be characterized as addressing integration in specific
dimensions: in the first case, ‘‘horizontal integration’’, moving from the study of
individual components to the study of multiple components concomitantly, and in
the second case ‘‘vertical integration’’, that of moving from the study of system
operation (phenotype, essentially) from the simplest contexts at the smallest space-
and time-scales to more complex contexts involving larger space- and/or time-
scales (Lauffenburger 2012).

The first important challenge is to demonstrate computational modeling
frameworks for integrating diverse data types—e.g., gene sequence, gene
expression, gene knockout/knockdown, protein expression, protein activities, and
cell behavior. Two promising methods have been reported recently in application
to the integration of proteomic and transcriptomic (Lan et al. 2011) data [‘Prize
Collecting Steiner Tree’ (Huang and Fraenkel 2009)], and of transcriptomic and
gene knockout data [‘ResponseNet’ (Lan et al. 2011)] in yeast. While both are
formally data-driven methods, they require substantial prior knowledge in terms of
protein–protein and protein–DNA interaction databases for mapping the ‘‘omic’’
measurements in a manner permitting computational optimization of information
flow. For mammalian biology applications, such as the immune system, the state
of this type of knowledge is quite nascent—although attempts are arising to
strengthen this necessary foundation (Kirouac et al. 2012).

A second important challenge is to demonstrate computational modeling
frameworks for integrating data from diverse spatial scales—e.g., how properties
of multiple molecular components affect cell functions, how properties of multiple
cell types affect tissue functions, how properties of multiple tissue types affect
organism behavior, and how population behavior arises from multiple animals,
subjects, and/or patients. We refer readers to an excellent review of multiscale
modeling in the immune system (Chavali et al. 2008) for background, and note
that this field has to date emphasized theory-based, or knowledge-driven frame-
works in which hypotheses are postulated from the previous literature and
implemented into simulation calculations. This emphasis, of course, restricts the
scope of problems that can be addressed. Accordingly, we urge here incorporation
of data-driven models at one or more of the scales as is likely necessary to
comprehend horizontally integrated, multivariate data in the context of vertically
integrated multi-scale models.

The third dimension of integration appreciated is ‘‘dynamic integration’’—how
to concomitantly use ‘‘static’’ properties such as sequence and expression levels in
concert with ‘‘dynamic’’ information such as kinetics, mechanics, and transport
phenomena of molecular and cellular processes. We can envision the use of data-
driven modeling to gain insights concerning how dynamic information depends on
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static properties. An interesting example is illustrated by a study that elucidates
how protein sequence data can be employed to understand molecular transport
properties in nuclear pore complexes (Colwell et al. 2010).

Taken together, we anticipate that a central coin-of-the-realm will be ‘‘hybrid
models’’ comprised of diverse mathematical frameworks within an overall com-
putational process. This situation would clearly recognize that for the foreseeable
future biological knowledge will be sufficient for models constructed on the basis
of prior understanding in only certain realms, while in other realms biological
knowledge will remain inadequate for relying solely on that more traditional
approach and will require formulation in terms of data-driven models.
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Critical Dynamics in Host–Pathogen
Systems

Arndt G. Benecke

Abstract Host–pathogen interactions provide a fascinating example of two or
more active genomes directly exerting mutual influence upon each other. These
encounters can lead to multiple outcomes from symbiotic homeostasis to mutual
annihilation, undergo multiple cycles of latency and lysogeny, and lead to
coevolution of the interacting genomes. Such systems pose numerous challenges
but also some advantages to modeling, especially in terms of functional, mathe-
matical genome representations. The main challenges for the modeling process
start with the conceptual definition of a genome for instance in the case of host-
integrated viral genomes. Furthermore, hardly understood influences of the activity
of either genome on the other(s) via direct and indirect mechanisms amplify the
needs for a coherent description of genome activity. Finally, genetic and local
environmental heterogeneities in both the host’s cellular and the pathogen popu-
lations need to be considered in multiscale modeling efforts. We will review here
two prominent examples of host–pathogen interactions at the genome level, dis-
cuss the current modeling efforts and their shortcomings, and explore novel ideas
of representing active genomes which promise being particularly adapted to
dealing with the modeling challenges posed by host–pathogen interactions.
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1 A Systems Biology Challenge: Multiscale Integration

After having generated high hopes and even more massif parallel data, systems
biology is clearly on the verge of entering into a new phase to fulfill on the initial
promise of revolutionizing not only the way we do biology but also our under-
standing of biologic phenomena (Tisoncik and Katze 2010). Success of this new
phase will depend on solving some fundamental problems which so far have not,
or only superficially been addressed, and will require more than ever a concerted
and integrated effort spanning the entire spectrum of exact sciences.

The central problem we need to address is the integration of data and insights
over multiple scales as to be able to make meaningful predictions about how
complex traits and phenotypes emerge from assemblies of objects and the
molecular mechanisms linking these objects on the one hand, and on the other, to
be able to decompose phenotypes rapidly to understand the defining dynamics and
their molecular basis. The former, inference-based analysis thereby actually
encompasses also evolutionary questions, as most of the biologic systems we try to
understand and describe are remarkably robust despite stochasticity being present,
if not integral part of the mechanisms at multiple levels. The latter challenge of
decomposition is still the main bottleneck on the road of designing therapeutical
and vaccination strategies in biomedical research.

Decomposition and inference across time and space scales define the ulti-
mate paradigm of systems biology research in as much as, if achieved and
abstracted, the combination of both would lead to meaningful mapping
functions from the object space to the phenotype space ðUÞ and back
(f) (Fig. 1).

The problem of integration over multiple scales is not unique to biology but
also a major issue in physics and chemistry or social and economic sciences (Lesne
and Lagües 2012). The problem, however, is particularly hard in biology, as the
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integration has to be bi- rather than unidirectional. Consider a dune, thus a physical
object—the dune’s physical properties depend entirely on the physical properties
of the sand-corn. Using renormalization techniques, it is possible to mathemati-
cally describe a dune and investigate its properties under changing conditions
(wind, humidity), without considering each sand-corn individually with simple
equations such as the original Bagnold formula (Bagnold 1936). In biology, the
physical properties of the molecular assembly such as a chromatin fiber will not
only depend on the physical properties of the histones and the DNA, but in
addition the histones and thus their the physicochemical properties have evolved
under selective pressure acting on the chromatin fiber and its function (Benecke
2003, 2006; Bécavin et al. 2010). This symmetry established by the retrograde
action of evolution is something which currently can not be captured by techniques
such as renormalization (Lesne 1998, 2011), but will need to be accounted for in
multiscale integration efforts. We have defined the term function-dependent self-
scaling for models which describe for instance chromatin structure as a function of
activity at the scale relevant to this activity (Lavelle and Benecke 2006).

Multiscale integration in biology is a fundamental problem for which currently
little ideas exist how it could be solved. There are a few other problems of similar
fundamental nature such as the role of stochasticity in biologic mechanisms and
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Fig. 1 Systems Biology Life Cycle: Decomposition of complex traits and phenotypes to
understand the systems dynamics and the defining molecular objects and the mechanisms by
which they interact; inference to make meaningful predictions as to how different objects interact
to give rise to phenotypes and traits. Both processes will heavily rely on the identification and
analysis of different biologic networks at different scales. The integration of information, objects,
and their dynamics across scales represents the main challenge of systems biology today.
Successful integration is the sine qua non requirement to identify and formulate the mapping
functions / and f from object space to phenotype space and back. Having a full set of these
transforming functions would elevate the need to measure all objects and describe all possible
phenotypes, and thus represent understanding of the system
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how robustness of these mechanisms across changing environmental and
systems-internal conditions can be maintained (Kaern et al. 2005). Interestingly,
stochasticity here might be a solution more than a problem in many respects, but
again a formal framework to describe, quantify, and predict such mechanisms is
lacking. In what will follow, we will discuss some recent insights into functional
genome representations to add a novel layer of investigation to the problem of
gene expression regulation, chromatin structural dynamics, and genome structure–
function relationships. These representations are thought to be particularly useful
to compare genomes from closely related species and more importantly to provide
new ideas of how to treat the case of two or more genomes operating together in a
single cell such as is the case in infectious settings (Aderem et al. 2011; Tisoncik
et al. 2009). To this end, we will first discuss two recent examples of successful
network structure inference and dynamics analysis in systems virology, analyze
the implications these results have for our thinking of genome function, and finally
provide some ideas how to further investigate these systems using functional
genome representations as a first step for a multiscale modeling effort.

2 SIV Infection in Natural Hosts

The definition of an effective HIV vaccine has only made modest progress despite
prodigious efforts, as HIV successfully evades efficient and durable recognition by
the human immune system (Ross et al. 2010; Belisle et al. 2011). Similarly, AIDS
resistance in SIV natural host primates has been formerly believed to be caused by
a lack of innate and adaptive immune recognition. This view is currently changing
as four independent systems biology driven efforts have investigated in a com-
parative manner, the transcriptome dynamics in PBMCs and CD4+ cells of natural
hosts for SIV as compared to Asian/New World primates that develop AIDS
following SIV infection. Indeed, natural hosts just as AIDS progressor species
display a rapid and strong innate immune response to SIV infection, and display all
signs of successful immune activation (IA). The changes in the gene expression
profiles are not only remarkably concordant between different natural hosts such as
African Green Monkeys (Chlorocebus sabaeus) and Sooty Mangabeys (Cerc-
ocebus atys), but also comparable in composition and strength to Rhesus Maca-
ques (Macaca mulatta) and Pigtail macaques (Macaca nemestrina), the latter two
being both AIDS progressors (Jacquelin et al. 2009; Bosinger et al. 2009; Favre
et al. 2009; Lederer et al. 2009; Rotger et al. 2011). By systematic comparison of
the gene networks indicative of IA between AIDS progressors and non-progressors
not only common themes were identified, but also remarkable differences as to the
duration of the innate immune response to SIV have been observed (Fig. 2).
Indeed, IA in natural hosts ceases after the acute infection stage, typically after 2–4
weeks, whereas the gene networks driving the IA in AIDS progressors are still
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found active after the acute phase, and remain so until onset of symptoms of
immunodeficiency (Bosinger et al. 2011, 2012; Manches and Bhardwaj 2009; Mir
et al. 2011; Brenchley et al. 2010; Harris et al. 2010). Thus, it is the control of
chronic IA, rather than absence thereof, which protects natural hosts from
developing AIDS.
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Fig. 2 Immune Activation in a Natural Host versus an AIDS Progressor—the West Coast
Model. PBMCs from six African Green Monkeys (SIV Natural Host, Chlorocebus sabaeus, here:
‘‘C.S.’’) and six Rhesus Macaques (AIDS Progressor, Macaca mulatta, here: ‘‘M.M.’’) were
analyzed pre- and post-SIV infection at the indicated time points using transcriptome profiling
and the activity of the Interferon a signaling pathway was inferred using ontology enrichment
analysis (h = predicted inactive, � = predicted active, both at p\10E�3) (Jacquelin et al. 2009).
Two significant differences are observable: (i) C.S. control IA during the chronic phase of
infection as opposed to M.M., (ii) C.S. seems more rapid in activating innate immunity than
M.M. (Jacquelin et al. 2009). Similar differences are found in CD4+ cells from lymph nodes
(Jacquelin et al. 2009), as well as other, independent studies involving a similar collection of data
and different combinations of natural hosts and AIDS progressors (Bosinger et al. 2009; Favre
et al. 2009; Lederer et al. 2009; Rotger et al. 2011). The recently proposed West Coast Model
(Benecke et al. 2012) postulates that control of IA in natural hosts is a function of a mechanism
reminiscent of kinetic proofreading (Hopfield 1974). Thereby, the capacity to control IA requires
IA to cross threshold g before time s: In the case of AIDS progressors, g is only reached after time
s, and thus the attenuation signal is not generated (a surfer missing the right moment to get on the
board)
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2.1 Control of Chronic Immune Activation in Natural Hosts

How can control, or absence of control in progressors, respectively, be thought to
occur? Different hypotheses have been put forward, some of which can be dis-
regarded or are unlikely to provide conclusive answers. SIV natural hosts do not
display significantly altered infection or viral amplification rates and viral set-point
titers. Moreover, chronically infected natural hosts maintain comparably high viral
titers and can propagate virus. Viral particles isolated from natural hosts can be
used to infect other animals (Jacquelin et al. 2009; Bosinger et al. 2009; Favre
et al. 2009; Lederer et al. 2009; Estes et al. 2008). Thus, control of IA is neither
directly connected to viral load nor is viral pathogenicity significantly altered
during the course of infection.

The current hypothesis of how IA is attenuated in natural hosts is the presence
of active signaling cascades which, upon a yet unidentified signal either attenuate
IA in natural hosts or keep IA active in AIDS progressors. A logic table sum-
marizes the four possible hypotheses depending on whether activators or repres-
sors of attenuation or activation are considered (Table 1) (Bosinger et al. 2011;
Harris et al. 2010). Currently, a specific search is underway in the different time
resolved transcriptome profiles to identify such activators or repressors of either
immune attenuation or IA, and which are differentially expressed/regulated in
progressors and non-progressors. It will be of general, beyond the HIV field,
interest to identify and characterize such activators and repressors which can
promote or control chronic IA with obvious impacts for organ transplantation and
autoimmune disorders (Rotger et al. 2011; Bosinger et al. 2011; Harris et al. 2010;
Ye and Maniatis 2011; Lepelley et al. 2011).

The current generally accepted ideas on the control of IA in natural hosts, thus,
postulate a necessary regulatory event (whether positive or negative) specific to
either progressors or non-progressors. Thus, a dedicated signaling cascade com-
posed of at least a sensor for a specific attenuation/activation signal, a transcrip-
tional regulator, and a relay unit linking the sensor to the effector. Not only the
molecules that are required specifically in either class of species, but also the
nature of the specific signal pose a challenge in terms of evolution as an entire
signaling pathway is required. Recall also that the signal for instance does not
likely originate from the virus. Facing these dilemmas, we have recently formu-
lated an alternate hypothesis for the absence of chronic IA in natural hosts which is
based on a dynamic interpretation of the earliest innate sensing events following
viral infection (Benecke et al. 2012). For the time being, this hypothesis is only
modestly carried by direct experimental observations, as the time resolution with
which early signaling events are usually studied is at least an order of magnitude
above what would be required to directly assess the merits of the proposition. On
the other hand, if this hypothesis, which appeals through its simplicity, would turn
out to lead to the identification of a novel mechanism controlling long-term IA
through early events, it would also define novel possible avenues for HIV vaccine
development.
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2.2 Kinetic Proofreading as a Possible Mechanism
for IA Control

Kinetic proofreading is a potent mechanism known in molecular discrimination
(Hopfield 1974). Kinetic proofreading is a process in which, through expenditure
of additional energy, ligand recognition is split into two or more individual events
in order to increase specificity and discriminatory capacity between closely related
ligands or interaction partners with modestly different free energies of binding. In
a first step, usually coupled to a conformational change in the receptor achieved
through the hydrolysis of ATP, a candidate ligand is bound and presented to an
independent interaction surface. Only if this second, independent interaction
occurs rapidly enough, the recognition is conclusive, otherwise the ligand is
released as the receptor snaps back into its original conformation. This mechanism
has been studied in great detail theoretically and shown to drastically increase
recognition of a bonafide ligand over analog molecules with very similar free
energies. The error thereby is reduced beyond the thermodynamic bound—
sometimes referred to as the specificity paradox upon which Hopfield based his
predictions that ribosomes match codons and amino-acid-loaded tRNA anticodons
using a kinetic proofreading mechanism. This has later been proved experimen-
tally also for the way that aminoacyl tRNA synthetase operates (Hopfield 1974;
Hopfield et al. 1976). Furthermore, and more relevant to this discussion, T-cell
receptors use kinetic proofreading to enhance discrimination of bonafide ligands
from closely related molecules to ensure correct signaling (McKeithan 1995).
Finally, some evidence suggests that kinetic proofreading could also be found at
the basis of RIG-I or TLR mediated recognition of foreign in innate immunity (Loo
and Gale 2011; Liu and Gale 2010; Suthar et al. 2010).

For the sake of argument, let us assume that a strong and immediate innate
immune response is not only a first line of defense to gain the required time for
setting the stage for adaptive immunity, but that it is also a mechanism to
proofread the adaptive immune response. In this scenario, some of the mechanisms
of innate immunity would be required to be activated in order to maintain sus-
tained, general IA beyond acute infection. Absence of innate proofreading would
then lead to total inactivation of immune function. However, also the exact
opposite effect might be at work—innate proofreading is required to attenuate
continued IA. We believe that this latter scenario is more likely, and better reflects
the general observations made about immunity. A typical pathogen will trigger

Table 1 Logic table for current hypotheses regarding control of IA in natural hosts

Immune attenuation Immune activation

N.H. A.P. N.H. A.P.

Activator + - - +
Repressor - + + -

N.H. Natural Host, A.P. AIDS Progressor, + present, - absent
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(many) different innate sensors simultaneously. The multitude of signals acts
synergistically to mount the immediate innate IA which in turns triggers adaptive
immunity. Maintaining this early response over prolonged periods of time, as
observed in AIDS progressors, does not add any advantage to the system, however,
is costly in terms of energy expenditure and precludes specific activation of
downstream processes. If one of the different innate sensing mechanisms serves as
proofreading mechanism, it makes more sense to propose that the proofreading is
meant to attenuate the early innate response rather than sustaining or driving it as
the latter would be redundant with the other mechanisms. In other words, the
proofreading would simply signal that innate IA has been successfully triggered
and thus needs to be attenuated in the near future in order to set the stage for
adaptive immunity, avoid exhaustion of resources, and redundant signaling
without added benefit.

Therefore, an innate sensing mechanism that triggers attenuation of IA would
represent a simple feedforward control which does not require any additional
specific signaling pathways or additional signals in order to be functional (see
Goodman et al. 2011) for an interesting example of a feedforward mechanism in
viral replication). This appears to be one strong argument in favor of the existence
for such a dual purpose innate sensing that acts in one of those two aspects
reminiscent of kinetic proofreading.

The second interesting argument can be formulated in favor of this hypothesis
which is the dynamics of proofreading. As discussed above, through the addition
of irreversible (energy consuming) steps prior to and integral part of faithful
recognition a delay function is implemented. In other words, every one of the
independent irreversible prerecognition steps needs time to complete; and thus the
increase in specificity of recognition is not only ‘bought’ through energy con-
sumption but also accompanied with varying delays between the initial encounter
and positive recognition, which are a function of the number of successive pre-
recognition steps and physical proximity. In this context, the time delay creates a
lag-time for the attenuation signal of innate activation which would prevent early
shutdown. In other words, not relying on a specific signaling pathway for atten-
uation creates the problem that innate IA and its attenuation are triggered at the
same time leading to conflicting signals. If, however, the attenuation signal is
lagging behind because of its increased specificity, a functional feedforward
repression is implemented (Benecke et al. 2012).

Finally, the dynamics of such a proofreading mechanism could potentially also
explain the differences observed between natural hosts and AIDS progressors
following SIV infection. As a matter of fact, a kinetic proofreading mechanism
defines two boundaries on time. First, discussed above, there is a lower bound for
the recognition process defined by the delay in time over the one or several
irreversible steps. But also a second, upper bound, on time is explicitly part of the
mechanism. If the recognition step n is too slow compared to the step n� 1 the
process aborts as unsuccessful. Hence, the execution time for step n is bounded by
a function of the off-rate of n� 1: Practically speaking, the hypothesis presented
here suggests that there exists a window of time during which recognition has to
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occur in order to trigger attenuation of innate IA. This window of time starts with
the earliest prerecognition event at t0 (infection) and continues up to some upper
limit s which has to be sufficiently close that robust (a significant fraction of a
large number of events) recognition can occur. If this recognition occurs to late,
the attenuation signal can no longer be released and IA continues chronically. This
is a strong hypothesis which should be verifiable experimentally. Indeed, there
even seems evidence in the existing transcriptome profiles for early dynamics
playing a key role in the attenuation of IA in natural hosts, and why immune
attenuation does not occur in AIDS progressors (Fig. 2). Indeed, it appears that
innate IA occurs more rapidly in the natural host AGM as compared to Rhesus
Macaques if the ontology-based inference of the activity of the interferon a
pathway is accepted as a proxy (Jacquelin et al. 2009). The lower schematic
illustrated the two main differences in the activation and attenuation kinetics
between the AGMs (green) and the Macaques (red) and also schematizes the
window of opportunity (black) for a feedforward attenuation mechanism remi-
niscent of kinetic proofreading. The threshold g needs to be crossed by the early
recognition events before s expires (see above) and too slow IA in the case of
AIDS progressors (red), albeit sufficient in amplitude to cross g; fails to do so
within the window of opportunity set by the proofreading mechanisms’ upper and
lower bounds on time. Note that, we assume here that the lower bound is defined
by the first encounter with viral particles/components thereof or immediately after,
thus is identical for the two species in this experiment, and that the upper bound is
a function of the intrinsic lifetime of prerecognition complexes assumed to be
identical in both cases as well. Thus, the only variable in the system is the speed
with which IA occurs in both species. This can be viewed as analog to the situation
of a surfer. If pathogen encounter and innate recognition as foreign is considered a
wave at the beach, then IA could be seen as a surfer getting up on his surfboard. If
the surfer fails to mount during the window of opportunity (defined by the width of
the wave-back, thus intrinsic to the wave), the surfer will sink; thus, the term west
coast model used (see Benecke et al. 2012 for a detailed discussion on this
argument). Relevance of this model stems from the following observations: SIV-
infected NHPs and HIV-infected human AIDS progressors mount their innate
immune response too slow or rather too late leading to a non-attenuation and thus
chronic IA. This unresolved innate IA wears down the system and leads conse-
quently to decline in CD4+ T-cells, the hallmark of AIDS (Pandrea et al. 2011).
Natural hosts for SIV on the other hand, such as sooty mangabeys, African green
monkeys, and mandrills display timely responses to infection leading to successful
IA and concomitant IA attenuation and, due to absence of specific humoral
responses long-term tolerance of the virus (Jacquelin et al. 2009; Bosinger et al.
2009; Favre et al. 2009; Lederer et al. 2009; Rotger et al. 2011).

Comparative transcriptome profiling between an SIV infected natural host
(here: C. sabaeus) and a progressor (here: M. mulatta) shows evidence of a lag-
time of IFNa (as proxy for innate IA) signaling in progressors (Jacquelin et al.
2009) (Fig. 2). Note that, this delay of about a week might, however, be due to
phenomena not necessarily related to the kinetics of IA, as the amplification
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kinetics of the two adapted SIV viruses might be different, or for instance, we do
not know whether or not the effective doses might be different between the two
species. Still, it seems unlikely that such before mentioned effects would entail
such profound changes in the IA kinetics, and thus this experimental finding might
be regarded as a potential support of the proposition of kinetic autoattenuation of
IA in natural hosts. It will be of outmost interest to better characterize the acti-
vation dynamics across the entire spectrum of known natural hosts and progressors
in order to contrast possible differences in the activation kinetics with human
subjects (or more likely ex vivo cellular models) representing the different
observed classes [progressor, long-term non-progressor (LTNP), elite controller
(EC)] as especially the LTNPs would be candidates of having acquired a similar
attenuation mechanism as natural hosts. In this context, particular attention should
also be given to the investigation of co-infection schemes with different pathogens
(Schreiber et al. 2011). This would then also lead to the proposition that, similarly
as to non-human primates, it is not the absence of an effective adaptive immune
response to HIV itself but the failure to control the innate immune response which
is the main driver of AIDS.

2.3 The Importance of Timing Across Scales

In conclusion, the proposition of mechanisms similar to kinetic proofreading for
the coupling between innate and adaptive immunity is appealing as it combines
simplicity with fidelity. Thereby, innate IA, with its obvious role of identifying
foreign from self, would in the same time serve as a guard against inappropriate
initiation of adaptive immunity by automatically attenuating the primary response.
In order for this model to work, however, one needs to evoke the concept of a
fading capacity to attenuate IA, and postulate that the attenuation threshold g is
never reached in AIDS progressors in time s (Fig. 2). Conclusive insights on the
model presented for the coupling between innate and adaptive immunity, and the
propositions regarding SIV and possibly HIV infection will require the successful
translation of molecular profiles such as the transcriptome profiles obtained in the
four cited studies into a dynamic view of the host’s cellular immunity. This might
sound simpler than it indeed is for several reasons such as experimental limitations
imposed by the model systems or the technologies at hand for monitoring
molecular events and their proxies (mRNA, signal cascade activation, metabolic
activity), but mainly as one will need to overcome the problem of integration over
multiple scales from the dynamics of single molecular events (in the micro- to
millisecond range) to events at the organ level occurring on the scale of hours to
days (please refer to the remarks made in Sect. 1). After having discussed briefly
the second example of the importance of the network dynamics in immune
responses from respiratory virus infections in Sect. 3, we will develop some ideas
of how this general problem might be partially solvable for the particular cases
discussed here (Sect. 4).
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3 Network Dynamics in Respiratory Virus Infections

Other chapters of this volume discuss in great detail the case of different respi-
ratory viruses and their interactions with their native hosts. We will, therefore,
discuss here only a single finding from recent work on a meta-analysis of host
transcriptome responses to a compendium of essentially Flu and SARS infection
scenarios. As will be seen below, the observation made by Chang et al. (2012)
pertains to host response dynamics, similarly as the studies discussed with respect
to SIV and the innate IA in different hosts. Distinctively, the respiratory virus
example does not compare different hosts for the same of differently adapted
viruses, but rather different viruses (or pathogenic states) in a single host.

3.1 Meta-analysis of Mouse Transcriptome Responses
to Respiratory Viruses

The threat of a highly lethal viral pandemic remains a major threat; the recent
SARS-CoV 2003 and the H5N1 pandemics testify to the uncontrolled potential of
emergence of respiratory viruses with possibly devastating characteristics remi-
niscent of the 1918 Spanish Flu (Donnelly et al. 2003; Beigel et al. 2005).
Accordingly, major efforts are directed toward an understanding of the viral
determinants of pathogenicity and their possible horizontal drift on the one hand
and possible restriction factors or key modulators of pathogenicity on the side of
the host on the other.

Deriving robust and unique molecular fingerprints for physiopathologic phe-
notypes from massive parallel experimental data is not only of extraordinary value
for the understanding of pathogenicity but also a serious challenge given the
current absence of systematic procedures (Ein-Dor et al. 2005). Biologic vari-
ability and insufficient sampling of the relevant state-space at present preclude
formal approaches to molecular signature definition. A molecular signature is best
defined using the isolation principle (Gregorius 2006) as the minimum number of
biologic observables required to (i) discriminate the studied phenotype from some
(ideally: any) other existing phenotype (external isolation), (ii) differentiate suf-
ficiently between replicate analyses of the same phenotype thereby capturing
biologic variation (internal cohesiveness), (iii) be robust against technical and
biologic variability, and (iv) be of biologic relevance by representing the under-
lying more complex phenotype in its principal characteristics.

In order to advance in the definition of the hallmarks of lethal infection by
respiratory viruses, Chang et al. compiled a compendium of published individual
transcriptome studies on mouse lungs in order to identify gene signatures which
abbey by the definitions set forth above. The compendium of microarray data from
the 12 analyzed studies was composed of a total of 733 individual transcriptome
profiles, roughly equally distributed over the three physiopathological groups
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(‘high’, ‘medium’, and ‘low’ pathogenicity) and their corresponding controls. Four
different methods of meta-analysis stemming from two different philosophical
approaches were used and compared in their absolute and relative performance.
Processed data were either converted to logratios to identify genes that show
opposite regulation in HPI and LPI, or directly submitted to meta-analysis by
direct comparisons. In previous studies, both targeted and genome-wide approa-
ches have been used to identify particular host pathways deregulated during
infection. In parallel, a direct comparison of gene expression in ‘high’ and ‘low’
pathogenicity groups was performed. Statistically significantly differentially
expressed genes were compiled to result in a characteristic gene signature when
comparing the initial ‘high’ and ‘low’ groups. The fundamental difference between
the three earlier, logratio based methods, and the latter direct comparison signature
is the implicit choice of reference gene expression levels as well as the subsequent
classifier used to choose signature genes. While the former methods will select for
those genes that are uniquely/oppositely regulated in ‘high’ versus ‘low’ patho-
genicity settings, the latter will select for genes that are statistically significantly
differentially expressed between both conditions. The logratio meta-analysis
derived signatures could be, in accordance with Sonnenschein et al. (2011),
referred to as ‘digital’ and the direct comparison signature which comprises both
gene IDs and gene expression values as ‘analog’. All of the pathogenicity signa-
tures were then compared among each other and characterized individually toward
the objective to characterize responses that were present across high-pathogenic
infections (HPI) and low-pathogenic infections (LPI).

The analog pathogenicity signature (aPS), correctly classified test data from the
comparison of infection with one of two swine-origin influenza virus A strains,
pandemic H1N1 (CA/04), or a mouse-adapted lethal variant (MA1 CA/04)
(Bradel-Tretheway et al. 2011) not comprised in the initial compendium used for
the competitive meta-analyses. In-depth analysis of the aPS revealed, furthermore,
that biologic conditions classified as intermediate between HPI and LPI often
belonged in the case of MPI data to late time points after infection, and for HPI
data to early time points, leading to an analog immune response model for
respiratory virus infection. The aPS derived by comparative meta-analysis of this
respiratory virus infection compendium can be, thus, used to correctly classify host
transcriptome responses according to clinical pathogenicity. The reason why the
aPS outperforms the alternate digital pathogenicity signatures derived through the
other three meta-analysis methods is explained by the striking observation of an
analog that is continuous and correlated, host gene expression response to path-
ogenicity. Gene expression of this continuos response can be either positively or
negatively correlated with pathogenicity, the latter being only recently recognized
to exist (Kash et al. 1918; Cilloniz et al. 2010). This finding has not only technical
implications for molecular signature definition strategies, but also for the under-
standing of the physiopathology of respiratory virus infection: continuous
responses of gene networks to pathogenicity rather than different or oppositely
regulated networks specific to ‘high’ or ‘low’ pathogenicity dominate the
immunologic response of the host to viral infection which has major implications
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for medical targeting of these networks. On the other hand, the observation of
analog immune responses lends hope to the successful identification and boosting of
host innate and adaptive immune mechanisms against high pathogenicity infections.

3.2 Dynamic Interpretation of Gene Expression
and Pathogenicity Correlation

Important in this context is the possibility that infectious outcome might be
encoded by the activation dynamics of host response gene regulation. In other
words, one might have a hard time to find genes specifically responding to HPI or
LPI, but rather only different activation dynamics for genes regulated in either
case. Figure 3 illustrates the possible underlying mechanisms for such an
observation.

Comparative meta-analysis of the host transcriptome dynamics following
infection with high- or low-pathogenic respiratory viruses identified a gene
signature characteristic of the pathogenicity of the virus (Chang et al. 2012).
Highly pathogenic viruses such as influenza A subtype H5N1, reconstructed
1918 influenza A virus, and SARS-CoV thus illicit the same immune
reaction than low- and medium-pathogenic viruses, however, to a higher
degree. The observed strong correlations with pathogenicity could originate
from two different, dynamic regimes of the underlying network (Fig. 3).

In conclusion, the meta-analysis of transcriptome profiles from respiratory virus
infections reveals again critical dynamics of innate immunity at time-scales below
currently investigated scales. The possibility of similar mechanisms at work when
comparing the case of SIV infection in natural hosts (Sect. 2) and respiratory virus
infections in mice (Fig. 3 right), possibly even further strengthens the general idea
of time dynamics being of critical importance to host–pathogen interactions. In the
following section, we will ask how such dynamics can be better inferred and
analyzed using novel genome representations.

4 Integration Over Time-Scales Using Probability
Landscapes Over Genome Sequences

In what follows, we will discuss a recent proposition for a mathematical
description of a genome and associated activities. We will first argue for the need
of such a structure, then discuss the general outline of the recently proposed
structure, and finally discuss how this structure might help to further the concepts
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discussed in the two examples above (Sects. 2, 3) by providing a basis for the
decomposition and inference over multiple time-scales (Sect. 1).

4.1 Requirements for a Mathematical Structure
for the Object Genome

Today, genome biology is essentially based on (linear) statistical approaches. This
is somewhat surprising as the amount of available information and experimental
data is not, nor likely will ever be in the near future, sufficient to derive proper
statistics on the object ‘genome’. The large number of different biologic conditions
will not be exploitable and the space of biologic conditions hence will remain
extremely sparsely sampled. Furthermore, it will almost nowhere reach sufficient

H
ig

h
M

ed
iu

m
Lo

wS
ig

na
tu

re
 G

en
e 

E
xp

re
ss

io
n

time [d]1 3 time [d]1 3

rapid turn-over of key regulator(s) slow turn-over of key regulator(s)

Fig. 3 Two alternate dynamic interpretations of the observed strong correlation between gene
expression activity and pathogenicity (Chang et al. 2012). The uncovered positive and negative
correlations between mRNA levels produced from a signature set of genes relevant to respiratory
virus infection in mice with the corresponding pathogenicity of the virus (viruses or conditions
were attributed to one of three discrete categories ‘high’, ‘medium’, and ‘low’, center) have two
possible mechanistic origins. First, as initially proposed by Chang et al. (2012), while variable in
time, a given gene at any given moment will be expressed as a function of viral pathogenicity
(left). Second, it is also possible that all the signature genes will share similar expression values
independent of the pathogenicity of the virus, in this case, however, at different moments in time
(right). These regimes are not necessarily exclusive. Note that with the current resolution of the
existing data a direct inference of which of the two regimes actually at work is impossible. Note
also that the identification of which of the two mechanisms is at work would lead to strong,
testable hypotheses, and provide directions for future experiments aiming at dissecting the gene
regulatory network(s) relevant to the viral pathogenicity. The identification of the key regulator(s)
driving the effective network and its dynamics were greatly facilitated if one could make a
prediction as to the turnover of these regulators (which can be estimated from the time-series data
for all genes). Note finally that the regime described on the right—disparity in activation (and
symmetrically repression, not illustrated)—resembles the observations made in the case of
comparative SIV infection in natural hosts versus AIDS progressors (Sect. 2, Fig. 2, opening the
exciting possibility of a similar, if not identical, phenomenon taking place in both scenarios)
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density (e.g. recordings of many independent biologic replicates) to allow proper
statistics. Moreover, simultaneous observation of all relevant determinants at all
relevant scales over time is not possible, the experimental data will remain
independent observations. Statistics on those will not enable to construct causal
links rather than correlations between them. Furthermore, standard statistics is
inappropriate for the questions posed since biologic processes are not generic, and
arguments of parsimony, typicality, and natural chance of occurrence fail. Finally,
statistical descriptions per se do not provide causal relationships, and hence do not
provide comprehension of the underlying mechanisms. There are no obvious
computational remedies to these limitations due to the evolutionary (and possibly
other) feedback from the level of the higher, emergent scale down to the molecular
scale as discussed in Sect. 1 (Moore 1990; Israeli and Goldenfeld 2006).

The object genome (which includes all of its possible activities) is likely to
be ‘computationally irreducible’ (Moore 1990), meaning that if we aim at
computing the behavior generated by genomic information, we have to
perform as many operations as there are time steps, elements, and interac-
tions. There is, hence, little possible reduction of the complexity of the
biologic system genome by computational methods unless a unified, math-
ematical self-consistent structure can be formulated. Time will be one
important but not necessarily privileged dimension of such a structure.

4.2 An Emerging Proposition for a Mathematical
Genome Structure

In order to go beyond statistical approaches and, thus, to reach a level of under-
standing of genomes which is sufficient for meaningful inference of regulatory
processes the current concept of a letter-based alphabet for genome coding needs
to be revisited. Comprehension, or at least the possibility of inference of networks
and their dynamics over multiple scales is likely a prerequisite to targeting mul-
tifactorial diseases such as cancer, genetic disorders, or pathogen-induced malig-
nancies. The examples discussed above illustrate well the limitations of current
methodologies at hand. Let us, thus, first recapitulate the main features which need
to be captured by mathematical (or functional) genome representation: a genome
(i) codes for a number of molecular machines that catalyze elementary bio-
chemical reactions, and (ii) has evolved to orchestrate the molecular machines in a
manner that whatever form the organism takes in response to external or internal
stimuli the organism remains alive (Benecke 2006). This seemingly trivial concept
that any transitions from one functional (active) form of the genome/organism to
another can only happen at the condition that any intermediate represents a viable
genome/organism needs to be exploited as it is the strongest constraint on the
system. The true ‘miracle’ does not lie within the elementary machines but within
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the fact that they self-organize across different time and space scales into a
functional form whether it be at an embryonic or an adult state (Smet-Nocca et al.
2010). It is the rules of interaction (direct or indirect) that are at the essence of the
genome. These rules of interaction are coded in the genome at its sequence level,
but also on the level of its structural and spatial dynamics (for instance: activity-
dependent subnuclear localization, or localization-dependent activity). Thereby,
any elementary information in the genome (such as a single nucleotide) has a role
(even seemingly negligible) of coding for any part of the functional forms of the
genome at different time and space scales (Benecke 2006). The functional forms of
a genome are thus expressed through nonzero contributions (weights) from indi-
vidual elements which interact within a highly constrained, hence rigid structure.
Note that from a computational viewpoint, an active genome is presumably a
universal Turing machine (Benecke 2006). Recently, an initial proposition for a
mathematical representation has been made where nucleotide frequencies as well
as measurements on the activity of any part of the genome under defined biologic
conditions are simultaneously expressed as probability distributions (Lesne and
Benecke 2008a, b). This mathematical structure allows, which yet also has some
questionable properties, see below, allows to introduce concepts from algebraic
geometry for data analysis and modeling. We thereby use three independent
paradigm shifts which lead to a modified approach to the inference problem in
functional genomics (Benecke 2008).

4.3 Probability Landscapes

A genome is currently represented as a string composed of a four to six (DNA
methylation, gaps) letter alphabet. Most approaches consist of identifying meaningful
‘words’ within this text, often by trying to identify over-represented subsequences that
coincide with measurable quantities or changing quantities such as a gene, the amount
of RNA transcribed from a gene, or the presence of a gene regulatory factor or
particular chromatin modifications associated with the studied process in a given
biologic condition. The genomic sequences obtained over the past decade reveal a low
complexity of the genomic sequence, especially in non-coding regions, and conse-
quently high-fidelity statistical inference of functional elements is essentially limited
to protein coding sequences which account for only � 2 % of the total human
genomic sequence. Paradoxically, even what was considered to be a well-defined
concept, the notion of a gene, is being challenged by the recent discovery of short
and long, untranslated RNA sequences (microRNAs, ncRNAs), and the discovery of
increasingly complex patterns of alternate promoter and splice-site usage. The
concept of probability landscapes replaces the one-dimensional view of a genome by
a stacked structure over genome positions, where the stack contains the represen-
tation of all biologic objects and events relative to the position n along the genome
(Fig. 4). This mathematical structure gives at the same time the framework to
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analyze data, to reconstruct missing information using rigidity-like and coherence
arguments, and to express inherently multiscale causal relationships that can be used
to explain genome function. Mathematical does not mean abstract, since on the
contrary any set of experimental data or concrete interactions are transformable into
the probability distributions (Lesne and Benecke 2008a). In turn, the probability
distributions used allow the inference of a more integrated knowledge without
having to prescribe all local properties and connected relationships. Rather than
considering individual states of an active genome, probabilities describe the rele-
vance of any object mappable to the genome (for instance: physical properties of
chromatin, or transcription factor binding) to these states (Lesne and Benecke
2008a). As any relevant information on all levels, features (objects such as genes,
regulatory sequences), and experimental data can be expressed as probabilities, a
unified representation is obtained. The ensemble of probability distributions at site
n constitute the stack and horizontally, thus over all positions ni; a profile. Finally,
rather than focusing on objects and states (or their probabilities) the aim of this form
of representation is to be able to access the transformations between the probability
distributions that govern their mechanistic, biologic relations. The set of transfor-
mations thereby constitutes the mapping functions f and U from Fig. 1 for the
phenotypes associated with genome activity provided sufficient data have been
integrated.
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Fig. 4 Probability landscapes, which include as reference set the probabilistic representation of
the genomic sequence obtained from several to many individuals, can be used to discover and
analyze longitudinal correlations efficiently among the initially heterogeneous and unrelatable
descriptions and genome-wide measurements. The structure consists of probability density
distributions stacked on any genome position n defining the vertical extension. Horizontally,
along the one-dimensional genome, a layer is generated for every biologic condition and every
experimental measure. In this schematic representation, the probability distributions for two
measures of activity of two different viruses over a five base genome is illustrated (Lesne and
Benecke 2008). These profiles than can be integrated vertically (schematized on the right) using
appropriate formalisms. A large collection of such geometric and algebraic ways to generate what
is here referred to as joint profile exist (Lesne and Benecke 2008)
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Probability landscapes provide, thus, a unified structure consisting of
probabilities ðPnÞn and associated quality estimates ðPPnÞn—in the form of func-
tional probability densities (probabilities of probabilities)—to integrate any type of
relevant genomic information into a coherent annotation. Most importantly,
genomic sequence itself, its annotation with empirically derived features such as
genes and regulatory sites, and any type of functional genomics data can be
described in this manner. The rationale of this probabilistic description is not
necessarily to account for an underlying stochasticity, though for some biologic
processes this is indeed relevant, but rather to provide an efficient way to formulate
partial knowledge and turn relative data of very heterogeneous nature and origin
into absolute values and a homogeneous representation of the initial observations.
Genome probability landscapes are systematic as any type of relevant information
can be correctly and sensibly projected upon the genome positions. This projection
has a single nucleotide resolution, producing a (at least locally) continuous profile.
The proposed framework is coherent, as any information is converted without
exception into the very same structure: probabilities with associated probability
densities for local quality estimation. While the proposed representation of
information is far from optimal in terms of compression, it provides a direct,
systematic, and coherent interface for analysis, thus rendering numerical calcu-
lation efficient. The systematic nature of genome probability landscapes and their
coherent structure allows easy exchange of information between different research
teams. The simple structure of the resulting data also makes the framework easily
portable between different computing environments as there is no real need for a
solid database structure to generate, store, and handle the information provided
that the same metrics are used to generate the profiles. Note that this aspect is a
little oversimplification, as using the same metrics is not trivial when all aspects of
quality control of the raw data, missing value imputations, and normalization have
to be considered. It also appears that the concept is future compatible, as any type
of relevant information can also be included in the very same manner into the
existing landscapes (we disregard here whether or not this information makes
previous data obsolete). This latter point is certainly of heightened interest giving
the speed at which technology is developing for instance with respect to ‘deep’/
next generation-sequencing (NGS) and digital PCR. A structure that thus can
meaningfully combine ‘old’ e.g., microarray type of data with ‘new’ NGS data
will reduce the requirement for rerunning the same biologic conditions with the
latest technology. Finally, the proposition to use probability landscapes for the
integration of such data is—as it is inspired by and organized along the DNA
sequence—a natural solution. Importantly, probability profiles can also accom-
modate the description of physical properties of DNA (for instance bending and
intrinsic curvature) and chromatin fiber (local elastic constants, compactness), as
well as the conformation of its nucleosomes and topologic constraints (conserved
linking number within a loop); all these features are expected to play a key role in
for instance transcriptional regulation (Widom 1998; Lesne and Victor 2006;
Lesne and Benecke 2008a). Even nuclear dynamics could possibly be expressed
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through the location, either central or peripheral of chromatin loci within the
nucleus (Spector 2003; Cabal et al. 2006).

4.3.1 P-Landscape Based Analysis

Genome probability landscapes essentially provide the first step into processing
any raw experimental data into a unified expression suitable for systematic gen-
ome-wide integration and analysis. To reduce unnecessary formal, mathematical,
and computational complexity, we have developed methods for collapsing subsets
of the landscapes whose basic step is an analysis of the stacks at a given genome
location n (Lesne and Benecke 2008b). In the toy example given in Fig. 4, one
might for instance want to ask whether it is necessary to consider the activity
profiles of Virus*1 and Virus*2 as distinct or whether it is more meaningful to
pool them. In other words, does the profile of Virus*1 when jointly considered
with the one of Virus*2 provide independent information which needs to be
considered or can the one be used to rather back the other? To answer, a measure
called Kullback–Leibler divergence (Kullback and Leibler 1951) can be employed
to measure the relative contribution of either activity profile to the joint profile.
Each individual profile’s weight to the combined measure is obtained using the
average presumed frequency of these subsets (rather subpopulations). This
amounts to one example of a vertical comparison which can be performed along
the genome. Then, a longitudinal integration of the local divergencies is performed
along genome regions of relevance (e.g. over the location associated to a given
gene) allowing to analyze the feature divergence profile of a biologic condition
over the entire genome or defined intervals. This genome-wide distance measure is
meaningful, unlike the individual feature profiles. If the conditioning by any
combination of individual or averaged profiles leads to a statistically significant
divergence (suggesting that the associated subpopulation is well delineated and has
a specific signature) the profile is kept as a separate entity. In contrast, if statistical
significance is not reached, the condition is considered non-pertinent to the bio-
logic question posed as it does not provide a measurable constraint on the value of
the joint profile and can be combined with any other statistically insignificant
conditions. This process, thus, integrates and thereby collapses part of the land-
scape to restrict to statistically divergent information (whether this is also biologic
meaningful information can not be determined at this stage). Two advantages arise
in this case: (i) the complexity of the structure is reduced in a controlled manner in
so far as it is irrelevant to the biologic question investigated, and (ii) the statistical
power of the joint probability profile is increased. As shown in Lesne and Benecke
(2008b), this procedure can be performed at any interesting scale or functional
level and thus the probability landscape over the genomic sequence can be reduced
in complexity until all remaining context-dependencies reach statistical signifi-
cance at which an optimum for computational complexity and statistical power is
reached. Different biologic conditions can thereby be defined with maximum
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flexibility using separate or overlapping subsets of subconditions in a hierarchical
manner. The Kullback–Leibler divergence-based method discussed in Lesne and
Benecke (2008b) represents, thus, a systematic and simple way of testing the
statistical limits of complexity reduction and hence explanatory power of the
integrative genomics data in their respective contexts. Note that since we are
comparing the distributions of the same random variable under different condi-
tions, it is only the distance (or divergence) between the two distributions that is
meaningful. A joint probability, such as mutual information, could not be envi-
sioned. This also holds for the case of two different variables because the joint
probability distribution is inaccessible. From a general perspective, our method
represents an application of concepts related to context trees to the probability
landscape idea. Context analysis and landscape collapse thereby operate in similar
manners to Markov chains with variable length for the analysis of time-series and
historic context (Bühlmann and Wyner 1999; Maubourguet et al. 2008). We also
note that the Kullback–Leibler divergence calculation provides measures that can
be used directly for clustering of probability profiles. Clustering of probability
profiles might help to establish and analyze relatedness among data otherwise not
compared directly.

4.3.2 Expressing Time in P-Landscapes

As discussed earlier (Sect. 1), the successful integration of time over scales is one
of the current bottlenecks of a systems biology description aiming at a discovery
mechanism for mapping functions between objects and phenotypes. The two cited
examples from virology (Sects. 2, 3) underline the potentially crucial importance
of molecular dynamics and their coupling to macroscopic behavior. There are two
different possibilities to incorporate time into probability landscapes. First, explicit
integration using which will be based on directly using the different time points
from the kinetic, to stay within the perimeter of the examples from above, tran-
scriptome profiles to generate individual probability profiles now depend on time:

PðVirus 1Þ
n ðtÞ (probability to observe activity of Virus 1 in the experimental condition

at site n and time t). It is then possible, generalizing the methodology developed
for single time P-landscapes to compare those using for instance the Kullback–
Leibler formalism, to align profiles from different biologic conditions (Virus*1
vs. Virus*2) using mutual information optimization to determine a local or global
shift (compare Fig. 2), and finally fit a model of the evolution over time using a
stochastic operator.

Alternatively, time might be captured only abstractly, and thus indirectly.
Consider once more, the schematized behavior of the respiratory virus induced
host response signature from Fig. 3. Whatever the interpretation of the experi-
mentally measured result (center), thus whatever the underlying mechanism (rapid
or slow turnover of key regulator) in both scenarios a density (here: pathogenicity)
function over time is at the origin of the measured result. As discussed above,
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probability density distributions are at the basis of the P-profiles generated from
the to-be-annotated data. While so far only symmetric distributions have been
described and studied (Lesne and Benecke 2008a, b), the formalism does not
exclude the use of skewed, nontrivial distributions (Fig. 5). Furthermore, distance
or divergence measures for skewed distributions, or parts thereof, can be defined.
Thus instead of describing variability across individual measurements or different
genetic backgrounds, the PPn part of the probability annotation would capture a
generalized evolution over time. In this manner, only a single profile would be
created for the entire time-series where the actual number of measured discrete
time points is replaced by a continuously modeled distribution. Those distributions
then can be studied in a fashion similarly as to what has been briefly discussed in
Sect. 4 and in more detail in Lesne and Benecke (2008b). Again, a number of
different ways to achieve such integration have been proposed (Selinger 2012).
Indeed, in the example of the respiratory virus infection (Sect. 3), the proposed
integration mechanism provides a means of discerning which one is the more
likely of the two possible mechanisms, and thus prioritize the experimentally
testable hypotheses.

Activity (Virus 2)

Activity (Virus 1)

Joint Profile

Genome Position n

Activity (Host 2)

Activity (Host 1)

Joint Profile

Genome Position n

Fig. 5 Capturing time abstractly within the framework of probability landscapes (Lesne and
Benecke 2008a, b). Both proposed mechanism (rapid or slow turnover of key regulator) which
would lead to the remarkable correlation (and anti-correlation) between the expression levels of
key signature genes for respiratory virus infection as a function of the pathogenicity of the
analyzed virus lead to density distributions of gene activity with respect to time. These density
distributions are characteristic for the virus and can be expressed as probability profiles along the
host genome (here illustrated for a single genome position, which might be as discussed in
Sect. 3, either indeed a single nucleotide or a consecutive stretch of the genome associated to a
measured activity—simplest example would be the difference of resolution of NGS vs.
microarray based transcriptomics). The virus-dependent, time-abstracted profiles then can be
integrated into joint profiles using the same or similar formalisms as discussed in Sect. 4 and
Lesne and Benecke (2008b)
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5 Concluding Remarks

Systems Biology is a rapidly evolving field with is receiving a great deal of
attention in the field of infectious disease research owing to the potential to pro-
vide a greater understanding of the pathogen–host interactions that control
infection phenotype and disease outcome. A key aspect of the systems approach is
the use of computational methods to collectively integrate high-throughput omics
and traditional virologic or histopathologic data into a systems-level view that
allows the identification of functional processes involved in pathogen-associated
disease and the further illumination of host targets representing key points of
control by pathogens.

Albeit having already made strong arguments in favor of a systemic analysis of
the pathogen, the host, and most importantly their joint, interdependent activity,
taking these analyses to the next level will require to overcome many current
conceptual, technical, statistical, and computational bottlenecks. A key aspect of a
higher level understanding, linking objects and mechanisms to organs and phe-
notypes, will be the integration of data on the one hand, and inference of network
structure and dynamics on the other, over multiple scales. This problem is far from
trivial, and ideas of how it can be overcome are still rare and in the early stage of
development.

The potentially defining role of the network dynamics of host–pathogen
interactions, as discussed on two recent examples, exemplifies the urgent need of
identifying solutions of how to handle time across scales. Based on a recent
proposition of a probability-theory derived approach for functional genome rep-
resentations a first glimpse of methodology that might turn out to handle at least
some of the problems arising through time disparity over scales was developed.
Obviously, this approach, and even more so generalizable ideas of overcoming
scales, will need many iterations of scientific thought and experimentation before
we will see major breakthroughs.
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