

PHP	Web	Services
SECOND	EDITION

Lorna	Jane	Mitchell

PHP	Web	Services
by	Lorna	Jane	Mitchell

Copyright	©	2016	Lorna	Mitchell.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales
promotional	use.	Online	editions	are	also	available	for	most	titles
(http://safaribooksonline.com).	For	more	information,	contact	our
corporate/institutional	sales	department:	800-998-9938	or
corporate@oreilly.com.

Editor:	Allyson	MacDonald
Production	Editor:	Colleen	Lobner
Copyeditor:	Charles	Roumeliotis
Proofreader:	James	Fraleigh
Indexer:	WordCo	Indexing	Services
Interior	Designer:	David	Futato
Cover	Designer:	Randy	Comer
Illustrator:	Rebecca	Demarest
April	2013:	First	Edition
January	2016:	Second	Edition

Revision	History	for	the	Second	Edition
2016-01-05:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781491933091	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	PHP	Web
Services,	the	cover	image	of	an	alpine	accentor,	and	related	trade	dress	are
trademarks	of	O’Reilly	Media,	Inc.

While	the	publisher	and	the	author	have	used	good	faith	efforts	to	ensure	that
the	information	and	instructions	contained	in	this	work	are	accurate,	the
publisher	and	the	author	disclaim	all	responsibility	for	errors	or	omissions,
including	without	limitation	responsibility	for	damages	resulting	from	the	use
of	or	reliance	on	this	work.	Use	of	the	information	and	instructions	contained

http://safaribooksonline.com
http://oreilly.com/catalog/errata.csp?isbn=9781491933091

in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other	technology	this
work	contains	or	describes	is	subject	to	open	source	licenses	or	the
intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-491-93309-1

[LSI]

Preface

In	this	age,	when	it	can	sometimes	seem	like	every	system	is	connected	to
every	other	system,	dealing	with	data	has	become	a	major	ingredient	in
building	the	Web.	Whether	you	will	be	delivering	services	or	consuming
them,	web	service	is	a	key	part	of	all	modern,	public-facing	applications,	and
this	book	is	here	to	help	you	navigate	your	way	along	the	road	ahead.	We	will
cover	the	different	styles	of	service—from	RPC,	to	SOAP,	to	REST—and	you
will	see	how	to	devise	great	solutions	using	these	existing	approaches,	as	well
as	examples	of	APIs	in	the	wild.	Whether	you’re	sharing	data	between	two
internal	systems,	using	a	service	backend	for	a	mobile	application,	or	just
plain	building	an	API	so	that	users	can	access	their	data,	this	book	has	you
covered,	from	the	technical	sections	on	HTTP,	JSON,	and	XML	to	the	“big
picture”	areas	such	as	creating	a	robust	service.

Why	did	we	pick	PHP	for	this	book?	Well,	PHP	has	always	taken	on	the
mission	to	“solve	the	web	problem.”	Web	services	are	very	much	part	of	that
“problem”	and	PHP	is	ideally	equipped	to	make	your	life	easy,	both	when
consuming	external	services	and	when	creating	your	own.	As	a	language,	it
runs	on	many	platforms	and	is	the	technology	behind	more	than	half	of	the
Web,	so	you	can	be	sure	that	it	will	be	widely	available,	wherever	you	are.

The	book	walks	you	through	everything	you	need	to	know	in	three	broad
sections.	We	begin	by	covering	HTTP	and	the	theory	that	goes	with	it,
including	detailed	chapters	on	the	request/response	cycle,	HTTP	verbs	and
headers,	and	cookies.	There	are	also	chapters	on	JSON	and	XML:	when	to
choose	each	data	format,	and	how	to	handle	them	from	within	PHP.	The
second	section	aims	to	give	very	practical	advice	on	working	with	RPC	and
SOAP	services	and	with	RESTful	services,	and	on	how	to	debug	almost
anything	that	works	over	HTTP,	using	a	variety	of	tools	and	techniques.	In	the
final	section,	we	look	at	some	of	the	wider	issues	surrounding	the	design	of
top-quality	services,	choosing	what	kind	of	service	will	work	for	your
application,	and	determining	how	to	make	it	robust.	Another	chapter	is
dedicated	to	handling	errors	and	giving	advice	on	why	and	how	to	document
your	API.	Whether	you	dip	into	the	book	as	a	reference	for	a	specific	project,
or	read	it	in	order	to	find	out	more	about	this	area	of	technology,	there’s
something	here	to	help	you	and	your	project	find	success.	Enjoy!

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file
extensions.

Constant width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to
program	elements	such	as	variable	or	function	names,	databases,	data
types,	environment	variables,	statements,	and	keywords.

Constant width bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant width italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for
download	at	https://github.com/lornajane/PHP-Web-Services.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	this	book
includes	code	examples,	you	may	use	the	code	in	this	book	in	your	programs
and	documentation.	You	do	not	need	to	contact	us	for	permission	unless
you’re	reproducing	a	significant	portion	of	the	code.	For	example,	writing	a
program	that	uses	several	chunks	of	code	from	this	book	does	not	require

https://github.com/lornajane/PHP-Web-Services

permission.	Selling	or	distributing	a	CD-ROM	of	examples	from	O’Reilly
books	does	require	permission.	Answering	a	question	by	citing	this	book	and
quoting	example	code	does	not	require	permission.	Incorporating	a	significant
amount	of	example	code	from	this	book	into	your	product’s	documentation
does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes
the	title,	author,	publisher,	and	ISBN.	For	example:	“PHP	Web	Services,	2nd
Edition,	by	Lorna	Jane	Mitchell	(O’Reilly).	Copyright	2016	Lorna	Mitchell,
978-1-4919-3309-1.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

Safari®	Books	Online
NOTE

Safari	Books	Online	is	an	on-demand	digital	library	that	delivers	expert
content	in	both	book	and	video	form	from	the	world’s	leading	authors	in
technology	and	business.

Technology	professionals,	software	developers,	web	designers,	and	business
and	creative	professionals	use	Safari	Books	Online	as	their	primary	resource
for	research,	problem	solving,	learning,	and	certification	training.

Safari	Books	Online	offers	a	range	of	plans	and	pricing	for	enterprise,
government,	education,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	and
prepublication	manuscripts	in	one	fully	searchable	database	from	publishers
like	O’Reilly	Media,	Prentice	Hall	Professional,	Addison-Wesley
Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Focal	Press,	Cisco
Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM	Redbooks,
Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,	McGraw-Hill,
Jones	&	Bartlett,	Course	Technology,	and	hundreds	more.	For	more
information	about	Safari	Books	Online,	please	visit	us	online.

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

mailto:permissions@oreilly.com
http://safaribooksonline.com
https://www.safaribooksonline.com/explore/
https://www.safaribooksonline.com/pricing/
https://www.safaribooksonline.com/enterprise/
https://www.safaribooksonline.com/government/
https://www.safaribooksonline.com/academic-public-library/
https://www.safaribooksonline.com/our-library/
http://safaribooksonline.com/

O’Reilly	Media,	Inc.
1005	Gravenstein	Highway	North
Sebastopol,	CA	95472
800-998-9938	(in	the	United	States	or	Canada)
707-829-0515	(international	or	local)
707-829-0104	(fax)

We	have	a	web	page	for	this	book,	where	we	list	errata,	examples,	and	any
additional	information.	You	can	access	this	page	at	http://bit.ly/php-web-
services-2e.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see
our	website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

Acknowledgments
I’d	like	to	extend	my	thanks	to	everyone	who	made	this	book	happen—from
the	team	at	O’Reilly	that	worked	so	hard	to	get	the	book	into	its	final	state,	to
the	technical	editors	who	pointed	out	howlers	and	made	helpful	related
suggestions,	to	various	members	of	the	geek	community	who	gave	me	words
of	encouragement	along	the	way.	Special	thanks	must	go	to	husband	and	chief
cheerleader	Kevin,	who	has	been	my	biggest	supporter	all	the	way	through
the	process.

http://bit.ly/php-web-services-2e
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	HTTP

HTTP	stands	for	HyperText	Transfer	Protocol,	and	is	the	basis	upon	which
the	Web	is	built.	Each	HTTP	transaction	consists	of	a	request	and	a	response.
The	HTTP	protocol	itself	is	made	up	of	many	pieces:	the	URL	at	which	the
request	was	directed,	the	verb	that	was	used,	other	headers	and	status	codes,
and	of	course,	the	body	of	the	responses,	which	is	what	we	usually	see	when
we	browse	the	Web	in	a	browser.	We’ll	see	more	detailed	examples	later	in
the	book,	but	this	idea	of	requests	and	responses	consisting	of	headers	as	well
as	body	data	is	a	key	concept.

When	surfing	the	Web,	ideally	we	experience	a	smooth	journey	between	all
the	various	places	that	we’d	like	to	visit.	However,	this	is	in	stark	contrast	to
what	is	happening	behind	the	scenes	as	we	make	that	journey.	As	we	go
along,	clicking	on	links	or	causing	the	browser	to	make	requests	for	us,	a
series	of	little	“steps”	is	taking	place	behind	the	scenes.	Each	step	is	made	up
of	a	request/response	pair;	the	client	(usually	your	browser,	either	on	your
laptop	or	your	phone)	makes	a	request	to	the	server,	and	the	server	processes
the	request	and	sends	the	response	back.	At	every	step	along	the	way,	the
client	makes	a	request	and	the	server	sends	the	response.

As	an	example,	point	a	browser	to	http://lornajane.net	and	you’ll	see	a	page
that	looks	something	like	Figure	1-1;	either	the	information	desired	can	be
found	on	the	page,	or	the	hyperlinks	on	that	page	direct	us	to	journey	onward
for	it.

The	web	page	arrives	in	the	body	of	the	HTTP	response,	but	it	tells	only	half
of	the	story.	There	is	so	much	more	going	on	in	the	request	and	response	as
they	happen;	let’s	inspect	that	request	to	http://lornajane.net	(a	pretty	average
WordPress	blog)	in	more	detail.

Request	headers:

GET / HTTP/1.1

Host: www.lornajane.net

Connection: keep-alive

Cache-Control: no-cache

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like

http://lornajane.net
http://lornajane.net

Gecko) ...

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

Request	body:	(no	body	needed	for	a	GET	request)

Response	headers:

HTTP/1.1 200 OK

Server: Apache/2.4.7 (Ubuntu)

X-Powered-By: PHP/5.5.9-1ubuntu4.6

X-Pingback: http://www.lornajane.net/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Content-Encoding: gzip

Content-Type: text/html; charset=UTF-8

Content-Length: 8806

Date: Tue, 15 Sep 2015 08:43:54 GMT

X-Varnish: 612483212

Age: 0

Via: 1.1 varnish

Response	body	(truncated):

<!DOCTYPE html>

<head>

<meta charset="UTF-8" />

<meta name="viewport" content="width=device-width" />

<meta name="bitly-verification" content="ff69fb2e45ef"/>

<title>Home - LornaJaneLornaJane | Lorna Jane Mitchell's Website</title>

<link rel="shortcut icon" href="http://www.lornajane.net/wp-

content/themes/lj/images/favicon.ico">

... (truncated)

As	you	can	see,	there	are	plenty	of	other	useful	pieces	of	information	being
exchanged	over	HTTP	that	are	not	usually	seen	when	using	a	browser.	The
browser	understands	how	to	work	with	request	and	response	headers,	and
handles	that	so	the	user	doesn’t	need	to.

Figure	1-1.	Front	page	of	lornajane.net

Understanding	this	separation	between	client	and	server,	and	the	steps	taken
by	the	request	and	response	pairs,	is	key	to	understanding	HTTP	and	working
with	web	services.	Here’s	an	example	of	what	happens	when	we	head	to
Google	in	search	of	kittens:

1.	 We	make	a	request	to	http://www.google.com	and	the	response	contains
a	Location	header	and	a	301	status	code	sending	us	to	a	regional	search
page;	for	me	that’s	http://www.google.co.uk.

2.	 The	browser	follows	the	redirect	instruction	(without	confirmation	from
the	user;	browsers	follow	redirects	by	default),	makes	a	request	to
http://www.google.co.uk,	and	receives	the	page	with	the	search	box	(for
fun,	view	the	source	of	this	page;	there’s	a	lot	going	on!).	We	fill	in	the
box	and	hit	search.

3.	 We	make	a	request	to	https://www.google.co.uk/search?q=kittens	(plus	a
few	other	parameters)	and	get	a	response	showing	our	search	results.

TIP
The	part	of	the	URL	after	the	?	is	the	“query	string”	and	it’s	one	way	of	passing	additional
data	to	a	particular	URL	or	endpoint.

In	the	story	shown	here,	all	the	requests	were	made	from	the	browser	in

http://www.google.com
http://www.google.co.uk
http://www.google.co.uk
https://www.google.co.uk/search?q=kittens

response	to	a	user’s	actions,	although	some	occur	behind	the	scenes,	such	as
following	redirects	or	requesting	additional	assets.	All	the	assets	for	a	page,
such	as	images,	stylesheets,	and	so	on	are	fetched	using	separate	requests	that
are	handled	by	a	server.	Any	content	that	is	loaded	asynchronously	(by
JavaScript,	for	example)	also	creates	more	requests.	When	we	work	with
APIs,	we	get	closer	to	the	requests	and	make	them	in	a	more	deliberate
manner,	but	the	mechanisms	are	the	same	as	those	we	use	to	make	very	basic
web	pages.	If	you’re	already	making	websites,	then	you	already	know	all	you
need	to	make	web	services!

Clients	and	Servers
Earlier	in	this	chapter	we	talked	about	a	request	and	response	between	a	client
and	a	server.	When	we	make	websites	with	PHP,	the	PHP	part	is	always	the
server.	When	using	APIs,	we	build	the	server	in	PHP,	but	we	can	consume
APIs	from	PHP	as	well.	This	is	the	point	where	things	can	get	confusing.	We
can	create	either	a	client	or	a	server	in	PHP,	and	requests	and	responses	can	be
either	incoming	or	outgoing—or	both!

When	we	build	a	server,	we	follow	patterns	similar	to	those	we	use	to	build
web	pages.	A	request	arrives,	and	we	use	PHP	to	figure	out	what	was
requested	and	craft	the	correct	response.	For	example,	if	we	built	an	API	for
customers	so	they	could	get	updates	on	their	orders	programmatically,	we
would	be	building	a	server.

Using	PHP	to	consume	APIs	means	we	are	building	a	client.	Our	PHP
application	makes	requests	to	external	services	over	HTTP,	and	then	uses	the
responses	for	its	own	purposes.	An	example	of	a	client	would	be	a	script	that
fetches	your	most	recent	tweets	and	displays	them.

It	isn’t	unusual	for	an	application	to	be	both	a	client	and	a	server,	as	shown	in
Figure	1-2.	An	application	that	accepts	a	request,	and	then	calls	out	to	other
services	to	gather	the	information	it	needs	to	produce	the	response,	is	acting
as	both	a	client	and	a	server.

WARNING
When	working	on	applications	that	are	APIs	or	consume	APIs,	take	care	with	how	you
name	variables	involving	the	word	“request”	to	avoid	confusion!

Figure	1-2.	Web	application	acting	as	a	server	to	the	user,	but	also	as	a	client	to	access	other	APIs

Making	HTTP	Requests
To	be	able	to	work	with	web	services,	it	is	important	to	have	a	very	good
understanding	of	how	to	work	with	HTTP	from	various	angles.	In	this	section
we’ll	cover	three	common	ways	of	working	with	HTTP:

Using	command-line	tools

Using	browser	tools

Using	PHP	itself

We’ll	also	look	at	tools	specifically	designed	for	inspecting	and	debugging
HTTP	in	Chapter	10.

The	examples	here	use	a	site	that	logs	the	requests	it	receives,	which	is	perfect
for	exploring	how	different	API	requests	are	seen	by	a	server.	To	use	it,	visit
the	site	and	create	a	new	“request	bin.”	You	will	be	given	a	URL	to	make
requests	to	and	be	redirected	to	a	page	showing	the	history	of	requests	made
to	the	bin.	This	is	my	own	favorite	tool,	not	just	for	teaching	HTTP	but	also
when	actually	building	and	testing	API	clients.

There	are	a	few	other	tools	that	are	similar	and	could	be	useful	to	you	when
testing.	Try	out	some	of	these:

The	reserved	endpoints	(http://example.com,	http://example.net,	and
http://example.org)	established	by	the	Internet	Assigned	Numbers
Authority.

HTTPResponder	is	a	similar	tool	and	is	on	GitHub	so	you	could	host/adapt

http://requestb.in
http://example.com
http://example.net
http://example.org
http://www.iana.org/domains/special
http://httpresponder.com

it	yourself.

A	selection	of	endpoints	with	specific	behaviors	at	httpbin.org.

Register	your	own	endpoint	at	http://requestb.in	and	use	it	in	place	of
http://requestb.in/example	in	the	examples	that	follow.

Command-Line	HTTP
cURL	is	a	command-line	tool	available	on	all	platforms.	It	allows	us	to	make
any	web	request	imaginable	in	any	form,	repeat	those	requests,	and	observe	in
detail	exactly	what	information	is	exchanged	between	client	and	server.	In
fact,	cURL	produced	the	example	output	at	the	beginning	of	this	chapter.	It	is
a	brilliant,	quick	tool	for	inspecting	what’s	going	on	with	a	web	request,
particularly	when	dealing	with	something	that	isn’t	in	a	browser	or	where	you
need	to	be	more	specific	about	how	the	request	is	made.	There’s	also	a	cURL
extension	in	PHP;	we’ll	cover	that	shortly	in	“Doing	HTTP	with	PHP”,	but
this	section	is	about	the	command-line	tool.

In	its	most	basic	form,	a	cURL	request	can	be	made	like	this:

curl http://requestb.in/example

We	can	control	every	aspect	of	the	request	to	send;	some	of	the	most
commonly	used	features	are	outlined	here	and	used	throughout	this	book	to
illustrate	and	test	the	various	APIs	shown.

If	you’ve	built	websites	before,	you’ll	already	know	the	difference	between
GET	and	POST	requests	from	creating	web	forms.	Changing	between	GET,
POST,	and	other	HTTP	verbs	using	cURL	is	done	with	the	-X	switch,	so	a
POST	request	can	be	specifically	made	by	using	the	following:

curl -X POST http://requestb.in/example

There	are	also	specific	switches	for	GET,	POST,	and	so	on,	but	once	you	start
working	with	a	wider	selection	of	verbs,	it’s	easier	to	use	-X	for	everything.

To	get	more	information	than	just	the	body	response,	try	the	-v	switch	since
this	will	show	everything:	request	headers,	response	headers,	and	the	response
body	in	full!	It	splits	the	response	up,	though,	sending	the	header	information
to	STDERR	and	the	body	to	STDOUT:

http://httpbin.org
http://requestb.in
http://requestb.in/example
http://curl.haxx.se

$ curl -v -X POST http://requestb.in/example -d name="Lorna" -d

email="lorna@example.com" -d message="this HTTP stuff is rather excellent"

* Hostname was NOT found in DNS cache

* Trying 54.197.228.184...

* Connected to requestb.in (54.197.228.184) port 80 (#0)

> POST /example HTTP/1.1

> User-Agent: curl/7.38.0

> Host: requestb.in

> Accept: */*

> Content-Length: 78

> Content-Type: application/x-www-form-urlencoded

>

* upload completely sent off: 78 out of 78 bytes

< HTTP/1.1 200 OK

< Connection: keep-alive

* Server gunicorn/19.3.0 is not blacklisted

< Server: gunicorn/19.3.0

< Date: Tue, 07 Jul 2015 14:49:57 GMT

< Content-Type: text/html; charset=utf-8

< Content-Length: 2

< Sponsored-By: https://www.runscope.com

< Via: 1.1 vegur

<

* Connection #0 to host requestb.in left intact

When	the	response	is	fairly	large,	it	can	be	hard	to	find	a	particular	piece	of
information	while	using	cURL.	To	help	with	this,	it	is	possible	to	combine
cURL	with	other	tools	such	as	less	or	grep;	however,	cURL	shows	a
progress	output	bar	if	it	realizes	it	isn’t	outputting	to	a	terminal,	which	is
confusing	to	these	other	tools	(and	to	humans).	To	silence	the	progress	bar,
use	the	-s	switch	(but	beware	that	it	also	silences	cURL’s	errors).	It	can	be
helpful	to	use	-s	in	combination	with	-v	to	create	output	that	you	can	send	to
a	pager	such	as	less	in	order	to	examine	it	in	detail,	using	a	command	like
this:

curl -s -v http://requestb.in/example 2>&1 | less

The	extra	2>&1	is	there	to	send	the	STDERR	output	to	STDOUT	so	that
you’ll	see	both	headers	and	body;	by	default,	only	STDOUT	would	be	visible
to	less.	With	the	preceding	command,	you	can	see	the	full	details	of	the
headers	and	body,	request	and	response,	all	available	in	a	pager	that	allows
you	to	search	and	page	up/down	through	the	output.

Working	with	the	Web	in	general,	and	APIs	in	particular,	means	working	with

data.	cURL	lets	us	do	that	in	a	few	different	ways.	The	simplest	way	is	to
send	data	along	with	a	request	in	key/value	pairs—exactly	as	when	a	form	is
submitted	on	the	Web—which	uses	the	-d	switch.	The	switch	is	used	as	many
times	as	there	are	fields	to	include.	To	make	a	POST	request	as	if	I	had	filled	in
a	web	form,	I	can	use	a	curl	command	like	this:

curl -X POST http://requestb.in/example -d name="Lorna"

-d email="lorna@example.com"

-d message="this HTTP stuff is rather excellent"

APIs	accept	their	data	in	different	formats;	sometimes	the	data	cannot	be
POSTed	as	a	form,	but	must	be	created	in	JSON	or	XML	format,	for	example.
There	are	dedicated	chapters	in	this	book	for	working	with	those	formats,	but
in	either	case	we	would	assemble	the	data	in	the	correct	format	and	then	send
it	with	cURL.	We	can	either	send	it	on	the	command	line	by	passing	a	string
rather	than	a	key/value	pair	to	a	single	-d	switch,	or	we	can	put	it	into	a	file
and	ask	cURL	to	use	that	file	rather	than	a	string	(this	is	a	very	handy
approach	for	repeat	requests	where	the	command	line	can	become	very	long).
If	you	run	the	previous	request	and	inspect	it,	you	will	see	that	the	body	of	it
is	sent	as:

name=Lorna&email=lorna@example.com

We	can	use	this	body	data	as	an	example	of	using	the	contents	of	a	file	as	the
body	of	a	request.	Store	the	data	in	a	file	and	then	give	the	filename
prepended	with	an	@	symbol	as	a	single	-d	switch	to	cURL:

curl -X POST http://requestb.in/example -d @data.txt

Working	with	the	extended	features	of	HTTP	requires	the	ability	to	work	with
various	headers.	cURL	allows	the	sending	of	any	desired	header	(this	is	why,
from	a	security	standpoint,	the	header	can	never	be	trusted!)	by	using	the	-H
switch,	followed	by	the	full	header	to	send.	The	command	to	set	the	Accept
header	to	ask	for	an	HTML	response	becomes:

curl -H "Accept: text/html" http://requestb.in/example

Before	moving	on	from	cURL	to	some	other	tools,	let’s	take	a	look	at	one
more	feature:	how	to	handle	cookies.	Cookies	will	be	covered	in	more	detail

in	Chapter	4,	but	for	now	it	is	important	to	know	that	cookies	are	stored	by
the	client	and	sent	with	requests,	and	that	new	cookies	may	be	received	with
each	response.	Browsers	send	cookies	with	requests	as	default	behavior,	but
in	cURL	we	need	to	do	this	manually	by	asking	cURL	to	store	the	cookies	in
a	response	and	then	use	them	on	the	next	request.	The	file	that	stores	the
cookies	is	called	the	“cookie	jar”;	clearly,	even	HTTP	geeks	have	a	sense	of
humor.

To	receive	and	store	cookies	from	one	request:

curl -c cookiejar.txt http://requestb.in/example

At	this	point,	cookiejar.txt	contains	the	cookies	that	were	returned	in	the
response.	The	file	is	a	plain-text	file,	and	the	way	that	a	browser	would	store
this	information	is	pretty	similar;	the	data	is	just	text.	Feel	free	to	open	this
file	in	your	favorite	text	editor;	it	can	be	amended	in	any	way	you	see	fit
(which	is	another	good	reminder	of	why	trusting	outside	information	is	a	bad
idea;	it	may	well	have	been	changed),	and	then	sent	to	the	server	with	the	next
request	you	make.	To	send	the	cookie	jar,	amended	or	otherwise,	use	the	-b
switch	and	specify	the	file	to	find	the	cookies	in:

curl -b cookiejar.txt http://requestb.in/example

To	capture	cookies	and	resend	them	with	each	request,	use	both	the	-b	and	-c
switches,	referring	to	the	same	cookiejar	file	with	each	switch.	This	way,	all
incoming	cookies	are	captured	and	sent	to	a	file,	and	then	sent	back	to	the
server	on	any	subsequent	request,	behaving	just	as	they	do	in	a	browser.	This
approach	is	useful	if	you	want	to	test	something	from	cURL	that	requires,	for
example,	logging	in.

Another	command-line	tool	well	worth	a	mention	here	is	HTTPie,	which
claims	to	be	a	cURL-like	tool	for	humans.	It	has	many	nice	touches	that	you
may	find	useful,	such	as	syntax	highlighting.	Let’s	see	some	examples	of	the
same	kinds	of	requests	that	we	did	with	cURL.

The	first	thing	you	will	probably	notice	(for	example,	in	Figure	1-3)	is	that
HTTPie	gives	more	output.

http://httpie.org

Figure	1-3.	A	simple	GET	request	with	both	cURL	and	HTTPie

You	can	control	what	HTTPie	outputs	with	the	--print	or	-p	switch,	and
pass	H	to	see	the	request	header,	B	to	see	the	request	body,	h	to	see	the
response	header,	or	b	to	see	the	response	body.	These	can	be	combined	in	any
way	you	like	and	the	default	is	hb.	To	get	the	same	output	as	cURL	gives	by
default,	use	the	b	switch:

http -p b http://requestb.in/example

HTTPie	will	attempt	to	guess	whether	each	additional	item	after	the	URL	is	a
form	field,	a	header,	or	something	else.	This	can	be	confusing,	but	once
you’ve	become	used	to	it,	it’s	very	quick	to	work	with.	Here’s	an	example
with	POSTing	data	as	if	submitting	a	form:

$ http -p bhBH -f http://requestb.in/example name=Lorna email=lorna@example.com

message="This HTTP stuff is rather excellent"

POST /example HTTP/1.1

Accept: */*

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Length: 80

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Host: requestb.in

User-Agent: HTTPie/0.8.0

name=Lorna&email=lorna%40example.com&message=This+HTTP+stuff+is+rather+excellent

HTTP/1.1 200 OK

Connection: keep-alive

Content-Length: 2

Content-Type: text/html; charset=utf-8

Date: Tue, 07 Jul 2015 14:46:28 GMT

Server: gunicorn/19.3.0

Sponsored-By: https://www.runscope.com

Via: 1.1 vegur

ok

To	add	a	header,	the	approach	is	similar;	HTTPie	sees	the	:	in	the	argument
and	uses	it	as	a	header.	For	example,	to	send	an	Accept	header:

$ http -p H -f http://requestb.in/example Accept:text/html

GET /149njzd1 HTTP/1.1

Accept: text/html

Accept-Encoding: gzip, deflate

Connection: keep-alive

Content-Type: application/x-www-form-urlencoded; charset=utf-8

Host: requestb.in

User-Agent: HTTPie/0.8.0

Whether	you	choose	cURL	or	HTTPie	is	a	matter	of	taste;	they	are	both	worth
a	try	and	are	useful	tools	to	have	in	your	arsenal	when	working	with	HTTP.

Browser	Tools
All	the	newest	versions	of	the	modern	browsers	(Chrome,	Firefox,	Opera,
Safari,	Internet	Explorer)	have	built-in	tools	or	available	plug-ins	to	help
inspect	the	HTTP	that’s	being	transferred,	and	for	simple	services	you	may
find	that	your	browser’s	tools	are	an	approachable	way	to	work	with	an	API.
These	tools	vary	between	browsers	and	are	constantly	updating,	but	here	are	a
few	favorites	to	give	you	an	idea.

In	Firefox,	this	functionality	is	provided	by	the	Developer	Toolbar	and
various	plug-ins.	Many	web	developers	are	familiar	with	FireBug,	which	does
have	some	helpful	tools,	but	there	is	another	tool	that	is	built	specifically	to
show	you	all	the	headers	for	all	the	requests	made	by	your	browser:
LiveHTTPHeaders.	Using	this,	we	can	observe	the	full	details	of	each
request,	as	seen	in	Figure	1-4.

http://getfirebug.com
http://livehttpheaders.mozdev.org

Figure	1-4.	LiveHTTPHeaders	showing	HTTP	details

All	browsers	offer	some	way	to	inspect	and	change	the	cookies	being	used	for
requests	to	a	particular	site.	In	Chrome,	for	example,	this	functionality	is
offered	by	an	extension	called	“Edit	This	Cookie,”	and	other	similar
extentions.	This	shows	existing	cookies	and	lets	you	edit	and	delete	them—
and	also	allows	you	to	add	new	cookies.	Take	a	look	at	the	tools	in	your
favorite	browser	and	see	the	cookies	sent	by	the	sites	you	visit	the	most.

Sometimes,	additional	headers	need	to	be	added	to	a	request,	such	as	when
sending	authentication	headers,	or	specific	headers	to	indicate	to	the	service
that	we	want	some	extra	debugging.	Often,	cURL	is	the	right	tool	for	this	job,
but	it’s	also	possible	to	add	the	headers	into	your	browser.	Different	browsers
have	different	tools,	but	for	Chrome	try	an	extension	called	ModHeader,	seen
in	Figure	1-5.

Figure	1-5.	The	ModHeader	plug-in	in	Chrome

Doing	HTTP	with	PHP
You	won’t	be	surprised	to	hear	that	there	is	more	than	one	way	to	handle
HTTP	requests	using	PHP,	and	each	of	the	frameworks	will	also	offer	their
own	additions.	This	section	focuses	on	plain	PHP	and	looks	at	three	different
ways	to	work	with	APIs:

PHP’s	cURL	extension	(usually	available	in	PHP,	sometimes	via	an
additional	package)

PHP’s	built-in	stream-handling	functionaltiy

Guzzle	(a	PHP	library)

Earlier	in	this	chapter,	we	discussed	a	command-line	tool	called	cURL	(see
“Command-Line	HTTP”).	PHP	has	its	own	wrappers	for	cURL,	so	we	can
use	the	same	tool	from	within	PHP.	A	simple	GET	request	looks	like	this:

<?php

$url = "http://www.lornajane.net/";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);

curl_close($ch);

The	previous	example	is	the	simplest	form;	it	sets	the	URL,	makes	a	request
to	its	location	(by	default	this	is	a	GET	request),	and	capture	the	output.	Notice
the	use	of	curl_setopt();	this	function	is	used	to	set	many	different	options
on	cURL	handles	and	it	has	excellent	and	comprehensive	documentation	on
http://php.net.	In	this	example,	it	is	used	to	set	the	CURLOPT_RETURNTRANSFER
option	to	true,	which	causes	cURL	to	return	the	results	of	the	HTTP	request
rather	than	output	them.	There	aren’t	many	use	cases	where	you’d	want	to
output	the	response	so	this	flag	is	very	useful.

We	can	use	this	extension	to	make	all	kinds	of	HTTP	requests,	including
sending	custom	headers,	sending	body	data,	and	using	different	verbs	to	make
our	request.	Take	a	look	at	this	example,	which	sends	some	JSON	data	and	a
Content-Type	header	with	the	POST	request:

<?php

$url = "http://requestb.in/example";

$data = ["name" => "Lorna", "email" => "lorna@example.com"];

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, json_encode($data));

curl_setopt($ch, CURLOPT_HTTPHEADER,

 ['Content-Type: application/json']

);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);

curl_close($ch);

Again,	curl_setopt()	is	used	to	control	the	various	aspects	of	the	request
we	send.	Here,	a	POST	request	is	made	by	setting	the	CURLOPT_POST	option	to
1,	and	passing	the	data	we	want	to	send	as	an	array	to	the
CURLOPT_POSTFIELDS	option.	We	also	set	a	Content-Type	header,	which
indicates	to	the	server	what	format	the	body	data	is	in;	the	various	headers	are
covered	in	more	detail	in	Chapter	3.

The	PHP	cURL	extension	isn’t	the	easiest	interface	to	use,	although	it	does
have	the	advantage	of	being	reliably	available.	Another	great	way	of	making
HTTP	requests	that	is	always	available	in	PHP	is	to	use	PHP’s	stream-
handling	abilities	with	the	file	functions.	In	its	simplest	form,	this	means	that,
if	allow_url_fopen	is	enabled	(see	the	PHP	manual),	it	is	possible	to	make

http://php.net
http://bit.ly/php-allow_url_fopen

requests	using	file_get_contents().	The	simplest	example	is	making	a	GET
request	and	reading	the	response	body	in	as	if	it	were	a	local	file:

<?php

$result = file_get_contents("http://www.lornajane.net/");

We	can	take	advantage	of	the	fact	that	PHP	can	handle	a	variety	of	different
protocols	(HTTP,	FTP,	SSL,	and	more)	and	files	using	streams.	The	simple
GET	requests	are	easy,	but	what	about	something	more	complicated?	Here	is
an	example	that	makes	the	same	POST	request	as	our	earlier	example	with
JSON	data	and	headers,	illustrating	how	to	use	various	aspects	of	the	streams
functionality:

<?php

$url = "http://requestb.in/example";

$data = ["name" => "Lorna", "email" => "lorna@example.com"];

$context = stream_context_create([

 'http' => [

 'method' => 'POST',

 'header' => ['Accept: application/json',

 'Content-Type: application/json'),

 'content' => json_encode($data)

]

]];

$result = file_get_contents($url, false, $context);

Options	are	set	as	part	of	the	context	that	we	create	to	dictate	how	the	request
should	work.	Then,	when	PHP	opens	the	stream,	it	uses	the	information
supplied	to	determine	how	to	handle	the	stream	correctly—including	sending
the	given	data	and	setting	the	correct	headers.

The	third	way	that	I’ll	cover	here	for	working	with	PHP	and	HTTP	is	Guzzle,
a	PHP	library	that	you	can	include	in	your	own	projects	with	excellent	HTTP-
handling	functionality.	It’s	installable	via	Composer,	or	you	can	download	the
code	from	GitHub	and	include	it	in	your	own	project	manually	if	you’re	not
using	Composer	yet	(the	examples	here	are	for	version	6	of	Guzzle).

For	completeness,	let’s	include	an	example	of	making	the	same	POST	request
as	before,	but	this	time	using	Guzzle:

http://guzzlephp.org
http://getcomposer.org

<?php

require "vendor/autoload.php";

$url = "http://requestb.in/example";

$data = ["name" => "Lorna", "email" => "lorna@example.com"];

$client = new \GuzzleHttp\Client();

$result = $client->post($url, ["json" => $data]);

echo $result->getBody();

The	Guzzle	library	is	object-oriented	and	it	has	excellent	documentation,	so
do	feel	free	to	take	these	examples	and	build	on	them	using	the
documentation	for	reference.	The	preceding	example	first	includes	the
Composer	autoloader	since	that’s	how	I	installed	Guzzle.	Then	it	initializes
both	the	URL	that	the	request	will	go	to	and	the	data	that	will	be	sent.	Before
making	a	request	in	Guzzle,	a	client	is	initialized,	and	at	this	point	you	can	set
all	kinds	of	configuration	on	either	the	client	to	apply	to	all	requests,	or	on
individual	requests	before	sending	them.	Here	we’re	simply	sending	a	POST
request	and	using	the	json	config	shortcut	so	that	Guzzle	will	encode	the
JSON	and	set	the	correct	headers	for	us.	You	can	see	this	in	action	by	running
this	example	and	then	visiting	your	http://requestb.in	page	to	inspect	how	the
request	looked	when	it	arrived.

As	you	can	see,	there	are	a	few	different	options	for	dealing	with	HTTP,	both
from	PHP	and	the	command	line,	and	you’ll	see	all	of	them	used	throughout
this	book.	These	approaches	are	all	aimed	at	“vanilla”	PHP,	but	if	you’re
working	with	a	framework,	it	will	likely	offer	some	functionality	along	the
same	lines;	all	the	frameworks	will	be	wrapping	one	of	these	methods	so	it
will	be	useful	to	have	a	good	grasp	of	what	is	happening	underneath	the
wrappings.	After	trying	out	the	various	examples,	it’s	common	to	pick	one
that	you	will	work	with	more	than	the	others;	they	can	all	do	the	job,	so	the
one	you	pick	is	a	result	of	both	personal	preference	and	which	tools	are
available	(or	can	be	made	available)	on	your	platform.	Most	of	my	own
projects	make	use	of	streams	unless	I	need	to	do	something	nontrivial,	in
which	case	I	use	Guzzle	as	it’s	so	configurable	that	it’s	easy	to	build	up	all	the
various	pieces	of	the	request	and	still	understand	what	the	code	does	when
you	come	back	to	it	later.

http://docs.guzzlephp.org
http://requestb.in

Chapter	2.	HTTP	Verbs

HTTP	verbs	such	as	GET	and	POST	let	us	send	our	intention	along	with	the
URL	so	we	can	instruct	the	server	what	to	do	with	it.	Web	requests	are	more
than	just	a	series	of	addresses,	and	verbs	contribute	to	the	rich	fabric	of	the
journey.	This	chapter	covers	how	to	make	and	respond	to	HTTP	requests
using	a	selection	of	common	HTTP	verbs,	including	lots	of	examples.

I	mentioned	GET	and	POST	because	it’s	very	likely	you’re	already	familiar
with	those.	There	are	many	verbs	that	can	be	used	with	HTTP—in	fact,	we
can	even	invent	our	own—but	we’ll	get	to	that	later	in	the	chapter	(see	“Using
Other	HTTP	Verbs”).	First,	let’s	revisit	GET	and	POST	in	some	detail,	looking
at	when	to	use	each	one	and	what	the	differences	are	between	them.

Serving	GET	Requests
URLs	used	with	GET	can	be	bookmarked,	they	can	be	called	as	many	times	as
needed,	and	the	request	should	change	the	data	it	accesses.	A	great	example	of
using	a	GET	request	when	filling	in	a	web	form	is	when	using	a	search	form,
which	should	always	use	GET.	Searches	can	be	repeated	safely,	and	the	URLs
can	be	shared.

Consider	the	simple	web	form	in	Figure	2-1,	which	allows	users	to	state
which	category	of	results	they’d	like	and	how	many	results	to	show.	The	code
for	displaying	the	form	and	the	(placeholder)	search	results	on	the	page	could
be	something	like	this:

<html>

<head>

<title>GET Form</title>

<link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.6.0/pure-min.css">

</head>

<body>

<div style="margin: 20px">

<h1>A GET Form</h1>

<?php if(empty($_GET)): ?>

<form name="search" method="get" class="pure-form pure-form-stacked">

 Category:

 <select name="category">

 <option value="entertainment">Entertainment</option>

 <option value="sport">Sport</option>

 <option value="technology">Technology</option>

 </select>

 Rows per page: <select name="rows">

 <option value="10">10</option>

 <option value="20">20</option>

 <option value="50">50</option>

 </select>

 <input type="submit" value="Search" class="pure-button pure-button-

primary"/>

</form>

<?php else: ?>

<p>Wonderfully filtered search results</p>

<?php endif; ?>

</div>

</body>

</html>

You	can	see	that	PHP	simply	checks	if	it	has	been	given	some	search	criteria
(or	indeed	any	data	in	the	$_GET	superglobal)	and	if	not,	it	displays	the	empty
form.	If	there	was	data,	then	it	would	process	it	(although	probably	in	a	more
interesting	way	than	this	trivial	example	does).	The	data	gets	submitted	on	the
URL	when	the	form	is	filled	in	(GET	requests	typically	have	no	body	data),
resulting	in	a	URL	like	this:

http://localhost/book/get-form-page.php?category=technology&rows=20

Having	the	data	visible	on	the	URL	is	a	design	choice.	When	this	happens,	a
user	can	easily	bookmark	or	share	this	URL	with	others,	which	is	sometimes
very	useful,	for	example,	to	bookmark	a	particular	set	of	search	results,	or	a
product	page.	In	other	use	cases,	such	as	submitting	a	form	to	update	a	user’s
profile,	we	really	don’t	want	users	to	be	able	to	share	or	save	the	request	that
they	made,	so	a	POST	request	would	be	more	appropriate.	As	software
developers,	we	need	to	choose	whether	to	submit	forms	via	GET	or	POST,	and
in	general	a	good	rule	of	thumb	is	that	if	the	request	is	safe	to	repeat,	then	GET
is	a	good	choice;	otherwise	use	POST.	We’ll	see	more	examples	of	the	correct

http://localhost/book/get-form-page.php?category=technology&rows=20

use	of	verbs	in	APIs	as	well	as	forms	during	this	chapter.

Figure	2-1.	An	example	search	form

Making	GET	Requests
The	previous	example	showed	how	PHP	responds	to	a	GET	request,	but	how
does	it	make	one?	Well,	as	discussed	in	Chapter	1,	there	are	many	ways	to
approach	this.	For	a	very	quick	solution,	use	PHP’s	stream	handling	to	create
the	complete	request	to	send:

<?php

$url = 'http://localhost/book/get-form-page.php';

$data = ["category" => "technology", "rows" => 20];

$get_addr = $url . '?' . http_build_query($data);

$page = file_get_contents($get_addr);

echo $page;

In	a	Real	World™	system,	it	is	prudent	to	be	cautious	of	the	data	coming	in
from	external	APIs;	it	is	best	to	filter	the	contents	of	$page	before	outputting
it	or	using	it	anywhere	else.	As	an	alternative	to	using	PHP’s	stream	features,
you	could	use	whatever	functionality	your	existing	frameworks	or	libraries
offer,	or	make	use	of	the	cURL	extension	that	is	built	in	to	PHP.

Using	cURL,	our	code	would	instead	look	like	this:

<?php

$url = 'http://localhost/book/get-form-page.php';

$data = ["category" => "technology", "rows" => 20];

$get_addr = $url . '?' . http_build_query($data);

$ch = curl_init($get_addr);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, 1);

$page = curl_exec($ch);

echo $page;

Either	of	these	approaches	works	well	when	you	want	to	fetch	data	into	your
PHP	script	from	an	external	API	or	page.	The	examples	here	show	web	pages,
but	they	apply	when	working	with	HTML,	XML,	JSON,	or	anything	else.

Handling	POST	Requests
In	contrast	to	GET	requests,	a	POST	request	is	one	that	does	cause	change	on
the	server	that	handles	the	request.	These	requests	shouldn’t	be	repeated	or
bookmarked,	which	is	why	your	browser	warns	you	when	it	is	resubmitting
data.	Let’s	use	a	POST	form	when	the	request	changes	data	on	the	server	side.
Figure	2-2,	for	example,	involves	updating	a	bit	of	user	profile	information.

Figure	2-2.	Simple	form	that	updates	data,	sending	content	via	a	POST	request

When	a	form	is	submitted	via	GET,	we	can	see	the	variables	being	sent	on	the
URL.	With	POST,	however,	the	data	goes	into	the	body	of	the	request,	and	the
Content-Type	header	denotes	what	kind	of	data	can	be	found	in	the	body.

When	we	fill	in	the	form	in	Figure	2-2,	the	request	looks	like	this:

POST /book/post-form-page.php HTTP/1.1

Host: localhost

Content-Length: 48

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8

Content-Type: application/x-www-form-urlencoded

Accept-Encoding: gzip,deflate,sdch

Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

email=lorna%40example.com&display_name=LornaJane

In	this	example,	you	can	see	the	data	in	the	body,	with	the	Content-Type	and
Content-Length	headers	set	appropriately	so	that	the	server	can	decode	the
response	(more	about	content	negotiation	in	Chapter	3).	Next	we’ll	look	at	the
server	side	of	the	conversation.

PHP	knows	how	to	handle	form	data,	so	it	can	parse	this	out	and	place	the
fields	into	$_POST,	so	it	will	be	ready	for	use	in	the	script.	Here	is	the	code
behind	this	page,	showing	the	form	without	any	incoming	data;	if	data
existed,	it	would	be	displayed:

<html>

<head>

<title>POST Form</title>

<link rel="stylesheet" href="http://yui.yahooapis.com/pure/0.6.0/pure-min.css">

</head>

<body>

<div style="margin: 20px">

<h1>A POST Form</h1>

<?php if(empty($_POST)): ?>

<form name="user" method="post" class="pure-form pure-form-stacked">

 Email:

 <input type="text" length="60" name="email" />

 Display name:

 <input type="text" length="60" name="display_name" />

 <input type="submit" value="Go" class="pure-button pure-button-primary"/>

</form>

<?php else:

 echo "New user email: " . filter_input(INPUT_POST,

 "email", FILTER_VALIDATE_EMAIL);

endif; ?>

</div>

</body>

</html>

It	is	very	common	to	build	PHP	forms	and	parse	data	in	this	way,	but	when
handling	HTTP	requests,	it	is	also	important	to	consider	how	the	requests	can
be	made	and	responded	to	(spoiler:	it	looks	a	lot	like	our	GET	request	code).

Making	POST	Requests
To	POST	data	to	this	form	using	streams	(as	in	“Making	GET	Requests”),	the
same	basic	approach	can	be	used,	but	some	context	should	be	added	to	the
stream,	so	it	will	know	which	methods,	headers,	and	verbs	to	use:

<?php

$url = 'http://localhost/book/post-form-page.php';

$data = ["email" => "lorna@example.com", "display_name" => "LornaJane"];

$options = ["http" =>

 ["method" => "POST",

 "header" => "Content-Type: application/x-www-form-urlencoded",

 "content" => http_build_query($data)

]

];

$page = file_get_contents($url, NULL, stream_context_create($options));

echo $page;

When	POST	data	is	sent	to	the	page	created,	the	data	sent	appears	in	the	output
rather	than	in	the	form,	so	it	shows	“New	user	email:	lorna@example.com.”
This	code	looks	very	similar	to	the	previous	streams	example,	but	this
example	uses	stream_context_create()	to	add	some	additional
information	to	the	stream.

You	can	see	that	we	added	the	body	content	as	a	simple	string,	formatted	it	as
a	URL	using	http_build_query(),	and	indicated	which	content	type	the
body	is.	This	means	that	other	data	formats	can	very	easily	be	sent	by
formatting	the	strings	correctly	and	setting	the	headers.

Here	is	an	example	that	makes	the	same	POST	request	again,	but	this	time
using	Guzzle	(these	examples	are	for	version	6	of	Guzzle):

<?php

require "vendor/autoload.php";

$url = 'http://localhost/book/post-form-page.php';

$data = ["email" => "lorna@example.com", "display_name" => "LornaJane"];

$client = new \GuzzleHttp\Client();

$page = $client->post($url, ["form_params" => $data]);

echo $page->getBody();

This	looks	very	similar	to	the	previous	example,	but	using	the	built-in
form_params	option	to	Guzzle	means	that	the	Content-Type	will	be
specified	for	us	(there	is	also	a	multipart	option	if	you	need	to	send	file
uploads	using	Guzzle).	When	we	make	the	request,	we	get	a	response	object
back	rather	than	a	string,	but	we	can	access	the	content	using	the	getBody()
method.

NOTE
In	these	simple	examples,	we	can	make	our	code	make	POST	requests	to	HTML	forms
because	the	forms	have	no	security	features.	In	reality,	most	forms	will	have	some	CSRF
(Cross-Site	Request	Forgery)	protection	in	them,	so	you’ll	find	that	you	usually	can’t	make
requests	like	this	against	forms	published	on	the	wider	Internet.	I	would	always
recommend	that	you	include	security	features	in	your	own	forms—except	when	you’re
trying	out	the	previous	examples,	of	course.

Using	Other	HTTP	Verbs
There	are	many	specifications	relating	to	HTTP,	as	well	as	protocols	based
upon	it,	and	between	them	they	define	a	wide	selection	of	verbs	that	can	be
used	with	HTTP.	Even	better,	there	is	always	room	to	invent	new	HTTP
verbs;	so	long	as	your	client	and	server	both	know	how	to	handle	a	new	verb,
it	is	valid	to	use	it.	However,	be	aware	that	not	all	elements	of	network
infrastructure	between	these	two	points	will	necessarily	know	how	to	handle
every	verb.	Some	pieces	of	network	infrastructure	do	not	support	PATCH,	for
example,	or	the	verbs	used	by	the	WebDAV	protocol.	When	working	with
APIs,	particularly	RESTful	ones,	it	is	normal	to	make	use	of	two	additional
verbs:	PUT	and	DELETE.	REST	is	covered	in	detail	in	Chapter	8,	but	for	now	it
is	useful	to	examine	some	examples	of	how	to	use	these	less	common	verbs	in
applications.

The	simplest	of	these	two	is	DELETE,	because	it	doesn’t	have	any	body	data
associated	with	it.	It	is	possible	to	see	what	kind	of	request	was	made	to	a

PHP	script	acting	as	a	server	by	inspecting	the
$_SERVER["REQUEST_METHOD"]	value,	which	indicates	which	verb	was	used
in	the	request.

To	make	the	request	from	PHP,	it	is	necessary	to	set	the	verb	and	then	make
the	request	as	normal.	Here’s	an	example	using	the	cURL	extension:

<?php

$url = 'http://localhost/book/example-delete.php';

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_CUSTOMREQUEST, "DELETE");

curl_exec($ch);

This	example	simply	issues	a	request	to	the	$url	shown	using	a	DELETE	verb.

Using	PUT	is	slightly	more	involved	because,	like	POST,	it	can	be
accompanied	by	data	and	the	data	can	be	in	a	variety	of	formats.	In	“Handling
POST	Requests”,	I	mentioned	that	for	incoming	form	data,	PHP	reads	form-
encoded	values	for	POST	and	creates	a	$_POST	array	for	us.	There	is	no
equivalent	$_PUT	superglobal,	but	we	can	still	make	use	of	the	php://input
stream	to	inspect	the	body	data	of	the	request	to	which	the	script	is	sending	a
response	at	that	time.

When	using	PHP	to	respond	to	PUT	requests,	the	code	runs	along	the	lines	of
this	example:

<?php

if($_SERVER['REQUEST_METHOD'] == "PUT") {

 $data = [];

 $incoming = file_get_contents("php://input");

 parse_str($incoming, $data);

 echo "New user email: " . filter_var($data["email"], FILTER_VALIDATE_EMAIL);

} else {

 echo "The request did not use a PUT method";

}

This	example	inspects	the	$_SERVER	superglobal	to	see	which	verb	was	used,
and	then	responds	accordingly.	The	data	coming	into	this	example	is	form
style,	meaning	it	uses	file_get_contents()	to	grab	all	the	body	data,	then
parse_str()	to	decode	it.

WARNING
Be	careful	with	parse_str()—if	the	second	argument	is	omitted,	the	variables	will	be
extracted	as	local	variables,	rather	than	contained	in	an	array.

In	order	to	use	PHP	to	make	a	request	that	the	previous	script	can	handle,	it	is
necessary	to	create	the	contents	of	the	body	of	the	request	and	specify	that	it
is	a	PUT	request.	Below	is	an	example	using	the	Guzzle	library:

<?php

require "vendor/autoload.php";

$url = "http://localhost/book/put-form-page.php";

$data = ["email" => "lorna@example.com", "display_name" => "LornaJane"];

$client = new \GuzzleHttp\Client();

$result = $client->put($url, [

 "headers" => ["Content-Type" => "application/x-www-form-urlencoded"],

 "body" => http_build_query($data)

]);

echo $result->getBody();

The	PUT	verb	is	specified	in	this	example,	and	the	correct	header	for	the	form-
encoded	data	is	set.	We	dictate	the	data	to	PUT	(manually	building	the	form
elements	into	a	string)	and	then	send	the	request.	We	will	discuss	more	about
other	data	formats	in	Chapter	5	and	Chapter	6,	which	cover	JSON	and	XML
specifically,	but	the	basic	principles	of	preparing	the	data	and	setting	the
Content-Type	header	accordingly	still	stand.

Armed	with	this	knowledge	of	how	to	handle	GET,	POST,	DELETE,	and	PUT
verbs,	we	are	able	to	work	with	many	different	kinds	of	API	acting	as	both	a
client	and	as	a	server.	When	using	other	verbs,	either	those	that	already	exist
as	part	of	the	HTTP	spec	or	those	that	are	custom	to	your	application,	you	can
use	the	approaches	described	here	for	PUT	and	DELETE.

Chapter	3.	Headers

So	far,	we’ve	seen	various	presentations	of	the	HTTP	format,	and	examined
the	idea	that	there	is	a	lot	more	information	being	transferred	in	web	requests
and	responses	than	what	appears	in	the	body	of	the	response.	The	body	is
certainly	the	most	important	bit,	and	often	is	the	meatiest,	but	the	headers
provide	key	pieces	of	information	for	both	requests	and	responses,	which
allow	the	client	and	the	server	to	communicate	effectively.	If	you	think	of	the
body	of	the	request	as	a	birthday	card	with	a	check	inside	it,	then	the	headers
are	the	address,	postmark,	and	perhaps	the	“do	not	open	until…”	instruction
on	the	outside	(see	Figure	3-1).

Figure	3-1.	Envelope	with	stamp,	address,	and	postmark

This	additional	information	gets	the	body	data	to	where	it	needs	to	go	and
instructs	the	target	on	what	to	do	with	it	when	it	gets	there.

Request	and	Response	Headers
Many	of	the	headers	you	see	in	HTTP	make	sense	in	both	requests	and

responses.	Others	might	be	specific	to	either	a	request	or	a	response.	Here’s	a
sample	set	of	real	request	and	response	headers	from	when	I	request	my	own
site	from	a	browser	(I’m	using	Chrome).

Request	headers:

GET / HTTP/1.1

Host: www.lornajane.net

Connection: keep-alive

Accept:

text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8

User-Agent: Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/43.0.2357.81 Safari/537.36

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

Response	headers:

HTTP/1.1 200 OK

Server: Apache/2.4.7 (Ubuntu)

X-Powered-By: PHP/5.5.9-1ubuntu4.6

X-Pingback: http://www.lornajane.net/xmlrpc.php

Expires: Wed, 11 Jan 1984 05:00:00 GMT

Cache-Control: no-cache, must-revalidate, max-age=0

Vary: Accept-Encoding

Content-Encoding: gzip

Content-Type: text/html; charset=UTF-8

Content-Length: 7897

Accept-Ranges: bytes

Date: Sat, 11 Jul 2015 08:22:57 GMT

X-Varnish: 600223060

Age: 0

Via: 1.1 varnish

Connection: keep-alive

Headers	can	be	related	to	the	request,	the	response,	or	the	“entity,”	which	is
the	body	of	either	a	request	or	a	response.	Some	examples	might	be:

Request	Headers User-Agent,	Accept,	Authorization,	and	Cookie

Response	Headers Set-Cookie

Entity	Headers Content-Type	and	Content-Length

This	chapter	looks	in	more	detail	at	the	headers	you	are	likely	to	see	when
working	with	web	services.

http://www.lornajane.net

Identify	Clients	with	User-Agent
The	User-Agent	header	gives	information	about	the	client	making	the	HTTP
request	and	usually	includes	information	about	the	software	client.	Take	a
look	at	the	header	here:

User-Agent Mozilla/5.0 (Linux; U; Android 2.3.4; en-gb; SonyEricssonSK17i

Build/4.0.2.A.0.62) AppleWebKit/533.1 (KHTML, like Gecko) Version/4.0 Mobile

Safari/533.1

What	device	do	you	think	made	this	request?	You	would	probably	guess	that
it	was	my	Sony	Ericsson	Android	phone…and	perhaps	you	would	be	right.	Or
perhaps	I	used	a	curl	command:

curl -H "User-Agent: Mozilla/5.0 (Linux; U; Android 2.3.4; en-gb;

SonyEricssonSK17i Build/4.0.2.A.0.62) AppleWebKit/533.1 (KHTML, like Gecko)

Version/4.0 Mobile Safari/533.1" http://requestb.in/example

We	simply	have	no	way	of	knowing,	when	a	request	is	received	with	a	User-
Agent	like	this,	if	it	really	came	from	an	Android	phone,	or	if	it	came	from
something	else	pretending	to	be	an	Android	phone.	This	information	can	be
used	to	customize	the	response	we	send—after	all,	if	someone	wants	to
pretend	to	be	a	tiny	Android	phone,	then	it	is	reasonable	to	respond	with	the
content	that	would	normally	be	sent	to	this	phone.	It	does	mean,	however,	that
the	User-Agent	header	cannot	be	relied	upon	for	anything	more	important,
such	as	setting	a	custom	header	and	using	it	as	a	means	of	authenticating
users.	Just	like	any	other	incoming	data,	it	is	wide	open	to	abuse	and	must	be
treated	with	suspicion.

In	PHP,	it	is	possible	both	to	parse	and	to	send	the	User-Agent	header,	as
suits	the	task	at	hand.	Here’s	an	example	of	sending	the	header	using	streams:

<?php

$url = 'http://localhost/book/user-agent.php';

$options = array(

 "http" => array(

 "header" => "User-Agent: Advanced HTTP Magic Client"

)

);

$page = file_get_contents($url, false , stream_context_create($options));

echo $page;

We	can	set	any	arbitrary	headers	we	desire	when	making	requests,	all	using
the	same	approach.	Similarly,	headers	can	be	retrieved	using	PHP	by
implementing	the	same	approach	throughout.	The	data	of	interest	here	can	all
be	found	in	$_SERVER,	and	in	this	case	it	is	possible	to	inspect
$_SERVER["HTTP_USER_AGENT"]	to	see	what	the	User-Agent	header	was	set
to.

To	illustrate,	here’s	a	simple	script:

<?php

echo "This request made by: "

 . filter_var($_SERVER['HTTP_USER_AGENT'], FILTER_SANITIZE_STRING);

It’s	common	when	developing	content	for	the	mobile	web	to	use	headers	such
as	User-Agent	in	combination	with	WURFL	to	detect	what	capabilities	the
consuming	device	has,	and	adapt	the	content	accordingly.	With	APIs,
however,	it	is	better	to	expect	the	clients	to	use	other	headers	so	they	can	take
responsibility	for	requesting	the	correct	content	types,	rather	than	allowing	the
decision	to	be	made	centrally.

Headers	for	Content	Negotiation
Commonly,	the	Content-Type	header	is	used	to	describe	what	format	the
data	being	delivered	in	the	body	of	a	request	or	a	response	is	in;	this	allows
the	target	to	understand	how	to	decode	this	content.	Its	sister	header,	Accept,
allows	the	client	to	indicate	what	kind	of	content	is	acceptable,	which	is
another	way	of	allowing	the	client	to	specify	what	kind	of	content	it	actually
knows	how	to	handle.	As	seen	in	the	earlier	example	showing	headers,	here’s
the	Accept	header	Google	Chrome	usually	sends:

Accept: text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,

/;q=0.8

To	read	an	Accept	header,	consider	each	of	the	comma-separated	values	as	an
individual	entity.	This	client	has	stated	a	preference	for	(in	order):

text/html

application/xhtml+xml

http://wurfl.sourceforge.net/

image/webp

application/xml

/

This	means	that	if	any	of	these	formats	are	supplied,	the	client	will	understand
our	meaning.	There	are	two	entries	in	the	list	that	include	some	additional
information:	the	q	value.	This	is	an	indication	of	how	much	a	particular
option	is	preferred,	where	the	default	value	is	q=1.

Here,	Chrome	claims	to	be	able	to	handle	a	content	type	of	*/*.	The	asterisks
are	wildcards,	meaning	it	thinks	it	can	handle	any	format	that	could	possibly
exist—which	seems	unlikely.	If	an	imaginary	format	is	implemented	that	both
our	client	and	server	understand,	for	example,	Chrome	won’t	know	how	to
parse	it,	so	*/*	is	misleading.

Using	the	Accept	and	Content-Type	headers	together	to	describe	what	can
be	understood	by	the	client,	and	what	was	actually	sent,	is	called	content
negotiation.	Using	the	headers	to	negotiate	the	usable	formats	means	that
meta-information	is	not	tangled	up	with	actual	data	as	it	would	be	when
sending	both	kinds	of	parameters	with	the	body	or	URL	of	the	request.
Including	the	headers	is	generally	a	better	approach.

We	can	negotiate	more	than	just	content,	too.	The	earlier	example	contained
these	lines:

Accept-Encoding: gzip, deflate, sdch

Accept-Language: en-GB,en-US;q=0.8,en;q=0.6

Accept-Charset: ISO-8859-1,utf-8;q=0.7,*;q=0.3

These	headers	show	other	kinds	of	negotiation,	such	as	declaring	what
encoding	the	client	supports,	which	languages	are	preferred,	and	which
character	sets	can	be	used.	This	enables	decisions	to	be	made	about	how	to
format	the	response	in	various	ways,	and	how	to	determine	which	formats	are
appropriate	for	the	consuming	device.

Parsing	an	Accept	Header
Let’s	start	by	looking	at	how	to	parse	an	Accept	header	correctly.	All	Accept
headers	have	a	comma-separated	list	of	values,	and	some	include	a	q	value
that	indicates	their	level	of	preference.	If	the	q	value	isn’t	included	for	an

entry,	it	can	be	assumed	that	q=1	for	that	entry.	Using	the	Accept	header	from
my	browser	again,	I	can	parse	it	by	taking	all	the	segments,	working	out	their
preferences,	and	then	sorting	them	appropriately.	Here’s	an	example	function
that	returns	an	array	of	supported	formats	in	order	of	preference:

<?php

function parseAcceptHeader() {

 $hdr = $_SERVER['HTTP_ACCEPT'];

 $accept = array();

 foreach (preg_split('/\s*,\s*/', $hdr) as $i => $term) {

 $o = new \stdclass;

 $o->pos = $i;

 if (preg_match(",^(\S+)\s*;\s*(?:q|level)=([0-9\.]+),i", $term, $M)) {

 $o->type = $M[1];

 $o->q = (double)$M[2];

 } else {

 $o->type = $term;

 $o->q = 1;

 }

 $accept[] = $o;

 }

 usort($accept, function ($a, $b) {

 /* first tier: highest q factor wins */

 $diff = $b->q - $a->q;

 if ($diff > 0) {

 $diff = 1;

 } else if ($diff < 0) {

 $diff = -1;

 } else {

 /* tie-breaker: first listed item wins */

 $diff = $a->pos - $b->pos;

 }

 return $diff;

 });

 $accept_data = array();

 foreach ($accept as $a) {

 $accept_data[$a->type] = $a->type;

 }

 return $accept_data;

}

NOTE
The	headers	sent	by	your	browser	may	differ	slightly	and	result	in	different	output	when
you	try	the	previous	code	snippet.

When	using	the	Accept	header	sent	by	my	browser,	I	see	the	following

output:

Array

(

 [text/html] => text/html

 [application/xhtml+xml] => application/xhtml+xml

 [image/webp] => image/webp

 [application/xml] => application/xml

 [*/*] => */*

)

We	can	use	this	information	to	work	out	which	format	it	would	be	best	to
send	the	data	back	in.	For	example,	here’s	a	simple	script	that	calls	the
parseAcceptHeader()	function,	then	works	through	the	formats	to
determine	which	it	can	support,	and	sends	that	information:

<?php

require "accept.php";

$data = ["greeting" => "hello", "name" => "Lorna"];

$accepted_formats = parseAcceptHeader();

$supported_formats = ["application/json", "text/html"];

foreach($accepted_formats as $format) {

 if(in_array($format, $supported_formats)) {

 // yay, use this format

 break;

 }

}

switch($format) {

 case "application/json":

 header("Content-Type: application/json");

 $output = json_encode($data);

 break;

 case "text/html":

 default:

 $output = "<p>" . implode(', ', $data) . "</p>";

 break;

}

echo $output;

There	are	many,	many	ways	to	parse	the	Accept	header	(and	the	same
techniques	apply	to	the	Accept-Language,	Accept-Encoding,	and	Accept-

Charset	headers),	but	it	is	vital	to	do	so	correctly.	The	importance	of	Accept
header	parsing	can	be	seen	in	Chris	Shiflett’s	blog	post,	The	Accept	Header;
the	parseAcceptHeader()	example	shown	previously	came	mostly	from	the
comments	on	this	post.	You	might	use	this	approach,	an	existing	library	such
as	the	PHP	mimeparse	port,	a	solution	you	build	yourself,	or	one	offered	by
your	framework.	Whichever	you	choose,	make	sure	that	it	parses	these
headers	correctly,	rather	than	using	a	string	match	or	something	similar.

Demonstrating	Accept	Headers	with	cURL
Using	cURL	from	the	command	line,	here	are	some	examples	of	how	to	call
exactly	the	same	URL	by	setting	different	Accept	headers	and	seeing
different	responses:

curl http://localhost/book/hello.php

hello, Lorna

curl -H "Accept: application/json" http://localhost/book/hello.php

{"greeting":"hello","name":"Lorna"}

curl -H "Accept: text/html;q=0.5,application/json"

http://localhost/book/hello.php

{"greeting":"hello","name":"Lorna"}

To	make	these	requests	from	PHP	rather	than	from	cURL,	it	is	possible	to
simply	set	the	desired	headers	as	the	request	is	made.	Here’s	an	example	that
uses	PHP’s	cURL	extension	to	make	the	same	request	as	the	previous
example:

<?php

$url = "http://localhost/book/hello.php";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_HEADER, array(

 "Accept: text/html;q=0.5,application/json",

));

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$response = curl_exec($ch);

echo $response;

curl_close($ch);

The	number	of	headers	you	need	to	support	in	your	application	will	vary.	It	is

http://bit.ly/shiflett-accept-header
https://github.com/ramsey/mimeparse

common	and	recommended	to	offer	various	content	types	such	as	JSON,
XML,	or	even	plain	text.	The	selection	of	supported	encodings,	languages,
and	character	sets	will	depend	entirely	on	your	application	and	users’	needs.	If
you	do	introduce	support	for	variable	content	types,	however,	this	is	the	best
way	to	do	it.

Securing	Requests	with	the	Authorization
Header
Headers	can	provide	information	that	allows	an	application	to	identify	users.
Again,	keeping	this	type	of	information	separate	from	the	application	data
makes	things	simpler	and,	often,	more	secure.	The	key	thing	to	remember
when	working	on	user	security	for	APIs	is	that	everything	you	already	know
about	how	to	secure	a	website	applies	to	web	services.	A	common	header	that
has	been	seen	earlier	in	this	book	is	the	Authorization	header.	This	can	be
used	with	a	variety	of	different	techniques	for	authenticating	users,	all	of
which	will	be	familiar	to	web	developers.

Rather	than	the	Authorization	header,	some	applications	may	have
alternative	approaches	including	using	cookies	and	sessions	to	record	a	user’s
information	after	he	has	supplied	credentials	to	a	login	endpoint,	for	example.
Others	will	implement	solutions	of	their	own	making,	and	many	of	these	will
use	a	simple	API	key	approach.	In	this	approach,	the	user	acquires	a	key,	often
via	a	web	interface	or	other	means,	that	she	can	use	when	accessing	the	API.
A	major	advantage	of	this	approach	is	that	the	keys	can	be	deleted	by	either
party,	or	can	expire,	removing	the	likelihood	that	they	can	be	used	with
malicious	intent.	This	is	nicer	than	passing	actual	user	credentials,	as	the
details	used	can	be	changed.	Sometimes	API	keys	will	be	passed	simply	as	a
query	parameter,	but	the	Authorization	header	would	also	be	an	appropriate
place	for	such	information.

HTTP	Basic	Authentication
The	simplest	approach	to	authorization	is	HTTP	Basic	authentication	(for
more	details,	see	the	RFC),	which	requires	the	user	to	supply	a	username	and
password	to	identify	himself.	Since	this	approach	is	so	widespread,	it	is	well
supported	in	most	platforms,	both	client	and	server.	Do	beware,	though,	that
these	credentials	can	easily	be	inspected	and	reused	maliciously,	so	this

http://bit.ly/rfc1945-11

approach	is	appropriate	only	on	trusted	networks	or	over	SSL.

When	the	user	tries	to	access	a	protected	resource	using	basic	authentication,
he	will	receive	a	401	status	code	in	response,	which	includes	a	WWW-
Authenticate	header	with	the	value	Basic	followed	by	a	realm	for	which	to
authenticate.	As	users,	we	see	an	unstyled	pop	up	for	username	and	password
in	our	browser;	this	is	basic	authentication.	When	we	supply	the	credentials,
the	client	will	combine	them	in	the	format	username:password	and	Base64
encode	the	result	before	including	it	in	the	Authorization	header	of	the
request	it	makes.

The	mechanism	of	the	basic	authentication	is	this:

1.	 Arrange	the	username	and	password	into	the	format
username:password.

2.	 Base64	encode	the	result.

3.	 Send	it	in	the	header,	like	this:	Authorization: Basic base64-
encoded string.

4.	 Since	tokens	are	sent	in	plain	text,	HTTPS	should	be	used	throughout.

We	can	either	follow	the	steps	here	and	manually	create	the	correct	header	to
send,	or	we	can	use	the	built-in	features	of	our	toolchain.	Here’s	PHP’s	cURL
extension	making	a	request	to	a	page	protected	by	basic	authentication:

<?php

$url = "http://localhost/book/basic-auth.php";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_HTTPAUTH, CURLAUTH_BASIC) ;

curl_setopt($ch, CURLOPT_USERPWD, "user:pass");

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$response = curl_exec($ch);

echo $response;

curl_close($ch);

In	PHP,	these	details	can	be	found	on	the	$_SERVER	superglobal.	When	basic
authentication	is	in	use,	the	username	and	password	supplied	by	the	user	can
be	found	in	$_SERVER["PHP_AUTH_USER"]	and	$_SERVER["PHP_AUTH_PW"],
respectively.	When	a	request	is	made	without	credentials,	or	with	invalid
credentials,	a	401	Unauthorized	status	code	can	be	sent	to	tell	the	client	why

the	server	is	not	sending	him	the	content	requested.

HTTP	Digest	Authentication
Similar	to	basic	authentication,	but	rather	more	secure,	is	HTTP	Digest
authentication	(the	Wikipedia	page	includes	a	great	explanation	with
examples).	This	process	combines	the	username	and	password	with	the	realm,
a	client	nonce	(a	nonce	is	a	cryptographic	term	meaning	“number	used
once”),	a	server	nonce,	and	other	information,	and	hashes	them	before
sending.	It	may	sound	complicated	to	implement,	but	this	standard	is	well
understood	and	widely	implemented	by	both	clients	and	servers.

Very	little	changes	when	working	with	digest	authentication	when	compared
to	the	example	of	basic	authentication	just	shown;	the	main	things	to	look	out
for	are:

The	CURLOPT_HTTPAUTH	option	should	be	set	to	CURLAUTH_DIGEST.

On	the	receiving	end,	you	can	find	the	user	data	in
$_SERVER[PHP_AUTH_DIGEST],	which	will	need	decoding	according	to	the
type	of	digest	authentication	you	are	using.

Digest	authentication	is	preferred	over	basic	authentication	unless	the
connection	is	over	SSL.	If	you	want	to	work	with	digest	auth	then	there’s	a
good	resource	on	Sitepoint.

OAuth
An	even	better	solution	has	emerged	in	the	last	few	years:	OAuth	(version	2	is
much	better	than	version	1).	OAuth	arises	as	a	solution	to	a	very	specific	and
common	problem:	how	do	we	allow	a	third	party	(such	as	an	external
application	on	a	mobile	device)	to	have	secure	access	to	a	user’s	data?	This	is
solved	by	establishing	a	three-way	relationship,	so	that	requests	coming	to	the
providing	API	from	the	third-party	consumer	have	access	to	the	user’s	data,
but	do	not	impersonate	that	user.	For	every	combination	of	application	and
user,	the	external	application	will	send	the	user	to	the	providing	API	to
confirm	that	she	wants	access	to	be	granted.	Once	the	relationship	is
established,	the	user	can,	at	any	time,	visit	the	providing	API	(with	which	she
originally	had	the	relationship	of	trust)	to	revoke	that	access.	Newer	versions
of	OAuth	are	simple	to	implement	but,	again,	should	always	be	used	over
SSL.

https://en.wikipedia.org/wiki/Digest_access_authentication
http://bit.ly/sitepoint-digest
http://oauth.net

In	OAuth	terminology,	we	name	the	client	the	“consumer”	and	the	server	the
“provider.”	The	consumer	could	be	a	app	on	your	smartphone	for	example,
and	the	provider	would	then	be	the	system	where	you	already	have	an	account
such	as	GitHub.	Features	such	as	“Sign	in	with	GitHub”	use	this	approach.

The	basic	process	looks	something	like	this:

1.	 The	user	chooses	to	sign	in	with	GitHub,	or	link	their	GitHub	account	to
a	third-party	client.

2.	 The	client	forwards	the	user	to	the	provider’s	page	to	sign	in	and	give
permission	for	this	client	to	access	the	user’s	data.

3.	 The	user	does	sign	in	and	confirm,	and	arrives	back	in	the	app.

4.	 The	client	can	then	get	an	access	token	from	the	provider.

Once	we	have	the	access	token,	we	send	this	in	the	Authorization	header
for	every	request,	something	like:

Authorization: Bearer 852990de317

This	approach	is	elegant	in	two	ways:

The	identity	information	is	not	sent	as	part	of	the	body	of	the	request.	By
sending	this	information	in	the	header,	we	separate	the	two	concerns.

By	using	an	access	token	rather	than	the	user’s	actual	credentials,	we	give
the	ability	for	that	access	token	to	expire	or	be	revoked	in	the	future.	This
allows	users	to	safely	grant	access	to	even	unknown	applications	and	know
that	they	can	always	remove	that	access	in	the	future,	even	if	that
application	doesn’t	offer	the	option	to	remove	creds	(or	if	the	user	doesn’t
trust	it	to),	without	needing	to	change	the	user’s	credentials	and	therefore
break	all	of	the	integrations	that	use	this	account.

This	solution	is	very	widely	used	in	APIs	and	is	recommended	if	you	need	to
authenticate	users	in	your	own	applications.

Hopefully	this	serves	to	cover	the	overall	concept	of	OAuth	and	how	to	use
an	access	token	in	your	own	application.	For	a	more	complete	explanation,
the	book	Getting	Started	with	OAuth	2.0	(O’Reilly)	is	an	excellent	reference.

Caching	Headers

http://oreil.ly/gsoauth

Just	like	for	other	web	requests,	getting	caching	right	can	help	enormously
when	an	API	server	needs	to	handle	a	lot	of	traffic.	Requests	that	perform
actions	cannot	be	cached,	as	they	must	be	processed	by	the	server	each	time,
but	GET	requests	certainly	can	be,	in	the	right	situation.	Caching	can	either	be
done	by	the	server,	which	makes	a	decision	about	whether	to	serve	a	previous
version	of	a	resource,	or	by	clients	storing	the	result	of	previous	requests	and
allowing	us	to	compare	versions.

Giving	version	information	along	with	a	resource	is	a	key	ingredient	in	client-
side	caching,	and	also	links	with	the	nonatomic	update	procedures	in	REST	as
we	mention	in	“Update	a	Resource	with	PUT”.	When	returning	a	resource,
either	an	ETag	(usually	a	hash	of	the	representation	itself)	or	a	Last-
Modified	(the	date	this	record	last	changed)	is	included	with	the	response.
Clients	that	understand	these	systems	can	then	store	these	responses	locally,
and	when	making	the	same	request	again	at	a	later	point,	they	can	tell	us
which	version	of	a	resource	they	already	have.	This	is	very	similar	to	the	way
that	web	browsers	cache	assets	such	as	stylesheets	and	images.

When	a	resource	is	served	with	an	ETag	header,	this	header	will	contain	some
textual	representation	of	the	resource,	perhaps	a	hash	of	the	resource	or	a
combination	of	file	size	and	timestamp.	When	requesting	the	resource	at	a
later	date,	the	client	can	send	an	If-None-Match	header	with	the	value	of	the
ETag	in	it.	If	the	current	version	of	the	resource	has	a	nonmatching	ETag,	then
the	new	resource	will	be	returned	with	its	ETag	header.	However	if	the	ETag
values	do	match,	the	server	can	simply	respond	with	a	304	“Not	Modified”
status	code	and	an	empty	body,	indicating	to	the	client	that	it	can	use	the
version	it	already	has	without	transferring	the	new	version.	This	can	help
reduce	server	load	and	network	bandwidth.

In	exactly	the	same	way,	a	resource	that	is	sent	with	a	Last-Modified	header
can	be	stored	with	that	header	information	by	the	client.	A	subsequent	request
would	then	have	an	If-Modified-Since	header,	with	the	current	Last-
Modified	value	in	it.	The	server	compares	the	timestamp	it	receives	with	the
last	update	to	the	resource,	and	again	either	serves	the	resource	with	new
metadata,	or	with	the	much	smaller	304	response.

Custom	Headers
As	with	almost	every	aspect	of	HTTP,	the	headers	that	can	be	used	aren’t	set

in	stone.	It	is	possible	to	invent	new	headers	if	there’s	more	information	to
convey	for	which	there	isn’t	a	header.	Headers	that	aren’t	“official”	can
always	be	used	(sometimes	they	are	prefixed	with	X-	but	they	don’t	have	to
be),	so	you	can	make	use	of	this	in	your	own	applications	if	you	wish.

A	good	example,	often	seen	on	the	Web,	is	when	a	tool	such	as	Varnish	has
been	involved	in	serving	a	response,	and	it	adds	its	own	headers.	I	have
Varnish	installed	in	front	of	my	own	site,	and	when	I	request	it,	I	see:

HTTP/1.1 200 OK

Server: Apache/2.4.7 (Ubuntu)

X-Powered-By: PHP/5.5.9-1ubuntu4.6

X-Pingback: http://www.lornajane.net/xmlrpc.php

Content-Type: text/html; charset=UTF-8

Date: Sat, 11 Jul 2015 08:57:32 GMT

X-Varnish: 600227065 600227033

Age: 43

Via: 1.1 varnish

Connection: keep-alive

That	additional	X-Varnish	header	shows	me	that	Varnish	served	the	request.
It	isn’t	an	official	header,	but	these	X-*	headers	are	used	to	denote	all	kinds	of
things	in	APIs	and	on	the	Web.	A	great	example	comes	from	GitHub.	Here’s
what	happens	when	I	make	a	request	to	fetch	a	list	of	the	repositories
associated	with	my	user	account:

HTTP/1.1 200 OK

Server: GitHub.com

Date: Sat, 11 Jul 2015 08:59:01 GMT

Content-Type: application/json; charset=utf-8

Content-Length: 157631

Status: 200 OK

X-RateLimit-Limit: 60

X-RateLimit-Remaining: 59

ETag: "8976d7fc7aa861a8581108e59ae76506"

X-GitHub-Media-Type: github.v3

X-GitHub-Request-Id: 5EC19EE1:61C0:10B4CDB:55A0DAD5

X-Content-Type-Options: nosniff

X-Served-By: 13d09b732ebe76f892093130dc088652

There	are	a	few	custom	headers	in	this	example	but	the	X-RateLimit-*
headers	are	particularly	worth	noting;	they	check	whether	too	many	requests
are	being	made.	Using	custom	headers	like	these,	any	additional	data	can	be
transferred	between	client	and	server	that	isn’t	part	of	the	body	data,	which

https://www.varnish-cache.org/
http://developer.github.com
https://api.github.com/users/lornajane/repos

means	all	parties	can	stay	“on	the	same	page”	with	the	data	exchange.

Headers	are	particularly	important	when	working	with	APIs	as	there	is	often
separation	between	the	data	and	the	metadata.	Not	all	APIs	are	designed	that
way,	but	look	out	for	some	examples	in	particular	in	Chapter	8.

Chapter	4.	Cookies

The	HTTP	protocol	is	stateless.	This	means	that	every	request	made	must
include	all	the	information	needed	in	order	for	the	web	server	to	serve	the
correct	responses	(at	least,	in	theory!).	In	practice,	that	isn’t	how	we
experience	the	Web	as	users.	As	we	browse	around	a	shopping	site,	the
website	“remembers”	which	products	we	already	viewed	and	which	we
placed	in	our	basket—we	experience	our	journeys	on	the	Web	as	connected
experiences.

So	how	does	this	work?	Additional	information	is	being	saved	and	sent	with
our	web	requests	through	the	use	of	cookies.	Cookies	are	just	key/value	pairs:
simple	variables	that	can	be	stored	on	the	client	and	sent	back	to	us	with
future	requests.	A	user’s	choice	of	theme	or	accessibility	settings	could	be
stored,	or	a	cookie	could	be	dropped	to	record	something	as	simple	as
whether	the	user	has	visited	the	site	before,	or	dismissed	a	particular	alert
message	that	was	shown.

In	this	chapter	we’ll	look	at	how	cookies	work	and	how	they	fit	into	our
existing	knowledge	of	HTTP,	then	discuss	how	cookies	are	used	in	API
design	(spoiler	alert:	they’re	not).

Cookie	Mechanics
This	isn’t	the	moment	where	I	tell	you	how	to	bake	cookies,	although	the
instructions	do	read	a	little	bit	like	a	recipe.	What	happens	when	we	work
with	cookies	goes	something	like	this	(see	Figure	4-1):

1.	 A	request	arrives	from	the	client,	without	cookies.

2.	 Send	the	response,	including	cookie(s).

3.	 The	next	request	arrives.	Since	cookies	were	already	sent,	they	will	be
sent	back	to	us	in	these	later	requests.

4.	 Send	the	next	response,	also	with	cookies	(either	changed	or
unchanged).

5.	 Steps	3–4	are	repeated	indefinitely.

Figure	4-1.	Cookies	exchanged	in	a	series	of	requests

The	main	thing	to	remember	is	that,	for	a	first	visit	from	a	new	client	(or
someone	who	clears	their	cookies),	there	will	be	no	cookies,	so	it	is	not
possible	to	rely	on	them	being	present.	This	is	easy	to	miss	in	testing	unless
you	consciously	make	the	effort	to	also	test	the	case	in	which	a	user	arrives
without	cookies;	by	default,	your	browser	will	keep	sending	the	cookies.

Another	thing	to	note	is	that	cookies	are	only	sent	back	with	subsequent
requests	by	convention;	not	all	clients	will	do	this	automatically.	Once	a
cookie	is	received	by	a	client,	even	if	it	isn’t	sent	again	in	any	later	responses,
most	clients	will	send	that	cookie	with	each	and	every	subsequent	request.
The	most	important	thing	to	remember	about	cookies	is	that	you	cannot	trust
the	data.	When	a	cookie	is	sent	to	a	client,	it	will	be	stored	in	plain	text	on
that	computer	or	device.	Users	can	edit	cookies	as	they	please,	or	add	and
remove	cookies,	very	easily.	This	makes	incoming	cookie	data	about	as
trustworthy	as	data	that	arrives	on	the	URL	with	a	GET	request.

To	put	that	a	little	more	plainly:	do	not	trust	cookie	data.

How	do	users	edit	their	data?	Well,	there	are	a	couple	of	options.	First,	let’s
look	at	using	cookies	with	cURL.	We	can	capture	cookies	into	a	“cookie	jar”
by	using	the	-c	switch.	Take	a	look	at	what	a	well-known	site	like
amazon.com	sets	for	a	new	visitor:

curl -c cookies.txt http://www.amazon.com/

The	cookie	jar	file	that	was	saved	will	look	something	like	this:

Netscape HTTP Cookie File

http://curl.haxx.se/rfc/cookie_spec.html

This file was generated by libcurl! Edit at your own risk.

.amazon.com TRUE / FALSE 1355305311 skin noskin

.amazon.com TRUE / FALSE 2082787201 session-id-time 2082787201l

.amazon.com TRUE / FALSE 2082787201 session-id 000-0000000-0000000

The	format	here	contains	the	following	elements:

Domain	the	cookie	is	valid	for

Whether	it	is	valid	for	all	machines	on	this	domain	(usually	TRUE)

Path	within	the	domain	that	this	cookie	is	valid	for

Whether	this	cookie	is	only	to	be	sent	over	a	secure	connection

When	this	cookie	will	expire

Name	of	the	cookie

Value	of	the	cookie

Note	the	phrase	“Edit	at	your	own	risk,”	which	translates	to	developers	as
“Edit,	and	interesting	things	may	happen.”	Whether	working	with	a	browser
or	cURL,	it	is	possible	to	change	these	values	wherever	the	cookies	are
stored,	and	they	will	be	sent	back	to	the	server	with	a	later	request.	With
cURL,	change	the	-c	switch	to	a	-b	switch	to	send	the	cookies	back	with	a
request	(use	them	both	together	to	also	capture	incoming	ones	back	into	the
file).

curl -b cookies.txt http://www.amazon.com/

In	the	browser,	your	options	will	vary	depending	on	which	browser	you	use,
but	all	of	the	modern	browsers	have	developer	tools	either	built	in	or	available

via	a	plug-in	that	enables	you	to	see	and	to	change	the	cookies	that	are	being
sent,	as	was	mentioned	in	“Browser	Tools”.	I	use	Chrome	so	I	use	the	Edit
This	Cookie	plug-in.	Most	browsers	actually	use	an	SQLite	database	rather
than	a	plain	text	file	to	store	their	cookies;	however	you	can	still	edit	this
using	standard	SQLite	tools.

Reading	and	Writing	Cookies
Cookies	are	key/value	pairs,	as	I’ve	mentioned,	that	are	sent	to	the	browser
along	with	some	other	information,	such	as	which	paths	the	cookie	is	valid	for
and	when	it	expires.	Since	PHP	is	designed	to	solve	“the	Web	problem,”	it	has
some	great	features	for	working	with	cookies.	To	set	a	cookie,	use	a	function
helpfully	called	setcookie():

<?php

setcookie("visited", true);

We	can	use	this	approach	to	show	a	welcome	message	to	a	visitor	when	he
first	comes	to	the	site—because	without	any	previous	cookies,	he	won’t	have
the	“visited”	cookie	set.	Once	he	has	received	one	response	from	this	server,
his	“visited”	cookie	will	be	seen	on	future	requests.	In	PHP,	cookies	that
arrived	with	a	request	can	be	found	in	the	$_COOKIE	superglobal	variable.	It	is
an	array	containing	the	keys	and	values	of	the	cookies	that	were	sent	with	the
request.	Following	the	preceding	example	we	could	read	the	cookie	and	the
code	would	look	something	like	this:

<?php

var_dump($_COOKIE);

// 1st request: array(0) { }

// later requests: array(1) { ["visited"]=> string(1) "1" }

When	working	with	APIs,	the	same	facilities	are	available	to	us.	When	PHP	is
a	server,	the	techniques	of	using	setcookie	and	checking	for	values	in
$_COOKIE	are	all	that	are	needed,	exactly	like	when	we	are	working	with	a
standard	web	application.	When	consuming	external	services	in	PHP,	it	is
possible	to	send	cookie	headers	with	our	requests	in	the	usual	way.

http://bit.ly/edit-this-cookie
https://sqlite.org/

Making	Requests	with	Cookies
There’s	some	nice	support	for	sending	cookies	in	PHP’s	cURL	extension,
which	has	a	specific	flag	for	setting	cookies	rather	than	just	adding	headers.
With	PHP’s	cURL	extension,	it	is	possible	to	do	something	like	this:

<?php

$url = "http://requestb.in/example";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_COOKIE, "visited=true");

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);

curl_close($ch);

A	selection	of	other	options	can	be	set	using	cookies,	as	seen	when	we
discussed	capturing	them	into	the	cookie	jar	in	the	code	examples	in	“Cookie
Mechanics”.	The	expiry	date	is	probably	the	most-used	setting.	The	expiry
information	is	used	to	let	the	client	know	how	long	this	cookie	is	valid	for.
After	this	time,	the	cookie	will	expire	and	not	be	sent	with	any	later	requests.
This	relies	on	the	client	and	server	clocks	being	vaguely	in	sync,	which	is
often	not	the	case.	Having	exactly	matching	clocks	is	rare,	and	in	some	cases
clients	can	have	their	clocks	set	incorrectly	by	a	number	of	years,	so	beware.

The	expiry	can	be	set	in	the	past	to	delete	a	cookie	that	is	no	longer	needed.	If
an	expiry	has	not	been	set	for	a	cookie,	it	becomes	a	“session	cookie,”	which
means	that	it	is	valid	until	the	user	closes	the	browser.	This	is	why	you	should
always	close	your	browser	on	any	machine	or	device	that	is	used	by	others,
even	after	logging	out	of	your	accounts.

NOTE
Don’t	confuse	the	“session	cookie”	with	the	cookies	PHP	uses	to	track	user	sessions	within
a	web	application.

Cookies	and	APIs
It’s	very	unusual	to	see	a	cookie	used	in	APIs,	and	the	reason	for	this	is
fundamental	to	APIs:	they	are	stateless,	as	was	already	mentioned.	Stateless
means	that	they	don’t	rely	on	information	that	is	not	part	of	this	request;	we
don’t	follow	on	from	information	that	went	before	or	rely	on	a	particular

setting	being	in	a	particular	state.

A	stateless	API	cannot,	by	definition,	use	sessions	either.	These	rely	on
information	already	having	been	exchanged	and	stored	for	a	particular
journey.	Many	PHP	installations	turn	on	sessions	by	default	but	this	isn’t
appropriate	for	an	API.

TIP
Having	a	stateless	API	also	enables	it	to	be	“idempotent.”	Idempotency	is	the	idea	that	you
can	repeat	a	request	and	achieve	the	same	outcome	each	time.

One	of	the	big	side	benefits	of	writing	stateless	services	is	that	they	scale
horizontally	really	well.	If	you	need	more	capacity	on	your	API,	you	can
deploy	it	to	more	servers,	which	all	sit	alongside	one	another	with	a	load
balancer	in	front	to	share	the	traffic	between	them.	Since	each	incoming
request	contains	all	the	information	needed	to	process	it,	it	doesn’t	matter
which	server	it	gets	routed	to	and	scaling	up	becomes	easily	achievable.

Designing	a	service	this	way	does	mean	that	we	need	to	find	alternative	ways
to	implement	some	of	the	patterns	we	use	sessions	for	in	our	other	PHP
applications.	This	could	be:

Using	an	access	token	or	credentials	to	identify	a	user	and	looking	up	their
details	on	every	request	rather	than	storing	those	in	a	session.

The	client	needs	to	send	information	such	as	filtering	and	ordering
preferences	along	with	each	request	rather	than	expecting	the	information
to	already	exist.

By	making	each	request	self-sufficient,	we	can	scale	up	our	services	very
flexibly	since	we	don’t	rely	on	other	resources.

Chapter	5.	JSON

JSON	stands	for	JavaScript	Object	Notation,	but	don’t	be	fooled	by	the	name.
Although	it	sounds	as	if	it’s	a	JavaScript-specific	format,	it	is	supported	by
most	programming	languages	today.	It’s	a	very	simple,	lightweight	format,
which	can	represent	nested,	structured	data.

For	example,	consider	a	data	set	that	looked	like	this:

message

—	en:	“hello	friend”

—	es:	“hola	amigo”

In	JSON,	that	data	would	look	like	this:

{"message":{"en":"hello friend","es":"hola amigo"}}

If	a	piece	of	data	is	represented	by	a	scalar	value,	then	it	is	presented	plainly.
If	it	is	structured	(as	shown	in	the	previous	example),	such	as	an	associative
array	or	an	object	with	properties	in	PHP,	a	curly	brace	is	used	to	indicate	a
new	level	of	depth	in	the	data	structure.	The	keys	and	values	are	separated	by
colons,	and	each	record	at	a	given	level	is	separated	with	a	comma.

It	is	also	possible	to	show	a	list	of	items	quite	elegantly	using	JSON.	Take	this
imaginary	shopping	list:

eggs

bread

milk

bananas

bacon

cheese

A	JSON	representation	of	this	would	simply	be:

["eggs","bread","milk","bananas","bacon","cheese"]

As	you	can	see	here,	many	of	the	keys	in	the	previous	example	are	optional,
and	multiple	values	are	enclosed	with	the	simple	square	brackets.	If	this	list
was	in	fact	the	value	of	a	property,	then	both	kinds	of	brackets	would	be	seen:

{"list":["eggs","bread","milk","bananas","bacon","cheese"]}

This	example	shows	that	our	data	contained	a	key/value	pair,	with	the	key
“list.”

When	to	Choose	JSON
JSON	gives	a	very	clear	indication	of	the	original	data	structure	and	conveys
the	values	within,	but	doesn’t	give	us	any	specific	information	about	the	exact
data	types	that	were	originally	in	use.	Often,	this	isn’t	important;	HTTP	is
entirely	string-based	anyway	so	it	is	usual	to	deal	with	this	type	of	data	in
web-based	applications.

JSON’s	strongest	point	is	that	it	is	a	simple	data	format.	It	doesn’t	take	much
storage	space	in	comparison	to	XML	and	isn’t	too	large	to	transfer	“over	the
wire”	or,	in	the	case	of	mobile	applications,	over	a	potentially	slow	and
patchy	data	connection!	Since	it	is	quite	small	and	simple,	it	is	inexpensive	in
processor	terms	to	decode	the	JSON	format,	which	makes	it	ideal	for	less
powerful	devices	such	as	phones.

Use	JSON	when	information	about	the	exact	data	format	isn’t	critical,	and	the
effort	needed	to	decode	it	must	stay	light.	It’s	great	for	casual	web	or	mobile
applications—and	of	course	it’s	absolutely	ideal	if	you	are	supplying	data	to	a
JavaScript	consumer,	since	it	handles	this	data	format	natively	and	quickly.

Content	negotiation	over	HTTP	using	headers	has	already	been	covered
earlier	in	the	book	(see	Chapter	3);	this	is	how	it	is	ascertained	that	the	client
would	like	a	JSON	response	format.	As	an	example,	here	are	the	headers	for	a
request/response	pair	in	which	the	consumer	is	requesting	JSON	and	the	API
provides	exactly	that:

> GET /header.php HTTP/1.1

> Accept: application/json, text/html;=0.5

< HTTP/1.1 200 OK

< Content-Type: application/json

{"message":"hello there"}

You	can	see	that	the	final	entry	in	the	example	is	the	body	of	the	response.
The	format	of	this	is	the	same	JSON	that	was	covered	earlier	in	this	chapter.
Setting	the	headers	correctly	is	absolutely	key,	since	without	the	correct
Content-Type	header,	any	application	receiving	this	request	will	not	know
how	to	decode	it.	If	it	requested	JSON,	it	might	hope	that’s	what	was
returned,	but	the	Content-Type	should	always	match.	If	it	isn’t	specified,
many	web	servers	will	default	to	sending	a	Content-Type	of	“text/html,”
which	is	not	only	inaccurate,	but	also	dangerous	because	a	browser	will	try	to
display	the	content	as	HTML	and	allow	embedded	JavaScript—so	do	take
care	to	set	those	headers	correctly.

Handling	JSON	with	PHP
This	is	very	simple,	which	is	another	reason	to	choose	JSON	as	a	preferred
output	format!	In	PHP,	you	can	use	json_encode()	to	turn	either	an	array	or
an	object	into	valid	JSON.

For	example,	the	previous	example	showed	some	JSON	that	looked	like	this:

{"message":"hello you"}

To	generate	that	from	PHP	(which	is	exactly	how	I	generated	the	previous
examples),	I	simply	used	this	line:

echo json_encode(array("message" => "hello you"));

This	shows	a	very	simple	array	wrapped	in	json_encode()	and	using	echo	to
output	it	so	I	can	see	it	when	I	request	the	page.

To	handle	incoming	JSON	data	and	turn	it	into	a	structure	you	can	use,	simply
use	json_decode(),	passing	the	string	containing	the	JSON	as	the	first
argument.	Sticking	with	our	existing	simple	example,	the	code	could	look
something	like	this:

$data = json_decode('{"message":"hello you"}');

var_dump($data);

This	example	includes	var_dump()	to	show	exactly	what	actually	happens
when	the	json_decode()	function	is	used:	by	default,	an	object	is	returned.
Here’s	the	output	of	that	script:

object(stdClass)#1 (1) {

 ["message"]=>

 string(9) "hello you"

}

Because	there	is	no	data-type	information,	JSON	cannot	tell	whether	this	was
an	array	with	keys	and	values,	or	an	object	with	properties,	before	it	was
turned	into	JSON;	there	is	no	difference	between	the	two.	We	would	get
identical	output	from	a	script	that	looked	like	this	instead:

$obj = new stdClass();

$obj->message = "hello you";

echo json_encode($obj) . "\n";

Similarly,	the	same	output	would	be	shown	if	an	object	of	any	other	class
were	used;	the	object-type	information	just	isn’t	included	in	JSON	so	it	can’t
be	retrieved	at	the	other	end.	When	calling	the	json_decode(),	it	is	possible
to	convert	the	data	to	an	associative	array	rather	than	an	object—by	passing
true	as	the	optional	second	argument:

$data = json_decode('{"message":"hello you"}', true);

var_dump($data);

This	time	around,	our	output	is	subtly	different:

array(1) {

 ["message"]=>

 string(9) "hello you"

}

Whether	you	choose	to	work	with	objects	or	arrays	is	up	to	you,	and	really
depends	on	the	application	and	also	the	language.	Since	there’s	no	object-type
information	stored	in	JSON,	the	object	produced	by	json_decode()	is
always	StdClass	and	personally	I	find	it	easier	to	take	an	array	and	possibly
hydrate	a	specific	object	type	with	that	data.

The	JSONSerializable	Interface
PHP	also	offers	a	way	of	describing	how	an	existing	object	will	behave	when
passed	json_encode(),	which	is	a	useful	technique	if	you’re	outputting	data
that	exists	as	an	object	in	your	application	before	it	is	output.	It	uses	an

interface	called	JSONSerializable;	your	object	should	implement	this
interface	and	include	the	jsonSerialize()	method.	This	method	will	be
called	when	the	object	is	converted	to	JSON.

Here’s	a	simple	example,	starting	with	a	very	basic	class	that	just	adds	the
interface	and	defines	what	to	do,	then	shows	it	in	action:

<?php

class gardenObject implements JsonSerializable

{

 public function jsonSerialize() {

 unset($this->herbs);

 return $this;

 }

}

$garden = new gardenObject();

$garden->flowers = array("clematis", "geranium", "hydrangea");

$garden->herbs = array("mint", "sage", "chives", "rosemary");

$garden->fruit = array("apple", "rhubarb");

echo json_encode($garden);

// {"flowers":["clematis","geranium","hydrangea"],"fruit":["apple","rhubarb"]}

This	can	be	a	very	useful	shortcut	to	quickly	convert	an	object	even	if	it	needs
a	little	customization	before	output.

Consuming	JSON	APIs
As	an	example	of	working	with	an	API	that	uses	JSON,	let’s	take	a	look	at	a
little	piece	of	the	GitHub	API	and	use	JSON	for	our	examples.	The	examples
here	work	with	gists,	which	are	similar	to	“pastebins”—places	where	you	can
put	code	or	other	text	to	share	with	others.

Our	example	is	very	simple;	we	make	a	POST	request	and	include	some	JSON
in	the	body	of	the	request.	A	POST	request	usually	creates	data,	as	you’ll	see	in
Chapter	8,	and	in	this	case	we’re	creating	a	new	gist:

<?php

// grab the access token from an external file to avoid oversharing

require("github-creds.php");

http://gist.github.com

$data = json_encode([

 'description' => 'Gist created by API',

 'public' => 'true',

 'files' => [

 'text.txt' => ['content' => 'Some riveting text']

]

]);

$url = "https://api.github.com/gists";

$ch = curl_init($url);

curl_setopt($ch, CURLOPT_POST, 1);

curl_setopt($ch, CURLOPT_POSTFIELDS, $data);

curl_setopt($ch, CURLOPT_HTTPHEADER,

 ['Content-Type: application/javascript',

 'Authorization: token ' . $access_token,

 'User-Agent: php-curl']

);

curl_setopt($ch, CURLOPT_RETURNTRANSFER, true);

$result = curl_exec($ch);

curl_close($ch);

$gist = json_decode($result, true);

if($gist) {

 echo "Your gist is at " . $gist['html_url'];

}

There	are	a	few	things	going	on	here	that	bear	closer	examination:	sending
JSON	in	requests,	working	with	an	Authorization	header,	and	using
credentials	to	gain	access.	You	will	notice	that	a	variable	$access_token	is
referenced,	which	isn’t	set	in	the	code.	This	is	set	in	the	github-creds.php	file
and	kept	separate	to	stop	access	keys	from	being	leaked	in	this	text.	In	a	real
development	project,	I’d	still	keep	this	separate,	but	for	a	different	reason—
using	a	separate	file	means	I	can	exclude	it	from	source	control	and	avoid
publicizing	my	access	keys	to	the	world!	Of	course	it	does	happen,	and	if	it
does,	you	can	always	revoke	your	token	and	generate	a	new	one.	If	you	ever
suspect	that	a	token	has	been	leaked,	then	do	destroy	it	and	generate	another
(something	to	bear	in	mind	if	your	tokens	are	visible	when	demonstrating
APIs).

A	POST	request	is	used	to	create	a	new	gist	(GitHub	has	a	RESTful	API)	and
send	JSON-formatted	data	along	with	it.	In	fact,	this	is	a	PHP	array	(because
those	are	easy	to	understand	and	work	with),	which	is	then	converted	to	JSON
using	json_encode().	The	resulting	output	is	given	as	the	value	for

CURLOPT_POSTFIELDS	and	PHP	sends	it	as	the	body	of	the	request.

This	example	also	sets	some	headers	using	the	CURLOPT_HTTPHEADER	option.
The	first	one	is	Content-Type,	which	we	have	already	seen	in	many
examples,	and	the	second	one	is	Authorization.	The	Authorization	header
here	includes	the	“token”	and	the	access	token	within	it,	because	the	GitHub
API	uses	OAuth2	for	authorization.	We	discussed	OAuth	in	Chapter	3.	The
GitHub	API	also	requires	that	a	User-Agent	header	be	sent	so	you	will	need
to	include	this	too	if	your	PHP	isn’t	already	configured	to	send	it	by	default.

If	all	goes	well	with	the	previous	request,	a	201	status	code	will	arrive	with
the	response	and	the	new	gist	will	be	created.	The	gist	will	also	be	visible	on
the	Web.	Alternatively,	the	gist	can	be	requested	over	the	API:	one	of	the
things	included	in	the	response	when	requesting	the	new	gist	is	a	link	to	it,	so
we	can	extend	the	example	to	also	fetch	the	gist.	Since	this	is	a	public	gist,	no
authorization	is	needed	and	it	is	possible	to	just	grab	the	data	using
file_get_contents(),	then	json_decode()	it.	You	could	add	the	following
code	to	the	previous	example	to	do	exactly	this:

if($gist) {

 echo file_get_contents($gist['url']);

}

You	can	easily	try	this	yourself,	or	for	an	even	simpler	way	to	interact	with
the	GitHub	API,	simply	request	all	your	own	gists	using
https://api.github.com/users/username/gists	and	replacing	username	with
your	own	GitHub	username.	Many	APIs	use	JSON	in	a	similar	way	to
exchange	information	with	consumers,	and	you’ve	now	seen	how	to	do	that
with	PHP.

In	addition	to	working	purely	with	PHP,	when	working	with	JSON	APIs	you
may	find	yourself	wanting	to	construct,	inspect,	and	otherwise	manipulate
JSON	data.	There	are	some	tools	we	will	discuss	later	in	Chapter	11,	notably
jq	and	the	Python	json	module,	that	can	help	with	this	task.

https://gist.github.com/
https://api.github.com/users/username/gists

Chapter	6.	XML

XML	is	another	very	common	data	format	used	with	APIs,	and	should	feel
familiar	to	us	as	developers.	Anyone	who	has	spent	much	time	with	the	Web
will	understand	the	“pointy	brackets”	style	of	XML	and	will	be	able	to	read	it.
XML	is	a	rather	verbose	format;	the	additional	punctuation	and	scope	for
attributes,	character	data,	and	nested	tags	can	make	for	a	slightly	bigger	data
size	than	other	formats.

XML	has	many	more	features	than	JSON,	and	can	represent	a	great	many
more	things.	You’ll	see	more	of	this	in	Chapter	7,	where	complex	data	types
and	namespaces	will	come	into	play.	XML	doesn’t	have	to	be	complicated;
simple	data	can	also	be	easily	represented,	just	as	it	is	with	JSON.	Consider
our	shopping	list	again:

eggs

bread

milk

bananas

bacon

cheese

The	XML	representation	of	this	list	would	be:

<?xml version="1.0"?>

<list>

 <item>eggs</item>

 <item>bread</item>

 <item>milk</item>

 <item>bananas</item>

 <item>bacon</item>

 <item>cheese</item>

</list>

Working	with	XML	in	PHP	isn’t	quite	as	easy	as	working	with	JSON	was,
because	XML	is	more	complicated.	To	produce	the	previous	example,	the
code	in	Example	6-1	was	used.

Example	6-1.	Working	with	XML
<?php

$list = array(

 "eggs",

 "bread",

 "milk",

 "bananas",

 "bacon",

 "cheese"

);

$xml = new SimpleXMLElement("<list />");

foreach($list as $item) {

 $xml->addChild("item", $item);

}

// for nice output

$dom = dom_import_simplexml($xml)->ownerDocument;

$dom->formatOutput = true;

echo $dom->saveXML();

The	starting	point	is	the	array	that	will	be	our	list.	Next,	a	SimpleXMLElement
object	is	instantiated	with	a	root	tag	that	forms	the	basis	for	the	document.	In
XML,	everything	has	to	be	in	a	tag,	so	an	<item>	tag	has	been	introduced	in
order	to	contain	each	list	item.

The	final	block	only	makes	the	output	prettier,	which	isn’t	usually	important
because	XML	is	for	machines,	not	for	humans.	To	get	the	XML	to	convert
from	a	SimpleXMLElement	object,	call	the	asXML()	method	on	that	object,
which	returns	a	string.	The	string,	however,	is	all	on	one	line!

The	previous	example	instead	converted	from	SimpleXMLElement	to
DOMElement,	and	then	grabbed	the	DOMDocument	from	that.	Set	the
formatOutput	to	true,	so	when	a	call	is	made	to	DOMDocument::saveXML()
(to	ask	it	to	return	the	XML	as	a	string),	the	resulting	output	will	be	nicely
formatted.

XML’s	abilities	to	represent	attributes,	children,	and	character	data	all	provide
a	more	powerful	and	descriptive	way	to	represent	data	than,	for	example,
JSON.	These	same	features	make	XML	a	great	way	to	represent	very	detailed
information,	including	data-type	information,	so	it’s	a	great	choice	when
those	details	really	do	matter.	It	can	include	information	about	the	types	of
data	and	custom	data	types,	and	each	element	can	have	attributes	to	describe
specific	properties	of	an	element.	XML	also	supports	namespaces	that	are

sometimes	used	in	complex	data	types	(beware	that	namespaces	are	better
supported	by	DOM	in	PHP	than	by	SimpleXML).

The	larger	data	format	is	less	of	a	concern	when	working	with	powerful
machines	and	fast	network	connections,	so	XML	is	a	popular	choice	when
exchanging	data	between	computers	or	servers,	rather	than	sending	things	to
phones	or	web	browsers.	Do	be	aware,	however,	that	bandwidth	costs	may
well	still	apply	and	may	be	a	significant	cost	factor	when	large	amounts	of
data	are	being	transferred.

APIs	are	all	about	integration	between	systems	and	sometimes	the	choice	of
data	format	will	be	dictated	by	whatever	is	on	the	other	end	of	the
relationship.	XML	is	particularly	popular	among	many	enterprise	technology
platforms	such	as	Java,	Oracle,	and	.NET,	so	users	of	these	technologies	will
often	request	XML	as	a	preferred	format.	If	you	are	working	with	products	or
people	that	would	prefer	XML	or	are	more	confident	handling	this	format,
then	offer	XML,	even	if	only	as	one	of	multiple	data	format	options	in	your
API.

XML	in	PHP
There	are	many	ways	we	can	work	with	XML	in	PHP,	and	they’re	all	useful
in	different	situations.	There	are	three	main	approaches	to	choose	from	and
they	all	have	their	advantages	and	disadvantages:

1.	 SimpleXML	is	the	most	approachable,	and	my	personal	favorite.	It	is
easy	to	use	and	understand,	is	well	documented,	and	provides	a	simple
interface	(as	the	name	suggests)	for	getting	the	job	done.	SimpleXML
does	have	some	limitations,	but	it	is	recommended	for	most
applications.

2.	 DOM	is	handy	when	a	project	encounters	some	of	the	limitations	in
SimpleXML.	It’s	more	powerful	and	therefore	more	complicated	to	use,
but	there	are	a	small	number	of	operations	that	can’t	be	done	with
SimpleXML.	There	are	built-in	functions	to	allow	conversion	between
these	two	formats,	so	it’s	very	common	to	use	a	combination	of	both	in
applications,	as	we	saw	earlier	in	Example	6-1.

3.	 XMLReader,	XMLWriter,	and	their	sister	XMLParser	are	lower-level
ways	of	dealing	with	XML.	In	general,	these	tools	are	complicated	and
unintuitive	but	they	have	a	major	advantage:	they	are	streams-based	and

therefore	don’t	load	the	entire	XML	document	into	memory	at	once.	If
very	large	data	sets	are	involved,	then	this	approach	will	be	your	friend.

Creating	XML
There	are	a	few	libraries	around	but	let’s	look	at	some	examples	of	how	to
create	a	simple	XML	document.	We’ll	be	aiming	to	output	sample	output	with
a	mixture	of	elements	and	attributes,	as	seen	in	Example	6-2.

Example	6-2.	Sample	XML	document	to	use	for	our	examples
<?xml version="1.0" ?>

<hotels>

 <hotel name="Queens Hotel">

 <rooms>17</rooms>

 <price>150</price>

 </hotel>

 <hotel name="Kings Hotel">

 <rooms>12</rooms>

 <price>150</price>

 </hotel>

 <hotel name="Grand Hotel">

 <rooms>27</rooms>

 <price>100</price>

 </hotel>

</hotels>

Usually	we	generate	XML	from	stored	data,	but	here	are	some	examples	with
hardcoded	values	so	you	can	see	very	clearly	just	the	XML	parts	on	their
own.	In	a	real	application,	you’d	use	all	the	XML	functionality	I’m	showing
here,	with	loops	to	select	data	from	a	database.	First,	look	at	Example	6-3	for
an	example	of	creating	this	in	SimpleXML.

Example	6-3.	Create	a	sample	XML	document	using	SimpleXML	in	PHP
<?php

$document = new SimpleXMLElement("<hotels />");

$kings = $document->addChild("hotel");

$kings->addAttribute("name", "Kings Hotel");

$kings->addChild("rooms", 12);

$kings->addChild("price", 150);

$queens = $document->addChild("hotel");

$queens->addAttribute("name", "Queens Hotel");

$queens->addChild("rooms", 17);

$queens->addChild("price", 150);

$grand = $document->addChild("hotel");

$grand->addAttribute("name", "Grand Hotel");

$grand->addChild("rooms", 27);

$grand->addChild("price", 100);

This	is	fairly	straightforward	and	easy	to	follow.	Example	6-4	uses	the	DOM
extension	instead,	which	is	a	bit	longer.

Example	6-4.	Create	a	sample	XML	document	using	PHP’s	DOM	extension
<?php

$document = new DOMDocument();

$hotels = $document->createElement('hotels');

$document->appendChild($hotels);

$kings = $document->createElement("hotel");

$name = $document->createAttribute('name');

$name->value = "Kings Hotel";

$kings->appendChild($name);

$rooms = $document->createElement("rooms", 12);

$kings->appendChild($rooms);

$price = $document->createElement("price", 150);

$kings->appendChild($price);

$hotels->appendChild($kings);

$queens = $document->createElement("hotel");

$name = $document->createAttribute('name');

$name->value = "Queens Hotel";

$queens->appendChild($name);

$rooms = $document->createElement("rooms", 17);

$queens->appendChild($rooms);

$price = $document->createElement("price", 150);

$queens->appendChild($price);

$hotels->appendChild($queens);

$grand = $document->createElement("hotel");

$name = $document->createAttribute('name');

$name->value = "Grand Hotel";

$grand->appendChild($name);

$rooms = $document->createElement("rooms", 27);

$grand->appendChild($rooms);

$price = $document->createElement("price", 100);

$grand->appendChild($price);

$hotels->appendChild($grand);

The	DOM	example	is	longer	and	for	this	trivial	example	it	can	seem	quite
clunky.	It’s	worth	including,	though,	since	if	you	work	with	advanced	XML

services	and	especially	if	you	need	to	work	with	namespaces	and	do	complex
manipulation	of	XML	(for	example,	you	can	only	change	the	order	of	nodes
with	DOM),	then	this	extension	will	be	an	excellent	approach.

Converting	between	SimpleXML	and	DOM	extensions	is	very	simple;	I	often
do	this	in	my	own	applications	where	most	of	the	work	can	be	done	with
SimpleXML,	but	perhaps	just	one	more	piece	of	advanced	functionality	is
required	from	DOM.	PHP	offers	the	functions	dom_import_simplexml()	and
simplexml_import_dom()	so	you	can	easily	switch	between	the	two	rather
than	being	locked	into	one	or	the	other	in	a	particular	project.

Consuming	XML	APIs
We’ll	look	at	a	specific	example	shortly	(the	Flickr	kitten	photos)	but	first
let’s	take	a	look	at	how	we	can	use	PHP	to	get	data	from	an	XML	document.

Parsing	XML
We’ve	seen	how	to	create	XML	already.	Let’s	use	the	same	document	and	do
the	opposite:	translate	the	XML	into	data	we	can	use.	SimpleXML	is	a	really
excellent	way	to	parse	XML	and	Example	6-5	has	an	example	of	how	that
could	look.

Example	6-5.	Parse	our	sample	XML	with	SimpleXML
<?php

$xml = new SimpleXMLElement(file_get_contents("sample.xml"));

echo("List of Hotels:\n");

foreach($xml->children() as $hotel) {

 echo $hotel['name'];

 echo " has " . $hotel->rooms . " rooms";

 echo " and costs " . $hotel->price. " EUR per night";

 echo "\n";

}

TIP
When	working	with	SimpleXML,	be	aware	that	properties	such	as	rooms	and	price	in	the
preceding	example	are	actually	of	type	SimpleXMLElement.	You	will	need	to	cast	them	to
strings,	either	by	echoing	as	done	here,	or	by	expressly	casting	the	values	so	you	can	assign
or	return	them.

If	you	need	to	parse	a	very	large	XML	document	(bigger	than	the	memory

PHP	has	available)	then	check	out	the	XMLReader	functionality	in	PHP.	This
works	using	streams,	which	means	you	don’t	need	to	load	the	entire	document
into	memory	to	work	on	it.	For	all	other	cases,	SimpleXML	is	a	great	idea	and
regular	expressions	are	never	recommended	for	parsing	XML.	Now	that
we’ve	got	our	tools	ready,	let’s	move	on	to	look	at	a	real	example.

Flickr’s	XML	API
There	are	a	wide	variety	of	APIs	using	XML.	This	next	example	looks	at	the
photo-sharing	site	Flickr.	The	Flickr	API	provides	a	wide	variety	of
functionality	for	working	with	photos,	and	every	language	will	have	some
classes	available	that	you	can	use	with	it,	but	there’s	no	reason	not	to	interact
with	the	API	directly.	Example	6-6	shows	how	to	find	a	list	of	kitten	pictures.

Example	6-6.	Fetching	data	from	Flickr’s	XMLRPC	service
<?php

require("api-key.php");

$animal = "kitten";

$data = file_get_contents('https://api.flickr.com/services/rest/?'

 . http_build_query(array(

 "method" => "flickr.photos.search",

 "api_key" => $api_key,

 "tags" => $animal,

 "format" => "xmlrpc",

 "per_page" => 6

))

);

This	example	requests	all	the	newest	photos	tagged	“kitten”	from	Flickr.	It
relies	on	another	file	called	api-key.php	that	simply	defines	the	$api_key
variable;	it’s	separate	to	make	it	easier	to	avoid	accidentally	sharing	it	or
adding	it	to	my	git	repository.

Flickr	uses	an	API	key	passed	as	a	URL	parameter,	which	is	a	different
approach	than	the	Authorization	header	examples	that	have	been
demonstrated	so	far;	each	API	will	implement	this	in	a	different	way.
Although	the	header	is	a	better	practice,	the	developers	of	Flickr	were
trailblazers	with	implementing	APIs	for	users,	so	there	was	no	best	practice
when	it	was	built.	Since	it’s	simply	a	GET	request,	this	example	uses
file_get_contents()	to	fetch	the	carefully	crafted	URL.	The	resulting
response	looks	something	like	this:

http://flickr.com

<?xml version="1.0" encoding="utf-8" ?>

<methodResponse>

 <params>

 <param>

 <value>

 <string>

<photos page="1" pages="81588" perpage="6"

total="489527">

 <photo id="19456951044" owner="130395922@N06"

secret="5986d9cdf8" server="505" farm="1"

title="Lounging" ispublic="1" isfriend="0"

 isfamily="0" />

 <photo id="19890527230" owner="41867033@N00"

secret="7863b99ca0" server="276" farm="1"

title="Sholai, Kodaikanal, Cats" ispublic="1"

isfriend="0"

 isfamily="0" />

 <photo id="19455867524" owner="41867033@N00"

secret="400c7ba669" server="428" farm="1"

title="Sholai, Kodaikanal, Cats" ispublic="1"

isfriend="0" isfamily="0" />

 <photo id="20083899801" owner="41867033@N00"

secret="89e2242440" server="328" farm="1"

title="Sholai, Kodaikanal, Cats" ispublic="1"

isfriend="0" isfamily="0" />

 <photo id="20083891431" owner="41867033@N00"

secret="bf47f466ec" server="429" farm="1"

title="Sholai, Kodaikanal, Cats" ispublic="1"

isfriend="0" isfamily="0" />

 <photo id="19457506953" owner="41867033@N00"

secret="98b030686f" server="477" farm="1"

title="Sholai, Kodaikanal, Cats" ispublic="1"

isfriend="0" isfamily="0" />

</photos>

 </string>

 </value>

 </param>

 </params>

</methodResponse>

Because	the	data	is	sent	as	an	escaped	XML	string,	the	XML	is	parsed	in	PHP,
then	the	string	is	extracted	and	parsed	as	a	separate	step	in	order	to	obtain	the
real	data.	Flickr	doesn’t	supply	the	actual	URL	of	the	image,	but	gives	enough
information	in	the	response	that	the	instructions	can	be	followed	to	assemble
the	desired	URL.	SimpleXML	is	used	in	this	example—first	to	parse	the
response,	then	to	parse	the	data	inside	it.	This	library	represents	child
elements	as	object	properties	(and	each	child	is	a	SimpleXMLElement),	while
attributes	are	accessed	using	array	notation.

http://bit.ly/flickr-source-urls

Here’s	Example	6-6	again,	processing	the	data	and	outputting	it	with	titles	and
	tags:

<?php

require("api-key.php");

$animal = "kitten";

$data = file_get_contents('http://api.flickr.com/services/rest/?'

 . http_build_query(array(

 "method" => "flickr.photos.search",

 "api_key" => $api_key,

 "tags" => $animal,

 "format" => "xmlrpc",

 "per_page" => 6

))

);

$simplexml = new SimpleXMLElement($data);

$data_array = $simplexml->params->param->value->children();

$photos = new SimpleXMLElement($data_array->string);

if($photos) {

 foreach($photos->photo as $photo) {

 echo $photo['title'] . "\n";

 echo '<img src="http://farm' . $photo['farm'] . '.staticflickr.com/'

 . $photo['server'] . '/' .$photo['id'] . '_' . $photo['secret']

 . '.jpg" />
' . "\n";

 }

}

The	main	body	of	the	data	contains	a	<photos>	tag	with	multiple	<photo>
tags	inside	it—one	for	each	photo.	Each	<photo>	tag	has	some	attributes
inside	it,	so	array	notation	is	used	to	access	these,	retrieve	the	title,	and	build
the	image	tag.

When	working	with	APIs,	you	will	see	different	data	formats	in	use	in	a
variety	of	settings.	This	chapter	has	shown	how	to	create,	work	with,	and
parse	XML.	XML	is	more	common	on	older	and	larger	applications,	but	the
data	format	will	depend	on	the	target	market	of	the	API,	and	many	providers
will	offer	multiple	formats.	Flickr,	for	example,	offers	data	in	both	JSON	and
XML	format,	but	also	offers	a	serialized	PHP	format.	PHP’s	serialized	format
is	very	easy	to	work	with	and	is	a	great	choice	for	two	PHP	applications
exchanging	data;	if	you	were	to	integrate	Flickr	into	your	own	PHP
application,	this	would	be	good	format	to	choose.	When	integrating	with

applications	on	other	technology	platforms,	XML	is	a	better-supported	choice.

Chapter	7.	RPC	and	SOAP
Services

In	this	chapter	we’ll	be	looking	at	two	closely	related	types	of	services:
Remote	Procedure	Call	(RPC)	services,	and	SOAP.	These	two	feel	fairly
similar,	as	they	both	involve	calling	functions	and	passing	parameters,	but
their	implementations	are	in	stark	contrast	as	RPC	is	a	very	loose	way	of
describing	a	service,	whereas	SOAP	is	very	tightly	specified.

RPC
RPC	services	quite	literally	call	procedures	(i.e.,	functions)	remotely.	These
types	of	API	will	typically	have	a	single	endpoint,	so	all	requests	are	made	to
the	same	URL.	Each	request	will	include	the	name	of	the	function	to	call,	and
may	include	some	parameters	to	pass	to	it.	Working	with	RPC	services	should
feel	familiar	to	us	as	developers	because	we	know	how	to	call	functions—we
simply	do	so	over	HTTP.

To	start	out,	consider	Example	6-6	when	a	call	was	made	to	Flickr.	The	URL
we	made	for	that	example	was:

http://api.flickr.com/services/rest/?method=flickr.photos.search&tags=

kitten&format=xmlrpc

Within	the	URL,	the	name	of	the	function	can	be	seen	in	the	“method”
parameter	(flickr.photos.search),	the	particular	tags	to	search	for	are
found	in	tags=,	and	the	format	parameter	asks	for	the	response	in	XML-RPC
format.

There	is	a	distinct	difference	between	using	an	RPC-style	service,	with
function	names	and	parameters	included	in	the	data	supplied,	and	having	a
service	that	is	true	XML-RPC,	which	is	a	very	defined	format.	The	option	you
choose	depends	entirely	on	the	situation	you	and	your	application	find
yourselves	in,	but	whichever	it	is,	be	sure	to	label	it	correctly.

Building	an	RPC	service	layer	for	an	application	can	be	achieved	very	simply

https://en.wikipedia.org/wiki/XML-RPC

by	wrapping	a	class	and	exposing	it	over	HTTP.	Example	7-1	shows	a	very
basic	class	that	offers	some	toy	functionality	to	use	in	the	following	examples.

Example	7-1.	Library	class	example
<?php

class Events

{

 protected $events = array(

 1 => array("name" => "Excellent PHP Event",

 "date" => 1454994000,

 "location" => "Amsterdam"

),

 2 => array("name" => "Marvellous PHP Conference",

 "date" => 1454112000,

 "location" => "Toronto"),

 3 => array("name" => "Fantastic Community Meetup",

 "date" => 1454894800,

 "location" => "Johannesburg"

)

);

 /**

 * Get all the events we know about

 *

 * @return array The collection of events

 */

 public function getEvents() {

 return $this->events;

 }

 /**

 * Fetch the detail for a single event

 *

 * @param int $event_id The identifier of the event

 *

 * @return array The event data

 */

 public function getEventById($event_id) {

 if(isset($this->events[$event_id])) {

 return $this->events[$event_id];

 } else {

 throw new Exception("Event not found");

 }

 }

}

To	make	this	available	via	an	RPC-style	service,	a	simple	wrapper	can	be
written	for	it,	which	looks	at	the	incoming	parameters	and	calls	the	relevant

function.	You	could	use	something	along	these	lines:

<?php

require "Events.php";

// look for a valid action

if(isset($_GET['method'])) {

 switch($_GET['method']) {

 case "eventList":

 $events = new Events();

 $data = $events->getEvents();

 break;

 case "event":

 $event_id = (int)$_GET['event_id'];

 $events = new Events();

 $data = $events->getEventById($event_id);

 break;

 default:

 http_response_code(400);

 $data = array("error" => "bad request");

 break;

 }

} else {

 http_response_code(400);

 $data = array("error" => "bad request");

}

// let's send the data back

header("Content-Type: application/json");

echo json_encode($data);

This	example	does	a	very	simple	switch-case	on	the	incoming	“action”
parameter	and	passes	in	any	variables	as	required	(with	validation,	of	course).
We	fetch	the	return	data	from	the	underlying	library,	then	send	the	appropriate
content	negotiation	headers	and	the	data,	formatted	as	JSON.	If	the	request
isn’t	understood,	then	a	400	status	code	is	returned	along	with	some	error
information.

The	previous	example	shows	a	very	simple	RPC-style	service	using	JSON,
and	illustrates	how	easy	it	is	to	wrap	an	existing	class	of	functionality	and
expose	it	over	HTTP.	Sometimes	it’s	appropriate	to	use	HTTP	within	an
application	to	allow	different	components	to	be	scaled	independently	(for
example,	moving	comments	to	a	separate	storage	area	to	be	accessed	by	the
original	application	rather	than	HTTP).	In	those	scenarios,	this	approach	of
wrapping	existing,	hardened	code	can	be	very	useful	indeed,	and	is	quick	to

implement.

Exactly	as	the	difference	between	XML	over	an	RPC	service	and	XML-RPC
is	important	to	remember,	the	same	applies	here.	The	example	shows	JSON
being	returned	by	an	RPC	service,	but	JSON-RPC	is	something	much	more
tightly	specified	(there’s	also	XML-RPC).	The	*-RPC	services	can	be	a	better
choice	when	working	with	people	or	technologies	that	understand	those	and
are	happy	implementing	them.	If	the	requirements	are	for	something	rather
lighter	and	more	approachable,	then	a	simple	custom	format	will	work
perfectly	well.	Standards	are	always	good,	especially	for	externally	available
systems,	but	don’t	feel	that	they	are	your	only	choice.

SOAP
SOAP	was	once	an	acronym	for	Simple	Object	Access	Protocol;	however,
this	has	been	dropped	and	now	it	is	just	“SOAP.”	SOAP	is	an	RPC-style
service	that	communicates	over	a	very	tightly	specified	format	of	XML.	Since
SOAP	is	well-specified	when	it	follows	WSDL	conventions,	little	work	is
needed	to	implement	it	in	an	application,	or	to	integrate	against	it;	PHP	has	a
really	excellent	set	of	SOAP	libraries	for	both	client	and	server.

You	will	see	quite	a	few	providers	of	SOAP	implementations,	and	some	open
source	tools	such	as	SugarCRM	and	Magento	also	offer	SOAP	integration
points.	When	looking	at	a	new	SOAP	service,	a	tool	called	SoapUI	allows	for
browsing	a	service	when	a	Web	Service	Description	Language	(WSDL)	file	is
supplied.	In	fact,	SoapUI	is	excellent	and	can	do	about	a	hundred	other	things,
including	complicated	functional	testing,	but	for	now	we	will	look	at	its
SOAP	functionality.

As	an	example,	I	took	the	WSDL	file	from	RadioReference	and	added	it	into
SoapUI,	simply	creating	a	new	project,	naming	the	project,	and	giving	the
URL	to	the	WSDL	file	for	this	service.	By	default,	this	will	create	a	request
for	each	of	the	available	methods,	and	generate	an	easy	interface	in	which
they	can	be	executed.	To	run	one,	pick	it	from	the	list	on	the	left,	and	then
click	the	green	Play	button	above	the	sample	request.	I	used	getCountryList
as	an	example,	as	you	can	see	in	Figure	7-1.

The	left	half	of	the	main	pane	shows	the	request	that	was	sent,	and	the	right
half	shows	the	response	that	was	received.	This	gives	a	quick	overview	of
how	things	look	when	using	this	API	from	our	PHP	code.

https://en.wikipedia.org/wiki/JSON-RPC
http://www.soapui.org
http://radioreference.com

WSDL
This	is	a	good	moment	to	talk	about	the	WSDL	files	that	always	seem	to	be
mentioned	whenever	SOAP	comes	up.	When	it	was	first	mentioned	in	this
chapter,	the	acronym	was	defined	as	“Web	Service	Description	Language,”
and	this	is	a	pretty	good	description	of	what	is	found	in	a	WSDL	file.	It
describes	the	location	of	a	particular	service,	the	data	types	that	are	used	in	it,
and	the	methods,	parameters,	and	return	values	that	are	available.	The	WSDL
format	is	rather	unfriendly	XML,	so	it	is	best	generated	and	parsed	by
machines	rather	than	humans.	If	you	do	find	yourself	in	the	situation	of
needing	to	read	one,	it	usually	makes	more	sense	to	begin	at	the	end	of	the
document	and	then	read	upwards.

WSDL	files	are	commonly	used	with	SOAP,	but	they	can	be	used	with	other
types	of	web	services.	SOAP	can	also	be	used	without	a	WSDL	file,	known	in
PHP	as	“non-WSDL	mode.”	This	chapter	includes	examples	of	SOAP	with
and	without	WSDLs,	and	an	example	of	generating	a	WSDL	file.

Figure	7-1.	SoapUI	showing	a	request	to	getCountryList

PHP	SOAP	Client
Returning	to	the	countries	list,	we	can	acquire	it	from	PHP	quite	easily	using
the	SOAP	extension.	Take	a	look	at	this	example,	which	does	exactly	that:

<?php

$client = new SoapClient('http://api.radioreference.com/soap2/?wsdl&v=latest');

$countries = $client->getCountryList();

print_r($countries);

Simply	using	print_r()	doesn’t	create	a	very	pretty	output,	but	it	does
illustrate	what	these	two	lines	of	PHP	have	produced.	The	beginning	of	the
output	looks	like	this:

Array

(

 [0] => stdClass Object

 (

 [coid] => 5

 [countryName] => Afghanistan

 [countryCode] => AF

)

 [1] => stdClass Object

 (

 [coid] => 8

 [countryName] => Albania

 [countryCode] => AL

)

 [2] => stdClass Object

 (

 [coid] => 60

 [countryName] => Algeria

 [countryCode] => DZ

)

 [3] => stdClass Object

 (

 [coid] => 14

 [countryName] => American Samoa

 [countryCode] => AS

)

Our	two	lines	of	PHP	connected	to	a	remote	service	and	fetched	us	an	array	of
objects	containing	the	country	information	as	requested.	This	shows	the	joy	of
SOAP,	which	is	that	very	few	lines	of	code	are	needed	to	exchange	data
between	systems.	The	SoapClient	class	in	PHP	makes	consuming	data	with
a	WSDL	file	trivial.

PHP	SOAP	Server
What	about	when	we	want	to	publish	our	own	services?	Well,	PHP	has	a
SoapServer	that	is	almost	as	easy	to	use.	Using	the	example	library	code
from	Example	7-1	to	supply	the	underlying	functionality,	we	can	publish	a
SOAP	service	like	this:

<?php

require('Events.php');

$options = array("uri" => "http://localhost");

$server = new SoapServer(null, $options);

$server->setClass('Events');

$server->handle();

Since	a	WSDL	is	not	used	in	the	previous	example,	the	Uniform	Resource
Identifier	(URI)	for	the	service	must	be	provided.	The	example	then	creates
the	SoapServer	and	tells	it	which	class	holds	the	functionality	it	should
expose.	When	the	call	to	handle()	is	added,	everything	“just	works.”	The
PHP	to	call	the	code	looks	much	like	the	previous	example,	but	without	a
WSDL	file,	it	is	necessary	to	tell	the	SoapClient	where	to	find	the	service	by
setting	the	location	parameter	and	passing	the	URI:

<?php

$options = array("location" => "http://localhost:8080/soap-server.php",

 "uri" => "http://localhost");

try {

 $client = new SoapClient(null, $options);

 $events = $client->getEvents();

 print_r($events);

} catch (SoapFault $e) {

 var_dump($e);

}

Again,	just	doing	a	print_r()	does	show	the	results	that	are	returned	very
clearly,	but	it	isn’t	particularly	pretty!	The	list	of	events	shows	like	this:

Array

(

 [1] => Array

 (

 [name] => Excellent PHP Event

 [date] => 1454994000

 [location] => Amsterdam

)

 [2] => Array

 (

 [name] => Marvellous PHP Conference

 [date] => 1454112000

 [location] => Toronto

)

 [3] => Array

 (

 [name] => Fantastic Community Meetup

 [date] => 1454894800

 [location] => Johannesburg

)

)

At	this	point,	a	working	SOAP	service	exists,	but	not	the	WSDL	file	that	is
commonly	used	with	it.	The	WSDL	file	holds	the	description	of	the	service
functionality,	which	means	a	file	is	created	to	describe	our	service,	and	should
be	re-created	if	any	of	the	functions	available	change	or	if	anything	is	added.
Many	technology	stacks,	such	as	Java	and	.NET,	offer	built-in	functionality
that	makes	it	very	easy	to	work	with	services	that	use	WSDL	files.

Generating	a	WSDL	File	from	PHP
There	are	various	solutions	for	generating	a	WSDL	file	from	your	library
class	code;	some	IDEs	such	as	Eclipse	have	a	button	for	it,	and	some
frameworks	also	have	this	functionality.	The	examples	here	use	a	tool	that
will	work	regardless	of	the	IDE	or	framework	you	use,	because	it’s	written	in
PHP	and	installed	via	Composer.

These	examples	are	in	their	own	directory	so	there’s	a	single	entry	in	the
composer.json	file:

{

 "require": {

 "php2wsdl/php2wsdl": "~0.3"

 }

}

Use	Composer	to	install	the	dependencies	(see	http://getcomposer.org	if
you’re	not	familiar	with	Composer)	and	then	we	have	the	tools	that	our
WSDL-generating	code	relies	on.	To	create	the	WSDL	for	the	Events	class
from	earlier,	the	code	in	Example	7-2	can	be	used.

Example	7-2.	Generating	WSDL	code	from	an	existing	PHP	class
<?php

require "vendor/autoload.php";

// include the class we want to use

require "../Events.php";

$gen = new \PHP2WSDL\PHPClass2WSDL("Events", "http://localhost:8080/soap-

server2.php");

$gen->generateWSDL();

file_put_contents("wsdl", $gen->dump());

The	code	first	includes	the	Composer	autoloader,	then	the	class	that	we’re
going	to	generate	the	WSDL	from.	Then	we	instantiate	a	new	PHPClass2WSDL
object	and	tell	it	firstly	which	class	it	is,	and	then	pass	a	second	parameter	to
explain	what	URL	the	WSDL	will	be	available	on.	Once	the	WSDL	has	been
generated,	it	simply	writes	it	to	a	file	that	we	could	publish	on	our	web	server.

The	outputted	WSDL	looks	something	like	this:

<?xml version="1.0"?>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"

xmlns:tns="http://localhost:8080/wsdl"

xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap-

enc="http://schemas.xmlsoap.org/soap/encoding/"

xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" name="Events"

targetNamespace="http://localhost:8080/wsdl">

 <types>

 <xsd:schema targetNamespace="http://localhost:8080/wsdl">

 <xsd:import namespace="http://schemas.xmlsoap.org/soap/encoding/"/>

 </xsd:schema>

 </types>

 <portType name="EventsPort">

 <operation name="getEvents">

 <documentation>Get all the events we know about</documentation>

 <input message="tns:getEventsIn"/>

 <output message="tns:getEventsOut"/>

 </operation>

 <operation name="getEventById">

 <documentation>Fetch the detail for a single event</documentation>

http://getcomposer.org

 <input message="tns:getEventByIdIn"/>

 <output message="tns:getEventByIdOut"/>

 </operation>

 </portType>

 <binding name="EventsBinding" type="tns:EventsPort">

 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="getEvents">

 <soap:operation soapAction="http://localhost:8080/wsdl#getEvents"/>

 <input>

 <soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://localhost:8080/wsdl"/>

 </input>

 <output>

 <soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://localhost:8080/wsdl"/>

 </output>

 </operation>

 <operation name="getEventById">

 <soap:operation soapAction="http://localhost:8080/wsdl#getEventById"/>

 <input>

 <soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://localhost:8080/wsdl"/>

 </input>

 <output>

 <soap:body use="encoded"

encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"

namespace="http://localhost:8080/wsdl"/>

 </output>

 </operation>

 </binding>

 <service name="EventsService">

 <port name="EventsPort" binding="tns:EventsBinding">

 <soap:address location="http://localhost:8080/wsdl"/>

 </port>

 </service>

 <message name="getEventsIn"/>

 <message name="getEventsOut">

 <part name="return" type="soap-enc:Array"/>

 </message>

 <message name="getEventByIdIn">

 <part name="event_id" type="xsd:int"/>

 </message>

 <message name="getEventByIdOut">

 <part name="return" type="soap-enc:Array"/>

 </message>

</definitions>

The	WSDL	as	it	stands	isn’t	terribly	descriptive,	as	it	can’t	guess	what	data
types	could	be	used	or	whether	the	methods	should	have	arguments	or	return
values.	This	is	because	PHP	is	dynamically	typed:	data	types	are	not	declared
when	defining	variables	or	passing	them	into	functions,	and	data	types	of
return	values	are	not	declared	either.	Some	other	languages	do	declare	data
types	and	WSDL	files	usually	contain	detailed	type	information.

As	an	aside,	look	out	for	WSDL	files	with	data	types	that	PHP	doesn’t
support—if	the	client	or	server	is	not	in	PHP,	there	can	be	a	mismatch	of
formats	in	some	cases.	This	is	the	main	reason	why	so	many	WSDL	files	have
fairly	loose	types,	with	strings	rather	than	anything	more	specific.	In	fact,	I
have	also	seen	an	entire	web	service	with	a	WSDL	file	that	described	a	single
method	and	accepted	a	custom	XML	format	within	it,	for	exactly	this	reason
—not	fun!

In	order	to	make	WSDL	files	more	accurate,	phpDocumentor	comments	can
be	added	to	our	source	code.	Where	the	data	types	for	parameters	and	return
values	are	specified	in	documentation,	the	WSDL	file	will	change	to	reflect
the	additional	information.	Code	written	to	work	with	the	type	hinting	and
return	values	in	PHP7	will	also	be	able	to	produce	clearer	WSDLs	when	the
tools	update	to	support	this.

PHP	Client	and	Server	with	WSDL
Now	there	is	a	WSDL	file	to	use	with	the	Events	example	class,	and	the
client	and	server	code	can	be	altered	to	take	advantage	of	this.	First,	here’s	the
server,	with	only	the	constructor	needing	to	change:

<?php

require('Events.php');

$server = new SoapServer("wsdl"); // wsdl file name

$server->setClass('Events');

$server->handle();

With	the	WSDL	file	in	use,	there’s	no	need	to	give	any	other	information.	Just
give	the	filename	(this	can	be	remote	if	appropriate)	and	all	the	location	and
other	settings	are	picked	up	from	there.	The	client	can	do	exactly	the	same:

<?php

http://www.phpdoc.org

try {

 $client = new SoapClient("http://localhost:8080/wsdl");

 $events = $client->getEvents();

 print_r($events);

} catch (SoapFault $e) {

 var_dump($e);

}

At	this	point,	you’re	able	to	either	build	or	consume	RPC-style	services	in
general,	and	XML-RPC,	JSON-RPC,	and	SOAP	in	particular,	with	the	use	of
handy	tools	such	as	SoapUI.

Chapter	8.	REST

REST	stands	for	REpresentational	State	Transfer,	and	in	contrast	to	protocols
such	as	SOAP	or	XML-RPC,	it	is	more	a	philosophy	or	a	set	of	principles
than	a	protocol	in	its	own	right.	REST	is	a	set	of	ideas	about	how	data	can	be
transferred	elegantly,	and	although	it’s	not	tied	to	HTTP,	it	is	discussed	here	in
the	context	of	HTTP.	REST	takes	great	advantage	of	the	features	of	HTTP,	so
the	earlier	chapters	covering	this	and	the	more	detailed	topics	of	headers	and
verbs	can	all	come	together	to	support	a	good	knowledge	of	REST.

In	a	RESTful	service,	four	HTTP	verbs	are	used	to	provide	a	basic	set	of
CRUD	(Create,	Read,	Update,	Delete)	functionality:	POST,	GET,	PUT,	and
DELETE.	It	is	also	possible	to	see	implementations	of	other	verbs	in	RESTful
services,	such	as	PATCH	to	allow	partial	update	of	a	record,	but	the	basic	four
provide	the	platform	of	a	RESTful	service.

The	operations	are	applied	to	resources	in	a	system.	The	“Representational
State	Transfer”	name	is	accurate;	RESTful	services	deal	in	transferring
representations	of	resources.	A	representation	might	be	JSON	or	XML,	or
indeed	anything	else.	So	what	is	a	resource?	Well,	everything	is.	Each
individual	data	record	in	a	system	is	a	resource.	At	the	first	stage	of	API
design,	a	starting	point	could	be	to	consider	each	database	row	as	an
individual	resource.	Think	of	an	imaginary	blogging	system	as	an	example:
resources	might	be	posts,	categories,	and	authors.	Every	resource	has	a	URI,
which	is	the	unique	identifier	for	the	record.

A	collection	contains	multiple	resources	(of	the	same	type);	usually	this	is	a
list	of	resources	or	the	result	of	a	search	operation.	A	blog	example	might
have	a	collection	of	posts,	and	another	collection	of	posts	limited	to	a
particular	category.

RESTful	URLs
RESTful	services	are	often	thought	of	as	“pretty	URL”	services,	but	there’s
more	than	prettiness	to	the	structures	used	here.	In	Chapter	5,	the	GitHub	API
was	used	as	an	example	of	an	API	using	JSON;	it	is	also	a	nice	example	of	a
RESTful	API	belonging	to	a	system	that	developers	may	already	be	familiar

with.	Take	a	look	at	some	of	the	URLs	in	this	API:

https://api.github.com/users/lornajane/

https://api.github.com/users/lornajane/repos

https://api.github.com/users/lornajane/gists

These	delightful,	descriptive	URLs	allow	users	to	guess	what	will	be	found
when	visiting	them,	and	to	easily	navigate	around	a	predictable	and	clearly
designed	system.	They	describe	what	data	will	be	found	there,	and	what	to
expect.	A	key	characteristic	of	RESTful	URLs	is	that	they	only	contain
information	about	the	resource	or	collection	data—there	are	no	verbs	in	these
URLs.	The	best	of	API	designs	will	have	URLs	that	are	“hackable”—that	is
to	say	that	they	are	predictable	enough	to	successfully	guess	where	to	find
things.	This	links	closely	to	the	idea	of	hypermedia,	which	we’ll	discuss
shortly.

In	order	to	alter	how	a	collection	is	viewed	(for	example,	to	add	filtering	or
sorting	to	it),	it	is	common	to	add	query	parameters	to	the	URL,	like	so:

http://api.joind.in/v2.1/events	for	all	events

http://api.joind.in/v2.1/events?filter=past	for	events	that	happened	before
today

http://api.joind.in/v2.1/events?filter=cfp	for	events	with	a	Call	for	Papers
currently	open

Notice	that	the	URLs	are	not	along	the	lines	of	/events/sortBy/Past	or	any
other	format	that	puts	extra	variables	in	the	URL,	but	they	use	query	variables
instead.	This	data	set,	in	both	cases,	still	utilizes	the	/events/	collection,	but
sorted	and/or	filtered	accordingly.

Resource	Structure	and	Hypermedia
Exactly	how	the	resource	is	returned	can	vary	hugely;	REST	doesn’t	dictate
how	to	structure	the	representations	sent.	For	example,	a	GitHub	gist	in	JSON
format	looks	like	this:

{

 "url": "https://api.github.com/gists/17018bf64b89dd179322",

 "forks_url": "https://api.github.com/gists/17018bf64b89dd179322/forks",

 "commits_url": "https://api.github.com/gists/17018bf64b89dd179322/commits",

 "id": "17018bf64b89dd179322",

https://api.github.com/users/lornajane/
https://api.github.com/users/lornajane/repos
https://api.github.com/users/lornajane/gists
http://api.joind.in/v2.1/events
http://api.joind.in/v2.1/events?filter=past
http://api.joind.in/v2.1/events?filter=cfp

 "git_pull_url": "https://gist.github.com/17018bf64b89dd179322.git",

 "git_push_url": "https://gist.github.com/17018bf64b89dd179322.git",

 "html_url": "https://gist.github.com/17018bf64b89dd179322",

 "files": {

 "text.txt": {

 "filename": "text.txt",

 "type": "text/plain",

 "language": "Text",

 "raw_url":

"https://gist.githubusercontent.com/lornajane/17018bf64b89dd179322/raw/336516c8e23e55265245bf589ae56aafa9cbbcf2/text.txt"

 "size": 18,

 "truncated": false,

 "content": "Some riveting text"

 }

 },

 "public": true,

 "created_at": "2015-07-23T18:30:57Z",

 "updated_at": "2015-07-23T18:30:57Z",

 "description": "Gist created by API",

 "comments": 0,

 "user": null,

 "comments_url": "https://api.github.com/gists/17018bf64b89dd179322/comments",

 "owner": {

 "login": "lornajane",

 "id": 172607,

 "avatar_url": "https://avatars.githubusercontent.com/u/172607?v=3",

 "gravatar_id": "",

 "url": "https://api.github.com/users/lornajane",

 "html_url": "https://github.com/lornajane",

 "followers_url": "https://api.github.com/users/lornajane/followers",

 "following_url": "https://api.github.com/users/lornajane/

 following{/other_user}",

 "gists_url": "https://api.github.com/users/lornajane/gists{/gist_id}",

 "starred_url": "https://api.github.com/users/lornajane/

 starred{/owner}{/repo}",

 "subscriptions_url": "https://api.github.com/users/lornajane/subscriptions",

 "organizations_url": "https://api.github.com/users/lornajane/orgs",

 "repos_url": "https://api.github.com/users/lornajane/repos",

 "events_url": "https://api.github.com/users/lornajane/events{/privacy}",

 "received_events_url":

"https://api.github.com/users/lornajane/received_events",

 "type": "User",

 "site_admin": false

 },

 "forks": [

],

 "history": [

 {

 "user": {

 "login": "lornajane",

 "id": 172607,

 "avatar_url": "https://avatars.githubusercontent.com/u/172607?v=3",

 "gravatar_id": "",

 "url": "https://api.github.com/users/lornajane",

 "html_url": "https://github.com/lornajane",

 "followers_url": "https://api.github.com/users/lornajane/followers",

 "following_url": "https://api.github.com/users/lornajane/

 following{/other_user}",

 "gists_url": "https://api.github.com/users/lornajane/gists{/gist_id}",

 "starred_url": "https://api.github.com/users/lornajane/

 starred{/owner}{/repo}",

 "subscriptions_url": "https://api.github.com/users/lornajane/

 subscriptions",

 "organizations_url": "https://api.github.com/users/lornajane/orgs",

 "repos_url": "https://api.github.com/users/lornajane/repos",

 "events_url": "https://api.github.com/users/lornajane/events{/privacy}",

 "received_events_url":

"https://api.github.com/users/lornajane/received_events",

 "type": "User",

 "site_admin": false

 },

 "version": "0392fec1b0a32463ec005942fb088aae6c47a763",

 "committed_at": "2015-07-23T18:30:57Z",

 "change_status": {

 "total": 1,

 "additions": 1,

 "deletions": 0

 },

 "url":

"https://api.github.com/gists/17018bf64b89dd179322/0392fec1b0a32463ec005942fb088aae6c47a763"

 }

]

}

Whereas	a	talk	from	Joind.in,	also	in	JSON,	would	look	like	this:

{

 "talks": [

 {

 "talk_title": "Everything You Ever Wanted to Know About Deployment

But Were Afraid to Ask",

 "talk_description": "Deployment can be a real bugbear for many web

developers. From building something easy to deploy and manage; to coming up with

a repeatable, consistent process; to continuous deployment...deployment can keep

you up at night for months on end. In this talk I’ll cover the following

topics:\n- The deployment maturity model\n- How to build a deployable

application, from technology choice to instrumentation\n- Deployment velocity:

Why your process matters more than how often you deploy\n- Deployment tools and

processes: How to automate your troubles away\n- CI/Automated testing: Know

you’re deploying something good, or at least how worried you should be about

it\n- Automated testing vs monitoring: How they converge\n- When are you ready

to deploy continuously? How do you make the jump?",

 "start_date": "2012-11-08T13:00:00-05:00",

 "average_rating": 5,

 "comments_enabled": 1,

 "comment_count": 4,

 "speakers": [

 {

 "speaker_name": "Laura Thomson",

 "speaker_uri": "http://api.joind.in/v2.1/users/20041"

 }

],

 "tracks": [],

 "uri": "http://api.joind.in/v2.1/talks/7660",

 "verbose_uri": "http://api.joind.in/v2.1/talks/7660?verbose=yes",

 "website_uri": "http://joind.in/talk/view/7660",

 "comments_uri": "http://api.joind.in/v2.1/talks/7660/comments",

 "verbose_comments_uri":

"http://api.joind.in/v2.1/talks/7660/comments?verbose=yes",

 "event_uri": "http://api.joind.in/v2.1/events/1056"

 }

],

 "meta": {

 "count": 1,

 "this_page": "http://api.joind.in/v2.1/talks/7660?

start=0&resultsperpage=20"

 }

}

The	two	formats	are	quite	different,	and	in	fact	the	fields	and	formats
available	in	a	RESTful	service	will	differ	between	each	and	every	kind	of
service	you	could	wish	to	encounter.	But	there	are	some	common	features,	as
can	be	seen	even	from	this	small	sample	size.	Both	responses	include	some
nested	information	and	some	links	out	to	other	resources	or	collections.	The
decisions	you	make	around	handling	data	formats	and	versioning	your	API
are	a	topic	in	their	own	right	and	covered	in	Chapter	12.

Build	the	Basic	RESTful	Server
REST	makes	the	most	of	HTTP’s	best	features,	placing	all	the	metadata	about
the	request	and	response	into	the	headers,	and	reserving	the	main	body	of	the
communications	for	the	actual	content.	This	means	that	a	correctly
implemented	RESTful	service	will	make	use	of	verbs,	status	codes,	and

headers	so	that	all	the	extra	information	goes	in	the	“envelope”	of	the	request,
and	only	the	content	is	in	the	body.	See	Appendix	A	and	Appendix	B	for
tables	of	common	status	codes	and	headers.

Example	Project:	The	Wishlist
Since	it’s	always	easier	to	be	shown	than	told,	I’ve	created	a	very	tiny
example	RESTful	service	to	use	as	an	example,	less	than	a	hundred	lines	of
PHP	code	in	a	single	file	(and	a	separate	storage	class	that	you	can	find	on	the
GitHub	repo)!	We’ll	use	this	to	show	the	concepts	in	very	plain	PHP	and	see	a
simple	service	in	action,	then	move	on	and	discuss	the	options	for	real-world
RESTful	implementations	in	PHP.

This	particular	example	just	allows	us	to	add	items	to	a	wishlist,	giving	them
a	name	and	linking	to	where	that	product	can	be	found	online.	As	I
mentioned,	there’s	a	very	simple	storage	class	that	just	writes	to	CSV	behind
the	scenes,	so	if	you	want	to	pull	the	code	from	this	book’s	accompanying
repository	and	try	it	for	yourself,	it	should	work	regardless	of	your	plaform.
The	basic	structure	of	the	wishlist	example	project	is	shown	in	Example	8-1.

Example	8-1.	Basic	structure	of	my	one-file	RESTful	service
<?php

require("ItemStorage.php");

set_exception_handler(function ($e) {

 $code = $e->getCode() ?: 400;

 header("Content-Type: application/json", NULL, $code);

 echo json_encode(["error" => $e->getMessage()]);

 exit;

});

// assume JSON, handle requests by verb and path

$verb = $_SERVER['REQUEST_METHOD'];

$url_pieces = explode('/', $_SERVER['PATH_INFO']);

$storage = new ItemStorage();

// catch this here, we don't support many routes yet

if($url_pieces[1] != 'items') {

 throw new Exception('Unknown endpoint', 404);

}

switch($verb) {

 case 'GET':

 ...

 break;

 // two cases so similar we'll just share code

 case 'POST':

 case 'PUT':

 ...

 break;

 case 'DELETE':

 ...

 default:

 throw new Exception('Method Not Supported', 405);

}

// this is the output handler

header("Content-Type: application/json");

echo json_encode($data);

Looking	at	the	structure,	there	are	a	few	elements	there	that	are	quite
important	in	RESTful	services	and	that	are	worth	a	mention.	First,	there’s	the
ItemStorage	class	that	just	hides	all	the	CSV	and	array	manipulation	so	that
we	can	concentrate	on	the	RESTful	elements.

The	exception	handler	is	declared	nice	and	early	and	importantly,	it	is	output-
format	aware.	It	is	very	frustrating	for	users	when	a	service	that	should
usually	return	JSON	or	XML	suddenly	returns	HTML	when	an	error	occurs.
Much	better	practice	is	to	return	in	the	expected	data	format	even	when	there
is	an	error.	This	example	service	just	assumes	you	want	JSON,	but	in
Chapter	3	we	discussed	content	negotiation	and	for	a	service	that	supports
multiple	response	formats,	it	is	best	to	parse	those	headers	and	work	out	what
that	preferred	output	format	is	as	soon	as	possible	so	that	the	exception
handler	can	return	it	if	anything	goes	wrong.

In	a	RESTful	service,	the	action	that	is	performed	by	the	service	is	dependent
hugely	on	the	verb	in	use	so	that’s	parsed	out.	It	will	also	be	necessary	to
know	which	URL	was	actually	accessed,	and	usually	we	inspect	the
individual	pieces	of	a	URL	so	that	is	parsed	here.	Beware	that	depending	on
your	web	server	and	rewrite	rule	setup,	you	may	need	to	use
$_SERVER[REQUEST_URI]	rather	than	$_SERVER[PATH_INFO].	There’s	also	a
little	check	here	since	our	application	will	only	support	requests	to	/items,	so
anything	else	we	just	throw	the	Exception	and	let	the	exception	handler
return	a	sensible	format.	Notice	that	this	includes	the	correct	status	code	to
return—it	is	entirely	not	acceptable	to	return	a	200	when	things	did	not	go
well!	Status	codes	are	important	in	REST	and	you’ll	see	them	used	with	all
our	examples	as	we	work	through	them.

The	only	other	thing	to	mention	before	we	look	at	the	individual	verbs	is	the

two	lines	at	the	end	of	the	file.	Technically	this	is	the	“output	handler,”	where
our	application	will	translate	the	return	data	to	the	correct	format	(recursively
if	required)	and	return	it	with	the	correct	headers.	For	this	case	where	we’re
assuming	JSON,	it’s	pretty	straightforward,	as	you	can	see.	Making	sure	that
all	output	goes	through	common	handlers	is	a	great	way	of	ensuring
consistent	formats	and	also	making	sure	that	elements	such	as	metadata,
hypermedia,	and	other	touches	are	correct	everywhere.	This	makes
maintaining	your	API,	and	potentially	adding	a	new	data	format	in	the	future,
much	less	painful.

There	are	some	mysterious	blank	patches	in	this	example	code	that	we’ll
move	on	to	inspect	by	visiting	each	verb	in	turn.

Create	Resources	with	POST
Resources	are	created	by	making	a	POST	request	to	the	collection	to	which	the
new	resource	will	belong.	The	body	of	the	request	will	contain	a
representation	of	the	new	resource,	with	the	Content-Type	header	set
appropriately	so	that	the	server	will	know	how	to	understand	it.	When	the
resource	has	been	successfully	created,	a	successful	status	code	will	be
included	with	the	response.

It’s	common	to	choose	a	status	code	of	201	(which	means	“Created”)	when	a
new	resource	has	been	made,	and	to	either	return	a	representation	of	the	new
resource	in	the	body,	or	to	set	a	Location	header,	redirecting	the	consumer	to
the	URI	of	the	new	record.	It’s	also	perfectly	valid	to	return	either	a	202
“Accepted”	(but	not	completed)	status	code	or	a	200	“OK”—and	it’s	also
helpful	to	return	a	representation	of	the	resource	(appropriately	formatted
according	to	the	Accept	header)	including	information	about	the	URI	of	this
new	item.

In	the	event	that	the	resource	cannot	be	created,	an	informative	status	code
and	error	message	should	be	returned	to	the	user.	In	general,	a	400	“Bad
Request”	status	code	would	be	appropriate	for	a	request	that	either	wasn’t
understood,	or	didn’t	pass	validation	rules.	If	a	response	can’t	be	served	in	a
format	understood	by	the	client,	then	406	“Not	Acceptable”	would	be
appropriate	to	indicate	a	content	negotiation	problem.	There	are	also	a	very
large	number	of	other	status	codes	to	choose	from	(see	Appendix	A	for	a
handy	list),	depending	on	what	exactly	went	wrong.

In	the	wishlist	example	application,	the	code	for	a	request	made	with	the	POST

http://bit.ly/wiki-status-codes

verb	is	so	similar	to	the	code	needed	for	PUT	that	they	are	combined.	The
result	is	shown	in	Example	8-2.

Example	8-2.	Example	code	for	creating	and	updating	resources	in	the
example	wishlist	application
 case 'POST':

 case 'PUT':

 // read the JSON

 $params = json_decode(file_get_contents("php://input"), true);

 if(!$params) {

 throw new Exception("Data missing or invalid");

 }

 if($verb == 'PUT') {

 $id = $url_pieces[2];

 $item = $storage->update($id, $params);

 $status = 204;

 } else {

 $item = $storage->create($params);

 $status = 201;

 }

 $storage->save();

 // send header, avoid output handler

 header("Location: " . $item['url'], null,$status);

 exit;

 break;

The	code	snippet	here	first	reads	the	php://input	stream,	which	is	the	raw
body	of	the	request	as	it	came	in.	We	use	this	when	working	with	JSON	since
the	$_POST	functionality	only	works	on	form	data.	First,	the	incoming	data	is
put	through	json_decode()	and	then	checked—if	the	data	is	missing	or	if	the
JSON	wasn’t	valid	then	this	will	return	false	and	we	throw	an	Exception.

To	keep	the	code	short,	there’s	a	lack	of	validation	before	we	pass	the	data
through	to	the	ItemStorage	class	to	create	a	new	record	and	then	to	save	it.
The	correct	response	when	creating	a	record	successfully	is	to	return	a	201
“Created”	status	and	offer	a	redirect	in	the	shape	of	a	Location	header	to
point	to	where	the	newly	created	resource	can	be	found.

If	I	call	this	with	cURL	on	the	command	line,	you	can	see	the	request	and
response	in	Example	8-3	and	observe	all	of	this	in	action.

Example	8-3.	Create	a	new	resource	on	the	RESTful	wishlist	service	using
cURL
$ curl -v -X POST -H "Content-Type: application/json"

http://localhost:8080/rest.php/items --data '{"link":

"http://www.amazon.co.uk/dp/B00FWRIAUS/","name": "notebook"}'

* Connected to localhost (127.0.0.1) port 8080 (#0)

> POST /rest.php/items HTTP/1.1

> User-Agent: curl/7.38.0

> Host: localhost:8080

> Accept: */*

> Content-Type: application/json

> Content-Length: 69

>

* upload completely sent off: 69 out of 69 bytes

< HTTP/1.1 201 Created

< Host: localhost:8080

< Connection: close

< X-Powered-By: PHP/5.6.4-4ubuntu6

< Location: http://localhost:8080/rest.php/items/dd44d

< Content-type: text/html; charset=UTF-8

<

* Closing connection 0

First,	look	at	the	request	I	made.	It’s	a	POST	request	and	I	also	included	the
Content-Type	header	since	I’m	sending	JSON	in	the	body.	This	example
API	assumes	JSON,	but	it	is	good	practice	to	check	that	the	expected	data
format	arrives,	or	even	to	accept	more	than	one	format,	in	which	case	you	will
need	to	read	the	headers	to	make	sure	you	know	how	to	interpret	the	body.

My	command	also	includes	the	-v	switch	to	cURL,	which	makes	it	show	the
headers	in	the	request	and	response	in	addition	to	the	response	body	that	it
would	normally	show.	This	is	very	useful	when	working	with	RESTful	APIs
as	there	are	a	few	scenarios	(including	this	one	where	we	create	data)	where
you	may	not	get	body	data	returned	but	there	is	important	information	in	the
status	code	or	headers.

The	data	should	include	a	link	field	and	a	name	field,	so	those	are	placed
here	in	JSON.	I	constructed	this	simple	data	packet	by	hand,	but	you	could
easily	have	PHP	do	this	for	you.	If	you	run	into	issues	with	generating	valid
JSON,	try	checking	your	data	with	the	jsonlint.com	website,	which	is	a	very
handy	tool.

The	response	comes	back	with	a	201	“Created”	status	code	so	I	know	that	my
item	has	been	successfully	added	to	the	collection.	To	fetch	the	item	itself,	I
can	follow	the	Location	header	in	the	response.	Some	APIs	will	also	return
the	resource	in	the	body	of	the	response	and	that’s	also	valid.	We	refer	to
resources	by	their	URIs;	with	that	information,	we	can	operate	on	this
resource	as	we	wish.

http://jsonlint.com

An	alternative	approach	to	using	POST	on	a	collection	to	create	a	new	resource
is	appropriate	in	the	situation	when	the	consumer,	rather	than	the	server,	sets
the	identifier	of	the	new	record.	In	this	scenario,	the	representation	of	the	new
resource	can	instead	be	sent	in	a	PUT	request	directly	to	the	new	URI.	Care
must	be	taken,	when	designing	a	system	like	this,	to	ensure	that	multiple
consumers	do	not	pick	the	same	URIs,	either	causing	conflicts	or	overwrites.
At	least	make	sure	that	these	are	dealt	with	in	a	sane	way,	perhaps	using	the
409	status	code,	which	means	“Conflict.”

Fetch	a	Resource	or	Collection	with	GET
To	fetch	representations	of	resources,	use	the	GET	verb	applied	to	either	a
collection	or	an	individual	resource	without	sending	any	body	content	with
the	GET	request.	The	resources	will	usually	appear	with	exactly	the	same
structure,	regardless	of	whether	they	were	requested	within	a	collection	or	on
their	own.	The	status	code	will	be	200	if	the	record(s)	were	successfully
retrieved,	although	other	“good”	status	codes	may	also	be	used	here	such	as
302	“Found”	or	304	“Not	Modified”	(more	about	caching	in	the	next	section
when	we	discuss	how	to	update	records).

If,	however,	the	record	isn’t	successfully	found,	a	status	code	describing	the
problem	will	be	returned.	In	a	vast	number	of	cases,	this	will	be	a	404	status
code,	to	indicate	that	the	record	wasn’t	found	or	doesn’t	exist.	If	the	user	isn’t
authenticated,	a	401	“Not	Authorized”	status	code	may	be	returned;	a	user
who	has	identified	herself	but	doesn’t	have	permission	to	see	this	item	may
receive	a	403	“Forbidden”	instead.	Any	one	of	a	number	of	other	possible
failure	cases	could	also	occur,	and	these	should	have	the	appropriate	status
codes	associated	with	them.

The	code	for	fetching	either	one	or	many	records	in	our	example	wishlist
service	is	quite	simple,	so	we’ll	view	it	all	at	once:

 case 'GET':

 if(isset($url_pieces[2])) {

 try {

 $data = $storage->getOne($url_pieces[2]);

 } catch (UnexpectedValueException $e) {

 throw new Exception("Resource does not exist", 404);

 }

 } else {

 $data = $storage->getAll();

 }

 break;

The	check	for	the	$url_pieces[2]	variable	is	to	allow	us	to	distinguish
between	two	types	of	URL:

http://localhost:8080/rest.php/items	to	get	all	the	resources	in	the
collection

http://localhost:8080/rest.php/items/dd44d	for	fetching	a	single	resource

If	we	only	want	a	specific	resource,	then	we	ask	the	storage	class	for	it,	and	if
we	can’t	find	it	then	we	throw	an	exception	so	that	the	exception	handler	can
return	a	sane	message	and	importantly	the	correct	status	code	to	the	user.	If
we	want	all	the	resources	in	a	collection,	then	we	just	grab	everything	and	this
then	goes	out	through	the	output	handler.	Similarly,	a	successfully	found
single	resource	is	correctly	formatted	and	returned	by	the	output	handler	we
already	discussed.

Let’s	look	at	examples	of	finding	a	record	using	cURL.	These	examples	also
use	the	Python	JSON	module	for	formatting,	a	technique	which	we’ll	look	at
in	more	detail	in	Chapter	11.

First,	the	collection	(so	we	can	see	which	individual	resources	are	available
for	us	to	pick):

$ curl -s http://localhost:8080/rest.php/items | python -mjson.tool

[

 {

 "link": "http://www.amazon.co.uk/My-First-Baby-Annabell-

Doll/dp/B00FBWB9A2",

 "name": "doll",

 "url": "http://localhost:8080/rest.php/items/ed6f1"

 },

 {

 "link": "http://www.amazon.co.uk/dp/B00FWRIAUS/",

 "name": "notebook",

 "url": "http://localhost:8080/rest.php/items/b4fa2"

 },

 {

 "link": "http://www.amazon.co.uk/dp/B00MA3I0BG",

 "name": "travel organiser",

 "url": "http://localhost:8080/rest.php/items/7f868"

 },

 {

 "link": "http://www.amazon.co.uk/dp/B00FWRIAUS/",

 "name": "notebook",

 "url": "http://localhost:8080/rest.php/items/dd44d"

http://localhost:8080/rest.php/items
http://localhost:8080/rest.php/items/dd44d

 }

]

And	picking	an	individual	record	from	the	list	(the	notebook	we	added
earlier):

$ curl -s http://localhost:8080/rest.php/items/dd44d | python -mjson.tool

{

 "link": "http://www.amazon.co.uk/dp/B00FWRIAUS/",

 "name": "notebook",

 "url": "http://localhost:8080/rest.php/items/dd44d"

}

The	resources	return	the	same	representation	whether	they	are	fetched	by
themselves	or	in	the	collection,	which	is	a	key	element	of	RESTful	services.
It’s	also	important	to	note	that	the	resource	includes	information	on	how	to
represent	itself,	here	using	the	url	field.	We’ll	talk	more	about	data	formats	in
Chapter	12,	but	it’s	important	to	note	here	that	for	service	to	be	RESTful,
information	about	how	to	reach	a	single	resource	should	always	be	provided.

How	about	when	a	resource	doesn’t	exist?	It’s	important	to	consider	failure
cases	as	well	as	successful	ones,	and	here’s	how	we	handle	that:

$ curl -v http://localhost:8080/rest.php/items/nonsense

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET /rest.php/items/nonsense HTTP/1.1

> User-Agent: curl/7.38.0

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 404 Not Found

< Host: localhost:8080

< Connection: close

< X-Powered-By: PHP/5.6.4-4ubuntu6

< Content-Type: application/json

<

* Closing connection 0

{"error":"Resource does not exist"}

I	requested	a	resource	that	I	knew	didn’t	exist	and	the	API	correctly	returns	a
404	status	code.	There	is	also	an	error	message	in	the	body	of	the	response,
which	is	a	good	opportunity	to	give	more	detail	on	an	error	(but	don’t	be
tempted	to	put	status	information	here!).	There	are	some	great	standards	for
describing	errors	(including,	for	example,	the	SOAPFault	responses),	and

similar	standards	are	now	being	used	with	RESTful	services;	see	Chapter	12
for	examples	of	these	standards	and	a	discussion	of	how	to	implement	them.

If	your	API	implements	rate	limiting,	then	it	might	be	that	the	resource	exists
and	the	user	has	permission	to	see	it,	but	she	has	exceeded	her	allotted
number	of	requests	in	a	given	time	frame.	In	this	situation,	either	a	420
“Enhance	Your	Calm”	or	429	“Too	Many	Requests”	would	be	a	good	status	to
return.

Some	APIs	(this	includes	GitHub)	will	return	a	404	to	indicate	that	the	record
exists	but	the	requesting	user	does	not	have	access	to	it.	This	makes	it
impossible	to	deduce	the	existence	(or	nonexistence)	of	a	record	without	the
rights	to	see	it!	Exposing	such	details	is	known	as	“leaking	information”	and
in	many	settings	it	is	something	of	which	to	be	wary.

Update	a	Resource	with	PUT
To	edit	records	RESTfully	is	a	multistep	process.	First,	the	resource	should	be
retrieved	by	GET.	Then,	the	representation	of	the	resource	can	be	altered	as
needed,	and	that	resource	should	be	PUT	back	to	its	original	URI.	Even	if	only
a	small	part	of	the	record	needs	to	be	changed,	REST	deals	with
representations	of	resources,	so	the	whole	resource	will	be	fetched	and	sent
back	for	the	update.	Identical	to	when	a	resource	was	created	using	POST,	the
PUT	request	will	include	the	resource	representation	in	the	body	and	the
appropriate	Content-Type	in	the	header.

In	the	example	application,	the	POST	and	GET	examples	have	already	been
shown.	Next,	we	can	take	that	data	and	update	it	using	a	PUT	request.	In	this
trivially	simple	example,	the	code	for	PUT	and	POST	is	so	similar	that	I	placed
them	both	in	the	same	example,	Example	8-2.

To	see	this	code	in	action,	here’s	an	example	that	updates	the	record	we
created	earlier:

$ curl -v -X PUT -H "Content-Type: application/json"

http://localhost:8080/rest.php/items/dd44d --data '{"link":

"http://www.amazon.co.uk/dp/B00FWRIAUS/","name": "awesome notebook"}'

* Connected to localhost (127.0.0.1) port 8080 (#0)

> PUT /rest.php/items/dd44d HTTP/1.1

> User-Agent: curl/7.38.0

> Host: localhost:8080

> Accept: */*

> Content-Type: application/json

> Content-Length: 77

>

* upload completely sent off: 77 out of 77 bytes

< HTTP/1.1 204 No Content

< Host: localhost:8080

< Connection: close

< X-Powered-By: PHP/5.6.4-4ubuntu6

< Location: http://localhost:8080/rest.php/items/dd44d

< Content-type: text/html; charset=UTF-8

<

* Closing connection 0

The	curl	command	shows	my	PUT	request	and	includes	the	Content-Type
header,	the	-v	switch,	and	some	JSON	content,	much	like	the	POST	example
earlier.	The	main	differences	are	the	verb	we	use	and	also	the	fact	that	this
time,	the	PUT	request	operates	on	a	specific	resource	rather	than	requesting	a
new	resource	be	created	in	a	collection.

When	updating	a	record,	it’s	quite	common	to	include	some	identifying
information	for	the	contents	of	the	resource,	such	as	a	Last-Modified	header
or	an	ETag,	to	allow	us	to	check	whether	the	resource	changed	as	a	result	of
something	else	between	the	GET	and	PUT,	as	this	isn’t	an	atomic	operation.
This	is	closely	linked	to	how	cacheable	different	URIs	are,	which	we	covered
in	“Caching	Headers”.

For	a	newcomer	to	REST,	updating	a	representation	of	a	whole	resource	can
seem	cumbersome	when	only	a	tiny	part	of	it	is	actually	changing,	but	don’t
be	tempted	to	diverge	from	this	approach	and	break	the	RESTfulness	of	the
design.	If	it	really	does	seem	like	an	alternative	approach	would	be	better,
then	you	have	two	options:	either	create	a	subresource	or	use	the	PATCH	verb.

Creating	a	subresource	is	simplest,	if	you	want	to	change	one	field	of	a
resource,	and	make	that	field	available	at	its	own	URI.	For	example,	if	it
seems	like	overkill	to	update	a	whole	user	record	just	to	change	an	email
address,	then	instead	create	a	resource	/user/42/email.	This	smaller
resource	can	then	be	subject	to	GET,	change,	and	PUT	instead	of	fetching	and
then	pushing	back	a	whole	user	profile.

The	alternative	is	to	use	PATCH	to	make	a	small	change	to	an	existing	record.
This	is	becoming	more	widely	implemented	and	supported,	and	you’ll	see
examples	in	the	GitHub	API	that	has	been	used	as	an	example	elsewhere	in
this	book.	GitHub	allows	the	user	to	make	changes	to	individual	fields	in	a
record	by	supplying	the	data	you	want	to	change	and	making	a	PATCH	request

instead	of	a	PUT	request	to	the	existing	resource’s	URI.

DELETE	a	Resource
This	is	the	most	damaging	move,	but	it’s	also	the	simplest.	The	DELETE	verb
is	sent	with	a	request	to	the	URI	of	the	item	to	be	deleted,	with	no	body
content	necessary.	Many	services	will	return	200	for	“OK”—or	simply	a	204
for	“No	Content”—when	an	item	was	successfully	deleted,	and	a	404	“Not
Found”	if	the	item	didn’t	exist.	However,	if	the	request	was	made	to	delete
something,	and	the	record	doesn’t	exist,	many	services	see	that	as	“success”
and	will	return	200	or	204,	regardless	of	what	really	happened	(unless	the
record	couldn’t	be	deleted	for	some	reason,	such	as	the	user	does	not	have	the
proper	permission).	This	idea	of	always	behaving	in	the	same	way	each	time
the	action	is	called	is	known	as	idempotency	and	is	expected	behavior	for	both
GET	and	DELETE	requests.

Our	example	wishlist	service	also	offers	DELETE	(it’s	up	to	you	whether	you
actually	delete	a	record	or	just	set	a	deleted	property	and	avoid	returning	it
in	future;	this	is	just	about	the	outward-facing	implementation)	and	the	PHP
code	is	shown	in	Example	8-4.

Example	8-4.	Example	wishlist	service	handling	a	DELETE	request	in	PHP
 case 'DELETE':

 $id = $url_pieces[2];

 $storage->remove($id);

 $storage->save();

 header("Location: http://localhost:8080/items", null, 204);

 exit;

 break;

All	that	happens	here	is	that	we	work	out	which	item	we’re	getting	a	DELETE
request	for,	and	then	we	ask	the	storage	class	to	remove	that	and	save	itself.
The	204	status	code	is	just	to	let	the	client	know	that	there	is	no	content	to
return,	and	while	there	is	also	a	Location	header,	this	is	entirely	optional	as
the	client	will	probably	know	where	it	wants	to	go	next.

The	DELETE	method	in	action	looks	the	same	whether	the	resource	existed	or
not:

$ curl -X DELETE -v http://localhost:8080/rest.php/items/958a9

* Connected to localhost (127.0.0.1) port 8080 (#0)

> DELETE /rest.php/items/958a9 HTTP/1.1

> User-Agent: curl/7.38.0

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 204 No Content

< Host: localhost:8080

< Connection: close

< X-Powered-By: PHP/5.6.4-4ubuntu6

< Location: http://localhost:8080/items

< Content-type: text/html; charset=UTF-8

<

* Closing connection 0

In	many	ways	DELETE	is	much	simpler	than	the	PUT,	PATCH,	or	DELETE
methods	since	it	does	not	include	body	data	(and	should	not	include	body
data).	After	deleting	the	resource,	our	service	will	return	a	404	if	it	is
requested	again.

RESTful	Versus	Useful
REST	is	truly	an	elegant	way	to	build	services,	and	a	nice	way	to	work	with
data	over	HTTP.	Not	every	application	has	requirements	that	are	best	met	by	a
RESTful	service,	so	don’t	be	tempted	to	make	architectural	decisions	based
on	the	current	fashionable	technologies.	Standards	are	always	an	excellent
thing	to	follow;	they’ve	been	created	by	people	who	have	implemented	this
several	times	and	learned	from	their	mistakes.	That	said,	don’t	be	afraid	to
break	the	rules	just	as	you	would	for	any	other	architectural	decision	in
software	engineering.	Many	APIs	are	criticized	because	they	are	deemed	“not
RESTful.”	While	I	recommend	that	you	follow	the	strategies	in	this	chapter,
it’s	acceptable	for	you	to	take	inspiration	from	REST,	rather	than
implementing	it	to	the	letter.	Do	make	sure,	though,	that	your	API	is	still	well
documented,	robust,	and,	most	of	all,	useful.

Chapter	9.	Webhooks

Webhooks	are	becoming	an	increasingly	popular	way	of	enabling	other
applications	to	integrate	with	yours,	and	they	flip	the	traditional	API	model	on
its	head.	Rather	than	requesting	the	data	from	the	API	provider	at	the	time
that	the	consumer	needs	the	information,	the	webhook	on	the	provider	notifies
consumers	when	an	event	of	interest	occurs.	While	this	is	a	little	more
complicated	to	implement	in	your	application	than	just	offering	the	ability	to
fetch	data	in	machine-readable	format,	it	can	be	an	excellent	solution	for
event-driven	use	cases.	It	also	reduces	the	load	of	having	many	API	clients
polling	a	server	to	check	for	updates,	since	the	server	itself	can	just	send	out
notifications	when	relevant	events	occur.

A	good	example	of	when	to	use	a	webhook	could	be	when	adding	new
comments	to	an	article	or	photo.	In	order	to	show	that	comment	data
elsewhere,	another	system	would	need	to	keep	polling	for	updates;	by	using	a
webhook	instead,	no	polling	is	needed.	The	second	system	simply	registers	an
endpoint	that	the	information	about	a	new	comment	should	be	sent	to.	When	a
comment	is	made,	the	first	application	sends	information	about	the	comment
to	all	the	other	applications	that	requested	to	receive	it.

The	overall	idea	of	webhooks	could	be	respresented	along	the	lines	shown	in
Figure	9-1.

When	an	event	occurs,	the	server	processes	the	event,	and	sends	information
about	the	event	to	any	third	party	that	has	registered	an	interest	in	being
notified	about	the	event.	Those	webhooks	may	update	a	news	feed,	send
emails,	store	information	to	a	database,	announce	the	event	into	a	chat
channel…or	something	else.	Usually	the	webhook	will	consist	of	a	POST
request	to	an	endpoint	that	you	nominate,	with	a	body	that	contains	all	the
relevant	data	and	representations	of	all	affected	records.	You	may	still	need	to
make	some	additional	API	calls	to	fetch	related	data,	but	often	all	the	critical
information	needed	to	stay	informed	is	included	in	the	webhook.

Figure	9-1.	One	event	being	passed	to	a	number	of	listening	applications

If	this	reminds	you	strongly	of	the	Publish-Subscribe	or	Observer	design
patterns,	that	isn’t	a	surprise,	as	it	fits	exactly	that	use	case.	The	application
allows	interested	parties	to	register	themselves	as	needing	to	be	informed
when	an	event	occurs	or	something	changes.	When	that	event	does	occur,	it
sends	notification	using	the	webhook.

GitHub’s	Webhooks
The	webhook	functionality	that	I	probably	use	the	most	is	GitHub’s.	They
have	a	great	API	that	you’ve	seen	examples	of	in	Chapter	8	and	Chapter	5
already,	so	it	isn’t	a	surprise	that	their	webhook	features	are	also	very	good.

GitHub	itself	also	benefits	hugely	from	offering	webhooks,	as	they	are	very
widely	used	by	programmers:	imagine	if	every	continuous	integration	server
in	the	world	pinged	GitHub’s	API	every	minute!	That	would	require	a	lot	of
server	capacity	even	when	there	is	no	new	data	to	return.

Receivers	of	webhooks	are	usually	continuous	integration	platforms	such	as
Jenkins	or	TravisCI,	and	I	often	use	a	Hubot	(GitHub’s	open	source	chatbot),
which	will	notify	a	chat	channel	that	a	commit	has	been	made	or	a	comment
added	to	a	pull	request.	The	possibilities	are	endless,	so	let’s	look	at	a	simple
example	of	setting	up	a	webhook	and	getting	some	data	from	it.

On	GitHub,	you	can	configure	a	webhook	to	be	per-repository	or	per-
organization,	depending	on	whether	you	want	to	be	notified	of	events	on	just
one	of	your	repositories	or	have	the	same	webhook	apply	to	all	of	them;	the
per-organization	option	is	very	handy	if	you	have	a	lot	of	repositories.	You
can	configure	multiple	webhooks	for	each	organization	or	repository	and	you
also	have	a	choice	of	what	they	respond	to.

When	adding	a	new	webhook	to	a	repository,	a	screen	like	that	in	Figure	9-2
appears.

Figure	9-2.	Configuring	a	GitHub	webhook

You	can	see	an	example	of	the	data	that	will	be	sent	for	each	type	of	event	by
checking	the	documentation.	Depending	on	the	event,	this	can	be	quite
verbose,	as	it	will	include	information	about	the	author,	any	committers,	the
repository	itself,	and	so	on.

http://hubot.github.com
https://developer.github.com/webhooks/

In	the	example,	you	can	see	that	we	can	set	an	endpoint	that	the	webhook
should	deliver	its	payload	to.	The	file	handle_webhooks.php	is	on	my	local
development	machine,	so	in	order	to	allow	the	GitHub	webhook	to	reach	that,
I’m	using	an	ngrok	tunnel.	You	can	read	more	about	ngrok	in	Chapter	10,	but
essentially	it’s	a	tool	that	opens	a	tunnel	from	your	development	machine	to
the	outside	world,	assigns	you	a	URL	to	use,	and	allows	you	to	inspect	the
traffic	going	over	the	tunnel.	I’ve	added	that	URL	to	my	webhook,	and	chosen
to	be	notified	of	all	events.	Most	webhooks	will	give	you	some	options	as	to
what	information	you	are	interested	in,	so	that	if	you	are	looking	for	particular
changes	or	interested	in	particular	data,	you	can	choose	that	rather	than
discarding	the	information	you	don’t	want.	Along	these	lines,	I	have	a	tool
that	reports	on	the	billable	time	we	log	through	our	project	management	tools
at	work;	the	webhook	lets	me	configure	what	to	receive	and	therefore	the
application	knows	not	to	send	me	a	lot	of	information	that	I	won’t	use	or	may
not	know	how	to	parse.

Once	the	webhook	is	created,	you’ll	see	it	listed	at	the	bottom	of	the	screen,
and	it	will	show	a	history	of	all	the	data	that	has	been	sent	by	this	hook.	It	also
shows	whether	the	hook	was	successfully	received	and	offers	the	option	to
retry	a	hook.	This	option	to	retry	is	invaluable	when	developing	tools	that
consume	webhooks	and	is	one	of	the	main	reasons	I	love	working	with	the
GitHub	API	so	much.	In	this	case	I’m	also	using	the	ngrok	tunnel,	which
offers	inspection	of	the	request	and	response,	and	also	includes	the	same
ability	to	replay	a	request,	which	is	really	handy	for	other	webhook	sources
that	might	not	have	all	the	tooling	support	that	GitHub	offers.

My	code	for	handling	the	webhook	is	shown	in	Example	9-1.

Example	9-1.	Webhook-handling	code
<?php

$data = json_decode(file_get_contents("php://input"), true);

file_put_contents("example_webhook.txt", print_r($data, true));

echo $data['zen'];

The	first	line	actually	does	multiple	things;	let’s	start	at	the	deepest	level
inside	the	parentheses.	We	call	file_get_contents()	on	the	php://input
stream;	we’ve	seen	this	in	previous	examples	and	it	simply	reads	in	the	raw
body	of	the	incoming	POST	request	(use	this	stream	with	PUT	requests	as	well
in	RESTful	services).	We	use	this	rather	than	$_POST	because	the	webhooks

are	often	in	JSON	or	XML	format	rather	than	the	form	post	that	PHP’s
$_POST	superglobal	expects.	Now	that	we’ve	got	the	content	of	the	POST
request	body,	it’s	passed	to	json_decode()	as	the	first	parameter.	That
second	parameter	to	json_encode()	simply	returns	the	result	as	an	array
rather	than	the	default	object,	which	I	find	easier	to	work	with.	The	resulting
array	is	then	assigned	to	$data.

In	order	to	inspect	the	data,	we	can	simply	write	it	to	a	file,	which	is	what
happens	next	in	the	example	code.	By	passing	a	second	parameter	to
print_r(),	we	cause	it	to	return	its	output	rather	than	echo	it,	and	we	then
write	it	to	the	example_webhook.txt	file.	This	can	be	a	useful	tactic	if	you
need	to	capture	the	contents	of	an	incoming	hook	and	then	put	it	somewhere
to	refer	to	while	you	build	something	specific	that	uses	the	data.	Having	an
example	of	what	you	received	from	the	previous	request	can	be	used	as	a
handy	reference.

Finally,	and	just	for	fun,	this	script	outputs	the	value	of	the	zen	field,	which	is
a	little	spiritual	insight	into	your	day	provided	by	GitHub	with	your	API
response.	You	could	access	any	of	the	data	fields	provided	by	the	webhook
and	use	them	for	your	own	purposes,	but	hopefully	this	gives	you	the	idea.

Publishing	Your	Own	Webhooks
If	you’re	publishing	APIs,	there’s	no	reason	you	shouldn’t	be	publishing
webhooks	as	well.	We	just	need	a	little	more	advance	setup	as	we	need	people
to	be	able	to	register	which	hooks	they	want	to	utilize	beforehand.	In	most
cases,	it	makes	sense	to	offer	both	webhooks	and	a	traditional	API	so	that	you
can	update	consumers	on	events	that	have	just	happened,	as	well	as	allow
them	to	access	other	data	as	needed.

Webhooks	are	fired	in	response	to	something	happening,	so	they	usually
appear	in	code	after	a	specific	event	is	detected	and	handled,	similar	to	where
you	would	put	the	code	in	charge	of	sending	an	email	notification,	for
example.	To	give	you	a	very	simple	outline,	I’ve	created	Example	9-2,	which
takes	a	form	and	then	just	POSTs	the	data	to	any	interested	parties.

Example	9-2.	Code	receives	a	form,	and	sends	out	a	webhook
<?php

$hook_endpoints = ["http://29baf15.ngrok.io/handle_webhooks.php",

 "http://localhost:8080/handle_webhooks.php"];

if($_POST) {

 // very lazily chuck the whole thing at json_encode

 // a Real Application would validate or look things up

 $post_body = json_encode($_POST);

 // send using streams

 $context = stream_context_create([

 'http' => [

 'method' => 'POST',

 'header' => 'Content-Type: application/json',

 'content' => $post_body,

]

]);

 foreach ($hook_endpoints as $endpoint) {

 $success = file_get_contents($endpoint, false, $context);

 echo "<p>Send to:" . $endpoint . "</p>\n";

 }

 include ("hook_thanks.html");

} else {

 // display the template

 include("hook_form.html");

}

We	start	with	a	spot	of	initialization,	creating	an	array	of	the	endpoints	to
which	we	should	webhook.	Then	there	is	a	check	to	see	if	we	received	any
POST	data;	if	not	then	the	input	template	is	displayed.	If	there	is	data,	then	we
simply	turn	it	all	into	JSON,	and	POST	it	as	a	webhook	to	each	endpoint	in
turn,	using	PHP’s	stream	handling.

In	a	more	complicated	application,	it	might	be	appropriate	to	first	process	the
form	data	in	some	way,	such	as	to	update	a	record.	Once	that	has	been	done,	it
is	common	to	send	a	webhook	that	contains	the	new	state	of	the	resource,
often	including	nested/related	data,	and	sometimes	including	information
about	which	fields	changed	and	maybe	even	their	previous	values.	When
building	your	own	webhooks	it	is	very	important	to	consider	what	your	end
users	will	actually	want	to	achieve,	so	that	you	can	design	your	webhooks	to
include	the	right	amount	of	data.	Along	the	same	lines,	I’d	recommend
offering	to	consumers	some	configuration	of	which	webhook	events	to
subscribe	to.

The	example	here	shows	a	webhook	which	is	architecturally	stuck	at	the	end
of	a	controller,	after	the	data	has	been	processed	and	before	we	return	a

response;	it	is	comparable	to	sending	an	email	notification	of	something
happening	on	the	system.	This	is	an	easy	place	to	put	the	webhook	and	makes
this	example	easy	to	follow,	but	there	are	some	alternatives	that	are	worth
examining.

In	a	real	application,	we	probably	don’t	want	to	wait	for	someone’s	webhook
endpoint	to	respond	before	we	complete	our	own	request.	The	email-sending
analogy	also	bears	out	here	as	it’s	unusual	nowadays	to	send	email
synchronously	from	web	applications.	A	better	approach	for	either	webhooks
or	email	sending	is	to	use	a	job	queue	and	simply	create	a	job	with	all	the	data
required	to	send	the	email	or	hook.	Your	application	can	then	essentially
“forget”	about	the	additional	task	as	the	queue	will	take	care	of	it	in	due
course.	Detailed	discussion	of	job	queues	are	out	of	the	scope	of	this	chapter
but	a	tool	such	as	beanstalkd	or	gearman	would	be	a	good	place	to	start	if	you
want	to	add	something	like	this	to	your	own	applications.

Whether	you	webhook	on	all	actions,	or	just	offer	a	few	notifications	in	your
application,	take	care	to	consider	the	use	cases	from	the	consumer’s	point	of
view,	and	also	think	about	how	you	can	include	these	in	your	application.
This	chapter	has	shown	you	some	examples	of	working	webhooks,	plus	an
example	and	discussion	of	how	to	design	and	build	your	own.	As	this	style	of
integration	between	systems	becomes	increasingly	common,	I	expect	more
and	more	of	our	PHP	applications	to	include	features	like	this.

https://kr.github.io/beanstalkd/
http://gearman.org

Chapter	10.	HTTP	Tools

This	book	began	with	an	introduction	to	HTTP	that	included	simple	tools
such	as	cURL	and	HTTPie	(see	“Command-Line	HTTP”	for	examples).
These	are	key	tools	that	you’ll	see	used	again	and	again	throughout	the	book,
but	there	are	also	a	host	of	other	tools	which	are	very	handy	in	particular
scenarios;	this	chapter	is	dedicated	to	showing	you	the	other	tools	in	the	box.

These	are	all	tools	that	you	can	use	without	changing	your	application
(although	we’ll	talk	about	that	too,	in	Chapter	11)	so	you	can	quickly	inspect
traffic	in	a	variety	of	settings	and	review	what’s	happening.

We’ll	start	with	cURL	and	HTTPie,	and	add	in	two	tools	that	I	use	extensively
when	working	with	JSON	services	in	particular:	jq	and	the	Python	JSON
module.	There	are	also	some	excellent	GUI	alternatives	to	these	command-
line	tools	that	may	fit	your	needs	better.	We’ll	look	at	Postman,	which	is	a
great	graphical	tool	for	working	with	web	requests.

On	a	more	network	level,	there’s	Wireshark,	an	excellent	tool	for	inspecting
traffic	as	it	goes	over	your	network	card.	There’s	ngrok,	which	allows	you	to
make	your	local	API	or	website	visible	externally;	I	use	this	regularly	when
working	with	local	development	APIs	and	with	webhooks.	We’ll	also	look	at
the	proxy	tools	Charles	and	Fiddler.

Each	of	these	tools	will	help	you	to	solve	different	problems,	so	it’s	well
worth	taking	a	look	at	each	of	them.	That	way,	you’ll	know	what’s	available
and	where	to	start	when	you	need	to	use	these	tools	in	your	own	work.

Easy	Command-Line	JSON
The	trouble	with	JSON	APIs	is	that	they	often	return	a	wall	of	text;	some
APIs	offer	pretty	printing	but	otherwise	the	result	is	really	not	designed	for
humans	to	read.	An	example	would	be	something	like	Example	10-1,	which	is
a	simple	request	to	get	a	list	of	Pinterest	boards	for	a	specific	user.

NOTE
To	use	the	Pinterest	API,	you’ll	need	to	register	an	account	with	Pinterest	and	then	get	an
access	token.	They	support	standard	OAuth,	but	there’s	also	a	handy	access	token
generator,	which	is	the	quickest	way	to	get	started	with	these	examples.

https://dev.pinterest.com/tools/access_token/

Example	10-1.	Unformatted	JSON	from	the	Pinterest	API
$ curl https://api.pinterest.com/v1/me/boards/ -H 'Authorization: Bearer AVHk...A'

{"data": [{"url": "https://www.pinterest.com/lorna0641/crochet/", "id":

"346636571258417680", "name": "crochet"}, {"url":

"https://www.pinterest.com/lorna0641/wood/", "id": "346636571258417677", "name":

"wood"}, {"url": "https://www.pinterest.com/lorna0641/sew/", "id":

"346636571258417679", "name": "sew"}]}

There	are	a	few	things	we	can	do	to	make	this	easier	to	read	than	the	output
we	get	from	cURL.	One	option	is	to	simply	use	HTTPie,	which	will	parse	the
JSON	and	present	it	in	a	much	prettier	format,	as	you	can	see	in	Example	10-
2.

Example	10-2.	JSON	output	from	HTTPie	calling	the	Pinterest	API
$ http -p b https://api.pinterest.com/v1/me/boards/ 'Authorization:Bearer AVHk...A'

{

 "data": [

 {

 "id": "346636571258417680",

 "name": "crochet",

 "url": "https://www.pinterest.com/lorna0641/crochet/"

 },

 {

 "id": "346636571258417677",

 "name": "wood",

 "url": "https://www.pinterest.com/lorna0641/wood/"

 },

 {

 "id": "346636571258417679",

 "name": "sew",

 "url": "https://www.pinterest.com/lorna0641/sew/"

 }

]

}

TIP
When	investigating	a	new	API	or	working	closely	with	a	particular	endpoint,	it’s	always
worth	checking	if	there	is	a	built-in	“pretty	print”	mode.	Many	APIs	offer	this	and	it	can	be
valuable	when	a	human	needs	to	inspect	the	output.	I’d	also	recommend	this	feature	as	an
excellent	thing	to	consider	adding	to	your	own	APIs.

There	are	also	JSON-specific	tools	that	I	use	with	cURL	to	output	the	JSON
in	a	more	readable	way.	These	tools	also	have	a	side	advantage	in	that	they
are	designed	to	work	with	any	JSON	data	that	you	have,	not	just	with	web
requests.

One	nice	option	is	to	just	pipe	your	JSON	through	the	Python	JSON	module

from	cURL.	I	use	this	a	lot	since	it’s	usually	available	if	you	have	Python
installed,	which	I	do.	To	add	this	to	a	curl	command,	only	two	things	need	to
change:

Add	the	-s	switch	to	your	curl	command	to	suppress	the	progress	output,
since	this	will	confuse	things.

Pipe	the	output	of	cURL	to	python -mjson.tool.

Another	tool	that	is	a	bit	more	featured	is	the	excellent	jq.	This	does	a	great
deal	more	than	just	pretty-print	your	JSON,	but	that’s	mostly	what	I	use	it	for!
It’s	available	for	easy	install	on	most	platforms	(it’s	included	in	my	package
manager	on	Ubuntu,	for	example)	and	is	recommended	if	you	work	regularly
with	JSON.

The	commands	to	pipe	cURL	output	through	to	other	processors	are	pretty
similar	and	I	think	it	helps	to	see	them	side	by	side.

First,	the	original	curl	command	again:

curl https://api.pinterest.com/v1/me/boards/ -H 'Authorization: Bearer AVHk...A'

The	next	example	uses	the	Python	module:

curl -s https://api.pinterest.com/v1/me/boards/ -H 'Authorization: Bearer

AVHk...A' | python -mjson.tool

Finally,	we	can	use	jq	to	format	the	JSON	nicely;	the	"."	just	tells	jq	to	work
with	the	entire	document	it	receives:

curl -s https://api.pinterest.com/v1/me/boards/ -H 'Authorization: Bearer

AVHk...A' | jq "."

Any	of	the	formatting	options	are	great,	and	we	also	saw	the	HTTPie	example
earlier.	HTTPie	and	jq	also	support	color-formatted	output,	which	can	be
easier	to	read,	but	this	depends	on	your	taste	and	also	the	tools	easily
available	on	your	platform.	Being	aware	of	which	tools	are	available	and	what
they	do	will	really	help	you	to	work	efficiently	with	APIs	of	all	kinds—
including	your	own.

Graphical	cURL	Alternatives

https://stedolan.github.io/jq/

Working	with	HTTP	doesn’t	have	to	mean	the	command	line;	there	are	some
great	tools	around	that	can	do	everything	cURL	can	do,	but	present	it	in	a
more	intuitive	interface.	One	really	excellent,	cross-platform	example	is
Postman.	In	the	previous	examples	we	looked	at	fetching	some	JSON	data
from	an	endpoint	that	needed	an	Authorization	header.	We	can	easily	do	the
same	with	Postman;	its	interface	is	shown	in	Figure	10-1.

Figure	10-1.	Using	Postman	to	send	HTTP	requests

The	main	advantages	of	using	Postman	are	that	you	can	save	and	even	group
your	existing	requests	into	collections,	making	it	easy	to	return	to	earlier
examples	at	a	later	date.	It	is	easy	to	change	individual	aspects	of	your
request,	such	as	the	data	and	headers	to	send,	without	needing	to	edit	a	long
command	string.	The	output	is	easy	to	see	and	work	with,	and	there	are	also
some	great	time-saving	features	such	as	the	ability	to	have	Postman	do	your
OAuth	authentication	steps	for	you	when	you	need	to	fetch	an	access	token.

There	are	a	wide	selection	of	tools	that	perform	pretty	similar	jobs;	you’ve
seen	Postman	here	(it	started	life	as	a	Chrome	plug-in	but	is	now	a	standalone
application	in	its	own	right),	but	there	are	others.	Firefox	has	the
HttpRequester	plug-in,	which	is	very	useful.	On	a	Mac,	you	might	also	like	to
try	Paw,	which	comes	highly	recommended.

https://www.getpostman.com/
http://bit.ly/ff-httpreq
https://luckymarmot.com/paw

Inspect	HTTP	Traffic	with	Wireshark
Wireshark	is	a	“network	protocol	analyzer.”	In	plain	English,	that	means	that
it	takes	a	copy	of	the	traffic	going	over	your	network	card,	and	presents	it	to
you	in	a	human-readable	way.	You	don’t	need	to	do	any	configuration	of	your
application	or	network	settings	to	use	it;	once	it’s	installed,	it	can	just	start
showing	us	the	traffic.	Wireshark	is	cross-platform	and	open	source.

When	you	run	Wireshark,	you	see	a	screen	like	the	one	in	Figure	10-2.

The	lefthand	column	lets	you	pick	which	network	card	you	want	to	capture
(this	screenshot	is	from	my	Ubuntu	laptop;	you’ll	see	things	a	little	differently
on	different	operating	systems).	The	“eth0”	is	your	local	wired	network,
“wlan0”	is	the	wireless	network,	and	“lo”	is	your	local	loopback.	Look	out	for
this	if	you’re	making	API	calls	to	localhost	as	they	use	“lo”	rather	than
whatever	connection	your	machine	uses	to	access	the	outside	world.	If	you’re
working	with	virtual	machines,	you	will	see	more	network	connections	here,
so	you	can	pick	the	one	for	which	you	want	to	see	the	traffic.

Figure	10-2.	Initial	screen	when	starting	Wireshark

The	other	option	you	might	want	to	use	from	this	initial	view	is	“open.”
Wireshark	runs	on	your	desktop	or	laptop	and	captures	the	traffic	going	over	a
network	card	on	your	machine.	However,	what	if	it’s	not	your	machine	that
you	need	the	traffic	from?	It’s	rare	to	have	a	server	with	a	GUI	that	you	could
install	Wireshark	on,	so	instead	a	command-line	program	called	tcpdump

http://www.wireshark.org

(Windows	users	have	a	port	called	WinDump)	can	be	used.	This	program
captures	network	traffic	and	can	write	it	to	a	file;	the	resulting	files	can	then
be	opened	in	Wireshark	to	be	analyzed.

Whether	the	traffic	is	captured	live	or	comes	from	a	file	captured	elsewhere,
what	happens	next	is	the	same:	we	view	the	traffic	and	start	to	examine	what
is	happening.	When	I	start	a	capture	on	my	machine,	I	see	something	like
Figure	10-3.

Figure	10-3.	Wireshark	showing	all	network	card	traffic

The	first	thing	to	do	here	is	to	restrict	the	amount	of	traffic	being	displayed	to
just	the	lines	of	interest	by	placing	*http*	in	the	filter	field.	Now	a	list	of	all
the	HTTP	requests	and	responses	that	have	been	taking	place	are	visible,
making	it	possible	to	pick	out	the	ones	that	are	useful	for	solving	a	given
problem.

Clicking	on	a	request	makes	the	detail	pane	open	up,	showing	all	the	headers
and	the	body	of	the	request,	or	response,	that	was	selected.	This	allows	you	to
drill	down	and	inspect	all	the	various	elements	of	both	the	body	and	the
header	of	the	HTTP	traffic;	when	debugging,	this	is	a	very	helpful	technique
for	identifying	whether	the	client	is	sending	an	incorrect	request	or	if	the
problem	is	in	the	server	response.	You	can	see	an	example	of	a	request	in
Figure	10-4.

To	see	the	requests	and	responses	in	the	context	of	one	another,	right-click	on
either	the	request	or	the	response	and	choose	“follow	TCP	stream.”	With	this,
you	can	clearly	see	the	requests	and	responses	side	by	side,	with	the	request

shown	in	red	(if	you’re	reading	this	in	monochrome,	look	for	a	blank	line
separating	request	and	response)	and	the	response	shown	in	blue	in	Figure	10-
5.

Figure	10-4.	Detail	of	a	request	including	headers	in	Wireshark

Figure	10-5.	Wireshark	showing	a	single	TCP	stream

Wireshark’s	ability	to	quickly	show	what’s	going	on	at	the	HTTP	level
without	modifying	the	application	is	a	huge	advantage.	Often,	it’s	the	first
tool	out	of	the	box	when	something	that	“usually	works”	has	suddenly

stopped—and	it	will	very	quickly	show	you	that	your	API	is	suddenly
returning	an	HTML	error	message	rather	than	the	JSON	that	the	client	was
expecting!

Wireshark	can	also	handle	SSL	if	it	has	access	to	the	server	certificate	for	the
SSL	connection.	This	is	by	design;	SSL	is	intended	to	be	difficult	to	intercept
and	report	on,	but	that	does	make	things	tricky	for	developers.	If	you	own	the
server	that	is	serving	the	SSL	traffic	then	you	can	add	the	certificate	to
Wireshark	and	it	will	be	able	to	decrypt	it,	but	otherwise	Wireshark	is	unable
to	inspect	this	type	of	traffic.

While	Wireshark	is	easiest	to	use	with	applications	running	on	the	same
machine,	it’s	also	possible	to	capture	from	other	machines	in	real	time.
Mostly	this	is	helpful	when	working	with	a	development	platform	that
increasingly	will	be	on	a	virtual	machine	rather	than	on	your	actual	laptop.

Before	you	begin,	you	should	have	Wireshark	installed	on	both	the	host	and
guest	machines	(on	the	guest	machine	you	actually	only	need	something
called	dumpcap,	but	I	find	installing	Wireshark	brings	in	the	tool	I	need	and
all	the	dependencies).	You	should	also	be	able	to	connect	to	the	virtual
machine	via	SSH;	if	you’re	using	Vagrant	to	manage	your	virtual	machines,
you	can	usually	do	this	with	the	vagrant ssh	command.

The	way	this	works	is	to	run	dumpcap	inside	the	guest,	and	pipe	the	resulting
data	straight	into	Wireshark	on	the	host	machine.	Since	we’re	doing	this	over
SSH,	the	command	includes	a	filter	to	exclude	that	SSH	traffic.	The	command
therefore	looks	something	like	this:

wireshark -k -i <(vagrant ssh -c "sudo dumpcap -P -i any -w - -f 'not tcp port

22'" -- -ntt)

This	is	pretty	complicated	since	there	are	so	many	moving	pieces,	but	you	can
see	the	general	shape	of	the	command	and	we’ll	pick	out	the	elements	one	at	a
time.

The	parentheses	contain	a	command,	the	output	of	which	we	pipe	to
Wireshark	with	-k	to	tell	it	to	start	capturing	immediately.

The	vagrant ssh	command	accepts	a	-c	parameter	to	tell	it	to	SSH	in	and
immediately	run	the	specified	command.	The	--	and	-ntt	switches	tell
SSH	to	use	a	tty	and	how	to	read	from	it.

Then	in	the	middle	of	it	all	is	the	command	we	run	on	the	guest,	to	run

dumpcap	on	any	interfaces,	with	a	filter	to	ignore	SSH	traffic.

Note	that	the	dumpcap	command	must	be	run	as	root,	which	makes	sense
as	I’d	prefer	it	if	unprivileged	users	did	not	have	access	to	all	the	network
traffic	on	a	computer.

This	approach	means	that	I	can	run	a	live	capture	on	the	traffic	going	over	the
network	interface	of	a	virtual	machine	development	platform,	which	is	very,
very	useful.	You	can	use	this	approach	to	run	live	capture	on	other	machines
as	well,	by	adapting	the	command	to	use	the	appropriate	SSH	commands	for
the	other	machine	you	want	to	connect	to.

Tunnel	Local	Traffic	Remotely	with	ngrok
ngrok	is	a	hosted	service	offering	a	secure	tunnel	for	your	HTTP	traffic	that	is
especially	useful	in	a	couple	of	specific	scenarios:

Wanting	to	make	a	local/development	website	or	API	available	to	the
outside	world,	for	example	for	testing	by	someone	else	or	on	a	mobile
device

Wanting	an	external	tool	to	be	able	to	reach	something	running	locally	on
my	development	platform,	for	example	when	developing	webhook
receivers

ngrok	is	cross-platform,	easy	to	use,	and	can	be	very	useful	for	quickly
opening	tunnels	to	endpoints	that	you	want	to	share	with	others	during
development.	Once	ngrok	is	installed,	it	is	necessary	to	register	to	use	the
service	and	obtain	an	authtoken.	It’s	a	one-off	process	to	add	this	token	to
your	local	configuration	and	then	everything	is	ready.

NOTE
The	original	v1	of	ngrok	was	open	source.	The	newer	v2	is	still	free	to	use	for	developers
but	is	no	longer	an	open	source	tool;	you	will	need	to	register	an	account	in	order	to	use	it.

ngrok	is	a	command-line	tool	that	runs	on	a	local	machine	and	specifies
which	port	to	expose	to	the	wider	world.	In	this	example,	I’m	working	on	a
simple	API	endpoint	(that	you’ll	see	again	in	Chapter	11)	that	is	available	at
http://localhost:8080	on	my	laptop.	It’s	useful	to	be	able	to	make	this
available	to	others,	perhaps	a	client	or	a	colleague	in	another	location,	and
ngrok	makes	this	very	easy.

https://ngrok.com
http://localhost:8080

Let’s	start	by	simply	exposing	that	port	8080	endpoint	to	the	world	using
ngrok:

ngrok http 8080

This	opens	up	a	console	view	showing	what	URL	the	tunnel	is	available	on,
and	also	a	simple	history	of	the	requests	made.	For	example	in	Figure	10-6
you	can	see	that	my	localhost:8080	is	now	available	on
http://29baf15.ngrok.io.	With	this	running,	I	can	request	that	URL
http://29baf15.ngrok.io	from	another	device	or	location,	and	see	the	code
running	on	my	local	machine.	Under	the	“HTTP	Requests”	section,	you	can
see	the	requests	that	were	made	to	this	endpoint,	including	one	that	failed.

Figure	10-6.	ngrok	tunnel	in	action

When	the	tunnel	is	no	longer	needed,	simply	press	Ctrl-C	to	stop	the	program
and	close	the	tunnel.

ngrok	also	has	some	additional	features;	notice	in	the	screenshot	of	the
console	that	there	is	a	URL	labeled	“Web	Interface.”	This	is	a	brilliant
feature:	it	allows	you	to	list,	inspect	in	detail,	and	repeat	any	requests	that
came	in	to	the	tunnel—take	a	look	at	Figure	10-7	to	see	this	in	action	using
the	same	example	shown	on	the	console.

The	web	interface	is	split	into	two	main	sections	with	a	list	of	requests	on	the
left	and	the	detail	of	the	currently	selected	request	on	the	righthand	side	of	the
page.	The	individual	request	can	be	inspected	in	many	different	ways;	the

http://29baf15.ngrok.io
http://29baf15.ngrok.io

default	view	shows	the	request	and	response	but	headers	and	raw	formats	are
also	available,	which	can	be	really	useful	when	chasing	an	API	problem.
Especially	magical	in	this	view	is	the	“Replay”	button	on	the	top	righthand
side	of	the	detail	view!	Chapter	11	talks	more	about	adding	debugging	into
your	application,	but	to	be	able	to	add	logging	or	other	diagnostics	and	very
easily	repeat	a	request	that	you	know	replicates	a	bug	is	incredibly	helpful.

ngrok	is	a	tool	that	I	think	every	web	developer,	not	specifically	API
developers,	will	find	useful	to	have	in	their	proverbial	toolbox	since	it’s	just
so	useful	to	make	your	local	platform	reachable	temporarily	by	others.	It	has
other	features,	such	as	being	able	to	register	custom	or	reserved	subdomains
so	that	you	can	bring	up	the	same	development	endpoints	at	the	same	places
every	time,	so	it’s	well	worth	a	look.

Figure	10-7.	The	ngrok	web	interface	allows	inspection	and	repeat	of	requests

Inspect,	Edit,	Repeat,	and	Share	Requests
There	are	quite	a	few	tools	that	provide	proxy	functionality	and	run	locally	on
your	machine,	which	are	useful	features	for	local	API	development.	This
section	looks	at	two	excellent	tools,	mitmproxy	and	Charles,	but	there	are
others—for	example,	you	might	want	to	check	out	Fiddler	if	you’re	on	a
Windows	platform.

mitmproxy	is	an	open	source	Python	tool	that	acts	as	a	proxy.	It	offers	easy
inspection	of	traffic	as	well	as	the	ability	to	replay	and	change	requests.	It’s

http://mitmproxy.org

also	possible	to	save	requests	or	collections	of	requests	if	you	want	to	share	a
whole	session,	either	to	revisit	later	on	or	to	send	to	colleagues	or	attach	to	an
issue	in	an	issue	tracker.

mitmproxy	is	entirely	console-based,	so	it’s	easy	to	run	on	your	development
machine,	or	on	virtual	machines	or	other	servers	during	development.	You
can	see	it	in	action	in	Figure	10-8.

Figure	10-8.	mitmproxy	capturing	traffic

mitmproxy	is	very	lightweight	and	easy	to	install,	and	will	run	anywhere.	The
project	is	actively	developed	on	GitHub.

Charles	is	a	paid-for	product	(a	single	license	is	$50	at	the	time	of	writing),
but	it’s	one	that	is	absolutely	invaluable,	especially	when	working	with
mobile	devices	or	when	more	advanced	features	are	needed.	Charles	logs	a
list	of	requests	and	allows	you	to	inspect	them,	similar	to	Wireshark,	but	it
works	in	quite	a	different	way	since	it	is	a	true	proxy,	and	requests	are	passed
through	Charles	rather	than	the	network	traffic	being	duplicated.

Getting	set	up	with	Charles	is	straightforward;	it	automatically	installs	and
will	prompt	you	to	install	a	plug-in	for	Firefox	to	enable	proxying	through
Charles	by	default.	If	you’re	working	with	a	web	page	making	asynchronous
requests,	this	is	an	excellent	setup.

For	those	not	using	Firefox,	you	need	to	ask	your	application	to	proxy
through	Charles.	Since	it’s	common	to	have	proxies	in	place,	particularly	on
corporate	networks,	this	is	fairly	easy	to	do	on	most	devices;	there	are
advanced	settings	when	creating	a	network	connection	that	will	allow	you	to
do	this.	You	will	need	to	enter	the	IP	address	of	your	machine,	and	the	port

http://www.charlesproxy.com

number	(8888	by	default,	but	you	can	change	it	in	the	proxy	settings	in
Charles)	into	the	proxy	settings	fields	when	creating	and	editing	the	network
settings.	When	a	new	device	starts	proxying	through	your	machine,	you’ll	get
an	alert	from	Charles	that	lets	you	allow	or	deny	access.

Once	everything	is	up	and	running,	click	on	the	“Sequence”	tab	and	you’ll	see
a	screen	similar	to	Figure	10-9.

Figure	10-9.	Charles	showing	some	web	requests	in	detail

The	top	part	of	the	pane	is	a	list	of	requests	that	came	through	the	proxy,	and
when	you	select	one	of	these,	the	detail	shows	in	the	bottom	pane.	This	area
has	tabs	upon	tabs,	making	all	kinds	of	information	available	for	inspection.
There	are	the	headers	and	body	of	the	request	and	response,	including	format-
aware	information	on	the	response	so	if	you	receive	JSON,	XML,	or	HTML
for	example,	it	will	be	helpfully	decoded	and	displayed	as	appropriate.

If	there’s	a	particular	response	that	allows	you	to	observe	a	bug,	you	might
like	to	repeat	it;	Charles	makes	this	much	easier	than	having	to	click	around
the	same	loop	again	to	replicate	the	bug.	Simply	locate	the	request	you	want
in	the	top	pane,	and	right-click	on	it	to	see	“Repeat”	in	the	context	menu.	This
is	really	helpful	for	debugging,	especially	as	you	can	export	and	import
sessions	from	Charles,	so	you	can	pass	this	information	around	between	team
members.	If	one	developer	is	able	to	replicate	the	bug	but	not	necessarily	fix
it	at	that	moment,	the	session	can	be	saved	and	attached	to	the	ticket	in	the

issue	tracker	for	another	developer	to	pick	up	at	a	later	date.	Very	efficient!

Probably	the	nicest	feature	of	Charles	is	its	ability	to	show	you	SSL	(Secure
Socket	Layer,	or	https)	traffic	without	needing	the	private	key	from	the	server
(which	Wireshark	requires).	SSL	is,	by	its	very	nature,	not	something	than	can
be	observed	from	the	outside,	so	usually	the	result	is	something	like	the	image
in	Figure	10-10.

Figure	10-10.	Charles	showing	https	traffic	without	decrypting

Charles	allows	you	to	inspect	SSL	by	performing	a	classic	“man	in	the
middle”	attack.	The	traffic	between	Charles	and	the	remote	site	is	encrypted
using	the	correct	certificate	as	normal,	but	the	traffic	between	Charles	and
your	browser	or	other	client	is	only	signed	by	Charles.	This	means	that	in
order	to	use	this	feature	in	Charles	you	will	need	to	actively	enable	Charles’
SSL	certificates	(look	in	the	“SSL”	tab	on	the	proxy	settings	screen)	and	then
accept	the	Charles	CA	on	the	device	or	client	that	is	sending	the	SSL	traffic.

Charles	offers	the	ability	to	throttle	all	traffic	that	passes	through	it.	Throttling
traffic	allows	you	to	simulate	a	selection	of	real-world	network	speeds,
including	3G	for	a	mobile	phone.	This	is	a	key	part	of	the	development
process,	especially	if	your	application	and	server	are	on	a	fast	corporate
network;	the	real	world	can	look	quite	different!	I	will	never	forget	testing
games	on	phones	in	an	underground	car	park	to	find	out	what	happened	when
there	was	no	reception—very	glad	that	nowadays	I	can	just	push	that	traffic

through	Charles	to	test	these	things.

There	are	two	similar	features	for	rewriting	requests	that	I	use	when	passing
traffic	through	Charles.	The	first	is	simply	called	“Rewrite”—it	makes	it
possible	to	change	headers	or	bodies	of	requests	or	responses,	restrict	them	to
specific	sites,	and	use	regexes	to	match	and	change	specific	elements.	This
can	be	handy	for	all	kinds	of	reasons:	trying	out	a	new	remote	service,	or
testing	whether	a	change	of	headers	fixes	a	particular	problem.	I	also	use	the
“Map	Remote”	feature,	which	is	really	helpful	when	requests	arrive	at
Charles	needing	a	consistent	change	to	their	URL.	This	is	perhaps	most	useful
for	hardcoded	image	URLs,	but	I	also	use	it	when	using	Charles	to	route	a
mobile	app	to	a	local	version	of	an	API	rather	than	the	official	one.

Using	Charles	to	proxy	traffic	from	a	mobile	device,	whether	to	rewrite	or	just
to	inspect	it,	is	a	very	useful	feature.	To	set	it	up:

Configure	the	device	networking	to	be	on	the	same	network	as	Charles,
and	set	the	proxy	to	be	the	IP	address	of	the	machine	running	Charles	and
the	port	number	it	is	running	on	(the	default	is	8888).

Either	use	an	app	on	your	device	or	the	mobile	browser

When	you	first	set	this	up,	Charles	needs	you	to	confirm	that	you	want	to
allow	this	device	to	proxy	through	your	machine.	This	is	good;	it	means
you’re	not	running	an	open	proxy	on	your	laptop

The	traffic	is	visible	in	Charles.

While	I	mostly	use	Charles	for	development	purposes,	particularly	for	testing
issues	on	mobile	apps	where	I	want	to	diagnose	an	issue	but	I	don’t	want	to
rebuild	the	app	itself,	it’s	also	pretty	interesting	just	to	set	up	the	proxy	on
your	device,	use	your	favorite	apps,	and	look	at	the	traffic	that	they	send.

Proxying	PHP	Applications
Some	of	these	tools,	such	as	Charles,	require	you	to	redirect	your	web	traffic
through	them.	We’ve	seen	simple	examples	of	how	to	use	a	web	browser	with
an	add-on	or	a	mobile	device	to	proxy,	but	what	about	a	PHP	application
running	on	your	local	machine	or	a	development	virtual	machine?	When	we
work	with	APIs	often	the	requests	are	actually	made	by	PHP	itself	rather	than
by	a	client,	so	an	alternative	approach	is	needed.

One	option	is	simply	to	change	the	endpoint	that	we’re	calling	to	such	that	it

points	to	Charles,	and	then	rewrite	the	request	when	it	arrives	at	Charles	so
that	it	goes	on	to	the	right	place.	That	will	work,	but	it’s	rather	a	blunt
instrument.	Instead,	we	can	configure	PHP	to	use	proxy	settings	when	making
requests.

Proxy	Settings	for	Guzzle
The	Guzzle	library,	which	has	been	used	in	examples	throughout	this	book,
observes	a	standard	environment	variable	called	HTTP_PROXY	(frustratingly,
command-line	cURL	respects	the	same	environment	variable	but	in
lowercase).	You	can	set	the	environment	variable	in	your	web	server	config;
for	example,	I’m	using	Apache	and	want	to	proxy	through	Charles	on	my	host
machine	which	the	guest	sees	as	10.0.2.2,	so	I	add	the	following	line	to	my
vhost	configuration:

SetEnv HTTP_PROXY http://10.0.2.2:8888

Remember	to	restart	Apache	after	adding	this	to	the	vhost	configuration,	and
you	should	start	to	see	that	requests	made	by	Guzzle	are	proxied	through
Charles.

Proxy	Settings	for	HTTP	Stream	Handling
PHP’s	stream	handling	doesn’t	observe	the	standard	environment	variable,
but	it	is	easy	to	add	proxy	settings	to	the	stream	context	used.	In	the	situation
where	there	is	already	an	$options	variable	with	some	settings	in	it,	and
again	the	code	should	proxy	via	Charles	on	10.0.2.2,	the	following	should	be
added:

$options['http']['proxy'] = "tcp://10.0.2.2:8888";

$streamContext = stream_context_create($options);

Pass	in	this	context	to	the	stream	and	it	will	proxy	requests	through	the
address	you	specify.	Notice	that	the	proxy	address	starts	with	tcp://	rather
than	http://,	a	common	(and	very	tempting)	mistake.

Finding	the	Tool	for	the	Job
This	chapter	covered	a	selection	of	tools	for	varying	tasks,	although	there	is

some	overlap,	for	example,	in	tools	you	can	use	to	inspect	traffic	(in	that
particular	case	I	usually	run	Wireshark	immediately	and	then	move	on	to
Charles	for	more	detailed	debugging,	as	it’s	more	HTTP-aware	but	requires
me	to	proxy	my	traffic	through	it).	I	strongly	recommend	you	take	the	time	to
play	with	and	get	to	know	these	tools	and	any	additional	or	alternative	ones
you	come	across.	Knowing	what	tools	are	available	and	how	they	can	help
you	means	being	able	to	rescue	yourself	and	your	projects	from	a	tight	spot	if
you	need	to.	I	hope	you	won’t	ever	need	to	play	“hero”	when	something	goes
wrong	but	if	you	do,	you’ll	be	glad	you	invested	some	time	in	stocking	your
toolbox.

Chapter	11.	Maintainable	Web
Services

When	we	build	APIs,	perhaps	even	more	than	web	frontends,	these	projects
should	be	able	to	live	and	thrive	over	a	long	period	of	time.	With	that	in	mind,
it	is	prudent	to	build	services	that	are	intended	to	last	and	that	give
consideration	to	how	they	can	be	extended,	maintained,	and	debugged	if	the
need	should	arise.	In	Chapter	10	we	saw	a	selection	of	great	external	tools
that	will	accompany	the	work	we	do	with	APIs,	but	what	about	the	APIs
themselves?	This	chapter	deals	with	the	very	important	work	of	how	to
structure	your	API	with	great	error	handling	and	diagnostic	output	to	make	a
project	that	can	be	picked	up	and	maintained	for	as	long	as	it	is	needed.

Sample	API	Application
This	chapter	is	all	about	how	to	debug	APIs	and	to	do	that,	we’ll	use	an
absolutely	trivially	simple	API	as	our	example.	The	idea	is	to	show	a	very
simple	use	case	with	a	minimal	amount	of	code	to	illustrate	the	techniques
that	can	be	scaled	up	and	applied	to	your	real-world	applications.

The	example	API	uses	the	Slim	microframework	as	a	lightweight	way	of
quickly	starting	up	a	new	application.	This	API	is	very	simple	and	only	has	a
handful	of	endpoints:

/,	the	root,	just	returns	a	list	of	endpoints.

/list	can	be	accessed	via	GET	in	which	case	it	returns	a	list	of	items,	or
via	POST	in	which	case	it	adds	the	supplied	item	to	the	list.

The	code	for	this	is	in	Example	11-1	and	you’ll	find	the	formatter	just	a	little
further	along	in	Example	11-2.	The	only	initial	dependency	is	the	Slim
framework,	so	composer.json	looks	like	this:

{

 "require": {

 "slim/slim": "^3.0"

 }

}

http://www.slimframework.com

Example	11-1.	Example	API	code
<?php

require "../vendor/autoload.php";

require "Formatter.php";

$app = new \Slim\App();

$container = $app->getContainer();

$container['formatter'] = function ($c) {

 return new Formatter($c->get('request'));

};

$app->get(

 '/',

 function ($request, $response) {

 $data = ["home" => "/", "list" => "/list"];

 $response = $this->formatter->render($response, $data);

 return $response;

 }

);

$app->get(

 "/list",

 function ($request, $response) {

 // fetch items

 $items = [];

 $fp = fopen('../items.csv', 'r');

 while(false !== ($data = fgetcsv($fp))) {

 $items[] = current($data);

 }

 $data = ["items" => $items, "count" => count($items)];

 $response = $this->formatter->render($response, $data);

 return $response;

 }

);

$app->post(

 "/list",

 function($request, $response) {

 $data = $request->getParsedBody();

 if(isset($data) && isset($data['item']) && !empty($data['item'])) {

 $this->logger->addInfo("Adding data item: " . $data['item']);

 // save item

 $fp = fopen('../items.csv', 'a');

 fputcsv($fp, [$data['item']]);

 $response = $response

 ->withStatus(201)

 ->withHeader("Location", "/list");

 $response = $this->formatter->render($response);

 return $response;

 }

 // if we got this far, something went really wrong

 throw new UnexpectedValueException("Item could not be parsed");

 }

);

$app->run();

This	very	simple	example	forms	the	basis	upon	which	we’ll	add	some
particular	features	that	will	make	an	API	maintainable	and	easy	to	work	with
in	development	and	for	a	long	and	happy	maintenance	window.

Consistent	Output	Formats
This	is	the	golden	rule:	always	respond	in	the	format	that	the	client	was
expecting.	This	means	that	it	is	never	acceptable	to	return	an	HTML	error
message	when	the	client	expected	JSON—but	beware	that	many	of	the
frameworks	will	do	exactly	this	by	default	when	an	error	occurs!	If	your
system	does	return	HTML	messages	when	things	go	wrong,	that	is	a	bug	and
needs	fixing.	If	an	unexpected	format	is	sent,	the	client	will	not	be	unable	to
understand	the	response	and	any	error	information	contained	in	it.

One	of	the	side	effects	of	using	the	Slim	framework	is	that	it	offers	the
getParsedBody()	method	on	the	Request	object,	which	essentially	means
that	our	API	already	supports	multiple	input	formats.	This	method	reads	the
Content-Type	header	of	the	incoming	request,	and	parses	the	body	data
accordingly.	As	a	result,	if	you	POST	data	from	a	form,	or	send	JSON	data
with	an	appropriate	Content-Type	header,	then	Slim	will	parse	that
accordingly.

The	example	code	handles	multiple	output	formats	by	using	an	output
renderer,	which	is	the	Formatter	class	added	to	the	container	and	then	used
in	each	endpoint.	The	code	for	the	Formatter	class	is	in	Example	11-2,	and	it
takes	care	of	getting	the	right	output	format	(the	HTML	version	is	quite	basic
in	an	attempt	to	keep	the	code	samples	shorter)	and	the	right	headers	in
accordance	with	the	Accept	header	that	was	received.

Example	11-2.	The	Formatter	class	is	used	as	an	output	renderer,	ensuring
data	is	returned	in	a	correct	and	consistent	format
<?php

class Formatter

{

 protected $request;

 public function __construct($request) {

 $this->request = $request;

 }

 public function render($response, $data = [])

 {

 if ($data) {

 $format = $this->getFormatFromAcceptHeader();

 switch ($format) {

 case 'html':

 $body = $response->getBody();

 // very ugly output but you get the idea

 $body = $response->getBody();

 $body->write(var_export($data, true));

 break;

 case 'json':

 default:

 $body = $response->getBody();

 $body->write(json_encode($data));

 $response = $response

 ->withHeader("Content-Type", "application/json");

 }

 }

 return $response;

 }

 protected function getFormatFromAcceptHeader() {

 $accept = explode(

 ',',

 $this->request->getHeaderLine("Accept")

);

 // we prefer JSON

 $format = 'json';

 // we also support HTML

 if (in_array("text/html", $accept)

 || in_array("application/xhtml+xml", $accept)) {

 $format = 'html';

 }

 return $format;

 }

}

There’s	a	method	here	that	does	basic	Accept	header	parsing	(for	a	more
comprehensive	approach	revisit	the	content	negotiation	section	in	Chapter	3)
so	we	need	to	supply	the	$request	object	in	order	to	make	that	information
available.	Once	the	correct	format	has	been	identified,	the	supplied	data	array
is	converted	and	set	on	the	$response	object	along	with	appropriate	headers.

There	are	a	few	Slim-specific	features	in	the	code	shown	here	that	might	look
different	in	another	framework	or	without	a	framework	at	all,	so	it’s	worth
identifying	those	and	giving	the	“vanilla”	PHP	equivalents	in	case	you	need
them.	All	of	these	have	been	seen	in	examples	throughout	the	rest	of	the
book.

$response->withStatus()	in	Slim	simply	sets	the	status	code,	so	use
http_response_code()	in	PHP.

Each	call	to	$response->withHeader()	could	be	replaced	in	a	PHP
application	with	a	call	to	header(),	in	which	case	the	two	arguments	are
put	into	one	string	and	separated	by	a	colon,	e.g.,	Content-Type:
application/json.

The	Slim	function	$request->getParsedBody()	is	a	very	neat	feature
that	wraps	up	a	read	from	php://input,	checks	the	incoming	Content-
Type	header,	and	in	this	case	identifies	JSON	and	does	a	json_decode()
accordingly

Each	framework	will	have	its	own	way	of	doing	the	same	things,	but	you’ll
find	that	the	modern	frameworks	all	use	a	very	similar	approach	since	the
shape	of	the	request	and	response	objects	is	related	to	the	standards	laid	out	in
PSR-7,	which	covers	HTTP	Messaging.

With	this	simple	sample	app	(and	some	data	already	in	the	low-tech	storage
solution	items.csv)	it	is	possible	to	look	at	ways	that	debugging	techniques
can	be	used	with	an	API.

Debug	Output	as	a	Tool
Every	PHP	developer	will	have	used	print_r()	or	var_dump()	at	some

http://www.php-fig.org/psr/psr-7

point	to	return	some	additional	information	to	the	client	during	the	course	of
the	server	processing	a	request.	This	technique	is	quick,	easy,	approachable,
and	can	often	be	all	that	is	needed	to	spot	a	typo	or	missing	value.

When	working	with	APIs,	this	can	still	sometimes	be	useful,	but	it	does	carry
health	warnings!	If	standard	debug	output	is	included	with	a	response,	and	the
client	is	expecting	valid	JSON,	XML,	or	some	other	format,	then	your	client
will	not	be	able	to	parse	the	response.	Instead,	try	making	the	call	from
another	tool	such	as	the	ones	we	saw	in	Chapter	10.

A	great	example	would	be	to	add	a	var_dump()	call	to	the	/list	endpoint	of
the	API,	so	that	the	route	now	looks	like	this:

$app->get(

 "/list",

 function ($request, $response) {

 // fetch items

 $items = [];

 $fp = fopen('../items.csv', 'r');

 while(false !== ($data = fgetcsv($fp))) {

 $items[] = current($data);

 }

 var_dump($items);

 exit;

 }

);

TIP
When	adding	code	that	dumps	output,	it’s	simplest	to	follow	it	with	exit()	so	that	no
other	code	will	execute	after	that	point	and	possibly	obscure	the	behavior	that	you	were
trying	to	observe.

I	can	inspect	this	in	any	one	of	a	number	of	ways:

Use	cURL,	HTTPie,	Postman,	or	any	similar	tools	to	make	the	API	call
that	I	want	to	debug.	The	preceding	example	can	be	seen	in	Example	11-3.

If	it’s	easy	to	replicate	from	a	client	that	can’t	display	the	response,	use
Wireshark,	Charles,	or	mitmproxy	to	inspect	the	response;	just	ignore	the
client	errors	since	we	know	we’re	sending	back	invalid	JSON.	Figure	11-1
shows	the	previous	example	inspected	via	Charles.

Example	11-3.	Use	cURL	to	inspect	debug	output	added	to	an	API	call
$ curl -v http://localhost:8080/list

* Hostname was NOT found in DNS cache

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 8080 (#0)

> GET /list HTTP/1.1

> User-Agent: curl/7.38.0

> Host: localhost:8080

> Accept: */*

>

< HTTP/1.1 200 OK

< Host: localhost:8080

< Connection: close

< X-Powered-By: PHP/5.6.4-4ubuntu6

< Content-type: text/html; charset=UTF-8

<

array(4) {

 [0]=>

 string(5) "bread"

 [1]=>

 string(4) "eggs"

 [2]=>

 string(4) "milk"

 [3]=>

 string(6) "apples"

}

* Closing connection 0

Figure	11-1.	Using	Charles	to	inspect	debug	output	from	an	API

TIP
If	it’s	an	AJAX	call	that	is	failing,	your	browser	tools	should	allow	you	to	copy	the	failing
request	as	a	cURL	request.	Then	it’s	easy	to	repeat,	or	to	share	with	your	coworkers	to
enable	debugging.

Don’t	be	afraid	to	use	the	fast-and-dirty	approach	to	debug	APIs	exactly	as
you	might	take	a	first	look	at	any	other	PHP	problem.	It’s	a	little	harder	to	see
when	the	output	doesn’t	just	appear	in	the	browser,	but	this	section	illustrated
how	to	take	the	extra	step	to	make	the	output	visible.

Effective	Logging	Techniques
When	it	is	important	to	continue	returning	clean	responses,	more	information
can	be	acquired	from	an	API,	as	it	processes	requests,	by	adding	logging.	This
just	means	that,	rather	than	sending	debug	information	along	with	the	output,

it	is	sent	somewhere	else	to	be	inspected	(usually	to	a	file	on	the	server).

By	default,	PHP	will	write	errors	to	the	location	specified	in	the	configuration
directive	error_log	in	php.ini.	If	this	is	left	empty,	then	PHP	defaults	to
writing	to	Apache’s	error	log	(or	stderr,	if	you’re	not	using	Apache).	It	is
possible	to	write	other	information	to	this	log,	as	well	as	the	errors	generated
by	PHP	itself,	using	the	error_log()	function:

<?php

error_log("this is an error!");

Perhaps	this	looks	like	a	rather	oversimplified	example,	but	at	its	most	basic
level	this	is	all	that	is	needed	to	add	logging.	When	I	look	in	the	Apache	error
log	on	the	server	(the	exact	file	location	varies	between	platforms),	I	see	this:

[Wed Dec 26 14:49:36 2015] [error] [client 127.0.0.1] this is an error!,

referer: http://localhost:8080/

[Wed Dec 26 14:49:36 2015] [error] [client 127.0.0.1] File does not exist:

/var/www/favicon.ico

A	couple	of	errors	can	be	seen	in	the	previous	output.	The	first	was	sent	by
the	code	sample,	which	deliberately	wrote	a	message	to	the	error	log,	and	the
other	is	what	happened	when	my	browser	requested	a	favicon,	but	none
existed.	Using	this	approach,	error_log()	calls	can	be	added	into	a	project
to	help	debug	a	particular	issue.	The	output	from	the	error	log	can	then	be
checked	to	discover	the	additional	information	needed,	rather	than	sending	the
additional	error	information	back	to	the	client.

Logging	is	a	powerful	technique;	there	are	many	more	tricks	available	to
make	it	even	more	effective.	Log	messages	can	be	directed	to	a	specific	file,
for	example,	rather	than	to	the	generic	error	log.	To	do	this,	use	the
error_log()	function	but	with	some	additional	arguments.	The	first
argument	is	the	message,	as	before,	the	second	argument	is	where	to	send	the
message	(3	means	“to	a	file”;	for	more	detail	see	PHP’s	error	log
documentation),	and	the	final	argument	is	the	filename	to	use:

<?php

error_log("all gone wrong", 3, "log.txt");

The	file	should	be	writeable	by	the	user	that	the	web	server	represents,	and

http://bit.ly/php-error-log

then	the	error	message	will	appear	in	the	file	(beware:	it	doesn’t	add	a	new
line	after	each	message).	Specifying	a	file	means	that	all	the	debug
information	can	be	kept	in	one	place	and	will	be	easy	to	follow.	The	file	could
be	truncated	between	test	runs	to	make	it	even	clearer	exactly	what	happened
in	any	given	scenario.

There	are	lots	of	excellent	libraries	around	to	make	logging	easier,	and	if
you’re	using	a	framework,	it	will	probably	offer	some	great	logging
functionality.	There	are	some	great	features	in	dedicated	logging	tools	or
modules	that	will	help	keep	track	of	what’s	happening	in	your	application
without	resorting	to	a	var_dump()	call	in	the	middle	of	your	JSON	output.
When	selecting	a	logging	solution,	look	out	for:

Multiple	storage	options

Many	logging	libraries	support	more	ways	to	store	log	entries	than	just
email	or	files.	Usually	it’s	possible	to	log	in	to	many	different	kinds	of
databases,	use	various	file	formats,	and	set	other	options.	Depending	on
how	you	want	to	use	the	data,	this	can	be	very	useful	indeed.

Configurable	logging	levels

Logging	libraries	usually	allow	you	to	state	the	level	of	error	that	is	being
logged;	this	is	comparable	to	the	PHP	approach	of	having	ERROR,	WARN,
NOTICE,	and	so	on.	The	application	allows	you	to	set	what	level	of	logging
should	be	performed.	This	means	you	can	change	the	logging	levels	on	a
lower-traffic	test	platform	when	you	want	to	see	more	detail,	or	increase
them	temporarily	to	see	more	detail	during	a	particular	set	of	operations.
As	a	result,	the	log	files	don’t	become	too	huge	when	things	are	going
well,	but	more	detail	can	be	obtained	when	required.

Standards	compliant

There	is	a	PHP	standard	interface	for	logging	tools	called	PSR-3.
Choosing	a	logging	tool	that	complies	with	this	means	that	you	can
change	between	logging	tools	in	the	future	if	you	should	wish	to.

Error	Logging	in	PHP	Applications	with	Monolog
One	very	good	and	widely	used	tool	for	logging	in	PHP	is	Monolog.	This
satisfies	all	of	the	key	points	just	listed	and	as	a	bonus	you’ll	find	that	many
PHP	frameworks	either	include	it	by	default	or	offer	their	own	wrappers	for	it.

https://github.com/Seldaek/monolog

To	add	Monolog	to	our	existing	example,	the	first	step	is	to	add	it	to
composer.json,	which	now	looks	like	this:

{

 "require": {

 "slim/slim": "^3.0",

 "monolog/monolog": "^1.17"

 }

}

Once	the	dependencies	are	in	place,	a	logger	can	be	created.	Monolog
supports	a	brilliant	and	extensive	selection	of	handlers	including	writing	to	a
file,	to	email,	to	databases,	to	remote	services,	to	firebug,	and	the	list	goes	on.
In	this	example	the	logger	simply	writes	to	a	file	called	app.log,	but	having
many	possibilities	as	well	as	the	option	to	combine	some	or	all	of	the	above	at
different	logging	levels	is	very	useful	especially	as	to	change	what	we	log	and
how	is	purely	done	here	in	the	setup	and	then	takes	effect	throughout	our
application.

Since	the	API	example	uses	the	Slim	framework,	it	comes	with	a	dependency
injection	container,	so	we	create	our	logger	and	put	it	into	the	container,	so	we
can	use	it	anywhere	in	the	application.	The	code	for	this	goes	right	at	the	top
of	the	example	and	is	laid	out	in	Example	11-4.

Example	11-4.	Construct	the	logger	and	store	it	in	the	dependency	injection
container
<?php

require "../vendor/autoload.php";

$app = new \Slim\App();

// create the logger, add to DI container

$container = $app->getContainer();

$container['logger'] = function($c) {

 $logger = new \Monolog\Logger('my_logger');

 $file_handler = new \Monolog\Handler\StreamHandler("../app.log");

 $logger->pushHandler($file_handler);

 return $logger;

};

Now	that	the	logger	is	in	place,	it	can	be	used	to	record	error	or	debug
messages	at	the	appropriate	error	level.	The	key	thing	about	error	levels	is
that	there	can	be	many	log	entries	added	to	the	code,	and	we	can	configure
our	applications	to	show	all	levels	on	a	development	platform,	but	only	log

the	really	big	things	on	a	production	platform…unless	things	go	wrong,	in
which	case	we	can	easily	reconfigure	to	get	more	information.

In	this	example,	let’s	add	some	logging	to	the	POST	endpoint	to	record	when
we	receive	a	new	list	item.	The	updated	route	code	is	now	in	Example	11-5.	It
simply	accesses	the	stored	logger	property	from	earlier	(Slim	has	some
magic	that	makes	items	in	its	dependency	injection	container	available	as
properties)	and	calls	the	Monolog	function	addInfo()	upon	it,	passing	in	the
message	we’d	like	to	render.

Example	11-5.	Using	Monolog	in	our	existing	code
$app->post(

 "/list",

 function($request, $response) {

 $data = $request->getParsedBody();

 if(isset($data) && isset($data->item) && !empty($data->item)) {

 $this->logger->addInfo("Adding data item: " . $data->item);

 // save item

 $fp = fopen('../items.csv', 'a');

 fputcsv($fp, [$data->item]);

 $response = $response

 ->withStatus(201)

 ->withHeader("Location", "/list");

 $response = $this->formatter->render($response);

 return $response;

 }

 }

);

With	the	logger	in	place,	if	I	POST	to	the	endpoint	to	create	a	new	list	item,	I
get	a	log	entry	that	looks	something	like	this:

[2015-09-05 16:41:27] my_logger.INFO: Adding data item: cheese [] []

It	is	good	practice	to	have	logging	in	place	for	all	our	applications,	but	for
APIs	where	the	problems	can	be	a	few	layers	down	from	the	interface	that
humans	see,	it’s	a	must-have.	Monolog	is	only	one	choice,	but	it’s	an
excellent	one	and	it	allows	us	to	configure	much	more	on	an	application	level
than	the	PHP	error_log()	function.

Error	Handling	with	PHP	Exceptions

PHP	offers	really	excellent	error	handling	with	its	Exception	class.	This
works	similarly	to	exceptions	in	other	object-oriented	languages:	you	can
throw	an	exception	in	your	code,	and	it	will	then	“bubble”	up	the	stack	by
swiftly	returning	from	each	level	of	function	call	until	it	lands	in	either	a
catch()	block	or	an	exception	handler.

While	there	are	many	great	resources	on	PHP	error	handling	around,	there’s
one	particular	feature	in	PHP	that	I	make	extensive	use	of,	and	that’s	the
ability	to	set	a	top-level	exception	handler.	Whether	that’s	setting	the	error-
handling	feature	in	a	framework	(as	will	be	seen	in	a	Slim	example
momentarily)	or	using	the	standard	set_exception_handler(),	this	ability
to	handle	errors	in	the	same	way	throughout	the	application	is	very	helpful	in
APIs,	in	particular	where	a	common	output	handler	is	often	used.

When	something	goes	wrong	in	an	application,	we	throw	an	exception.	While
it’s	possible	to	use	a	generic	Exception	class	in	PHP,	it’s	also	very	easy	to
extend	that	class	and	include	the	new	class	(often	with	no	additional
functionality)	in	your	own	code	base.	The	big	advantage	of	taking	this
approach	is	that	you	can	then	distinguish	between	the	exception	type	you
were	expecting	and	something	completely	unexpected	happening.

TIP
PHP	also	includes	a	good	selection	of	built-in	exceptions	you	can	use;	see	the	manual	for	a
list.

Exceptions	always	include	a	descriptive	error	message,	but	it’s	important	to
consider	where	this	error	message	will	be	seen.	This	chapter	already	covered
some	techniques	for	logging	information,	and	as	a	general	rule	of	thumb	it	is
useful	to	include	enough	information	to	understand	what	went	wrong	in	the
exception;	any	information	that	should	not	be	displayed	to	a	user	or	other
consumer	can	instead	be	logged.

A	simple	example	of	throwing	an	exception	can	be	seen	at	the	very	end	of
Example	11-6	where	in	the	event	that	we	don’t	get	valid	data,	we	use	the
exception	handler	to	return	that.	The	exception	here	is	an
UnexpectedValueException,	which	is	one	of	PHP’s	built-in	exception	types.

Example	11-6.	Exception	is	thrown	if	the	expected	data	doesn’t	arrive
$app->post(

 "/list",

 function($request, $response) {

 $data = $request->getParsedBody();

http://bit.ly/php-exception
http://bit.ly/php-exceptions

 if(isset($data) && isset($data->item) && !empty($data->item)) {

 $this->logger->addInfo("Adding data item: " . $data->item);

 // save item

 $fp = fopen('../items.csv', 'a');

 fputcsv($fp, [$data->item]);

 $response = $response

 ->withStatus(201)

 ->withHeader("Location", "/list");

 $response = $this->formatter->render($response);

 return $response;

 }

 // if we got this far, something went really wrong

 throw new UnexpectedValueException("Item could not be parsed");

 }

);

In	addition	to	the	message,	an	exception	can	also	have	a	code.	Since	HTTP
has	status	codes,	it	can	be	useful	to	supply	the	code	as	well	as	the	message	in
the	exception,	since	in	this	case	the	exception	handler	will	be	formatting	the
error	output.

So	how	can	we	craft	an	exception	handler	that	will	parse	this	Exception
object	and	return	the	response	that	the	API	consumer	can	understand?	The
key	things	here	are	to	be	consistent,	and	to	always	return	in	the	format	(e.g.,
JSON,	XML)	that	the	client	is	expecting,	even	through	we’re	returning
unexpected	content.

The	example	we’ve	just	reviewed	would	want	an	exception	handler	to	catch
any	Exceptions	that	haven’t	been	dealt	with	in	any	other	way.	Mine	looks
something	like	the	example	in	Example	11-7.	It	takes	the	exception,	sets	the
given	status	code	or	a	generic	400	if	it’s	missing,	and	returns	an	error	message
in	the	body	(in	the	Slim	framework,	you	need	to	unset	the
$container[errorHandler]	to	be	able	to	add	your	own	standard	PHP
exception	handler;	other	frameworks	will	also	have	their	own	ways	of	doing
things).

Example	11-7.	Exception	handler	from	the	sample	project
set_exception_handler(function ($exception) {

 if($exception->getCode()) {

 http_response_code($exception->getCode());

 } else {

 http_response_code(400);

 }

 header("Content-Type: application/json");

 echo json_encode(["message" => $exception->getMessage()]);

});

With	the	added	Exception	from	Example	11-6,	my	output	looks	like	this
when	I	make	a	POST	request	with	no	data:

$ curl -v -X POST -H "Content-Type: application/json" http://localhost:8080/list

* Hostname was NOT found in DNS cache

* Trying 127.0.0.1...

* Connected to localhost (127.0.0.1) port 8080 (#0)

> POST /list HTTP/1.1

> User-Agent: curl/7.38.0

> Host: localhost:8080

> Accept: */*

> Content-Type: application/json

>

< HTTP/1.1 400 Bad Request

< Host: localhost:8080

< Connection: close

< X-Powered-By: PHP/5.6.4-4ubuntu6

< Content-Type: application/json

<

* Closing connection 0

{"message":"Item could not be parsed"}

The	status	code	and	headers	are	important,	but	this	also	includes	a	readable
message	so	even	if	we	were	consuming	it	without	the	-v	switch,	we’d	see
something.	For	example,	if	I	just	pass	the	body	output	through	jq,	I’d	see	this:

$ curl -s -X POST -H "Content-Type: application/json" http://localhost:8080/list

| jq "."

{

 "message": "Item could not be parsed"

}

In	PHP	5,	the	exception	handler	will	catch	any	uncaught	object	extending
Exception,	regardless	of	whether	it	came	from	your	code,	from	a	library,	or
from	PHP	itself.	In	PHP	7,	the	exception	handler	will	catch	anything	that	is
both	uncaught	and	that	implements	the	new	Throwable	interface.	This	will
probably	behave	as	you	expect	in	that	it	will	still	catch	your	Exception
objects	as	before,	but	it	will	also	catch	any	uncaught	Error	objects.	You	may
see	changes	to	when	the	exception	handler	is	fired	after	you	upgrade	your

existing	applications,	and	it’s	worth	bearing	in	mind	that	this	could	mean
catching	objects	whose	messages	you	might	not	automatically	want	to	expose
to	the	outside	world.

Using	this	exception	handler	pattern	is	a	great	way	to	ensure	consistency	of
output	so	that	your	error	messages	are	always	delivered	in	a	predictable	way
and	in	the	expected	format	so	that	a	client	can	understand	them.

With	error	handling	in	place,	it’s	important	to	have	test	coverage	of	those
failure	cases	as	well	as	the	successful	ones;	you	can	read	more	about	testing
tools	in	“Automated	Testing	Tools”	along	with	other	key	delivery	tools	for
APIs.	At	this	point,	we	have	covered	the	tools	needed	to	add	diagnostic,
logging,	and	error-handling	features	to	an	API—we	will	discuss	some	of	the
finer	points	of	API	design	in	the	following	chapters.

Chapter	12.	Making	Service
Design	Decisions

This	is	the	million-dollar	question:	what	kind	of	a	service	do	I	need	for	my
next	project?	REST	is	cool,	but	RPC	is	familiar.	JSON	is	lighter,	but	the	client
already	works	with	XML.	The	API	will	be	used	by	mobile	consumers,	or	web
consumers,	or	a	reporting	engine,	or	all	of	these.

There’s	rarely	a	clear-cut	“one	true	way”	when	picking	the	best	solution	for	a
given	API,	but	there	are	some	key	elements	that	can	influence	how	to	choose
a	solution	that	will	be	a	good	fit.	API	design	is	mostly	engineering	with	a
generous	dash	of	common	sense	also	required.

The	big	questions	you	need	to	ask	at	each	step	are	these:

1.	 Who	will	be	using	this	API?

2.	 What	are	they	trying	to	achieve?

3.	 Which	technologies	do	they	use?

There	are	some	key	points	that	are	important	to	consider	when	planning	an
API	that	will	help	us	answer	these	questions	and	deliver	an	effective	API.

Consider	the	users’	needs

The	API	will	be	needed	and	utilized	by	users,	not	developers.	Start	out
with	a	comprehensive	set	of	user	stories	about	how	users	intend	to	use	the
API,	the	kind	of	people	that	will	be	using	it,	and	the	technologies	they	are
likely	to	want	to	use.	Beginning	from	the	point	of	view	of	what	a	user
wants	to	achieve,	rather	than	a	developer’s	preferred	toolchain,	is	more
likely	to	give	a	good	API	outcome.

Eat	your	own	dogfood

The	term	“dogfood”	is	a	bit	of	a	strange	one	but	it	means	to	incorporate
the	tools	you	make	and	publish	into	your	own	workflows	where	you	can.
This	means	not	building	an	application	with	its	own	business	logic	and	a
separate	API	for	outsiders	to	use,	but	instead	building	an	API	that	is	used
both	internally	and	externally.	If	you	don’t	need	to	make	use	of	the	API,

it’s	a	good	idea	to	at	least	build	a	sample	application	and	think	about	the
challenges	a	user	might	encounter.

Keep	it	simple

Don’t	plan	a	huge	API	and	publish	the	whole	thing	at	once.	Decide	which
of	your	user	stories	constitute	the	MVP	(Minimum	Viable	Product)	for
your	consumers,	and	start	with	that.	In	Chapter	14	we’ll	cover	all	the	other
various	parts	of	delivering	the	API	besides	just	the	API	itself.	By	starting
small,	it’s	a	great	chance	for	a	development	team	to	make	sure	that	the
documentation,	deployment,	testing,	and	all	the	other	associated	tools	are
also	in	place	and	working	well.

Service	Type	Decisions
The	first	decision	to	make	when	designing	any	API	is	one	that	can’t	be
changed:	decide	what	kind	of	a	service	you	will	offer.	This	depends	on	a
combination	of	the	audience	and	the	features	that	will	be	offered.

If	the	service	mostly	deals	with	creating,	fetching,	and	manipulating	data,
then	a	RESTful	service	should	definitely	be	a	candidate	in	your	design
decision.	In	Chapter	8	we	discussed	how	everything	in	a	RESTful	service	is
either	a	collection	or	a	resource,	and	if	the	service	you	have	in	mind	mostly
deals	with	things	or	groups	of	things	then	REST	is	going	to	be	a	great	fit.	It’s
increasingly	widely	used	and	there	are	some	excellent	resources	available
specifically	about	designing	RESTful	services,	independent	of	which
language	you	implement	it	in	(but	PHP	is	a	great	choice).

For	an	API	that	does	actions	rather	than	working	with	things,	an	RPC	service
might	be	a	more	logical	choice	to	make.	RPC	services	are	a	very	familiar
paradigm	for	developers	of	all	kinds	and	so	they	can	offer	a	shallower
learning	curve	to	people	integrating	with	external	APIs	for	the	first	time.	It
might	be	useful	to	look	at	some	of	the	existing	services	cited	in	Chapter	7	to
get	an	idea	of	whether	those	feel	like	the	kind	of	thing	you	are	aiming	for.

Another	consideration	is	how	easy	your	chosen	type	of	service	will	be	to
build,	deliver,	and	maintain	with	consideration	to	the	technology	stack	and
abilities	of	the	consumers;	some	technology	communities	are	much	more
familiar	with	SOAP	for	example,	and	would	prefer	a	service	with	a	WSDL
that	will	bolt	in	nicely	to	their	existing	platform.	Whereas	a	mobile	developer
would	probably	prefer	something	more	lightweight	such	as	a	RESTful	JSON

API.

How	to	Present	API	Data
A	SOAP	service	will	always	use	XML,	but	for	RESTful	or	RPC	services,	the
data	format	that	fits	best	can	be	chosen.	The	most	common	options	are	JSON
and	XML,	but	there	are	also	services	that	handle	incoming	form-encoded	data
formats,	outgoing	HTML	formats,	serialized	PHP	formats,	YAML,	and	even
plain	text.

We	saw	in	Chapter	6	some	examples	of	XML	being	used	with	an	RPC
service,	and	SOAP	is	XML	underneath.	However,	XML	has	plenty	more
applications	than	just	SOAP,	and	can	be	used	as	the	data	format	(or	a	data
format)	in	any	one	of	a	number	of	different	styles	of	service.	XML	allows	us
to	mark	up	elements	with	child	elements,	character	data,	and	also	attributes,
but	produces	quite	a	large	data	size	in	return.	Therefore,	XML	would	do	well
when	the	bandwidth	used	for	the	transfers	isn’t	slow	or	expensive,	and	the
devices	consuming	the	data	have	enough	memory	and	processing	power	to
handle	and	parse	the	data.

JSON	is	great	for	JavaScript	applications,	but	they’re	not	the	only	target
market	for	this	format.	The	majority	of	scripting	languages	have	built-in
support	for	JSON	and	will	be	able	to	serve	and	consume	this	format	easily.
JSON	is	also	a	great	choice	for	mobile	applications,	where	the	smaller	overall
data	size	and	simplicity	of	parsing	the	format	are	very	useful	for	less	powerful
devices	on	potentially	slow,	patchy,	or	expensive	connections.

HTML	as	a	data	format	is	an	idea	that	isn’t	found	in	many	textbooks,	but
certainly	shows	up	in	the	real	world	on	a	regular	basis.	In	its	simplest	form,
we	might	return	HTML	in	response	to	an	AJAX	request	from	a	webpage,
perhaps	showing	some	new	content	in	HTML	on	the	page	(something	that
you	may	already	feature	in	your	applications).	It	doesn’t	take	a	huge	leap	of
faith	from	this	to	providing	HTML	as	an	optional	output	format	for	an	API,	if
only	for	reading	data.	An	example	of	this	is	found	in	the	RESTful	Joind.in
API,	where	HTML	is	offered	as	an	output	format;	if	you	request
http://api.joind.in	from	your	browser,	the	API	reads	your	Accept	headers	and
returns	the	data	as	HTML,	with	the	hypermedia	presented	as	clickable
hyperlinks.	This	serves	as	excellent	documentation	for	your	service.

Accepting	incoming	requests	from	a	web	form,	or	in	that	format,	can	also	be

http://api.joind.in

very	web-friendly	if	the	users	of	the	API	are	mostly	web	developers	and	it	is
likely	to	be	used	mostly	with	or	from	a	web	page.	This	is	a	step	away	from
the	pure	idea	of	exchanging	data	between	machines,	but	can	be	a	valuable
option	depending	on	the	audience	of	the	API.

If	the	user	stories	show	that	different	consumers	will	want	different	data
formats,	then	the	API	will	need	to	return	multiple	formats	such	as	XML,
JSON,	and	perhaps	HTML	as	well.	This	approach	has	major	advantages
because	every	consumer	of	your	service	will	be	able	to	ask	for	the	data	in	the
format	that	is	right	for	their	scenario,	using	content	negotiation	via	HTTP
headers	to	indicate	what	the	right	format	is.	An	application	that	takes	care	to
make	use	of	common	templates	or	output	handlers	for	each	data	format,	used
by	every	response	sent,	will	be	able	to	consistently	return	data	in	multiple
formats.

Hypermedia	for	Easy	API	Navigation
The	links	to	resources	and	related	data	in	an	API	are	called	hypermedia	and
are	an	excellent	feature	to	include.	In	a	RESTful	service	particularly,	every
resource	is	identified	by	its	URI	and	so	this	data	can	be	given	as	part	of	the
response	data.	In	this	way,	consuming	clients	can	follow	links,	rather	like	a
user	clicking	links	on	the	Web,	instead	of	assembling	the	next	URL	from	the
instructions	and	concatenating	ID	fields	into	it.	Hypermedia	makes	the	whole
experience	smoother	and	easier	for	consumers	by	offering	the	ability	to	find
their	way	around	easily.	For	example,	using	the	previous	data	set,	the
following	actions	are	available:

1.	 Look	at	this	resource,	and	then	visit	the	comments_uri	to	see	the
comments	made	on	this	talk.

2.	 See	more	information	about	the	event	this	talk	belongs	to	by	visiting	the
event_uri.

3.	 From	there,	follow	another	piece	of	hypermedia	in	the	talks_uri	field
to	see	a	list	of	other	talks	at	the	event.

Nested	Data	or	Many	Round	Trips
Another	consideration	when	designing	and	working	with	RESTful	APIs	is
whether	or	not	it	is	useful	to	send	additional	nested	data	with	the	response	to
avoid	a	consumer	having	to	make	too	many	“round	trips,”	or	requests	and

http://api.joind.in/v2.1/talks/7660
http://api.joind.in/v2.1/events/1056
http://api.joind.in/v2.1/events/1056/talks

responses,	to	get	the	rest	of	the	information	desired.	While	GitHub	and
Joind.in	both	offer	user	information	at	their	own	locations,	they	also	include
some	nested	data	in	the	responses	shown	here,	which	the	consumer	is	likely	to
need.

On	the	other	hand,	sometimes	too	much	information	can	lead	to	unnecessarily
large	amounts	of	data	to	transfer,	and	different	APIs	handle	this	in	different
ways.	One	common	pattern	is	that,	by	default,	a	subset	of	the	information	is
returned,	but	functionality	to	retrieve	more	information	is	also	offered—this	is
what	the	Joind.in	verbose_uri	offers.	Alternatively,	the	extra	information
may	be	made	available	as	a	separate	resource,	such	as	offering	/article/42
as	the	data	about	a	blog	post,	but	excluding	the	(potentially	large)	body	of	the
post,	which	can	then	be	found	at	/article/42/body.	Either	approach	shows
consideration	to	the	consumer,	but	which	one	is	the	right	fit	will	depend	on
any	particular	scenario.

Some	of	the	common	API	formats	have	provisions	for	controlling	how	much
detail	is	returned	when	they	request	data,	or	which	related	data	should	be
included	with	the	response.	Let’s	look	more	at	some	of	those	data	formats.

Data	Formats	and	Media	Types
A	single	web	service	can	offer	a	selection	of	data	types,	and	it’s	very	common
to	offer	multiple	types.	Often,	these	will	be	JSON	or	XML,	but	there	can	be
others;	for	example,	Joind.in	will	respond	to	GET	requests	with	an	HTML	data
type	if	the	Accept	header	requests	it.	The	format	decision	will	be	made	on	the
server,	usually	on	the	basis	of	the	Accept	header	(you	can	read	more	about
content	negotiation	in	“Headers	for	Content	Negotiation”).

Some	services	will	allow	a	content	indicator	to	be	present	in	the	URL	itself,
but	this	mixes	up	the	identification	of	the	resource	with	information	about	the
representation	desired.	In	general,	the	Accept	header	is	the	“right”	way	to
indicate	the	preferred	format,	while	supporting	an	additional	URL	parameter
may	lower	the	barrier	of	entry,	depending	on	your	consumers.

So	you	might	offer	two	ways	of	requesting	JSON	data:

By	setting	the	Accept	header	to	“application/json”—this	would	be	the
preferred	method.

Not	all	clients	(or	all	developers)	are	capable	of	setting	custom	headers,	so
you	might	also	allow	the	appending	of	?format=json	or	the	equivalent	to

a	request.

TIP
Don’t	be	tempted	to	add	a	.json	suffix	to	your	URL	to	allow	clients	to	request	JSON,
especially	in	a	RESTful	service.	The	URI	should	point	to	a	resource	without	specific
format	information,	and	then	headers	or	additional	parameters	can	be	used	to	give	extra
information	to	the	server	about	how	we’d	like	that	response	served.

There	are	some	very	good	prescribed	data	formats	that	you	might	like	to
consider	for	your	applications.	Beyond	touching	on	JSON-RPC	and	XML-
RPC	earlier	in	the	book,	two	other	good	candidates	to	consider	are	HAL	and
JSON-API.	They	do	all	differ	in	some	ways,	but	each	of	them	aims	to	make	a
scalable	and	consistent	API	for	users	by	describing	how	data	and	hypermedia
can	be	presented.	The	following	sections	have	some	examples	of	these
formats	to	give	you	an	idea	of	what	to	expect.

HAL	(Hypertext	Application	Language)	is	a	standard	that	aims	to	make	it
easy	to	traverse	an	API	that	you	haven’t	seen	before	and	find	your	way
around.	It	can	be	used	with	both	XML	and	JSON	and	aims	to	describe
hypermedia	in	a	useful	and	importantly	a	consistent	way	across	APIs.

The	best	features	of	HAL	are	the	_links	collections	that	it	uses	to	bring
hypermedia	into	a	known	location	and	a	known	format.	The	_links
collections	are	used	both	at	the	top	level	of	a	response	to	include	some
metadata	such	as	pagination,	and	also	within	representations	to	give	related
links	to	the	item.	The	_links	collection	has	a	named	key	that	indicates	what
this	link	is,	and	then	an	array	containing	at	least	an	href	value,	although	other
information	can	also	be	included.

The	result	looks	something	like	Example	12-1,	which	uses	the	same	talk
resource	as	mentioned	in	the	hypermedia	section	earlier.

Example	12-1.	Adding	HAL	to	the	joind.in	API	talk	resource
{

 "_links": {

 "self": "http://api.joind.in/v2.1/talks/7660?start=0&resultsperpage=20"

 },

 "talks": [

 {

 "_links": {

 "self": "http://api.joind.in/v2.1/talks/7660",

 "verbose_self": "http://api.joind.in/v2.1/talks/7660?verbose=yes",

 "website_uri": "http://joind.in/talk/view/7660",

 "comments_uri": "http://api.joind.in/v2.1/talks/7660/comments",

 "event_uri": "http://api.joind.in/v2.1/events/1056"

 },

 "talk_title": "Everything You Ever Wanted to Know About Deployment But Were

Afraid to Ask",

 "start_date": "2012-11-08T13:00:00-05:00",

 "average_rating": 5,

 "comment_count": 4

 }

]

}

HAL	also	supports	embedding	related	resources	within	a	result	set;	this	is	a
very	common	situation	to	encounter	so	a	standard	way	of	presenting	this	is
very	useful.	The	other	big	feature	in	HAL	is	“curies,”	which	are	a	way	of
describing	where	the	documentation	can	be	found	for	the	endpoints	in	use.
Being	able	to	reach	documentation	related	to	the	request	currently	being	made
can	be	very	helpful	to	users	so	this	is	a	nice	feature	to	include.	You	can	read
more	about	HAL	in	the	specification.

Another	format	that	works	very	well,	especially	on	RESTful	APIs,	is	JSON-
API.	As	the	name	suggests,	it’s	for	JSON	data	and	much	like	HAL	it	sets	out
some	very	standard	ways	of	organizing	information	so	that	all	APIs	built
along	these	lines	will	be	familiar.	JSON-API	describes	a	series	of	top-level
data	elements	to	use.

errors	is	a	collection	of	error	items

meta	gives	information	not	directly	related	to	the	data	being	transferred
(JSON-API)	can	handle	either	a	resource	or	a	collection

data	the	actual	data	goes	inside	this	element,	always

jsonapi	may	be	used	to	describe	the	server	implementation

links	holds	links	related	to	the	top	level	of	this	endpoint	and	always
includes	a	self	link

included	can	contain	related	resources,	often	used	to	avoid	the	consumer
from	having	to	make	multiple	calls

It	is	required	to	return	at	least	one	of	errors,	meta	and	data,	but	beyond	that
this	data	format	can	be	adapted	to	fit	your	needs.	The	individual	resources
each	should	contain	an	id	and	a	type,	with	its	main	data	in	the	attributes
section.	Resources	can	also	have	their	own	links	and	meta	properties.

Using	the	same	talk	resource	example	before,	an	example	of	how	it	might
look	if	returned	by	a	JSON-API	service	is	shown	in	Example	12-2.	As	you

http://bit.ly/hal-spec
http://jsonapi.org

can	see,	the	two	are	very	similar.

Example	12-2.	The	talk	resource	from	Joind.in’s	API	formatted	in	JSON-API
{

 "links": {

 "self": "http://api.joind.in/v2.1/talks/7660?start=0&resultsperpage=20"

 },

 "data": [

 {

 "type": "talk",

 "id": 7660,

 "attributes": {

 "talk_title": "Everything You Ever Wanted to Know About Deployment But Were

Afraid to Ask",

 "start_date": "2012-11-08T13:00:00-05:00",

 "average_rating": 5,

 "comment_count": 4

 },

 "links": {

 "self": "http://api.joind.in/v2.1/talks/7660",

 "verbose_self": "http://api.joind.in/v2.1/talks/7660?verbose=yes",

 "website_uri": "http://joind.in/talk/view/7660",

 "comments_uri": "http://api.joind.in/v2.1/talks/7660/comments",

 "event_uri": "http://api.joind.in/v2.1/events/1056"

 }

 }

]

}

Picking	a	common	format	for	your	API	data	can	be	very	helpful	to	allow
people	to	quickly	get	up	to	speed	and	feel	“at	home.”	The	various	API
formats	are	evolving	all	the	time,	so	it’s	worth	taking	a	look	around	at	the
options	and	reflecting	on	your	goals	for	the	service	you	want	to	publish	before
you	choose.	If	there’s	a	standard	that	could	fit,	always	try	to	use	it—standards
are	always	good!

Versioning	your	API	is	highly	recommended,	but	of	course	it	isn’t	obvious
that	you	need	it	until	you	want	to	start	work	on	v2.0!	Including	a	version
number	in	your	URL	is	a	matter	of	taste.	It	is	a	very	practical	way	to	offer	a
service	while	identifying	the	current	version	of	that	service	and	opening	the
door	to	offering	new	versions	of	the	service	in	the	future.	However,	there	are
alternatives,	and	an	elegant	alternative	is	to	use	media	types.	These	are
invented	content	types	that	specifically	describe	the	structure	of	the	resource
that	will	be	returned,	and	can	also	include	version	information,	so	if	the
structure	of	a	particular	resource	changes	between	versions,	that	change	can
be	conveyed	without	a	URL	change.

Not	all	APIs	will	support	media	types,	but	they	are	a	good	way	to	version
representation	structures	for	users	who	want	to	be	certain	that	the
representations	they	receive	will	never	change.	GitHub	has	some	media	type
support	(their	reference	page	explains	the	detail	very	well)	that	goes	beyond
the	usual	application/json	levels.	They	support	media	types	specific	to
GitHub	(application/vnd.github+json)	and	also	support	using	the	media
type	to	specify	the	version	of	representation	that	should	be	returned
(application/vnd.github.v3).

Customizable	Experiences
As	well	as	choosing	data	formats,	there	are	other	variables	for	which	the
“right”	choice	to	make	will	differ	between	the	consumers	of	the	API.	An	easy
example	is	the	number	of	entries	you	return.	Returning	all	the	data	is	fine…
until	the	application	becomes	terribly	popular,	and	suddenly	the	API	is
returning	four	thousand	records	instead	of	forty!	To	improve	this	experience
for	everyone,	APIs	often	offer	pagination	of	data.	As	well	as	giving	a	way	to
specify	which	range	of	results	to	return,	it	is	good	practice	to	allow	the
number	of	results	returned	to	be	customized.	A	reporting	server	on	a	fast
network	might	want	all	the	data,	whereas	the	mobile	device	with	a	patchy
signal	might	only	want	the	newest	five	records.

Another	big	variable	is	how	much	information	to	return	with	each	request,
and	this	decision	usually	manifests	in	two	forms.	When	returning	information
about	a	particular	item,	should	all	the	information	be	returned?	And	the
follow-up	question:	should	any	related	data	be	returned	also?	Including	data
means	we’ll	sometimes	be	returning	more	information	than	needed,	a	bit	like
doing	SELECT * FROM…	in	SQL.	But	if	you	omit	data,	then	some	consumers
will	have	to	make	a	large	number	of	requests	to	obtain	what	they	need.

Since	we	already	used	GitHub	as	an	example	and	they	do	this	rather	nicely,
their	gist	data	format	will	be	a	nice	example	to	use.	You	can	see	it	in
Example	12-3.

Example	12-3.	Gist	data	format	from	GitHub
{

 "url": "https://api.github.com/gists/ed972482e08ccddfc993",

 "forks_url": "https://api.github.com/gists/ed972482e08ccddfc993/forks",

 "commits_url": "https://api.github.com/gists/ed972482e08ccddfc993/commits",

 "id": "ed972482e08ccddfc993",

 "git_pull_url": "https://gist.github.com/ed972482e08ccddfc993.git",

http://developer.github.com/v3/media

 "git_push_url": "https://gist.github.com/ed972482e08ccddfc993.git",

 "html_url": "https://gist.github.com/ed972482e08ccddfc993",

 "files": {

 "text.txt": {

 "filename": "text.txt",

 "type": "text/plain",

 "language": "Text",

 "raw_url":

"https://gist.githubusercontent.com/lornajane/ed972482e08ccddfc993/raw/336516c8e23e55265245bf589ae56aafa9cbbcf2/text.txt"

 "size": 18,

 "truncated": false,

 "content": "Some riveting text"

 }

 },

 "public": true,

 "created_at": "2015-07-23T18:30:11Z",

 "updated_at": "2015-08-29T14:25:41Z",

 "description": "Gist created by API",

 "comments": 0,

 "user": null,

 "comments_url": "https://api.github.com/gists/ed972482e08ccddfc993/comments",

 "owner": {

 "login": "lornajane",

 "id": 172607,

 "avatar_url": "https://avatars.githubusercontent.com/u/172607?v=3",

 "gravatar_id": "",

 "url": "https://api.github.com/users/lornajane",

 "html_url": "https://github.com/lornajane",

 "followers_url": "https://api.github.com/users/lornajane/followers",

 "following_url":

"https://api.github.com/users/lornajane/following{/other_user}",

 "gists_url": "https://api.github.com/users/lornajane/gists{/gist_id}",

 "starred_url": "https://api.github.com/users/lornajane/starred{/owner}{/repo}",

 "subscriptions_url": "https://api.github.com/users/lornajane/subscriptions",

 "organizations_url": "https://api.github.com/users/lornajane/orgs",

 "repos_url": "https://api.github.com/users/lornajane/repos",

 "events_url": "https://api.github.com/users/lornajane/events{/privacy}",

 "received_events_url":

"https://api.github.com/users/lornajane/received_events",

 "type": "User",

 "site_admin": false

 },

 "forks": [

],

 "history": [

 {

 "user": {

 "login": "lornajane",

 "id": 172607,

 "avatar_url": "https://avatars.githubusercontent.com/u/172607?v=3",

 "gravatar_id": "",

 "url": "https://api.github.com/users/lornajane",

 "html_url": "https://github.com/lornajane",

 "followers_url": "https://api.github.com/users/lornajane/followers",

 "following_url": "https://api.github.com/users/lornajane/

 following{/other_user}",

 "gists_url": "https://api.github.com/users/lornajane/gists{/gist_id}",

 "starred_url": "https://api.github.com/users/lornajane/

 starred{/owner}{/repo}",

 "subscriptions_url":

"https://api.github.com/users/lornajane/subscriptions",

 "organizations_url": "https://api.github.com/users/lornajane/orgs",

 "repos_url": "https://api.github.com/users/lornajane/repos",

 "events_url": "https://api.github.com/users/lornajane/events{/privacy}",

 "received_events_url":

"https://api.github.com/users/lornajane/received_events",

 "type": "User",

 "site_admin": false

 },

 "version": "a06b78d732925104c79256e58e84f74af8c579f2",

 "committed_at": "2015-07-23T18:30:11Z",

 "change_status": {

 "total": 1,

 "additions": 1,

 "deletions": 0

 },

 "url":

"https://api.github.com/gists/ed972482e08ccddfc993/a06b78d732925104c79256e58e84f74af8c579f2"

 }

]

}

This	example	is	a	nice	combination	of	nested	and	linked	data.	It’s	quite	long,
but	it	also	means	that	consumers	don’t	need	to	make	a	lot	of	requests	to	get
the	data	they	are	likely	to	want.	For	example,	the	owner	information	is
included	and	has	most	of	the	data	you	get	from	the	user	URL	itself,	but	the
comments	aren’t	nested	and	instead	we	get	a	count	and	a	link	to	them.

Some	APIs	allow	the	user	to	specify	which	nested	items	should	be	included,
or	which	fields	should	be	returned,	which	can	be	handy	if,	for	example,	one	of
the	fields	is	very	large.	A	great	example	of	this	is	JSON-API,	which	supports
both	of	these	via	its	include	and	fields	parameters.

For	each	service	that	is	built,	an	important	part	of	the	design	process	is	to
make	decisions	about	some	of	these	elements.	Whatever	you	decide	for	your
own	applications,	make	sure	that	you	are	consistent	across	your	API	and	that

if	you	do	add	optional	ways	of	customizing	output,	that	these	are	well
documented.

Pick	Your	Defaults
It’s	important	to	offer	users	some	choice,	but	also	to	offer	a	simpler	path	so
that	people	can	jump	straight	in	and	use	your	API	without	having	to	set	up	too
many	options.	Every	customizable	option	should	have	a	default	value	that	is
returned	if	no	preference	is	stated.	Are	you	missing	the	Accept	header?	Send
JSON.	You	don’t	have	any	pagination	settings?	Send	the	first	25	results.	This
approach	allows	people	to	get	the	best	of	the	API	very	quickly	and	easily,	and
they	can	delve	deeper	to	change	the	defaults	if	their	requirements	don’t	fit
well	with	the	defaults	chosen.

Consider	whether	or	not	you	will	comply	with	all	requests,	though;	if	a
consumer	requests	1,000	results	that	might	be	expensive	for	your	API	to
generate,	you	may	still	only	send	the	first	200	(or	whatever	makes	sense	for
your	system).	Similarly,	some	APIs	will	benefit	from	having	rate	limits.	This
means	that	each	client	can	only	make	a	certain	number	of	requests	in	a	given
time	period.	Many	APIs	allow	a	very	limited	number	of	requests	for
unregistered	users,	and	may	allow	differing	levels	of	access	to	different
customers,	particularly	for	paid-for	apps.	Rate	limiting	is	a	way	of	making
sure	that	you	guarantee	an	expected	level	of	service	to	all	users	by	managing
the	load	on	your	servers	and	allowing	different	users	to	have	a	level	of	access
that	suits	them.

This	philosophy	of	making	things	easy	and	useful	to	users,	with	minimal
effort	on	their	part,	makes	the	barrier	to	entry	much	lower	for	your	application
and	makes	the	experience	of	using	a	new	API	one	of	tolerance	and	welcome.

Chapter	13.	Building	a	Robust
Service

A	robust	service	is	one	that	feels	secure	and	reliable	to	its	users.	Something
that	behaves	unpredictably,	sometimes	gives	incorrect	results,	and
occasionally	doesn’t	respond	at	all,	is	not	what	a	consumer	wants	to	integrate
into	her	own	applications.	This	chapter	will	look	at	what	makes	a	robust
service,	and	some	techniques	for	making	services	as	reliable	and	useful	as
they	can	be,	both	when	things	are	going	well	and	when	they	are	not.

The	best	services	exhibit	consistent,	predictable	behaviors.	This	approach	of
having	as	much	“sameness”	as	possible	works	well	for	consumers,	who	start
to	feel	at	home.	As	they	use	the	service,	they	become	familiar	with	how	it	will
work,	and	will	be	able	to	find	their	way	around	and	deal	with	any	errors	they
encounter	more	easily.	Most	importantly,	those	consumers	will	be	able	to
achieve	their	goals,	which	should	give	both	consumer	and	provider	a	warm,
fuzzy	feeling.

Consistency	Is	Key
As	PHP	developers,	we	know	only	too	well	how	difficult	it	is	to	use	an
interface	that	is	inconsistent.	The	number	of	manual	entries	that	use	the	words
“needle”	and	“haystack”	with	very	little	correlation	between	which	one
should	come	first	in	any	given	situation	(and	one	function	where	they	can	be
passed	in	either	order!)	is	our	reminder	of	how	painful	this	can	be!

In	our	own	applications,	we	can	do	better,	but	it	is	important	to	pay	attention
to	the	bigger	picture	and	the	existing	elements	of	an	API	while	working	on
building	more	features.	In	particular,	consideration	should	be	given	to	how
things	are	named,	how	the	parameters	are	passed	in	and	returned,	and	what
the	expected	behavior	should	be	when	something	unexpected	happens.

Consistent	and	Meaningful	Naming
I	recently	worked	with	a	system	that	had	a	function	in	it	called
isSiteAdmin().	Guess	what	it	returned?	Wrong!	It	actually	returned	the

username	of	the	current	user,	or	false.	There	are	plenty	of	examples	of	badly
named	functions	in	the	world,	but	please	protect	us	from	having	any	more	to
add	to	the	list.	Function	names	should	be	meaningful,	and	they	should	also	be
alike.	So	if	there	is	something	called	getCategories()	available,	try	to	avoid
adding	a	function	called	fetchPosts()	or	getAllTags()	unless	there’s	a
good	reason	for	the	differences.	Instead,	fit	in	with	the	existing	convention
and	call	the	functions	getPosts()	and	getTags().

The	same	applies	to	RESTful	services,	as	well	as	those	that	contain	function
names,	although	it	is	slightly	less	of	an	issue	when	the	clients	are	following
hypermedia	links.	Look	out	for	consistency	in	whether	collection	names	are
plural	or	not,	for	example.

TIP
Case-sensitive	or	not,	make	sure	your	service	is	absolutely	case-consistent	throughout.

The	naming	of	parameters	is	also	an	area	full	of	traps	that	are	all	too	easy	to
fall	into—and	will	annoy	your	users	forever	(or	at	least	until	you	figure	out
how	to	release	the	next	version	without	breaking	their	existing	applications).
The	way	that	you	name	your	parameters	can	give	users	a	clue	as	to	what	they
should	be	passing	in.	For	example,	a	parameter	called	user	is	rather
ambiguous	but	either	user_id	or	username	would	help	the	user	to	send	more
accurate	data	through	to	your	API.

Naming	your	parameters	with	“Hungarian	notation”	is	probably	a	step	too	far,
but	aiming	more	at	the	verbose	than	the	terse	is	probably	in	everyone’s
interests.	If	there’s	a	field	called	desc	then	people	will	probably	guess	the
correct	meaning	of	the	abbreviation	from	the	context,	but	it	is	clearer	to	call
the	parameter	description	or	descending	or	whatever	it	really	means.

Common	Validation	Rules
The	benefits	of	consistency	were	discussed	already,	but	it	is	very	easy	to	end
up	with	slightly	different	validation	rules	for	similar	parameters	in	different
settings	(for	example,	whether	extra	address	lines	are	optional	or	required
between	shipping	and	billing	addresses).	Also,	try	to	avoid	the	irritatingly
common	situation	of	allowing	a	particular	format	of	date/time	information	or
telephone	number	in	one	place	in	your	API,	but	not	in	another.

A	good	way	to	ensure	that	validation	is	always	identical	is	to	always	use
common	functionality,	including	the	built-in	features	of	your	framework	(this

https://en.wikipedia.org/wiki/Hungarian_notation

may	be	documented	as	form	validation	but	works	perfectly	well	for	API
parameters	too),	or	the	fabulous	Filter	extension	in	PHP	like	the	example	in
Example	13-1.	The	example	shows	a	simple	incoming	JSON	request	being
decoded	and	then	filtered;	if	the	data	is	not	a	valid	email	address,	the	value
will	be	false.

Example	13-1.	The	Filter	extension	in	PHP	is	a	great	way	to	validate
incoming	data
<?php

$clean_data = [];

$incoming = json_decode(

 file_get_contents("php://input"), true

);

$clean_data['email'] = filter_var(

 $incoming['email'],

 FILTER_VALIDATE_EMAIL

);

For	data	types	that	are	specific	to	your	application,	you	can	create	a	utility
class	that	holds	all	the	validations.	In	this	way,	you	can	add	functions	that
check	for	particular	kinds	of	data,	and	then	reuse	them	across	your	application
to	ensure	consistency.

Predictable	Structures
Structure	of	data	is	a	key	characteristic	of	a	service,	and	a	good	API	design
will	have	it	in	mind	when	accepting	requests,	building	responses,	and	also	in
the	event	of	any	error.	APIs	that	return	an	array	of	results	should	always
return	an	array	of	results.	If	there’s	one	result,	it	still	needs	to	be	in	an	array.	If
there	are	no	results,	an	empty	array	should	convey	this	information.	Suddenly
returning	false,	or	showing	an	item	one	level	up	from	where	it	would	be	in
an	equivalent	endpoint,	is	confusing,	so	take	care	to	avoid	it.

In	most	situations,	the	order	in	which	parameters	are	provided,	either	as	URL
parameters	or	as	part	of	body	content,	should	not	matter.	Whether	the
parameter	names	or	their	values	are	case-sensitive	can	be	made	clear	in	the
documentation;	it	is	a	challenge	to	keep	these	small	details	correct,
particularly	across	a	large	API,	but	it	is	key	and	does	greatly	improve	your
system.

If	an	error	should	occur,	it	may	well	be	the	fault	of	the	user.	That	said,	the	API

http://www.php.net/filter

ideally	should	help	the	user	understand	what	went	wrong	and	how	the	user
can	be	better	in	their	use	of	the	API	(because	otherwise	they	will	log	a	support
ticket	that	you	will	have	to	fix).	Error	responses	should	be	in	a	consistent
format	throughout	the	API.	If	a	user	sees	not-success	in	the	status	code	that
is	returned	with	his	response,	he	should	immediately	know	how	to	get	the
information	he	needs	about	what	went	wrong,	in	a	predictable	format.

Predictability	is	about	more	than	the	data	formats	we	saw	in	Chapter	12,
although	those	are	important	too.	Take	care	to	follow	patterns	throughout	an
API	regarding	what	happens	when	something	is	created,	deleted,	or	not	found
so	that	the	user	can	more	quickly	align	themselves	with	your	ideas	and	make
effective	use	of	your	service.

Error	Handling	in	APIs
Errors	are	a	fact	of	life.	Users	will	enter	nonsense	into	your	system,	not
because	they	are	simpletons	(although	it	does	often	look	that	way),	but
because	their	expectations	and	understanding	are	different	from	yours.	The
Internet	is	a	very	loosely	coupled	affair	and	all	kinds	of	things	can	and	will	go
wrong	at	a	technical	level,	once	in	a	while.	How	your	API	handles	these
inevitable	situations	is	a	measure	of	the	quality	and	design	of	your	API,	so
this	section	gives	some	pointers	on	what	to	look	out	for	and	how	to	do	it	well.

Meaningful	Error	Messages
We	all	know	how	frustrating	it	is	to	get	error	messages	from	systems	that	say
something	like	“an	unknown	error	has	occurred.”	This	gives	us	absolutely	no
information	at	all	on	how	we	can	coax	the	application	to	behave	better.	Even
worse	is	an	application	I	work	with	regularly,	which	will	return	the	error
message	“Invalid	permissions!”	in	the	event	that	anything	at	all	goes	wrong,
regardless	of	whether	or	not	there	is	a	problem	with	permissions.	This	leads	to
people	looking	in	completely	the	wrong	places	for	solutions	and	eventually
filing	very	frustrated	support	tickets.

Error	messages	should	be	more	than	a	tidy	placeholder	that	the	developer	can
use	to	find	where	in	the	code	she	should	look	when	a	bug	is	reported	(there	is
also	something	to	be	said	in	favor	of	avoiding	any	copying	and	pasting	of
error	messages	for	this	reason).	The	information	that	an	application	returns	in
the	event	of	an	error	is	what	lies	between	the	application,	the	user,	and	the

bug-reporting	software.	Anyone	trying	to	use	an	application	will	have
something	he	is	trying	to	achieve	and	will	be	motivated	to	achieve	that	goal.
If	the	application	can	return	information	about	what	exactly	went	wrong,	then
the	user	will	adjust	his	attempts	and	try	again,	without	bothering	you.	Users
tend	not	to	read	documentation	(developers	in	particular	will	usually	only
read	instructions	once	something	isn’t	working—all	engineers	do	this),	so	the
error	information	is	what	forms	their	experience	of	the	system.

When	something	goes	wrong,	answer	your	user’s	questions:

Was	a	parameter	missing	or	invalid?	Was	there	an	unexpected	parameter?
(A	typo	can	make	these	two	questions	arise	together	very	regularly.)

Was	the	incoming	format	invalid?	Was	it	malformed	or	is	it	in	a	format	the
server	does	not	accept?

Was	a	function	called	that	does	not	exist?	(For	common	mistakes,	you
might	even	suggest	what	the	user	may	have	meant.)

Does	the	system	need	to	know	who	the	user	is	before	granting	access?	Or
is	this	user	authenticated	but	with	insufficient	privileges?

When	it	exists,	give	information	about	which	fields	are	the	problem,	what	is
wrong	with	them,	or	if	something	is	missing.	It	is	also	very	helpful	to	users	if
you	can	collate	the	errors	as	much	as	possible.	Sometimes,	errors	prevent	us
from	proceeding	any	further	with	a	request,	but	if,	for	example,	one	of	the
data	fields	isn’t	valid,	we	could	check	all	the	other	data	fields	and	return	that
information	all	at	once.	This	saves	the	user	from	untangling	one	mistake	only
to	trip	straight	over	the	next	one,	and	also	shows	if	the	errors	are	related	and
could	all	be	fixed	in	one	go.

What	to	Do	When	You	See	Errors
Let	us	consider	our	other	role	in	that	relationship:	that	of	the	consumer	of	a
service.	Many	of	the	APIs	we	work	with	are	not	ones	we	made	ourselves,	so
inevitably	we	will	be	encountering	some	of	the	behaviors	this	chapter
preaches	against.	What	can	we	do	when	this	happens?	The	best	approach	is	to
take	baby	steps.

First,	go	back	to	the	last	known	good	API	call.	At	the	very	early	stages	of
working	with	an	API,	that	means	reading	the	documentation	or	finding	a
tutorial	to	follow,	and	seeing	if	you	can	make	any	calls	at	all	against	this

system.	Some	APIs	offer	what	I	call	a	“heartbeat”	method	and	some	offer	a
status	page.	Look	for	something	that	doesn’t	need	authentication	or	any
complicated	parameters	to	call,	and	which	will	let	you	know	that	the	API	is
actually	working	and	the	problem	is	at	your	end.	Flickr	has	a	particularly
good	example	of	this	with	their	flickr.test.echo	method.

Once	it	has	been	established	that	the	target	API	is	working,	take	a	look	at	the
call	that	was	being	attempted.	Does	it	have	any	required	parameters?	Can	the
call	be	made	in	its	simplest	possible	form,	passing	the	smallest	possible
amount	of	data	with	the	call?	Even	once	things	seem	to	be	improving,	it	is
advisable	to	approach	changes	to	the	API	call	in	small	steps,	changing	data
format	or	adding	a	parameter,	then	checking	that	the	response	comes	back	as
expected.	Just	like	any	kind	of	debugging,	this	iterative	approach	will	help	to
pinpoint	which	change	caused	an	error	to	occur.

While	these	test	requests	are	being	made,	regardless	of	which	tool	is	being
used,	take	care	to	check	the	headers	of	the	response	as	well	as	the	body.	Status
codes,	Content-Type	headers,	cache	information,	and	all	kinds	of	other
snippets	can	be	visible	in	the	header	and	give	clues	about	what	is	happening.

Making	Design	Decisions	for	Robustness
Robustness	is	basically	a	measure	of	reassurance;	how	does	the	API	behave
both	in	good	and	bad	situations?	It	can	be	tricky	to	know	which	design
patterns	are	the	best	ones	to	follow,	especially	if	you	are	new	to	APIs.	In	that
situation,	good	advice	would	be	to	stick	to	the	existing	standards.	These	are
well-known	and	understood,	and	will	make	it	easier	for	people	to	integrate
with	your	API	or	web	service.	Writing	great	documentation	(see	Chapter	14)
is	key	to	creating	a	great	API;	in	general,	anything	without	documentation
will	not	be	a	good	experience	for	anyone	using	it.

Finally,	always	consider	what	should	happen	in	the	event	that	something	goes
wrong.	How	an	API	behaves	in	failure	cases	is	how	your	users	will	know	how
robust	your	service	is,	so	always	aim	for	a	consistent	and	predictable	output,
regardless	of	input.

http://bit.ly/flickr-test-echo

Chapter	14.	Publishing	Your	API

Publishing	an	API	is	about	so	much	more	than	just	making	some	endpoints
available.	In	fact,	it	would	be	easy	to	argue	that	if	you’re	not	going	to	also
provide	tests	and	monitoring	to	ensure	the	quality	of	your	tools,	and	excellent
documentation	so	that	your	users	can	actually	use	them,	then	you	could	save	a
lot	of	time	and	effort	by	not	setting	out	to	build	the	API	in	the	first	place!
Delivering	a	project	is	about	getting	it	done,	but	also	creating	everything	that
goes	with	a	successful	API.	This	chapter	aims	to	cover	what	makes	a
complete	API	and	show	some	ways	you	can	deliver	this.

Documentation	Is	Key
Documentation	is	the	magic	ingredient	that	will	make	your	API	both	useful
and	usable.	Without	it,	nobody	can	begin	to	use	or	understand	the	masterpiece
you	have	built.	With	it,	they	can	build	on	your	offerings	and	create
masterpieces	(or	at	least	reliable	working	software)	of	their	own.	Perhaps	this
chapter	should	have	been	the	first,	not	the	last,	because	it	does	make	up	a
major	part	of	shipping	a	successful	API.

There	are	many	types	of	documentation,	and	a	great	web	service	probably
needs	a	bit	of	all	of	them.	The	following	sections	will	look	at	the	various
kinds	of	documentation	that	are	useful	to	accompany	a	web	service	and	give
some	suggestions	of	tools	you	can	use	to	generate	and	maintain	these.

Overview	Documentation
This	is	the	welcoming	committee	of	your	API;	it	gets	people	over	the
threshold	and	gives	them	confidence	that	they	are	about	to	have	a	good	time.
The	overview	documentation	will	set	the	tone	of	the	API	and	provide	some
pointers	for	where	to	find	more	detailed	information.	It	could	include:

The	main	or	root	endpoint	URL

Information	about	available	formats

Whether	rate	limits	apply	and	if	results	can/should	be	cached

Authentication

Client	libraries

Troubleshooting	and	further	help

In	general,	overview	documentation	shows	the	style	and	layout	of	the	API	and
states	the	protocol(s)	that	are	available.	There	will	probably	be	some	simple
examples	of	requests	and	responses	for	common	operations	to	show	off	the
headers	and	body	formats	that	should	be	needed.	Showing	the	HTTP	for	both
requests	and	responses	is	very	useful,	because	it	means	that	anyone	running
into	problems	can	fire	up	a	debugger	and	compare	their	results	with	the
examples	shown.

The	overview	documentation	will	also	cover	how	users	can	identify
themselves	to	the	system,	if	they	need	to.	Many	services	will	allow	some
public	access,	while	others	will	ask	that	users	link	an	API	key	to	their	login
information	on	a	website.	If	users	need	to	actually	log	in,	this	overview
section	will	cover	how	to	do	this,	and	the	method	will	be	the	same	across	all
the	various	parts	of	the	API.	This	might	be	a	username	and	password,	or	an
OAuth	process	to	follow,	again	with	clear	examples	(bonus	points	if	you	can
manage	a	real	working	guest	account	they	can	try)	showing	which	credentials
go	where,	where	to	get	any	necessary	tokens,	or	how	to	craft	a	URL	to	which
they	can	forward	a	user.

Information	about	error	states	belongs	here	in	the	overview,	since	they	will	be
the	same	throughout	the	application.	If	the	error	states	in	your	system	aren’t
consistent,	then	go	and	read	Chapter	13	before	reading	any	further.	If	you	use
error	codes,	provide	information	about	where	to	find	more	information	about
what	they	mean.	If	there	will	be	information	in	the	status	code	or	headers,	it	is
helpful	to	mention	it	here	for	any	consumers	not	realizing	that	they	need	to
look	beyond	the	body	text	(although	this	should	also	contain	useful
information).	Alongside	the	information	about	errors,	you	may	also	like	to
include	some	support	information.

Generated	API	Documentation
Automatically	generated	documentation	can	be	very	helpful	if	it	contains
enough	information	to	be	useful.	The	main	advantage	of	this	model	is	that	the
documentation	is	maintained	inline	with	the	API	itself	and	is	therefore	more
likely	to	be	updated	regularly.	The	jury	is	still	out	on	whether	outdated
documentation	is	actually	worse	than	no	documentation	at	all—personally	I
think	it	might	be!

In	the	RPC	services,	it	is	common	for	the	entry	points	to	the	service	to	be
contained	in	a	single	class,	and	hopefully	that	class	will	have	inline	code
documentation.	If	it	does,	and	especially	if	this	service	is	for	an	internal	or
technical	audience,	it	may	be	possible	to	generate	API	documentation	using
phpDocumentor	and	supply	this	as	a	reference	to	your	users.	This	describes
all	the	methods	and	parameters	in	the	underlying	class,	but	the	PHP	SOAP
extension,	for	example,	simply	provides	a	very	lightweight	wrapper,	so	the
generated	documentation	for	the	API	of	that	class	may	well	be	a	very	useful
artifact	to	generate	and	share.	Do	take	care,	however,	that	you’re	not	exposing
any	undesirable	information—for	example,	implementation	details	within
protected	methods.

As	an	example,	we’ll	use	the	Event	class	from	Chapter	7	and	apply
phpDocumentor	to	it.	This	tool	is	very	easy	to	get	started	with,	you	can	install
via	PEAR	or	Composer,	but	for	this	example	I	just	grabbed	the
phpDocumentor.phar	from	the	project	website	and	pointed	it	at	the	directory
with	Event.php	in	it.	You	can	see	the	output	in	Figure	14-1.

Figure	14-1.	API	documentation	generated	by	phpDocumentor

This	does	show	which	methods	can	be	called	and	the	documentation	of	both
the	methods	and	their	respective	parameters.	It	won’t	be	useful	in	every
situation,	but	phpDocumentor	is	one	of	the	tools	in	the	proverbial	toolbox	for
offering	documentation	to	users.

Another	way	of	documenting	the	simple	method/parameter	outline	of	SOAP
services	is	to	supply	a	WSDL	file,	which	was	covered	in	Chapter	7.

http://phpdoc.org

For	a	RESTful	service	it	is	harder	to	generate	documentation	from	our	PHP
code,	but	existing	tools	we	have	in	our	project	can	still	be	used	and
maintained	alongside	the	API	by	linking	our	documentation	to	our	other	tools.
There	are	a	number	of	tools	that	allow	you	to	describe	your	service	using
specific	formats,	and	these	can	integrate	with	documentation	tools.	Many	of
those	are	also	interactive	documentation,	which	we’ll	move	on	to	look	at	next.

Interactive	Documentation
Some	of	the	best	documentation	in	existence	for	APIs	allows	a	user	to
actually	try	out	the	request	from	the	documentation	page.	One	great	example
is	Flickr,	which	offers	an	API	Explorer	that	allows	the	user	to	enter	data	into
the	fields	and	then	make	the	request	from	the	online	documentation	itself	(see
Figure	14-2).	This	allows	the	user	to	try	the	feature	as	herself	or	as	an
anonymous	user	and	set	any	of	the	available	parameters	for	a	particular
method.	Flickr	gets	extra	points	for	technical	merit,	as	they	include	some
handy	reference	numbers,	such	as	your	own	user	ID	and	some	recent	photos
uploaded	to	your	account	on	the	same	page.

Figure	14-2.	Flickr	offers	interactive	API	documentation

There	are	plenty	of	tools	available	to	help	create	something	similar	for
another	project.	One	of	my	preferred	approaches	is	to	write	a	traditional
longhand	documentation	with	lots	of	cURL	examples,	but	instead	of	just
displaying	code	samples,	use	hurl.it	to	create	textboxes	where	you	can	edit
and	send	the	cURL	requests	from	the	page	itself.	An	example	from	the

https://www.hurl.it/

Joind.in	API	documentation	is	in	Figure	14-3	and	offers	an	easy	way	to	show
users	how	to	perform	a	specific	request	and	amend	it	themselves.

Figure	14-3.	Using	hurl.it	to	make	a	live	cURL	example	in	API	documentation

Another	tool	that	produces	interactive	documentation	is	the	I/O	Docs	tool.	It’s
written	in	Node.js	and	the	code	is	open	source	and	available	on	GitHub,	so
you	can	amend	it	as	you	need	to.	You	create	a	configuration	file	describing
how	your	API	can	be	used,	which	URLs	can	be	called,	what	format	and
parameters	to	use,	and	so	on.	Once	you	are	done,	I/O	Docs	creates	a	page
showing	these	available	actions	and	parameters	as	a	web	form,	and	allows
users	to	click	the	alluringly	named	“Try	it!”	button	to	try	making	a	request
and	viewing	the	response.	This	is	used	by	a	few	online	APIs;	for	example,
Klout	(Twitter	metric	tools)	uses	it	to	document	its	API,	as	you	can	see	in
Figure	14-4.	A	tool	like	this	is	simple	to	set	up	and	can	be	hosted	either	on
your	own	servers	or	on	a	cloud	hosting	provider	such	as	Heroku.

To	use	I/O	Docs	for	your	own	project,	you	will	need	to	create	a	configuration
file	describing	the	endpoints	for	your	API,	which	parameters	should	be	sent,
which	format	and	authentication	should	be	used,	and	so	on.	The	project	ships
with	examples	for	Klout	and	other	well-known	APIs,	but	essentially	it’s	a
JSON	format.

https://github.com/mashery/iodocs
http://developer.klout.com/iodocs

Figure	14-4.	Klout	uses	I/O	Docs	to	create	its	interactive	documentation

API	Description	Languages
The	I/O	Docs	tool	and	the	idea	that	you	can	just	describe	your	API	in	a
known	format,	then	pass	that	format	to	an	external	tool,	is	an	approach	that
we’re	seeing	more	and	more	often,	with	hosted	or	cloud	tools	as	well	as
offerings	for	you	to	host	yourself.	This	approach	can	be	an	excellent	way	of
maintaining	documentation	because	it	allows	you	to	keep	the	description	files
in	the	same	repository	as	the	API	source	code—so	you’d	expect	to	see	for	any
API	change	a	corresponding	change	in	the	API	description	files,	therefore
helping	to	keep	the	two	in	sync.	When	you	deploy	a	new	version	of	your	API,
your	build	tools	can	also	ship	the	updated	API	description	file	to	the	tools	that
use	it.

There	are	a	number	of	competing	formats	around,	and	they’re	all	pretty
straightforward	to	work	with.	In	particular	you	might	like	to	look	at	API
Blueprint,	which	is	a	specific	markdown	format	describing	an	API.	In	fact,
you	can	create	the	description	and	use	apiary.io	to	mock	your	API	to	see	how
it	works	out	before	you	even	build	it!	There	are	a	number	of	other	tools	that
integrate	with	API	Blueprint	and	the	list	is	growing	all	the	time—with	your
API	described,	you	can	expect	to	find	tools	to	generate	documentation,
wrapper	classes,	tests,	and	various	other	artifacts	from	the	API	Blueprint.

Another	markdown-based	API	description	format	is	RAML	(it	stands	for

https://apiblueprint.org/
http://apiary.io
http://raml.org/index.html

RESTful	API	Modeling	Language),	which	has	various	tools	associated	with	it
but	which	is	widely	used	with	APIMatic	to	create	SDK	libraries	for
developers	to	quickly	integrate	an	API	into	their	project.	The	markdown
formats	also	serve	as	a	detailed	technical	specification	in	their	own	right,
which	can	make	them	very	useful	to	produce	as	part	of	a	project	whether	your
own	tooling	integrates	closely	with	them	or	not.

Finally,	Swagger	is	also	worth	a	mention	although	it	has	rather	a	different	feel
as	it	uses	a	JSON	format	so	it’s	more	machine-readable	than	human-readable.
Just	like	the	markdown	formats	though,	once	you	have	recorded	the	metadata
about	your	API,	a	raft	of	tools	becomes	available	for	users	to	explore	and
work	with	your	API.

Automated	Testing	Tools
In	Chapter	10	we	saw	good	ways	to	store,	alter,	and	replay	requests	against	an
API.	Many	developers	find	it	helpful	to	keep	a	library	of	useful	API	calls
handy	and	perhaps	even	to	run	these	as	a	test	suite.	In	fact	we	can	apply	much
of	what	we	know	about	automated	testing	of	websites	to	our	APIs.
Techniques	you	are	probably	already	using	such	as	unit	testing	are	absolutely
applicable	here.	It’s	also	useful	to	have	some	integration	tests	that	make
HTTP	requests	against	your	API	and	check	that	everything	responds	as	you’d
expect	it	to;	if	not,	then	you	know	you’ve	made	an	inadvertent	change	to	your
application.	There	are	many,	many	different	tools	you	could	use	for	this	so
I’ve	picked	two	to	show	you	as	examples.

NOTE
While	it	might	seem	a	bit	odd	to	have	JavaScript	tools	in	a	PHP	book,	the	reality	is	that
very	many	of	the	best	tools	in	this	space	are	written	in	node.js!	For	this	section	on	frisby.js
you	will	need	both	node.js	and	its	package	manager	npm	installed	on	your	system.

We’ll	start	with	frisby.js	which,	as	the	name	suggests,	is	a	JavaScript	tool.
Frisby	is	a	lightweight	extension	to	the	node.js	testing	tool	jasmine,	which	is
aimed	at	making	it	easier	to	test	API	calls	and	their	responses.	You	can	see	a
snippet	of	a	frisby.js	test	suite	in	Example	14-1;	you	cue	up	each	request	and
can	parse	the	response	to	use	variables	for	your	next	request.

Example	14-1.	Use	frisby.js	to	test	APIs
function testNonexistentUser() {

 frisby.create('Non-existent user')

 .get(baseURL + "/v2.1/users/100100100")

https://apimatic.io/
http://swagger.io
https://nodejs.org/
https://www.npmjs.com/
http://frisbyjs.com
https://www.npmjs.com/package/jasmine-node

 .expectStatus(404)

 .expectHeader("content-type", "application/json; charset=utf8")

 .expectJSON(["User not found"])

 .toss();

}

function testExistingUser() {

 frisby.create('Existing user')

 .get(baseURL + "/v2.1/users/1")

 .expectStatus(200)

 .expectHeader("content-type", "application/json; charset=utf8")

 .afterJSON(function(allUsers) {

 if (typeof allUsers.users == "object") {

 for (var u in allUsers.users) {

 var user = allUsers.users[u];

 datatest.checkUserData(user);

 }

 }

 })

 .toss();

}

The	example	shown	checks	how	the	API	will	respond	when	a	user	is
requested,	both	in	the	case	where	the	user	is	known	to	exist,	and	in	the	case
where	the	user	is	known	to	not	exist.	To	run	these	tests,	we	add	some
configuration	for	where	to	find	the	API	endpoint	and	create	a	file	outlining
which	functions	to	call,	as	shown	in	Example	14-2.

Example	14-2.	Set	up	frisby.js	to	run	tests	(my_spec.js)
var apitest = require('./api_read');

var baseURL;

baseURL = "http://api.dev.joind.in";

apitest.init(baseURL);

apitest.testNonexistentUser();

apitest.testExistingUser();

Use	the	installation	instructions	on	frisbyjs.com	to	get	frisby	installed	and
then	you	can	run	this	example	yourself.	The	output	is	pretty	much	as	you’d
expect,	just	a	few	lines	reporting	the	outcome:

$ jasmine-node my_spec.js

..

Finished in 0.111 seconds

2 tests, 23 assertions, 0 failures, 0 skipped

http://frisbyjs.com

This	also	makes	it	very	easy	to	include	in	a	build	process.	API	tests,	like
integration	tests,	can’t	be	run	on	a	codebase	until	it	is	deployed	and	can	be
reached	via	HTTP.	I	have	the	test	runs	set	up	as	Jenkins	jobs	so	that	it	is
super-easy	to	run	the	tests	against	either	the	test	or	live	platforms
(nondestructive	tests	only!)	when	you	have	just	deployed	a	new	version.	It	is
also	well	worth	the	investment	of	time	to	make	these	tests	trivially	easy	to	run
on	development	platforms	so	that	developers	can	very	easily	verify	they
haven’t	accidentally	broken	anything—as	well	as	testing	their	own	new	tests
alongside	their	features	of	course.

A	similar	approach	might	be	to	create	a	new	PHPUnit	test	suite	to	include	in
your	application	and	have	it	just	make	API	calls	and	check	the	responses
(remember	to	check	what	happens	in	the	failure	case	as	well),	using	a	library
such	as	Guzzle	that	has	been	used	elsewhere	in	the	book.	One	advantage	of
this	is	that	you	probably	already	have	PHPUnit	in	use	in	your	project	for	unit
tests,	so	it	saves	learning	another	tool	for	other	tests	such	as	API	or	functional
integration	tests.

Another	alternative	for	API	testing	is	to	use	a	hosted	tool.	For	this	example,
I’ve	chosen	Runscope,	as	I	find	it	very	easy	to	get	started	and	it	tells	me	very
clearly	exactly	what	is	wrong	if	something	does	break.	The	way	it	works	is
that	you	create	some	tests,	which	can	be	whole	sequences	of	API	requests,
with	variables	fetched	and	stored	between	them,	and	save	them.	Runscope
will	then	allow	you	to	use	this	interface	to	run	the	tests,	but	can	also	run	them
periodically	from	a	variety	of	locations	around	the	world,	allowing	you	to
check	your	performance	from	a	selection	of	geographical	regions.

I’ve	set	up	a	test	that	just	creates	a	user	and	then	fetches	the	new	record;	you
can	see	the	configuration	in	Figure	14-5.	I	have	it	set	to	run	automatically	and
email	me	if	there	are	any	failures;	I	only	visit	the	site	to	add	more	tests	or	to
investigate	in	the	event	of	a	failure.

Having	automated	API	testing,	whether	on	your	own	build	servers	or	from
another	service,	is	really	valuable	to	make	sure	that	there	are	no	regressions,
bad	data,	or	other	issues	cropping	up	in	your	application.	You	can	also	use
standard	monitoring	and	health-check	tools	to	make	sure	that	your	APIs	are	as
available	as	they	should	be,	or	to	alert	you	if	there	are	any	problems.

https://www.runscope.com

Figure	14-5.	Configuring	a	Runscope	test

Tutorials	and	the	Wider	Ecosystem
Documentation	is	about	so	much	more	than	lists	of	accessible	functionality.	It
is	about	showing	how	the	API	actually	solves	problems,	and	how	it	looks
when	it	is	used	in	the	real	world.	A	common	criticism	of	software	library
documentation	is	that,	while	each	function	is	documented,	it	can	be	very	hard
to	know	which	function	you	want	to	use.	Giving	practical	tutorial	examples	is
really	useful,	even	when	they	are	not	exactly	what	a	user	was	looking	for.	In
creating	these	tutorials	you	have	essentially	two	choices:	write	them	yourself,
or	keep	an	eye	out	and	encourage	your	community	to	contribute.

When	writing	tutorials,	there	are	some	key	points	that	can	help	create	useful,
readable	additions	to	your	existing	documentation.	Focus	in	each	tutorial	on
just	one	particular	skill	or	technique	(for	example,	I	wrote	a	very	specific	blog
post	for	interacting	with	JIRA’s	API).	If	you	need	to	refer	to	other	skills,	then
link	out	to	documentation	on	doing	that	(how	to	set	up	your	SSH	keys,	how	to
configure	your	editor,	etc.).	Sometimes	this	means	that	writing	one	tutorial
can	mean	you	end	up	writing	a	miniseries	with	three	or	four	articles	in	it	to
produce	the	content	that	works	as	a	whole.	Splitting	things	up	into	focused
chunks	both	allows	the	user	to	more	easily	find	what	they	need	but	also	keeps
the	articles	short	enough	that	an	average	user	stands	a	chance	of	getting	to	the
end.	The	other	thing	to	remember	is	that	more	information	is	always	helpful.
So	spell	it	out	with	detailed	examples,	full	code	samples	(with	syntax

http://bit.ly/jira-rest-api

highlighting),	screenshots,	and	plenty	of	subheadings	to	break	up	long	reams
of	text.	It’s	hard	to	know	which	small	detail	a	user	might	have	missed;	and
more	information	helps	them	to	put	the	clues	together	and	achieve	their	goals.

Make	sure	your	users	know	where	they	can	go	for	support;	then	go	and	find
where	they	actually	ask	for	help.	While	you	may	set	up	user	forums	to	help
people	with	their	queries	and	make	those	details	public	so	that	other	people
can	find	answers	to	common	questions,	users	often	don’t	follow	the	paths	you
set	for	them.	Sometimes	it	is	necessary	to	“pave	the	cowpaths”	and	follow
where	they	lead.	To	this	end,	set	up	a	search	alert	for	your	product	or
application	name	with	a	search	engine,	and	make	sure	that	when	questions	do
pop	up	in	other	places	(such	as	StackOverflow),	someone	is	able	to	respond.

Having	documentation	outside	of	your	own	control	is	a	very	positive	thing,
although	it	can	feel	a	little	frightening	at	first.	Users	are	the	word	of	mouth
that	spread	influence,	and	often	they	can	become	your	biggest	advocates	and
very	effectively	help	one	another.	Welcome	those	users	who	contribute	to	the
wider	project	and	credit	them	where	you	can;	documentation	from	any	angle
is	a	resource	that’s	valuable	to	any	project	and	it’s	vital	for	anything	public.	It
is	referred	to	as	the	“ecosystem”	because	it’s	the	world	your	application	exists
in.

http://stackoverflow.com

Appendix	A.	A	Guide	to
Common	Status	Codes

This	section	outlines	some	of	the	most	common	status	codes	in	use	in	HTTP
APIs,	their	meaning,	and	some	notes	about	when	they	can	be	used.

Code Meaning Notes

100 Continue For	a	large	request,	a	client	can	send	just	the	headers	and	Expect: 100-
continue	as	an	additional	header.	If	the	100	status	is	received	in	response,
the	client	can	then	send	the	request	as	normal.	Think	of	it	as	“go	ahead”—
in	fact,	many	libraries	will	handle	this	for	you	and	make	the	second
request	without	further	prompting.

200 OK This	is	good	news;	everything	worked	as	expected.

201 Created A	new	resource	was	created.	This	is	often	accompanied	by	a	Location
header	or	a	representation	of	the	new	resource	in	the	body	of	the	request.

202 Accepted This	is	useful	if	something	is	taken	to	be	actioned	later,	such	as	being
placed	on	a	queue	for	asynchronous	processing.

204 No	Content The	request	was	successful,	but	there	is	nothing	to	return.	Perhaps	this	is
the	result	of	a	DELETE	request.

301 Moved
Permanently

The	content	is	at	a	new	location,	and	this	is	a	permanent	change.	Links	to
the	old	URL	must	be	updated,	and	this	change	will	often	be	cached	for
long	periods.

302 Found This	is	much	like	a	200,	but	the	content	was	not	at	the	location	specified.
Usually	this	is	seen	when	an	application	uses	rewrite	rules.

304 Not	Modified This	is	sent	in	response	to	a	request	that	included	information	such	as	an
ETag	or	Last-Modified,	which	indicates	that	the	resource	is	cached	and
specifies	which	version	the	client	has.	This	status	code	means	“use	the	one
you	have”	and	is	useful	to	avoid	repeatedly	transferring	large
representations	that	don’t	change.

400 Bad	Request This	is	the	general	“something	went	wrong”	status.	Sometimes	there	may
be	no	more	detail	to	offer;	at	other	times,	you	may	choose	not	to	transmit
anything	more.

401 Unauthorized Credentials	are	needed	in	order	to	access	this	resource.

403 Forbidden This	contrasts	with	401	and	means	that	any	credentials	given	were	not
sufficient	to	access	this	resource.

404 Not	Found A	request	was	made	for	something	the	server	doesn’t	have	or	doesn’t
know	how	to	provide.	Alternatively,	a	request	was	made	for	a	resource
that	isn’t	available	to	this	user	and	the	404	doesn’t	leak	information	about
the	potential	existence	of	such	a	resource.

405 Method	Not
Allowed

The	verb	used	to	access	this	URL	isn’t	supported—this	is	useful	if,	for
example,	you	don’t	allow	updates	to	a	resource	but	a	PUT	request	was
received.

406 Not
Acceptable

The	server	cannot	generate	a	response	in	accordance	with	the	Accept
headers	that	came	with	the	request.

409 Conflict There	is	a	mismatch	between	versions	of	resources,	such	as	an	incoming
update	when	the	resource	has	changed	in	the	meantime.

410 Gone A	resource	did	exist,	but	doesn’t	any	more.	Many	services	will	simply
return	a	404	here,	or	a	409	may	also	be	appropriate,	particularly	if
something	is	trying	to	perform	an	update	on	the	resource.

415 Unsupported
Media	Type

The	media	type	specified	in	the	Content-Type	header	isn’t	understood	by
this	server.

429 Too	Many
Requests

Usually	used	with	rate-limiting	schemes,	although	Twitter	uses	420
“Enhance	Your	Calm”	for	this	purpose.

500 Internal
Server	Error

An	unhandled	error	occurred,	and	is	the	fault	of	the	server	rather	than	the
client.	In	PHP	applications,	PHP	has	usually	segfaulted,	leaving	the	web
server	unable	to	return	any	useful	information.

501 Not
Implemented

The	server	can’t	handle	this	request;	it	may	also	indicate	that	a
documented	feature	is	currently	still	under	construction.

502 Bad	Gateway This	indicates	that	a	proxy	server	of	some	sort	has	failed,	such	as	a	load
balancer.

503 Service
Unavailable

This	is	usually	seen	when	a	server	is	temporarily	offline,	such	as	during	a
planned	maintenance	window.	Often,	it	really	means	“try	again	later”	but
it	also	discourages	caching,	and	is	particularly	useful	to	stop	search
engines	from	finding	and	caching	your	temporary	holding	page.

For	a	full	list	of	status	codes,	there	is	an	excellent	reference	on	Wikipedia.

http://bit.ly/wiki-status-codes

Appendix	B.	Common	HTTP
Headers

Here	we	look	at	a	series	of	often-used	headers,	whether	they	are	request	or
response	headers,	and	how	they	can	be	used.

Header Request Response Notes

Accept yes This	shows	the	formats,	with	an	indication	of
preference,	that	the	requesting	client	can	understand.
Closely	related	are	the	additional	headers	Accept-
Charset,	Accept-Encoding,	and	Accept-Language.

Authorization yes This	is	free-form	information	to	prove	a	user’s
identity.	This	is	used	in	basic	authentication,	digest
authentication,	OAuth,	and	so	on;	each	has	their	own
format	of	exactly	what	goes	in	the	header.

Cookie yes Cookies	are	key/value	pairs	sent	with	each	request,
separated	by	a	semicolon.	This	is	the	sister	header	to
Set-Cookie.

Content-
Length

yes yes Any	request	or	response	with	body	content	should	also
have	the	Content-Length	in	bytes	in	the	header;	often
your	HTTP	library	will	calculate	this	for	you.

Content-Type yes yes Any	request	or	response	with	body	content	should
include	the	Content-Type	header	to	provide
information	about	the	format	of	that	body	content.	As
with	the	Accept	headers,	Content-Encoding	and
Content-Language	may	also	be	sent	to	give
information	about	the	format	of	the	content.

ETag yes This	is	an	identifier	for	the	version	of	the	resource	that
is	being	returned.	If	the	client	caches	the	resource,	this
information	can	be	used	with	If-None-Match	to	work
out	whether	a	resource	has	been	updated	or	if	the
previous	version	can	be	used.

If-Modified-
Since and If-
None-Match

yes This	informs	the	server	that	there	is	a	cached	copy	of
this	resource	and	allows	the	server	to	return	a	304
status	code	if	that	resource	is	still	valid.

Last-Modified yes This	provides	information	about	when	this	resource
was	last	updated;	the	client	can	use	this	to	check	if	it
has	the	most	recent	version	of	the	resource	upon
subsequent	requests.

Location yes This	provides	information	about	a	location	and	is	used
either	with	300-series	status	codes	when	redirecting,
or	with	201/202	to	give	information	about	the	location
of	a	new	resource.

Set-Cookie yes This	sends	cookies	to	be	stored	on	the	client	and	sent
back	in	a	Cookie	header	with	later	requests.

User-Agent yes This	provides	information	about	the	client	software
making	the	request.

Index

A
Accept	header,	Headers	for	Content	Negotiation-Demonstrating	Accept
Headers	with	cURL

demonstrating	with	cURL,	Demonstrating	Accept	Headers	with	cURL

parsing,	Parsing	an	Accept	Header-Parsing	an	Accept	Header

access	token	generator,	Easy	Command-Line	JSON

altering	collection	view,	RESTful	URLs

API	Blueprint,	API	Description	Languages

APIs

and	cookies,	Cookies	and	APIs

and	hypermedia,	Hypermedia	for	Easy	API	Navigation

and	nested	data,	Nested	Data	or	Many	Round	Trips

automated	testing	tools,	Automated	Testing	Tools-Automated	Testing
Tools

consuming	JSON	APIs,	Consuming	JSON	APIs

consuming	XML	APIs,	Consuming	XML	APIs-Flickr’s	XML	API

customizable	experiences	for,	Customizable	Experiences-Customizable
Experiences

data	formats	and	media	types	for,	Data	Formats	and	Media	Types

data	presentation,	How	to	Present	API	Data-Data	Formats	and	Media
Types

debugging	(see	maintainable	web	services)

defaults	for,	Pick	Your	Defaults

description	languages,	API	Description	Languages

documentation	for,	Documentation	Is	Key-Interactive	Documentation

error	handling	in,	Error	Handling	in	APIs

Flickr’s	XML	API,	Flickr’s	XML	API-Flickr’s	XML	API

generated	documentation,	Generated	API	Documentation-Generated
API	Documentation

interactive	documentation,	Interactive	Documentation

overview	documentation,	Overview	Documentation

publishing	your	own,	Publishing	Your	API-Tutorials	and	the	Wider
Ecosystem

tutorials,	Tutorials	and	the	Wider	Ecosystem

authentication

HTTP	Basic	authentication,	HTTP	Basic	Authentication

HTTP	Digest	authentication,	HTTP	Digest	Authentication

OAuth,	OAuth

Authorization	header,	Securing	Requests	with	the	Authorization	Header-
OAuth,	Consuming	JSON	APIs

automated	testing	tools,	Automated	Testing	Tools-Automated	Testing
Tools

automatically	generated	documentation,	Generated	API	Documentation-
Generated	API	Documentation

B
browser	tools,	Browser	Tools

C
caching,	header,	Caching	Headers

case,	consistency	of,	Consistent	and	Meaningful	Naming

Charles,	Inspect,	Edit,	Repeat,	and	Share	Requests-Inspect,	Edit,	Repeat,
and	Share	Requests

Chrome,	Browser	Tools,	Browser	Tools

clients

consistent	output	formats	for,	Consistent	Output	Formats-Consistent
Output	Formats

identifying	with	User-Agent	header,	Identify	Clients	with	User-Agent

PHP	and,	Clients	and	Servers

PHP	client	and	server	with	WSDL,	PHP	Client	and	Server	with	WSDL

PHP	SOAP	client,	PHP	SOAP	Client

collection	(defined),	REST

command-line	HTTP,	Command-Line	HTTP-Command-Line	HTTP

command-line	JSON,	Easy	Command-Line	JSON

Composer,	Doing	HTTP	with	PHP

Content-Type	header,	Headers	for	Content	Negotiation

contexts,	Doing	HTTP	with	PHP

cookies,	Command-Line	HTTP,	Cookies-Cookies	and	APIs

and	APIs,	Cookies	and	APIs

defined,	Cookies

making	requests	with,	Making	Requests	with	Cookies

mechanics	of,	Cookie	Mechanics-Cookie	Mechanics

reading/writing,	Reading	and	Writing	Cookies

CRUD	(Create,	Read,	Update,	Delete)	functionality,	REST

CSRF	(Cross-Site	Request	Forgery),	Making	POST	Requests

CULOPT_HTTPHEADER	option,	Consuming	JSON	APIs

curies,	Data	Formats	and	Media	Types

cURL

and	debug	output,	Debug	Output	as	a	Tool-Debug	Output	as	a	Tool

demonstrating	Accept	header	with,	Demonstrating	Accept	Headers
with	cURL

graphical	alternatives	to,	Graphical	cURL	Alternatives

curl	command,	Update	a	Resource	with	PUT

cURL	command-line	tool,	Command-Line	HTTP-Command-Line	HTTP

curl_setopt()	function,	Doing	HTTP	with	PHP

custom	headers,	Custom	Headers

D

data	structures,	Predictable	Structures

data	types,	for	services,	Data	Formats	and	Media	Types

debugging	(see	maintainable	web	services)

default	values,	for	APIs,	Pick	Your	Defaults

DELETE	verb,	Using	Other	HTTP	Verbs,	DELETE	a	Resource

documentation

and	API	description	languages,	API	Description	Languages

automatically	generated,	Generated	API	Documentation-Generated
API	Documentation

for	APIs,	Documentation	Is	Key-Interactive	Documentation

interactive,	Interactive	Documentation

overview	type,	Overview	Documentation

tutorials,	Tutorials	and	the	Wider	Ecosystem

DOM,	XML	in	PHP

dumpcap	command,	Inspect	HTTP	Traffic	with	Wireshark

E
ecosystem,	documentation	and,	Tutorials	and	the	Wider	Ecosystem

error	handling

in	APIs,	Error	Handling	in	APIs

what	to	do	when	you	see	errors,	What	to	Do	When	You	See	Errors

with	Exception	class,	Error	Handling	with	PHP	Exceptions-Error
Handling	with	PHP	Exceptions

error	logging

effective	techniques	for,	Effective	Logging	Techniques-Error	Logging
in	PHP	Applications	with	Monolog

libraries	for,	Effective	Logging	Techniques

Monolog	for,	Error	Logging	in	PHP	Applications	with	Monolog

error	messages,	meaningful,	Meaningful	Error	Messages

errors,	user,	Predictable	Structures

error_log()	function,	Effective	Logging	Techniques

ETag	header,	Caching	Headers

Exception	class,	Error	Handling	with	PHP	Exceptions-Error	Handling
with	PHP	Exceptions

exception	handlers,	Example	Project:	The	Wishlist

exit()	function,	Debug	Output	as	a	Tool

F
FireBug,	Browser	Tools

Firefox,	Browser	Tools,	Graphical	cURL	Alternatives

Flickr

API	using	XML,	Flickr’s	XML	API-Flickr’s	XML	API

interactive	API	documentation,	Interactive	Documentation

Formatter	class,	Consistent	Output	Formats

frisby.js,	Automated	Testing	Tools

G
generated	documentation,	Generated	API	Documentation-Generated
API	Documentation

GET	requests

examples,	Doing	HTTP	with	PHP-Doing	HTTP	with	PHP

for	fetching	representations	of	resources,	Fetch	a	Resource	or
Collection	with	GET-Fetch	a	Resource	or	Collection	with	GET

making,	Making	GET	Requests

serving,	Serving	GET	Requests

gists,	Consuming	JSON	APIs

GitHub,	GitHub’s	Webhooks-GitHub’s	Webhooks,	Nested	Data	or	Many
Round	Trips

Guzzle,	Doing	HTTP	with	PHP,	Doing	HTTP	with	PHP,	Proxy	Settings
for	Guzzle

H

HAL	(Hypertext	Application	Language),	Data	Formats	and	Media	Types

headers,	Headers-Custom	Headers

Accept,	Headers	for	Content	Negotiation-Demonstrating	Accept
Headers	with	cURL

and	HTTP	Basic	authentication,	HTTP	Basic	Authentication

and	HTTP	Digest	authentication,	HTTP	Digest	Authentication

and	OAuth,	OAuth

Authorization,	Securing	Requests	with	the	Authorization	Header-
OAuth

caching,	Caching	Headers

common,	Common	HTTP	Headers

Content-Type,	Headers	for	Content	Negotiation

custom,	Custom	Headers

for	content	negotiation,	Headers	for	Content	Negotiation-
Demonstrating	Accept	Headers	with	cURL

request,	Request	and	Response	Headers

response,	Request	and	Response	Headers

User-Agent,	Identify	Clients	with	User-Agent

HTML,	data	presentation	with,	How	to	Present	API	Data

HTTP,	HTTP-Doing	HTTP	with	PHP

and	browser	tools,	Browser	Tools

clients	and	servers,	Clients	and	Servers

command-line,	Command-Line	HTTP-Command-Line	HTTP

making	requests,	Making	HTTP	Requests-Doing	HTTP	with	PHP

request	handling	with	PHP,	Doing	HTTP	with	PHP-Doing	HTTP	with
PHP

tools	(see	HTTP	tools)

verbs	(see	HTTP	verbs)

HTTP	Basic	authentication,	HTTP	Basic	Authentication

HTTP	Digest	authentication,	HTTP	Digest	Authentication

HTTP	headers	(see	headers)

HTTP	tools,	HTTP	Tools-Finding	the	Tool	for	the	Job

easy	command-line	JSON,	Easy	Command-Line	JSON

for	editing	network	settings,	Inspect,	Edit,	Repeat,	and	Share	Requests

for	inspecting	traffic,	Inspect,	Edit,	Repeat,	and	Share	Requests-
Inspect,	Edit,	Repeat,	and	Share	Requests

for	sharing	sessions,	Inspect,	Edit,	Repeat,	and	Share	Requests

graphical	cURL	alternatives,	Graphical	cURL	Alternatives

ngrok,	Tunnel	Local	Traffic	Remotely	with	ngrok-Tunnel	Local	Traffic
Remotely	with	ngrok

proxy	settings	for	stream	handling,	Proxy	Settings	for	HTTP	Stream
Handling

proxying	PHP	applications,	Proxying	PHP	Applications

Wireshark,	Inspect	HTTP	Traffic	with	Wireshark-Inspect	HTTP
Traffic	with	Wireshark

HTTP	verbs,	HTTP	Verbs-Using	Other	HTTP	Verbs

for	handling	POST	requests,	Handling	POST	Requests

for	making	GET	requests,	Making	GET	Requests

for	making	POST	requests,	Making	POST	Requests

for	serving	GET	requests,	Serving	GET	Requests

various,	Using	Other	HTTP	Verbs-Using	Other	HTTP	Verbs

HTTPie,	Command-Line	HTTP-Command-Line	HTTP,	Easy
Command-Line	JSON

HttpRequester,	Graphical	cURL	Alternatives

HTTPResponder,	Making	HTTP	Requests

http_build_query()	function,	Making	POST	Requests

Hubot,	GitHub’s	Webhooks

hypermedia

for	easy	API	navigation,	Hypermedia	for	Easy	API	Navigation

in	RESTful	services,	Resource	Structure	and	Hypermedia-Resource
Structure	and	Hypermedia

I
I/O	Docs,	Interactive	Documentation

idempotency,	DELETE	a	Resource

interactive	documentation,	Interactive	Documentation

Internet	Assigned	Numbers	Authority,	Making	HTTP	Requests

Internet	Explorer,	Browser	Tools

J
JavaScript	tools,	Automated	Testing	Tools

Jenkins,	GitHub’s	Webhooks

Joind.in,	Nested	Data	or	Many	Round	Trips

jq,	Easy	Command-Line	JSON

JSON,	JSON-Consuming	JSON	APIs

and	data	presentation,	How	to	Present	API	Data

and	JSONSerializable	interface,	The	JSONSerializable	Interface

as	data	format,	Data	Formats	and	Media	Types

command-line,	Easy	Command-Line	JSON

consuming	JSON	APIs,	Consuming	JSON	APIs

handling	with	PHP,	Handling	JSON	with	PHP-The	JSONSerializable
Interface

when	to	choose,	When	to	Choose	JSON

JSON-API,	Data	Formats	and	Media	Types

JSONSerializable	interface,	The	JSONSerializable	Interface

jsonSerialize()	method,	The	JSONSerializable	Interface

json_decode()	function,	Handling	JSON	with	PHP

L
Last-Modified	header,	Caching	Headers

leaking	information,	Fetch	a	Resource	or	Collection	with	GET

libraries,	logging,	Effective	Logging	Techniques

LiveHTTPHeaders,	Browser	Tools

logging

effective	techniques	for,	Effective	Logging	Techniques-Error	Logging
in	PHP	Applications	with	Monolog

libraries	for,	Effective	Logging	Techniques

Monolog	for,	Error	Logging	in	PHP	Applications	with	Monolog

M
Magento,	SOAP

maintainable	web	services,	Maintainable	Web	Services-Error	Handling
with	PHP	Exceptions

consistent	output	formats	for,	Consistent	Output	Formats-Consistent
Output	Formats

debug	output	as	a	tool,	Debug	Output	as	a	Tool-Debug	Output	as	a
Tool

effective	logging	techniques	for,	Effective	Logging	Techniques-Error
Logging	in	PHP	Applications	with	Monolog

error	handling	with	PHP	exceptions,	Error	Handling	with	PHP
Exceptions-Error	Handling	with	PHP	Exceptions

sample	API	application,	Sample	API	Application-Sample	API
Application

man	in	the	middle	attack,	Inspect,	Edit,	Repeat,	and	Share	Requests

mitmproxy,	Inspect,	Edit,	Repeat,	and	Share	Requests

ModHeader,	Browser	Tools

Monolog,	Error	Logging	in	PHP	Applications	with	Monolog

N
nested	data,	Nested	Data	or	Many	Round	Trips

network	protocol	analyzer,	Inspect	HTTP	Traffic	with	Wireshark

ngrok,	Tunnel	Local	Traffic	Remotely	with	ngrok-Tunnel	Local	Traffic

Remotely	with	ngrok

node.js,	Automated	Testing	Tools

O
OAuth,	OAuth

Opera,	Browser	Tools

output	handlers,	Example	Project:	The	Wishlist

overview	documentation,	Overview	Documentation

P
pastebins,	Consuming	JSON	APIs

Paw,	Graphical	cURL	Alternatives

per-repository/per-organization	webhooks,	GitHub’s	Webhooks

PHP,	reasons	for	using,	Preface

phpDocumentor,	Generating	a	WSDL	File	from	PHP,	Generated	API
Documentation

PHPUnit,	Automated	Testing	Tools

Pinterest,	Easy	Command-Line	JSON

POST	requests,	Doing	HTTP	with	PHP

and	-X	switch,	Command-Line	HTTP,	Command-Line	HTTP

and	error	handling,	Error	Handling	with	PHP	Exceptions

and	JSON,	Consuming	JSON	APIs

for	resource	creation	in	RESTful	services,	Create	Resources	with
POST-Create	Resources	with	POST

handling,	Handling	POST	Requests

making,	Making	POST	Requests

Postman,	Graphical	cURL	Alternatives-Graphical	cURL	Alternatives

pretty	print	mode,	Easy	Command-Line	JSON

proxying

Guzzle	settings,	Proxy	Settings	for	Guzzle

HTTP	stream	handling	settings,	Proxy	Settings	for	HTTP	Stream

Handling

of	PHP	applications,	Proxying	PHP	Applications

with	Charles,	Inspect,	Edit,	Repeat,	and	Share	Requests-Inspect,	Edit,
Repeat,	and	Share	Requests

with	mitmproxy,	Inspect,	Edit,	Repeat,	and	Share	Requests

publishing

APIs,	Publishing	Your	API-Tutorials	and	the	Wider	Ecosystem

webhooks,	Publishing	Your	Own	Webhooks

PUT	verb,	Using	Other	HTTP	Verbs,	Update	a	Resource	with	PUT

Q
query	strings,	HTTP

R
RAML	(RESTful	API	Modeling	Language),	API	Description	Languages

realms,	HTTP	Basic	Authentication

request,	HTTP

securing	with	Authorization	header,	Securing	Requests	with	the
Authorization	Header-OAuth

with	cookies,	Making	Requests	with	Cookies

request	bins,	Making	HTTP	Requests

request	headers,	Request	and	Response	Headers

resources,	in	RESTful	services,	REST

deleting,	DELETE	a	Resource

structure	and	hypermedia,	Resource	Structure	and	Hypermedia-
Resource	Structure	and	Hypermedia

using	POST	to	create,	Create	Resources	with	POST-Create	Resources
with	POST

using	PUT	to	update,	Update	a	Resource	with	PUT

response,	HTTP

response	headers,	Request	and	Response	Headers

REST	(REpresentational	State	Transfer),	REST-RESTful	Versus	Useful

and	RESTful	URLs,	RESTful	URLs

basic	RESTful	server	project,	Build	the	Basic	RESTful	Server-
DELETE	a	Resource

resource	structure	and	hypermedia,	Resource	Structure	and
Hypermedia-Resource	Structure	and	Hypermedia

RESTful	vs.	useful,	RESTful	Versus	Useful

RESTful	server	project,	Build	the	Basic	RESTful	Server-DELETE	a
Resource

deleting	resources,	DELETE	a	Resource

resource	creation	with	POST,	Create	Resources	with	POST-Create
Resources	with	POST

using	GET	to	fetch	resource/collection,	Fetch	a	Resource	or	Collection
with	GET-Fetch	a	Resource	or	Collection	with	GET

using	PUT	to	update	resource,	Update	a	Resource	with	PUT

wishlist,	Example	Project:	The	Wishlist-Example	Project:	The	Wishlist

RESTful	services

documentation	generation,	Generated	API	Documentation

function	names	in,	Consistent	and	Meaningful	Naming

RESTful	URLs,	RESTful	URLs

rewriting	requests,	Inspect,	Edit,	Repeat,	and	Share	Requests

robust	services,	Building	a	Robust	Service-Making	Design	Decisions	for
Robustness

consistency	as	key	to,	Consistency	Is	Key-Predictable	Structures

design	decisions	for,	Making	Design	Decisions	for	Robustness

error	handling	in	APIs,	Error	Handling	in	APIs

meaningful	error	messages	in,	Meaningful	Error	Messages

naming	of	functions	in,	Consistent	and	Meaningful	Naming

predictable	data	structures	for,	Predictable	Structures

validation	rule	consistency,	Common	Validation	Rules

RPC	(Remote	Procedural	Call)	services,	RPC-RPC

Runscope,	Automated	Testing	Tools

S
Safari,	Browser	Tools

secure	tunnels,	ngrok	for,	Tunnel	Local	Traffic	Remotely	with	ngrok-
Tunnel	Local	Traffic	Remotely	with	ngrok

servers

PHP	and,	Clients	and	Servers

PHP	client	and	server	with	WSDL,	PHP	Client	and	Server	with	WSDL

PHP	SOAP	servers,	PHP	SOAP	Server-PHP	SOAP	Server

services

and	nested	data,	Nested	Data	or	Many	Round	Trips

API	data	presentation,	How	to	Present	API	Data-Data	Formats	and
Media	Types

customizable	experiences	for,	Customizable	Experiences-Customizable
Experiences

data	formats	and	media	types	for,	Data	Formats	and	Media	Types

deciding	what	kind	to	offer,	Service	Type	Decisions

defaults	for,	Pick	Your	Defaults

design	decisions	for,	Making	Service	Design	Decisions-Pick	Your
Defaults

hypermedia	for	easy	API	navigation,	Hypermedia	for	Easy	API
Navigation

robust	(see	robust	services)

RPC,	RPC-RPC

SOAP,	SOAP-PHP	Client	and	Server	with	WSDL

SimpleXML,	XML	in	PHP

creating	simple	document	in,	Creating	XML-Creating	XML

parsing	XML	with,	Parsing	XML

Slim	microframework,	Sample	API	Application

SOAP	services,	SOAP-PHP	Client	and	Server	with	WSDL,	How	to
Present	API	Data

and	WSDL	files,	WSDL

data	presentation,	How	to	Present	API	Data

generating	WSDL	file	from	PHP,	Generating	a	WSDL	File	from	PHP-
Generating	a	WSDL	File	from	PHP

PHP	client	and	server	with	WSDL,	PHP	Client	and	Server	with	WSDL

PHP	SOAP	client,	PHP	SOAP	Client

PHP	SOAP	servers,	PHP	SOAP	Server-PHP	SOAP	Server

SoapServer,	PHP	SOAP	Server-PHP	SOAP	Server

SoapUI,	SOAP

SSLs,	Inspect	HTTP	Traffic	with	Wireshark

stateless	(term),	Cookies

status	codes,	Error	Handling	with	PHP	Exceptions,	A	Guide	to	Common
Status	Codes-A	Guide	to	Common	Status	Codes

stream	handling,	Proxy	Settings	for	Guzzle

stream_context_create()	function,	Making	POST	Requests

subresources,	Update	a	Resource	with	PUT

SugarCRM,	SOAP

Swagger,	API	Description	Languages

T
testing,	automated	tools	for,	Automated	Testing	Tools-Automated	Testing
Tools

throttling	traffic,	Inspect,	Edit,	Repeat,	and	Share	Requests

tools	(see	HTTP	tools)

TravisCI,	GitHub’s	Webhooks

tunneling,	ngrok	for,	Tunnel	Local	Traffic	Remotely	with	ngrok-Tunnel

Local	Traffic	Remotely	with	ngrok

tutorials,	Tutorials	and	the	Wider	Ecosystem

U
Uniform	Resource	Identifier	(URI),	PHP	SOAP	Server

URLs,	RESTful,	RESTful	URLs

user	forums,	Tutorials	and	the	Wider	Ecosystem

User-Agent	header,	Identify	Clients	with	User-Agent

users,	considering	needs	of,	Making	Service	Design	Decisions

V
vagrant	ssh	command,	Inspect	HTTP	Traffic	with	Wireshark

validation	rules,	consistency	of,	Common	Validation	Rules

Varnish,	Custom	Headers

verbs	(see	HTTP	verbs)

versioning,	Data	Formats	and	Media	Types

W
webhooks,	Webhooks-Publishing	Your	Own	Webhooks

GitHubs,	GitHub’s	Webhooks-GitHub’s	Webhooks

publishing	your	own,	Publishing	Your	Own	Webhooks

wildcards,	Headers	for	Content	Negotiation

Wireshark,	HTTP	Tools,	Inspect	HTTP	Traffic	with	Wireshark-Inspect
HTTP	Traffic	with	Wireshark

wishlist	(RESTful	example	service),	Example	Project:	The	Wishlist-
Example	Project:	The	Wishlist

WSDL	(Web	Service	Description	Language),	SOAP

generating	a	file	from	PHP,	Generating	a	WSDL	File	from	PHP-
Generating	a	WSDL	File	from	PHP

PHP	client	and	server	with,	PHP	Client	and	Server	with	WSDL

X
XML,	XML-Flickr’s	XML	API

consuming	XML	APIs,	Consuming	XML	APIs-Flickr’s	XML	API

creating	simple	document,	Creating	XML-Creating	XML

Flickr’s	XML	API,	Flickr’s	XML	API-Flickr’s	XML	API

in	PHP,	XML	in	PHP-Creating	XML

parsing,	Parsing	XML

when	to	choose,	XML

XMLParser,	XML	in	PHP

XMLReader,	XML	in	PHP

XMLWriter,	XML	in	PHP

About	the	Author
Lorna	Jane	Mitchell	is	an	independent	web	development	consultant,
specializing	in	PHP	and	APIs	in	particular.	With	over	10	years	of	PHP
development	experience	across	a	wide	variety	of	industries,	Lorna	learned
many	lessons	the	hard	way	and	always	has	a	story	to	tell.	Lorna	is	also	an
experienced	trainer,	offering	training	to	private	clients	around	the	world,	and
teaching	public	courses.	A	prolific	writer,	Lorna	writes	for	a	number	of
publications,	and	frequently	for	her	own	blog.

http://lornajane.net

Colophon
The	animal	on	the	cover	of	PHP	Web	Services	is	an	alpine	accentor	(Prunella
collaris).	This	bird	inhabits	the	mountain	ranges	of	southern	Europe,	Asia,
and	Lebanon,	favoring	heights	above	2,000	meters;	it	has	actually	been
spotted	near	the	top	of	Mount	Everest	at	nearly	8,000	meters.

Alpine	accentors	are	drab	in	color,	with	a	gray	head	and	breast,	brown-
streaked	back,	and	reddish-brown	spotted	underparts.	They	are	typically	15–
17	centimeters	long,	weighing	up	to	35	grams.	Sharp,	pointed	bills	help	them
sustain	their	diet	of	ground-dwelling	insects,	spiders,	earthworms,	and	plant
seeds.

They	are	noted	for	their	unconventional	breeding	systems:	they	mate	in
polygynandrous	groups,	usually	consisting	of	up	to	four	males	and	four
females,	which	often	produces	mixed	paternity	within	broods.	Females	build
nests	sheltered	by	bushes	or	rock	crevices	and	lay	approximately	four	sky-
blue	eggs.	Males	will	sometimes	help	feed	nestlings,	if	they	have	mated	with
the	female	and	thereby	assume	paternity.	Accentors	may	have	two	to	three
broods	per	year.

The	cover	image	is	from	Wood’s	Animate	Creation.	The	cover	font	is	Adobe
ITC	Garamond.	The	text	font	is	Adobe	Minion	Pro;	the	heading	font	is	Adobe
Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu	Mono.

	Preface
	Conventions Used in This Book
	Using Code Examples
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	1. HTTP
	Clients and Servers
	Making HTTP Requests
	Command-Line HTTP
	Browser Tools
	Doing HTTP with PHP

	2. HTTP Verbs
	Serving GET Requests
	Making GET Requests
	Handling POST Requests
	Making POST Requests
	Using Other HTTP Verbs

	3. Headers
	Request and Response Headers
	Identify Clients with User-Agent
	Headers for Content Negotiation
	Parsing an Accept Header
	Demonstrating Accept Headers with cURL

	Securing Requests with the Authorization Header
	HTTP Basic Authentication
	HTTP Digest Authentication
	OAuth

	Caching Headers
	Custom Headers

	4. Cookies
	Cookie Mechanics
	Reading and Writing Cookies
	Making Requests with Cookies
	Cookies and APIs

	5. JSON
	When to Choose JSON
	Handling JSON with PHP
	The JSONSerializable Interface

	Consuming JSON APIs

	6. XML
	XML in PHP
	Creating XML

	Consuming XML APIs
	Parsing XML
	Flickr’s XML API

	7. RPC and SOAP Services
	RPC
	SOAP
	WSDL
	PHP SOAP Client
	PHP SOAP Server
	Generating a WSDL File from PHP
	PHP Client and Server with WSDL

	8. REST
	RESTful URLs
	Resource Structure and Hypermedia
	Build the Basic RESTful Server
	Example Project: The Wishlist
	Create Resources with POST
	Fetch a Resource or Collection with GET
	Update a Resource with PUT
	DELETE a Resource

	RESTful Versus Useful

	9. Webhooks
	GitHub’s Webhooks
	Publishing Your Own Webhooks

	10. HTTP Tools
	Easy Command-Line JSON
	Graphical cURL Alternatives
	Inspect HTTP Traffic with Wireshark
	Tunnel Local Traffic Remotely with ngrok
	Inspect, Edit, Repeat, and Share Requests
	Proxying PHP Applications
	Proxy Settings for Guzzle
	Proxy Settings for HTTP Stream Handling

	Finding the Tool for the Job

	11. Maintainable Web Services
	Sample API Application
	Consistent Output Formats
	Debug Output as a Tool
	Effective Logging Techniques
	Error Logging in PHP Applications with Monolog

	Error Handling with PHP Exceptions

	12. Making Service Design Decisions
	Service Type Decisions
	How to Present API Data
	Hypermedia for Easy API Navigation
	Nested Data or Many Round Trips
	Data Formats and Media Types

	Customizable Experiences
	Pick Your Defaults

	13. Building a Robust Service
	Consistency Is Key
	Consistent and Meaningful Naming
	Common Validation Rules
	Predictable Structures

	Error Handling in APIs
	Meaningful Error Messages
	What to Do When You See Errors
	Making Design Decisions for Robustness

	14. Publishing Your API
	Documentation Is Key
	Overview Documentation
	Generated API Documentation
	Interactive Documentation

	API Description Languages
	Automated Testing Tools
	Tutorials and the Wider Ecosystem

	A. A Guide to Common Status Codes
	B. Common HTTP Headers
	Index

