
Fuzzing with Data Dependency Information

Alessandro Mantovani
EURECOM

mantovan@eurecom.fr

Andrea Fioraldi
EURECOM

fioraldi@eurecom.fr

Davide Balzarotti
EURECOM

balzarot@eurecom.fr

Abstract—Recent advances in fuzz testing have introduced
several forms of feedback mechanisms, motivated by the
fact that for a large range of programs and libraries, edge-
coverage alone is insufficient to reveal complicated bugs. In-
spired by this line of research, we examined existing program
representations looking for a match between expressiveness
of the structure and adaptability to the context of fuzz
testing. In particular, we believe that data dependency graphs
(DDGs) represent a good candidate for this task, as the set of
information embedded by this data structure is potentially
useful to find vulnerable constructs by stressing combina-
tions of def-use pairs that would be difficult for a traditional
fuzzer to trigger. Since some portions of the dependency
graph overlap with the control flow of the program, it is
possible to reduce the additional instrumentation to cover
only “interesting” data-flow dependencies, those that help
the fuzzer to visit the code in a distinct way compared to
standard methodologies.

To test these observations, in this paper we propose
DDFuzz, a new approach that rewards the fuzzer not only
with code coverage information, but also when new edges
in the data dependency graph are hit. Our results show
that the adoption of data dependency instrumentation in
coverage-guided fuzzing is a promising solution that can help
to discover bugs that would otherwise remain unexplored by
standard coverage approaches. This is demonstrated by the
72 different vulnerabilities that our data-dependency driven
approach can identify when executed on 38 target programs
from three different datasets.

1. Introduction

In a society that makes software applications the cen-
tral core of many every-day activities is essential to make
such software as secure as possible before it is released
to the public. This has led to a large amount of research
focused on the development of increasingly sophisticated
techniques to discover vulnerabilities, such as static soft-
ware testing [36], [60], [77], symbolic execution [61],
[62], [71] and dynamic analysis [73].

In the context of dynamic analysis, researchers have
proposed many approaches to measure the coverage that a
certain input produces in the software under testing. One
of the possible metrics is path coverage, which refers to
all independent paths present in a program. For example,
in software testing, the community has focused on path
coverage for tests generation [64], [70] with the goal
of automatically producing inputs that can reach nested
code locations. The main limitation of path coverage is

that any non trivial application can contain a huge, and
potentially infinite, number of paths [48], [67] thus making
this approach a poor choice for a large set of programs.
Because of this, other dynamic testing techniques, like
fuzz testing, mostly rely on simpler forms of coverage,
such as the popular edge coverage.

Fuzz testing or fuzzing is a dynamic analysis tech-
nique that consists of feeding a program with different
input variations, with the goal of revealing a flaw in
its underlying code. Originally proposed in the early
’90 [52], fuzz testing has evolved enormously over the
past decade thanks to numerous efforts that have been
made to improve its individual components. For instance,
researchers have tried to enhance fuzzers by designing
better seed schedulers [21], [66] or by introducing novel
instrumentation techniques [10], [31], [40], [49]. Fuzz
testing is probably nowadays the most effective approach
employed for automatic vulnerability discovery and for
this reason public research on this topic has advanced
extremely fast as confirmed by the fact that in 2020 alone
more that 120 papers were published on this topic [51].

As a necessary condition for a fuzzer to discover a
vulnerability is the ability to generate an input that reaches
the location of the flaw in the target program, code-
coverage has become one of the most common metrics
to gauge the effectiveness of a fuzzer and the success
of a fuzzing campaign. In this context, edge coverage
became the de-facto standard to measure code coverage.
According to this paradigm, all basic blocks in the control
flow graph (CFG) of the binary are instrumented to reward
the fuzzer with a feedback when new edges connecting
two basic blocks are discovered. In this way, the fuzzing
engine can keep track of the new discoveries in terms of
program points and mutate the generated inputs so that
they evolve towards the exploration of nested portions of
code. This gave origin to what is commonly referred as
coverage-guided fuzzing.

A common goal among researchers is to develop
new techniques to increase edge coverage, which has
led current state-of-the-art fuzzers to be very effective
at visiting difficult-to-trigger code locations. For instance,
Redqueen [11] can generate inputs that satisfy compli-
cated conditions, like the ones that involve a comparison
with some magic bytes. However, high code coverage
alone does not always translate in a better ability to dis-
cover bugs, and therefore the fuzzing community had also
explored other approaches based on alternative coverage
metrics. In this direction, Parmesan [55] relies on the code
locations instrumented with AddressSanitizer [69]
and UndefinedBehaviorSanitizer [1] to build a



directed fuzzer that tries to uncover and stress such lo-
cations. Ankou [49] adopted instead a different fitness
function to guide the fuzzer by considering different com-
binations of the branches during the execution of the
target. These approaches have shown promising results
at detecting new bugs, thus suggesting that looking for
alternative coverage approximations could help fuzzers to
find different vulnerabilities compared to those normally
found by employing edge-coverage.

Historically fuzz testing has taken inspiration from
program analysis techniques to implement novel solutions
that, in the past, have allowed to increase the fuzzers’
performances. In 2019, Chowdhury et al. [23] rely on
static analysis to make the target easier to be fuzzed, by
simplifying the loop exit conditions and determining the
ranges of valid input that can reach some error locations.
More recently, the study presented by Fioraldi et al. [28],
relies on a sophisticated program analysis technique to
retrieve likely invariants from the execution of a program,
with the idea of adopting the violations of such invariants
as a feedback for their prototype fuzzer. Another exam-
ple of the combination of fuzzing and program analysis
approaches is the use of taint analysis to support fuzzing.
This idea was adopted, for instance, by Rawat et al. in
2017 [65] and Chen et al. in 2018 [20] to infer properties
of the application that were used to generate more suitable
input values, thus increasing the amount of visited code.

A common representation used in program analysis
is the Data Dependency Graph (DDG), which could be
used as a possible approximations of code coverage. DDG
are very often adopted in other fields, such as com-
pilers [38], [56], mostly used for code transformations
or optimisations, and static software testing [77], [78]
where interestingly it is used to determine the existence
of vulnerable patterns in the source code. The fact that the
DDG is already used for vulnerability discovery purposes
suggests that it can be a good feedback candidate to drive
a fuzzer to discover vulnerable paths. Our intuition behind
this, is that the set of information contained in the DDG
can provide the fuzzer with an additional feedback that
the CFG alone cannot capture.

To verify our hypothesis we implemented a custom
instrumentation approach, built on top of AFL++ [30]
and LLVM [45], where the fuzzer is rewarded, on top
of the traditional CFG instrumentation, every time a new
significant DDG edge is explored. We encountered several
challenges to make our instrumentation lightweight, incre-
mental with respect to the edge coverage, and effective
in terms of discovered bugs. We tested our prototype
implementation, DDFuzz, over three different datasets
including a custom one of 10 real world applications,
the popular benchmarking service Fuzzbench [51] and a
third suite of programs previously used in the state-of-the-
art [13].

The findings show that adopting the DDG coverage to
guide fuzzers can lead to the discovery of additional (and
different) bugs compared with traditional approaches. For
instance, our data-dependency empowered fuzzer revealed
26 bugs that the traditional AFL++ strategy missed in our
custom evaluation, by introducing a modest overhead of
10% compared to a normal edge-coverage instrumented
binary. Moreover, our approach results to be incremental
also to other state-of-the-art approaches such as Con-

text Sensitivity and Ngrams. The second evaluation on
Fuzzbench [51] that contains a larger variety of programs
and bugs emphasizes these aspects as our approach per-
forms better than AFL++ in 5 cases while for 3 further
applications it is still able to find different bugs. As a
confirmation of our methodology, DDFuzz discovers 12
more bugs compared to AFL++ in the third and final
evaluation.

In short, this paper provides the following contribu-
tions:

• We propose a novel instrumentation method,
DDFuzz, and we show its benefits as well as its
limitations on a total of 38 target applications.

• We establish a reliable criteria based on the code-
base structure which allows to predict when the
use of our approach should be adopted for a
fuzzing campaign.

• We test DDFuzz against several other state-of-
the-art instrumentation approaches as well as a
large range of targets demonstrating how, for each
case, our custom instrumentation differs in terms
of detected vulnerabilities.

The code of our prototype is available at https://github.
com/elManto/DDFuzz.

2. Background

2.1. Data Dependency Graphs

Data Dependency Graphs (DDGs) were first intro-
duced by Ferrante et al. [27] in 1987 as a program
representation to capture the data-flow relationship among
each instruction in the program. More formally, the LLVM
documentation defines a data dependence graph as a struc-
ture that “represents data dependencies between individ-
ual instructions. Each node in such a graph represents a
single instruction and is referred to as an ‘atomic’ node
[...]” [6] while edges are defined as “def-use dependencies
between the atomic nodes”.

The introduction of DDGs paved the way to new
program analysis techniques, such as program slicing [19],
[76] (i.e., the set of statements that affect the value of
a certain variable) and reaching definitions [8] (i.e., the
set of definitions that could hit a certain point in the
code). Over the years, researchers have proposed DDG-
based techniques to build new approaches in compiler
optimizations, as reported by the seminal work in this
field by Kuck et al. [44]. For instance, Heffernan et
al. [38] used the data dependencies that exist inside a
program to improve instruction reordering and increase
the CPU pipeline performances. Other works [39], [46]
proposed advanced scheduling approaches based on the
adoption and transformation of the DDG to measure the
dependencies among instructions and evaluate when to
perform a reordering operation. Another common appli-
cation of DDGs is dead code elimination, which aims at
identifying which assignments in the code can be removed
after checking that no subsequent operations depend on
them [14], [18], [43].

In software security, DDGs are often used to verify if
potentially unsafe or poorly sanitized data (the source) can

https://github.com/elManto/DDFuzz
https://github.com/elManto/DDFuzz


propagate information inside the program until it reaches a
certain statement that can trigger a vulnerability (the sink).
This led to a set of applications of the DDG, especially
in static software testing. For instance, in 1994 Kinloch et
al. [41] suggested that the combination of the DDG with
the Control Flow Graph (CFG) could help programmers
at detecting bugs. More recently, Yamaguchi et al. [77]
proposed a program representation, known as the Code
Property Graph, that combines the CFG, the DDG, and
the Abstract Syntax Tree (AST) of a program. The authors
then designed specific queries over this data structure to
detect vulnerable patterns in the code. The popularity
of DDGs for vulnerability discovery is confirmed by
the comparison performed by Zhioua et al. [81] among
static software testing tools. The authors found that 3
out of the 4 investigated frameworks implemented a data
dependency analysis component when scanning C source
code. However, data dependencies are not just used to
analyze source code but play a very important role also in
other scenarios. For instance, Cheng et al [22] use them
to perform taint analysis on IOT firmware images with
the goal of finding vulnerable flows, and several model
checking techniques rely on them to detect unsafe program
points [50], [75].

Possible applications of the Data Dependency Graph
are not limited to unsafe languages such as C/C++. In
2009, Hammer et al. [34] proposed an approach based
on path conditions in dependency graphs that can be
used to reveal security-sensitive flows inside Java code.
Moreover, in 2015 Qian et al. [63] developed a static
analysis framework to detect vulnerabilities in Android
applications by traversing the DDG, similarly to what
already done in [77] for C source code.

2.2. Coverage Guided Fuzzing

Depending on the instrumentation applied to the target
binary, we can split fuzzing approaches into three major
categories. Blackbox fuzzing tries to trigger crashes and
error conditions by randomly mutating input without re-
ceiving any information from the target program. At the
opposite end of the spectrum, whitebox fuzzing strongly
relies on code analysis and instrumentation to generate
inputs that can lead to vulnerable program points. For
instance, approaches based on symbolic execution [17],
[61] belong to this category.

Greybox approaches are somewhere in between the
two aforementioned solutions. They try to achieve the
same performances of blackbox fuzzing by adding
lightweight instrumentation to the target application to
collect some form of feedback during the execution. The
feedback information can then drive the fuzzer to reach
more code and trigger multiple interesting states in the
target application.

Different implementations of greybox fuzzing adopt
distinct ways to measure when a given input can trigger
something new in the program. For instance, traditional
approaches measure either the basic block coverage, like
in [54], or the edge coverage, like in [47]. AFL [80],
probably the most popular greybox fuzzer, extended edge
coverage to capture information about how many times a
program point is executed. In this case, the fuzzer keeps
track of the visited edges inside a bitmap, where each

entry of the bitmap represents how many times a certain
edge has been hit, and AFL considers a new testcase as
interesting if at least one of the entries has a new value
that falls in a previously unseen bucket. To encode the
edge as an index of the bitmap, the approach that AFL
adopts consists of computing the XOR between the current
and the previous location.

On top of this approach, many edge coverage vari-
ations have been proposed [15], [31], [40] that try to
improve the basic strategy to augment the discovered
program points. For instance, AFL++ [30], a modern fork
of AFL, allows the analyst to adopt different coverage
instrumentation strategies, such as Context Sensitivity [24]
and N-grams (which takes track of a list of consecutive
edges). In 2019, Wang et al. [74] have performed a
study to compare many state-of-the-art coverage metrics
to assess how they differ from the points of view of
both code coverage and detected bugs. The authors found
that none of the metrics outperforms all the others, and
each coverage has pros and cons depending on the target
application.

A different line of research has focused instead on
finding new techniques that rely on alternative forms of
feedback. For instance, Aschermann et al. [10] proposed
a set of manual annotations to give the fuzzer a feedback
also on the state of the program. Other promising method-
ologies [55], [57] use a different approximation of code
coverage to reward the fuzzer. Manes et al. [49] instead
implement what they define as distance-based fuzzing.
Their goal is to build an informative fitness function that
is used as the base for the feedback which is sent to the
fuzzer. Finally, at the recent Usenix 2021 symposium,
Fioraldi et al. [28] illustrate how violations of likely
invariants can also be used as feedback to better fuzz the
state of the program.

3. Methodology and Implementation

We now illustrate the methodology and the implemen-
tation challenges that we encountered while developing
our solution. The technique presented in this paper is
implemented as an LLVM [45] pass. While the code is
compatible with different versions of the LLVM APIs,
for our experiments we used LLVM 13. We chose LLVM
for two main reasons: first, its intermediate representation
is emitted in SSA [68] (Single Static Assignment) form,
which means that each variable is assigned only once,
and all variables must be defined before their first use.
As we will see in the rest of the section, this simplifies
the recovery of dependencies between LLVM IR variables
with respect to other code representations where multiple
definitions are allowed. Second, the LLVM toolchain is
already well integrated into popular fuzzing projects, thus
making our solution easy to plug into existing fuzzers’
implementations, such as AFL++ [30]. This gives us
the possibility to deploy our solution in an effective
way, as well as to compare it with other instrumentation
approaches that are already shipped with the AFL++
package. The following three subsections describe how
our pass works by dividing the process into three main
parts: DDG construction, dependency filtering, and target
instrumentation.



3.1. DDG construction

The first decision we had make, when we started to
develop our static analysis part, was the choice of the
proper LLVM IR variables to construct the data depen-
dency graph. The first intuitive approach was to recover
the dependencies of each variable present in the LLVM
bitcode by relying on the def-use edges to represent a
dependency. However, we immediately noticed that such
a technique does not fit well with our context. Indeed,
because of the SSA form of the bitcode, this would
produce too many dependencies to account for, which in
turn would result in poor feedback for the fuzzer and in
a large overhead in the execution of the target binary.

The LLVM framework applies some optimizations
to construct its internal Dependence Graph [5], such as
considering strongly connected components as a single
node (the so-called P-Node). From now on, we will refer
to this graph as DDGraw, to indicate that we obtained it by
the default LLVM implementation without applying any
further transformations/optimizations. Although DDGraw is
already an improvement with respect to the base strat-
egy, it was still insufficient to overcome the performance
issue. Nevertheless, before completely abandoning this
road, we performed a benchmark where we evaluated this
approach against the one that we ended up selecting. This
was needed to ensure not to discard valid possibilities
for our final prototype tool. Results of this preliminary
experiment are reported along with the other evaluations
in Section 4.3.

Our intuition then was to consider only a subset of
LLVM variables, depending on how they are defined and
used in the bitcode, and to recover the data dependencies
that involve only this subset. This implies that we had to
choose which instructions to consider as definitions and
which one to retain as uses. The first observation was that,
at the binary level, the actual data flow happens only when
the memory is read or written. At the IR level, this led
us to adopt the Load and Store instructions as a possible
source and sink of our data flows. In addition to this, we
added the Call instructions, and we considered them as
uses of the variables, i.e., we track the dependency that
reaches the function call parameters. Finally, we selected
the Alloca instructions as a potential source of the def-use
edge. Even though the compiler optimization passes would
remove the majority of the Alloca defined variables, it can
still be useful to track the dependencies that come from
these variables when they are maintained in the emitted
bitcode.

Algorithm 1 shows our solution. The two main data
structures that we use are the DDG itself (a map of sets)
and what we call the Data Flow Tracker (DFT), initialized
at the beginning of the algorithm. The DFT is as a map
of sets, where the key is a LLVM Value and for each
key we get a set of LLVM Values the key depends on.
Our approach iterates over all the instructions present in
each basic block (line 7) and, when we meet a defining
instruction (i.e., Load and Alloca), we add an entry in
the DFT as shown in the first if block (lines 8-10).
For general purpose instructions, i.e., those instructions
that are neither a source nor a sink, we first extract the
operands and subsequently the return value of the instruc-
tion (12-14). The primitive InsertDataFlow is then

1 function BuildDDG(module)
2 blocks ← GetBasicBlocks(module)
3 DDGb ← {}, ∀ b ∈ blocks
4 DFT ← {}
5 for b ∈ blocks do
6 instructions ← GetInstructions(b)
7 for i ∈ instructions do
8 if IsDefinition(i) then
9 val ← GetValue(i)

10 DFTval ← {}
11 if IsGeneric(i) then
12 val ← GetValue(i)
13 ops ← GetOperands(i)
14 InsertDataFlow(DFT , val, ops)
15 for u ∈ GetUses(i) do
16 def ← QueryDataFlow(DFT , u)
17 src ← GetParentBlock(def)
18 DDGb ← AddToSet(src)

Algorithm 1: Data Dependency Graph builder

responsible to track the fact that the return value is actually
depending on the operands variables (line 15). To achieve
this, it stores the Value val in the corresponding DFT set,
whose key has a dependency with the operands ops that
are involved in the instruction. The inner for loop iterates
over all the uses in the instruction (line 17). For each of
them, we extract the defining instructions by means of the
DFT (with the primitive QueryDataFlow) and we add
a new edge to the DDG (lines 18-20). QueryDataFlow
iterates over the keys of DFT, looking for a match between
u (the use) and one of the elements in the corresponding
set, thus performing a recovery of all definitions that
u depends upon. The final output is a data dependency
graph, where an edge connects respectively a definition
of a variable D and a use of a variable that depends on
D. From now on, we will refer to such a graph as DDGfull.

3.2. Filtering

Given the goal of producing a lightweight instrumen-
tation that has a limited impact on the performance of the
compiled binary, we introduce a set of optimizations and
filters to reduce the number of locations to instrument.
This filtering phase helps us to discard dependencies that
would not add any additional feedback to the fuzzer, as the
associated transition is already captured by edge coverage.
First of all, since our reference granularity is the basic
block, any dependency within the same block of code
is not significant. Similarly, multiple dependencies that
connect the same two basic blocks are merged into a single
one.

It is important to remember that the purpose of a DDG
coverage instrumentation is not to help the fuzzer to reach
complicated nested regions of code, but rather to revisit
a determined program point by examining the different
dependencies of the variables involved in such a path. In
other words, not by visiting more code, but by triggering
additional paths in already-explored code. Our hypothesis
is that by exploring these additional dependencies we can
uncover new flaws which would normally go undetected.
Because of that, we designed our instrumentation to co-
exist with the classic edge coverage mechanism. This
allows our fuzzing engine to receive two different feed-
backs, the former useful to test different dependencies and
the latter to further explore the application code. However,
this also means that we had to reason about potential
intersections of DDG and CFG coverage, which would



Def1 Def2

...

Use ...

Branch

...

Figure 1. The configuration of the Definition and Uses that we want to
isolate

lead to duplicate feedback. Thus, we now clarify which
data dependencies we track and which ones we discard
with our pass.

Essentially, we implemented two main rules to filter
out redundant data dependencies. The first one is to check
if a dependency is among two connected basic blocks,
i.e., in which one is the successor of the other in the
CFG. In this case, the dependency would not add any
additional information that is not captured already by
the edge coverage, and therefore would just increase the
overhead without providing any useful feedback to the
fuzzer. Therefore, in this condition we discard the data
flow.

The second rule is an extension of the previous one
and covers other scenarios where a data-dependency is
already captured by edge coverage. In particular, we iden-
tified two additional types of data-flow. In the first one,
the use U of a variable depends on a single definition D
that can be located many basic blocks before U . In this
scenario, we noticed that it is not worth maintaining the
edge connecting the two basic blocks in our data structure
because by definition if the program reaches the code
block of U , it must have passed through the definition D
already (since it was the only definition). Traditional edge
coverage instrumentation already rewards the fuzzer when
following this path, and therefore, for these situations, we
do not track the data flow and discard the edge from our
DDG.

Differently, we can have a configuration in which the
use U of a variable depends on more than one definition,
for instance the use of a φ-node variable 1. As an example,
we can consider Def1 and Def2, as represented in Fig-
ure 1. In the graph, the black arrows represent CFG edges
while the blue arrows represent DDG edges. In this case, a
fuzzer can reach 100% edge coverage while still triggering
only one of the two def-use pairs. In fact, because of
the mechanism used to log the edge coverage (i.e., the
XOR of the current and previous BBs), the execution can
reach the use always from the same edge, and therefore the
fuzzer would not consider the two paths as two separate
discoveries. As a result, this type of dependency is the
only type of flow that we keep, as it is fundamental to
reward the fuzzer in a different way compared to standard
approaches (edge-coverage).

In the rest of the paper, we will refer to the DDG
obtained after the filtering phase as DDGfiltered. To sum-

1. A φ-node merges many versions of a variable into a new one in re-
lationship with the incoming control flow. https://gcc.gnu.org/onlinedocs/
gccint/SSA.html

1 // X, Y, Z are random IDs set at compile time
2 void function() {

3 u16 on_block_X = 0;
4 u16 on_block_Y = 0;

5
6 int val;
7
8 // this if-statement leads to two distinct definitions of the

variable ‘val’ that is then used in the last if-statement,
producing a dependency that we want to instrument

9 if (...) {
10 // block X

11 on_block_X = X;

12 int a = load_a();
13 val = a;
14 } else {
15 // block Y

16 on_block_Y = Y;

17 int b = load_b();
18 val = b;
19 }
20
21 // without these branches here the DDG edges would be included in

the CFG and so pruned by our filtering pass
22 if (...) {
23 ...
24 } else {
25 ...
26 }
27
28 if (val == 0) {
29 // block Z

30 u16 idx = on_block_X ˆ
31 on_block_Y ˆ
32 Z;
33 __afl_area_ptr[idx]++;

34 use(val);
35 } else {
36 ...
37 }
38 }

Listing 1. A simple example of how our instrumentation looks like.

marize, DDGfiltered is a graph that contains only flows
represented with a def-use relationship and that have at
least two definitions for the same used variable.

3.3. Instrumentation

As we explained in Section 2.2, typically AFL-based
fuzzers log an edge visit by computing the XOR between
the IDs of the current and previous locations and use this
value as an index to access a bitmap that stores the number
of times a certain edge has been hit. For our purposes,
this is still necessary, because the DDG does not add any
information to make the fuzzer explore deeper code but
only to improve how to fuzz some specific code locations.
Therefore, as a first instrumentation layer, we keep the
traditional approach that is used in off-the-shelf fuzzers
to log new edges inside a bitmap.

However, in the context of the DDG this solution does
not work, since the two locations that we want to use as
input for the XOR are not consecutive and the execution
could go through many intermediate BBs before reaching
the one that contains the data-dependent use. To solve this
issue, we add an additional marker variable, originally set
to 0, for each basic block that contains a definition we
want to keep track of. Our instrumentation then changes
the marker value to the ID of the block when it reaches
the block itself. Finally, we instrument each basic block
containing a use by generating a new bitmap index ob-
tained by XORing the corresponding marker variables with
the ID of the destination block. Because N ⊕ 0 = N , the
result will account only for the definition that was actually
executed, thus resulting in different values when the same
basic block is reached by following different data-flow
paths.

For instance, we can consider the code in Listing 1,
in which we highlighted the instrumentation inserted at

https://gcc.gnu.org/onlinedocs/gccint/SSA.html
https://gcc.gnu.org/onlinedocs/gccint/SSA.html


the IR level. At the beginning of the function, we insert a
marker variable for each definition block that we want to
track, on_block_X and on_block_Y in our example.
In the basic blocks containing the definitions, we set the
corresponding marker to the ID of the block (X and Y
respectively). Then, the basic block that contains the use
is instrumented to compute the hash of the markers linked
to val with the ID of the current block (Z). This hash is
used as an index in the AFL bitmap.

4. Evaluation

To assess the validity of our approach, we performed
a number of experiments to measure and compare the
effects of our instrumentation in terms of bug detection,
performance overhead, achieved code coverage, and the
possibility to cause queue explosion. We believe that
all these points are equally important to evaluate when
proposing a new fuzzing approach, as they play a role
in the overall effectiveness of a solution. Based on the
results of our experiments, we try to understand when the
adoption of our approach is useful for a fuzzing campaign
and when, instead, it does not add any clear advantage
with respect to the traditional edge coverage solution.

For our evaluation, we used 3 datasets. The first in-
cludes old versions of 10 real-world open-source projects
known to contain bugs. For the first five applications,
we selected software that we expected to contain a large
number of data dependencies. For instance, we decided to
include the pcre2 library because of its frequent use of
lookup tables, a C compiler frontend (c2m) and backend
(qbe), a popular parser generator (bison), and faust,
a compiler for a functional programming language used
mostly for real-time signal processing. For the remain-
ing five applications, we selected instead parser-related
projects in which we expect data dependencies to be less
relevant. Three of them (namely readelf, objdump
and libmagic) operate on the ELF file format while
tiff2pdf performs image parsing and openssl is
used to perform cryptographic operations.

The goal of this initial distinction, based purely on our
expectation of the amount and impact of data dependen-
cies, is to select some applications where our approach can
provide an advantage and others where probably it is less
useful. This can help us to better assess in which scenario
an analyst should deploy a fuzzing campaign with our
approach and when instead the traditional edge-coverage
can provide better results.

Table 1 reports the list of applications in our first
dataset, along with the hash commit that we tested and
the command line that we used for the fuzzer. The fourth
column reports the lines of code and clearly shows how
our dataset contains software of different sizes, ranging
from 10 KLOCs (qbe) to 234 KLOCs (openssl). In
three cases, namely pcre2, file and openssl, we had
to build an harness that invokes the core functionalities of
the libraries. Furthermore, for each fuzzing campaign, we
enabled the ASAN sanitizer, and, when it was possible, we
also added the UBSAN sanitizer (some of the applications
failed at building when UBSAN was enabled). We did not
modify the compiler optimization level adopted by AFL++
(by default set to O3), to make the code execution more
performant.

In addition to this first set of experiments, we also
wanted to extend our evaluation to other datasets, to
confirm our findings and prove that our approach can
work for different codebases. However, many popular
benchmark datasets which are used in other studies for
fuzzing experiments are not suitable for our purpose. This
is due to the fact that such benchmarks were designed to
evaluate the amount of code covered by different fuzzers,
often by inserting artificial bugs. Although code reacha-
bility is a fundamental aspect of a fuzzing approach, our
solution does not add any improvement in terms of code
coverage (at least not directly). Rather, it tries to use data
dependencies to augment the amount of discovered bugs –
which does not necessarily imply exploring new program
points. As a consequence, we believe that datasets such
as LAVA-M [25] are not ideal candidates for a proper
evaluation. On the other hand, both MAGMA [37] and
Fuzzbench [51] satisfy our requirements as they focus on
a number of bugs and on a large variety of applications.
Among the two, we selected Fuzzbench [51] because it
contains a larger number of programs. In total, this second
dataset includes 22 different programs (we had to disable
three applications because they did not compile under
clang-based instrumentations).

Finally, we added a third dataset to our evaluation,
this time taken from a recent paper by Blazytko et al. [13].
This last benchmark is composed of targets not selected by
us, thus without any a-priori knowledge about the structure
of the programs, but that may still contain targets with rel-
evant data-dependencies as the focus of the original paper
was to deal with highly-structured inputs and complex
parsing code. This final dataset included 6 applications.

4.1. Experiment Setup

We performed the experiments with the first and the
third dataset on a x86_64 server containing an Intel Xeon
Platinum 8260 CPU with a clock frequency of 2.40GHz.
As already explained, we adopted AFL++ (version 3.14)
as a reference fuzzer, both for our implementation and
evaluation. One of the advantages that come with using
this project is that it already implements many feedback
approaches, such as Edge Coverage, Context Sensitivity,
and NGram coverage (from now on respectively Edge,
Ctx and Ngram). Thus, it provides the ideal comparison
for our evaluation purposes. In the follow-up of the paper,
we will use interchangeably Edge and AFL++ to indicate
the use of standard edge coverage mechanism whereas we
will specify Ctx and Ngram to identify the adoption of
alternative feedback techniques.

Each experiment was made of 5 trials of 24 hours to
limit the randomness of the fuzzer. The initial seeds were
mostly taken from the test directories that were already
present in the repositories of the projects to ensure that
they represented valid input files for that application. The
initial queue size is reported in Table 1 for each target
program in our custom evaluation set.

For the experiments on the Fuzzbench targets, we
adopted the default configurations described on the public
website page [7]. In this case, each test consists of 20
trials of 23 hours for each fuzzer.

Moreover, as the authors of [42] suggest, we computed
the p-value resulting from the Mann-Whitney U test, a



TABLE 1. DATASET OF THE APPLICATIONS USED FOR OUR STUDY, ALONG WITH THEIR VERSION, LINES OF CODE, COMMAND LINE AND
COMPILATION INFORMATION

Application Package Hash commit KLOC Command line Sanitizers Initial Queue

bison bison 0ac1584 100 @@ ASAN 3
pcre2(*) pcre2 65457aa 68 ASAN, UBSAN 3
c2m mir 7670d7e 200 @@ ASAN, UBSAN 65
qbe qbe e0b94a3 10 @@ ASAN 52
faust faust f9aac26 115 @@ ASAN, UBSAN 27

readelf binutils 68b975a 120 -s @@ ASAN 3
objdump binutils 68b975a 120 -d @@ ASAN 3
libmagic(*) file d1ff3af 14 ASAN, UBSAN 3
tiff2pdf libtiff 7d3b9da 63 @@ ASAN, UBSAN 10
openssl(*) openssl 0d87763 234 ASAN 9

(*) indicates that an harness was used

TABLE 2. MEDIAN NUMBER OF UNIQUE BUGS DETECTED IN 5 TRIALS OVER 24H OF OUR EVALUATION AGAINST EDGE-COVERAGE BASED
FUZZING ALONG WITH THE INTERSECTION OF BUGS DETECTED IN THE MEDIAN CASE. RESULTS INCLUDE ALSO THE DD RATIO FOR EACH OF

THE TARGETS, THE SLOWDOWN INTRODUCED DUE TO OUR DDG INSTRUMENTATION AND THE P-VALUE OBTAINED WITH MANN-WHITNEY

Target DD ratio DDFuzz Edge DDFuzz ∩ Edge Slowdown P-value

bison 15% 5 3 3 2% 0.05
pcre2 14% 30 28 13 6% 0.46
c2m 23% 26 26 23 21% 0.55
qbe 15% 5 3 2 2% 0.04
faust 20% 4 2 2 18% 0.03

Total - 70 62 43 - -
Geomean 17.06% 9.51 6.66 5.14 6% -

readelf 7% 4 4 4 2% 0.45
objdump 7% 5 5 4 1% 0.56
file 5% 1 1 1 1% 0.38
tiff2pdf 8% 9 13 9 4% 0.002
openssl 5% 2 2 2 5% 0.45

Total - 21 25 20 - -
Geomean 6.28% 3.49 3.24 3.10 2% -

nonparametric test used to compare differences between
two independent randomly selected sample values that
originate from two distinct populations. For our purposes,
the test checks that our prototype fuzzer is statistically
different from the competitor one, i.e., the default AFL++,
in terms of bugs detected during the trials.

4.2. Comparison against edge coverage

For our initial evaluation, we want to compare our
data dependency coverage instrumentation against the tra-
ditional edge coverage approach. The first question that
we want to answer is whether our approach is helpful in
terms of discovered bugs. We also report a simple metric
to capture the impact of our pass by counting the amount
of data dependencies in the target application. This can tell
the analyst if it makes sense to enable our instrumentation
for a new fuzzing campaign. This metric, which we call
DD ratio, is the ratio between the basic blocks that
we instrumented with the dependencies information (as
described in Section 3) over the total number of basic
blocks in the program.

We computed such a value for the ten applications
in our dataset. Results are reported in the first column
of Table 2. We can observe that the value of DD ratio
changes quite sharply from application to application, with
a minimum of 5% for openssl to a maximum of 23%

for c2m. The other interesting and more important aspect
is that the two sets of applications are clearly separated by
their DD ratio value, confirming our intuition that the
first five were more data-flow intensive. For instance, if we
adopt a threshold of 10%, that derives from the geometri-
cal mean of all ratios for each target, we can easily classify
our codebases into strongly (above the threshold) and
weakly (below the threshold) data-dependent applications.

We then ran our fuzzer evaluation against the tradi-
tional edge coverage instrumentation. Results are reported
in the remaining columns of Table 2, where DDFuzz and
Edge indicate respectively the median of the unique bugs
found by the two approaches while the column with label
DDFuzz ∩ Edge represents the findings that are common
among the two (i.e., the intersection). Such numbers are
the result of a careful triage phase that was conducted
both in an automated fashion along with a rigorous manual
check. As a first step, we de-duplicated bugs by grouping
them according to their call-stack hash collected from the
stack trace that we obtained by the sanitizers. However,
this simple approach is generally error-prone (as shown
in [42]) and thus we manually inspected all remaining
test cases to avoid any possible duplicates.

The first way to interpret the results is by comparing
the number of discovered bugs by the two approaches.
Overall, DDFuzz found 8 vulnerable flaws more than
Edge in the 5 strongly data-dependent applications. With



the exception of c2m, where the median is the same, for
the other four cases, the fuzzer equipped with our instru-
mentation discovered two additional bugs each. Viceversa,
for the remaining five targets that do not exhibit a high
dependency in their code base, the number of discovered
bugs remained mostly the same. The only exception is
tiff2pdf, where DDFuzz found 4 bugs less than Edge
– probably due to the fact that triggering the bugs was
mostly a code reachability problem.

While these results are promising for strongly data-
dependent programs, the intersections between the dis-
covered bugs can tell us even more. In fact, not only our
approach allows to detect more bugs on average, but it
can find some that are never discovered by Edge in any
of the trials. For instance, for c2m, even if the number
of unique bugs is the same, there are three vulnerable
points that are only detected by our approach. This is even
more evident if we consider the intersections for pcre2,
where DDFuzz finds a total of 17 unique bugs which
are not revealed by the vanilla AFL++. For the remaining
cases instead (bison, qbe and faust) the unique bugs
identified by DDFuzz are mostly a super set of the ones
individuated by Edge. This trend holds until a sufficiently
high data dependency exists in the analyzed code. Indeed,
if we consider the last five rows, where the DD ratio is
always under 8%, the intersections converge towards the
total number of bugs – i.e., the additional instrumentation
of DDFuzz had a negligible impact on the results.

We also measured the overhead introduced by our
additional instrumentation, compared again with that in-
troduced by Edge alone. The results, reported in Table 2,
show that the overhead introduced by our approach is
overall modest. The slowdown factor was computed as
the difference between 1 and the ratio among the DDFuzz
average executions per second over the Edge executions
per second (and then transformed in percentage). For
the five strongly data-dependent applications, the average
slowdown is 10% (6% if we consider the geometrical
mean), despite the fact that we observed a non-negligible
variation of this value. Such a variation is only in part
justified by the DD ratio, because other factors in-
fluence it, such as the execution path, the control flow
executed and the fuzzer execution mode (i.e., if we used an
harness or we make use of the fork system call to spawn
the target process). For the remaining five applications
instead, the executions per second are almost the same
between the two fuzzing approaches, demonstrating again
that, in the case of a weakly data-dependent code structure,
our methodology converges towards the default AFL++.
The last column of Table 2 concludes our measurements
about this experiment with the p-value resulting from the
Mann-Whitney U test computed over the bugs found for
each trial. The p-value is significant (<= 0.05) in 3 out
of the 5 cases for the strongly-dependent programs while
only one weakly-dependent application reports a p-value
statistically significant. This again suggests that for high
values of DD ratio, DDFuzz behaves differently from
Edge.

4.3. Effects of our instrumentation filters

As presented in Section 3, before performing the ac-
tual instrumentation of the DDG, we obtain three different

TABLE 3. COMPARISON OF THE EFFECTS OF OUR FILTERING
STRATEGIES IN TERMS OF MEDIAN NUMBER OF BUGS OVER 5 TRIALS

OF 24H EACH

Target DDFuzz DDFuzzfull Intersect. Decrease

bison 5 4 4 67%
pcre2 30 29 24 41%
c2m 26 16 13 44%
qbe 5 4 4 49%
faust 5 1 1 52%

Total 71 54 46 -
Geomean 9.95 5.94 5.49 49.85%

versions of the data dependency graph. The first is DDGraw
which is the result of the default LLVM dependence graph
implementation. The second instead is DDGfull which is
the output of Algorithm 1 and serves as base graph to pro-
duce our final version, DDGfiltered. As already explained,
we ended up instrumenting this last version of the DDG in
our final implementation of DDFuzz, which is used across
the whole paper. However, in the current section, we want
to measure the effects of our optimizations compared to
the other two flavors of the DDG (DDGraw and DDGfull).

As a first step, we compare the performances that
result from the instrumentation of DDGraw (the LLVM
default implementation) against the final version of the
DDG (DDGfiltered). For this, we selected an applications
in our dataset (qbe) for which our approach had an
average performance and instrumented it by using either
the default LLVM data dependency graph (i.e., DDGraw)
or our optimized version. We then launched two fuzzing
campaigns according to the experiment setup described in
the previous subsection.

We immediately noticed that the instrumentation based
on DDGraw was introducing a major overhead since we had
to increase the timeout of AFL++ due to the fact that the
instrumented program was not terminating within the de-
fault time interval. After 24 hours, the average executions
per second was 50% higher with our optimization (362
vs. 240), and this resulted in a median of five discovered
bugs for DDFuzz versus two (always a subset of the five)
when using DDGraw.

For the second measurement, we wanted to quantify
the effects of our pruning strategies. As described in Sec-
tion 3.2, we filtered DDGfull to exclude the edges which
are already covered with Edge, producing as a final output
what we call DDGfiltered. To assess to which extent these
filtering strategies impacted the performances of our final
implementation, we performed another experiment with
the same setup described in Section 4.1, comparing the
filtered with the unfiltered graphs. In this case we selected
only the five applications that exhibit a sufficient amount
of data dependency as we are interested at measuring
the effects of our filter strategies, and it would not be
meaningful to consider applications where our approach
instruments only a small amount of locations. Results
of this evaluation are listed in Table 3 where we refer
to DDFuzz as our prototype implementation after the
application of the filters and to DDFuzzfull as the im-
plementation obtained from our pass without the filtering
steps (i.e., the instrumentation of DDGfull). Moreover, we
computed the intersections of bugs between DDFuzzfull



TABLE 4. A COMPARISON OF DATA DEPENDENCY COVERAGE AGAINST NGRAM2, NGRAM4 AND CTX INSTRUMENTATION APPROACHES IN
TERMS OF MEDIAN NUMBER OF BUGS OVER 5 TRIALS OF 24H EACH

Target DDFuzz Ngram2 Ngram4 Ctx DDFuzz ∩ Ngram2 DDFuzz ∩ Ngram4 DDFuzz ∩ Ctx

bison 5 5 4 3 3 3 3
pcre2 30 29 23 33 15 14 17
c2m 26 27 27 17 23 22 12
qbe 5 3 4 5 3 4 4
faust 5 2 2 1 2 2 1

Total 71 66 60 59 46 45 37
Geomean 9.94 7.48 7.23 6.09 5.73 5.93 4.76

and DDFuzz (third column) and the percentage decrease
of the instrumented locations (fourth column).

We can immediately notice that bugs discovered by
DDFuzz are mostly a superset of those which are detected
with DDGfull. This is because the feedback produced by
the more dense instrumentation is less informative in
terms of the dependencies that were reached. However,
the approach can still find some interesting program points
as demonstrated by the intersections with DDFuzz. In
facts, for pcre2 and c2m, 8 distinct bugs are detected
by the more naive approach and missed by DDFuzz in
the median case.

Overall, the instrumented locations decreased by 52%
in average (49% geometrical mean) with respect to the
version without the filters enabled. This resulted in bet-
ter performances and indeed we observed an average
slowdown of roughly 20% compared to Edge (while, as
already shown, DDFuzz slowdown was 10%). Therefore,
we can conclude that our filtering strategies represent an
improvement of the standard instrumentation of DDGfull
and justify our design choices.

4.4. Comparison against different instrumenta-
tion strategies

For the second evaluation of our approach on the
custom dataset, we want to compare DDFuzz against dif-
ferent instrumentation approaches. As we have shown in
Section 3, one of the major points of our instrumentation
technique is that the edges in the DDG can connect basic
blocks which are not necessarily consecutive, i.e., when
other intermediate basic blocks exist between the source
and the sink. Thus, our first hypothesis was to examine
instrumentation passes such as the ones that rely on Ngram
coverage (Ngram). The simple idea behind these is that
when computing the XOR of the edges to find the bitmap
index where to log the new discovered program point,
Ngram approaches take into account multiple edges. For
instance, by adopting Ngram2, the index of the bitmap
involves the XOR of the previous 2 locations, while Edge
would consider only the previous location. In other words,
Edge is equivalent to a Ngram1 instrumentation. For
our tests, we chose to compile our target binaries with
Ngram2 and Ngram4 because, according to Wang et
al. [74], these are the two approaches that provide the
best results in terms of number of discovered bugs. We
also compared against Context Sensitivity [74] (Ctx), a
recent approach that takes into account the callstack in
addition to the reached basic blocks. According to its
authors, together with the two aforementioned Ngram

instrumentations context sensitivity was the solution that
provided better results.

The results of our second evaluation are showed in
Table 4, limited again to only the five strongly data-
dependent binaries. As in the previous experiment, we re-
port the median of unique bugs, de-duplicated as explained
in 4.2. The first four columns contain the median detected
bugs depending on each of the four instrumentations that
we wanted to include, while the remaining three columns
instead show the intersections with DDFuzz. There is no
solution that outperforms all the others for all programs,
but DDFuzz results are the best for three out of five
applications and the best overall – with 71 discovered bugs
vs. 66 of NGram2 (the second-best performer).

Again, by looking at the intersection, we can see that
the bugs detected thanks to the use of our data dependency
instrumentation are very different for each of the tested
applications. In each one, DDFuzz finds at least one
different bug that the other approaches could not find.
It total, it was able to detect 25 bugs that were never
triggered by Ngram2, 26 more than Ngram4, and 34 not
captured by the Ctx instrumentation. This shows once
more that our extension could provide a very clear benefit
for applications that have a rich set of data dependencies
and that even when DDFuzz is not the approach that finds
more bugs overall, it always leads to detect some different
ones. Moreover, it is important to underline that we believe
that all these approaches can (and should) be combined
during a fuzzing campaign.

4.5. Queue Explosion

If the number of vulnerable points detected is an
important metric for a fuzzer effectiveness, the number of
inputs generated influences its usability and could result
in poor feedback for the fuzzer.

The authors of [74] found that an increase factor up
to ∼8x is still manageable by the fuzzer and would allow
to provide relevant feedback without incurring in a queue
explosion problem. These results were derived from exper-
iments with different coverage instrumentations, such as
Ngram and Ctx. On the other hand, the authors observed
growth factors of 21x and 14x when using two types of
memory feedbacks and concluded that such values were
potentially leading to the explosion in the queue size.

For this, we compute the average size of the queue
for our five strongly data-dependent applications, both in
the baseline case with only edge coverage instrumentation
and with our data dependency instrumentation. Table 6
shows the results along with the ratio obtained by dividing



TABLE 5. A COMPARISON OF THE MEDIAN VALUES OF LINE AND FUNCTION COVERAGE AMONG THE PROGRAMS ACCORDING TO EACH
DIFFERENT INSTRUMENTATION OVER 5 TRIALS OF 24H EACH

Target DDFuzz Edge Ngram2 Ngram4 Ctx
Lines Functions Lines Functions Lines Functions Lines Functions Lines Functions

bison 46.1% 49.7% 43.9% 47.6% 47.5% 50.3% 47.5% 50.3% 47.5% 50.3%
pcre2 53.2% 32.2% 53.8% 32.4% 54.1% 32.4% 54.2% 32.4% 54.2% 32.4%
c2m 48.8% 55.2% 48.8% 55.2% 48.9% 55.2% 48.9% 55.2% 49.2% 55.8%
qbe 76.9% 85.2% 76.6% 85.2% 77.0% 85.0% 77.1% 85.0% 77.0% 85.0%
faust 26.3% 28.5% 26.7% 28.4% 26.7% 28.5% 26.8% 28.5% 26.8% 28.5%

TABLE 6. COMPARISON AMONG THE AVERAGE QUEUE SIZES OVER 5
TRIALS OF 24H EACH WHEN DATA DEPENDENCY COVERAGE AND

EDGE COVERAGE ARE APPLIED, ALONG WITH THEIR RATIO

Target DDFuzz Edge Ratio

bison 5,173 2,986 x1.7
pcre2 119,180 16,282 x7.3
c2m 14,323 13,269 x1.1
qbe 2,748 1,814 x1.5
faust 2,934 2,633 x1.1

the DDFuzz queue size by the Edge size. The numbers
show that the overall increase is quite moderate. With the
exception of pcre2, where the increase accounts for a
factor of 7.3x, all other factors are below 2x, thus showing
that our technique results in additional feedback but not
large enough to cause problems in the input queue.

4.6. Code Coverage

As a last experiment on our custom benchmark, we
decided to compare the values of the code coverage that
we obtained for our strongly data-dependent applications.
For this test, we used afl-cov [4] which represents the
default solution to measure this metric and is compatible
with AFL++ based fuzzers. The tool was launched against
the different instrumentation types that we tested and pro-
duced two values for each one: line coverage and function
coverage. Results are reported in Table 5 and show the
median values that we observed in our experiments.

If we look at the first two columns that correspond to
DDFuzz and Edge, we observe that there is not one of
the two which dominates the other. In two cases (bison
and qbe) DDFuzz performs better whereas for c2m
we registered the same line coverage. For the remaining
two projects instead, Edge reaches a major number of
program points.

Other forms of instrumentation led instead to better
code coverage. However, in the worst case (bison), the
line coverage difference with the best approaches is 1.4%
while for the other projects is always less than 1%. This
result is in line with our expectations since our approach
is not designed to increase coverage, but only to increase
paths on already-covered areas of code.

4.7. FuzzBench

We now look at the results we obtained from the
experiments we performed on Fuzzbench [51]. The main
goal was to extend our approach to a broader range of

applications and bugs to verify whether our findings could
be generalized beyond our test programs.

In these experiments we limited our comparison to
DDFuzz and Edge, because the reports generated by
Fuzzbench do not include the information about the in-
tersections of discovered found but only an aggregated
value representing the sum of the unique bugs for all
fuzzers. Therefore, if we had included other instrumen-
tation approaches (as, for instance, Ctx and Ngram)
we would have not been able to distinguish among the
bugs found by each technique. The experiment consisted
of 20 trials of 23 hours over a total of 22 real-world
projects. We report the results in Table 7, where, for each
target, we list the bugs revealed by the two instrumentation
approaches, the sum of the two, the intersection as well
as the DD ratio, that we introduced in Section 4.2.
To compute the DD ratio, we built the 22 projects on
our local machine, according to the docker specifications
reported by Fuzzbench to mimic the same environment
setup. This allowed us to run our instrumentation pass
and log the instrumented locations and the total number
of basic blocks necessary to compute the ratio. The tar-
gets in Table 7 are sorted by the DD ratio with the
weakly data-dependent applications in the first half and
the strongly data-dependent projects in the second.

If we look at the total unique bugs detected by the
standard AFL++, we notice that they are more than the
amount of vulnerabilities triggered by DDFuzz (respec-
tively 187 and 183). On the other hand, the geometrical
mean, which indicates a central tendency by flattening the
outlier values, tells us that DDFuzz finds in the mean case
8.20 bugs while Edge stops at 7.98 vulnerabilities.

By looking at individual applications, we can no-
tice that Edge performs better in 4 cases while DD-
Cov in 5. For the remaining 13 benchmarks, in
10 cases none of the fuzzers reported any interest-
ing finding (both fuzzers properly ran but did not
trigger any vulnerable location) whereas for 3 cases
the bugs discovered are the same (libgit2_ob-
jects_fuzzer, stb_stbi_read_fuzzer, php_-
php-fuzz-parser-2020-07-25), despite the fact
that for php_php-fuzz-parser-2020-07-25 the
two fuzzers find 2 different bugs. Moreover, it is interest-
ing that in two cases where Edge finds more vulnerabili-
ties, our data dependency instrumentation can still trigger
different buggy locations that were not detected by the
edge coverage. More specifically, for arrow_parquet-
arrow_fuzz the intersection of bugs is 74 which means
that DDFuzz finds 12 different bugs, and the same hap-
pens for one bug discovered in poppler_pdf_fuzzer.
Overall the outcomes of this experiment confirms that



TABLE 7. TOTAL UNIQUE BUGS FOUND ACCROSS ALL 20 TRIALS OF 23H BY DDFUZZ AND EDGE ON FUZZBENCH

Benchmark Total bugs Edge DDFuzz DDFuzz ∩ Edge DD ratio

arrow_parquet-arrow-fuzz 105 93 86 74 1%
proj4_standard_fuzzer 0 0 0 0 2%
muparser_set_eval_fuzzer 0 0 0 0 3%
openh264_decoder_fuzzer 10 10 8 8 3%
aspell_aspell_fuzzer 0 0 0 0 4%
systemd_fuzz-varlink 0 0 0 0 4%
tpm2_tpm2_execute_command_fuzzer 0 0 0 0 4%
file_magic_fuzzer 0 0 0 0 7%
libgit2_objects_fuzzer 2 2 2 2 5%
grok_grk_decompress_fuzzer 4 4 2 2 7%
stb_stbi_read_fuzzer 11 11 11 11 8%

njs_njs_process_script_fuzzer 0 0 0 0 11%
php_php-fuzz-execute 21 13 16 8 11%
libxml2_libxml2_xml_

reader_for_file_fuzzer
13 11 12 10 12%

libhtp_fuzz_htp 7 6 7 6 13%
matio_matio_fuzzer 22 20 21 19 14%
php_php-fuzz-parser-2020-07-25 13 12 12 10 14%
poppler_pdf_fuzzer 5 4 3 2 14%
libarchive_libarchive_fuzzer 0 0 0 0 15%
zstd_stream_decompress 0 0 0 0 15%
usrsctp_fuzzer_connect 0 0 0 0 17%
libhevc_hevc_dec_fuzzer 3 1 3 1 19%

Total 214 187 183 150 -
Geomean 9.72 7.98 8.20 6.38 7%

TABLE 8. MEDIAN RELATIVE CODE-COVERAGE ACCROSS ALL 20
TRIALS OF 23H BY DDFUZZ AND EDGE ON FUZZBENCH

Benchmark Edge DDFuzz

arrow_parquet-arrow-fuzz 96.43 95.02
proj4_standard_fuzzer 100.00 100.00
muparser_set_eval_fuzzer 97.91 97.91
openh264_decoder_fuzzer 99.38 98.91
aspell_aspell_fuzzer 99.91 99.86
systemd_fuzz-varlink 100.00 100.00
tpm2_tpm2_execute_command_fuzzer 96.16 88.62
file_magic_fuzzer 81.65 78.34
libgit2_objects_fuzzer 99.75 99.63
grok_grk_decompress_fuzzer 94.58 91.41
stb_stbi_read_fuzzer 94.81 93.01

njs_njs_process_script_fuzzer 96.22 93.66
php_php-fuzz-execute 96.15 92.77
libxml2_libxml2_xml_reader_for_file_-
fuzzer

94.73 92.85

libhtp_fuzz_htp 99.94 99.85
matio_matio_fuzzer 99.33 99.29
php_php-fuzz-parser-2020-07-25 99.12 98.08
poppler_pdf_fuzzer 97.95 97.96
libarchive_libarchive_fuzzer 96.51 81.32
zstd_stream_decompress 98.12 97.84
usrsctp_fuzzer_connect 99.58 99.65
libhevc_hevc_dec_fuzzer 96.14 93.28

the feedback produced by our instrumentation is different
from the standard edge coverage and results in different
program points reached during the fuzzing session. This
inherently does not always imply more bugs but can result
in some different ones.

For the 5 projects where DDFuzz works better, the DD
ratio indicates a high value of data dependency (above
the 10% threshold we defined in Section 4.2) whereas for

3 out of the 4 projects where Edge wins, the DD ratio
suggests that the application has a lower amount of data
dependencies. The only exception is poppler_pdf_-
fuzzer, where Edge detected 4 bugs vs 3 of DDFuzz,
despite a data-dependency ratio of 14%.

Overall, this confirms once more that the DD ratio
can be used as a criteria to predict the type of instru-
mentation that would provide better results. To conclude
our overview of the bugs, we extracted the statistical
significance data included in the Fuzzbench report. Inter-
estingly, both for DDFuzz and Edge the bug coverage is
statistically significant (i.e., p-value ≤ ∼ 0.05) in 7 cases
out of the 12 projects where they can detect at least one
vulnerability.

As a parallel consideration, we computed the coverage
that our prototype fuzzer reached in the Fuzzbench targets.
Table 8 shows for AFL++ and DDFuzz alike, the median
relative code coverage that we obtained across the 20 trials
for each target. According to the Fuzzbench documenta-
tion, the relative code coverage for a trial is computed
as the ratio between the single-trial coverage over the
maximum coverage obtained during the experiment. It is
quite evident that for the majority of the programs (17
out of 22), Edge results in a better code coverage while
DDFuzz can do better only in 2 cases. However, it is
interesting to observe that for all targets where DDFuzz
finds more bugs, it also reaches a lower code coverage.
This confirms once more our intuition that fuzzing the data
dependency edges does not help to discover new program
points but suggests how to ”stress“ the already discovered
code locations in a different way.



TABLE 9. OUTCOME OF THE THIRD EVALUATION OVER A DATASET OF 6 PROGRAMS. THE RESULTS INCLUDE THE DD RATIO, THE MEDIAN
NUMBER OF BUGS FOUND WITH DDFUZZ AND EDGE COVERAGE, THEIR MEDIAN INTERSECTION, THE SLOWDOWN INTRODUCED WITH OUT

INSTRUMENTATION AND THE P-VALUE THAT WE OBTAINED WITH THE MANN-WHITNEY TEST.

Target DD ratio DDFuzz Edge DDFuzz ∩ Edge Slowdown P-value

nasm 3% 4 4 4 1% 0.12
sqlite 7% 1 2 1 15% 0.001
lua 11% 9 2 2 20% 0.005
boolector 14% 3 1 1 6% 0.13
mruby 17% 3 3 3 35% 0.45
tcc 12% 11 8 8 7% 0.05

Total - 31 20 19 - -
Geomean 9.3% 3.9 2.6 2.4 8.7% -

4.8. Third Dataset

As a final proof of our approach efficacy, we opted to
select another dataset, made of real-world programs, and
adopt it to compare against Edge. We reviewed recent
state-of-the-art papers looking for other fuzzing solutions
dedicated to specific classes of target applications (since
DDFuzz works best with highly data-dependent binaries).
At the end we settled for the dataset of Blazytko et
al. [13], who evaluated their structure-aware fuzzer on a
set of 8 programs, that we report in Table 9 (note that we
excluded PHP and libxml2 as they are already included
in the experiment we ran on the Fuzzbench dataset, and
a second evaluation of these targets would be unfair, as
they both resulted in more bugs for DDFuzz, see Tab. 7).
For the experiment setup, we used the same configuration
described in Section 4.1.

DDFuzz outperformed Edge in 3 targets out of the 4
with a DD ratio above the threshold (10%), with 11 more
bugs overall. On the two targets with a low DD ratio,
our technique performs like the baseline on nasm while
on sqlite it underperforms Edge missing one bug. The
Mann-Whitney U test results in a significative p-value
in 3 of the 6 considered cases. With the exception of
boolector, where the test produces a p-value major
than 0.05, the two remaining applications (nasm and
mruby) that result in a high p-value justify this due to the
similar number of bugs during the 5 trials. This evaluation
further confirms that the DD ratio is a good predictor
of the efficacy of DDFuzz and thus the insight that our
technique should be applied to a specific class of data-
dependent programs.

4.9. Classes of Bugs

Another interesting measurement that we carried out
on top of our experiments is to study the classes of bugs
that DDFuzz revealed during the several trials. For each
of the detected bugs in the median case, we analysed the
reports generated with ASAN for the two datasets that we
tested on our servers. Table 10 reports the results in the
column Total while the last column shows the bugs that
only DDFuzz could find.

The table shows that DDFuzz can detect several types
of bugs, with a prevalence for Heap Buffer Overflows (38)
and Undefined Behaviors that generate the signal ILL
(36). However, many of these bugs are the same that also
the vanilla version of AFL++ can spot during our tests.

TABLE 10. CLASSES OF BUGS DETECTED WITH DDFUZZ IN THE
MEDIAN CASE

Bug Class Total DDFuzz Only

Heap BOF 38 11
Global BOF 5 3
Stack BOF 1 0
Heap UAF 4 2
Stack Overflow 19 11
Invalid Ptr Deref 11 3
Invalid Allocation Size 1 0
ABRT 2 1
ILL 36 5

Thus, we isolated the ones that are different among the two
fuzzers, and found that the majority accounts for Stack
Overflows (11 instances) and Heap Buffer Overflows (11)
while all the other cases are almost equally distributed
between the other classes of bugs.

5. A Bug Case Study

In this section, we present a case study about a sample
bug that we found while triaging the crashes that we
obtained during our experiments. Our goal is to show an
example of how DDFuzz succeeds in real life and differs
from previous approaches at inspecting the program state.

The application that we consider is tcc, a project that
implements a fast and small C compiler (roughly 50K
lines of code). During the triage phase, AddressSani-
tizer reports the presence of a Global Buffer Overflow.
Interestingly, no edge-coverage trial reports the same bug
and therefore we opted to re-implement the approach
described in the paper by Wang et al. [74] to investigate
the crash and understand the reason why only one of the
two fuzzers was able to detect it.

The first step consists of reconstructing the testcase
tree that originated the crash. This is possible because
AFL++ stores the newly generated testcases in the queue
by naming them with additional info such as the time,
the mutation strategy and the previous testcase whose
the mutation originated the current one. Moreover, when
the fuzzer applies a splicing strategy, the two parents’
names are preserved, thus allowing to recover all original
testcases also in this second scenario. After recovering
the testcase tree, the next step is to show if each mutation
generates novelty according to the fuzzer bitmap. Indeed,
in case a certain testcase in the tree does not generate
novelty for the edge-coverage fuzzer, it means that the



fuzzer would have skipped the testcase, loosing one step
towards the crashing input. Note that for the bug we show,
we found only one input that generated the corresponding
crash.

After running our set of scripts that implements the
previously described technique, we find that the Global
Buffer Overflow is the result of 168 mutations deriving
from 2 initial seeds and divided into 133 havoc and 35
splicing. More importantly, for 3 havoc mutations, the
resulting testcase does not generate any novelty according
to edge-coverage, while DDFuzz classifies it as inter-
esting. The first of these intermediate testcases appears
already after the first 10 mutations of the tree that lead
to the bug. This demonstrates how our Data Dependency
instrumentation can affect the findings of the fuzzer al-
ready after few initial mutations. The other two mutations
that were retained because of the DDG instrumentation
come later in the tree, respectively at the 18th and 105th
mutation round. This case is a good example of how
the augmented sensitivity caused by our data-dependency
feedback can help the fuzzer to retain input that can later
help to discover new bugs.

6. Discussion

Overall DDFuzz experimented on three different
datasets for a total of 38 different target applications.
Our numbers and experiments show that embedding data
flow information in coverage-guided fuzzing is a useful
practice. The feedback produced by such an instrumenta-
tion can reward the fuzzer in a different way compared
to current state-of-the-art techniques and lead to reaching
different program points that would remain unexplored
with coverage-guided approaches proposed so far. This is
evident when we compare the intersections of vulnera-
bilities triggered by our own approach against the other
instrumentations that we tested. In our custom dataset,
it helped to reveal 27 new bugs compared to Edge.
Moreover, in Fuzzbench, it triggered 33 different buggy
locations and in our third real-world evaluation set it
was able to find 12 different vulnerabilities. However,
DDFuzz functioning is strictly related to the internals
of the tested codebase. Indeed, as we have seen across
our evaluation it is able to spot interesting and different
bugs only in those cases where the tested application
exhibits an high data-dependent structure of the code.
Therefore we tried to develop a reliable heuristic (that
we referred as DD ratio) that helps at recognizing these
cases before running the actual fuzzing session. Moreover,
we tested the impact of our technique from the point of
view of the growth in the fuzzer queue, demonstrating
that in the average case the increase is minor than x2,
while in the worst case, it is smaller than many coverage
guided approaches. Finally, the code coverage reached by
DDFuzz is affected negatively only in a minimal part (-
1.4% in the worst case against Ctx) while in some cases,
it can allow to trigger different program points. All these
aspects come at the expense of a moderate slowdown of
10-14% in the average case (6-8% if we use the geometric
mean) compared to traditional Edge.

In total our dataset includes 38 programs, therefore
respecting the fuzzing guidelines indicated by the authors
of [42]. While we cannot make sure to cover all possible

scenarios we thing that the targets we selected for our
experiments are quite representative from different points
of view. For instance, they provide a good variety of
weakly and highly data-dependent applications as well as
they show different trends in terms of performances and
discovered bugs. In particular, we found that the highest
amount of data-dependency present in an app corresponds,
in our set, to 23% (c2m) that resulted in a slowdown of
21%. This hints that in a worst-case scenario with higher
values of the DD ratio, our instrumentation could penalize
the fuzzing session by injecting too much instrumentation.
However, during our research of the targets, especially
w.r.t. the first custom dataset, we did not meet any appli-
cation producing a DD ratio so high to hinder the fuzzing
process.

That being said, our approach is first of all a sub-
approximation of the path coverage that allows the fuzzer
to reach new program points. As we described in the
Introduction, path coverage is not a good solution for
many applications where it results in state explosion. On
the other hand, the fact itself that DDFuzz is an under-
approximation in part justifies why our approach can only
work in a subset of cases. However, we believe that relying
on such approximations to produce alternative feedbacks
could, and should, represent a possible road rather than
just focusing on edge coverage based instrumentations and
we hope, with our work, to put more emphasis on this
aspect for future research.

7. Limitations and Future Work

Although we believe that our implementation well
describes the potential of the data flow information as
feedback for fuzzing, there are some points that we did
not investigate, and that could additionally extend and
improve our approach for future uses.

Firstly, our approach is useful particularly for what we
called strongly data-dependent applications. This is at the
same time a limitation and a feature, because it restricts
the range of programs for which our fuzzing approach
should be deployed.

Another point of improvement is that our current
implementation does not avoid edge collisions. This could
result in some paths that are ignored as the result of the
XOR computation returns the same value for two different
sets of edges. Note that this is similar to what happens
with the Ngram instrumentation that solves the collisions
problem only in part, introducing a more sensitive feed-
back that results in more collisions in the bitmap. Since
the scope of our study was to show the efficacy of the
DDG instrumentation, we did not implement a mechanism
to avoid this issue. However, we plan to address this
point in future work on this topic. For instance, a possible
solution could consist of two bitmaps, one collision-free
for edge coverage that implements the AFL++ approach
transforming the program by breaking the critical edges
in the CFG [2] and a second smaller one with collisions
for DDG coverage.

For the same reason, we did not try to adapt our
approach to binary-only fuzzing. Although this is tech-
nically possible, it would require a different approach
to recover the DDG of the binary, and instrumentation
should be injected either by binary rewriting [26] or



by emulation [12]. In any case, we believe this could
represent a promising future research direction, and we
hope it will be considered by researchers on this topic.

Finally, our implementation is based on AFL++ and
we did not adapt it to other fuzzing engines. Given the
large number of fuzzers, it is possible that our approach
could work in a different way depending on the underlying
implementation of the engine.

8. Related Work

We discuss now some problems and the respective
proposed solutions that are orthogonal to DDFuzz.

8.1. Increasing code coverage

One of the main objectives for many proposed opti-
mizations to coverage-guided fuzzing is to reach a higher
amount of covered program points in the same time win-
dow compared to previous solutions. This metric comes
from the observation that a fuzzer cannot uncover a fault
in an unxeplored portion of the code.

During the last years, the community identified some
artifacts in the code that prevent a fuzzer to explore the
code behind these so-called ”roadblocks“. The main types
of roadblocks are:

Multi-byte comparisons The probability that a
generic byte-level mutator guess from scratch the value
needed to bypass a certain multi-byte comparison is near
to 0. Several approaches try to overcome this problem, like
[3] that splits them into several single-byte comparisons
at the compiler level, [65] and [20] that identify portions
of the input related to the values in the comparisons
using taint analysis, or [11] that heuristically replaces
correspondences between input and comparisons.

Checksum checks Checksums checks are a particu-
larly hard version of comparison. While they can be solved
by providing valid inputs, the problem is that any generic
mutation invalidates it generating an invalid input, making
the fuzzer unable to explore the code behind these checks.
The most common way to handle these checks is to patch
them out and restore them when the fuzzer finds a crash,
manually or automatically, as proposed in [11], [29], [58].

Hashtable lookups The third important code pattern
identified as a problem for coverage-guided fuzzers is the
hashtable lookups as the information needed to get the
right item is not explicit in code coverage and eventual
comparisons are between encoded versions of portions
of the input. Current automatic solutions, like [11], [30],
are quite naive because they can solve the roadblock if
the lookup is in a specific helper function looking at
its pointer arguments. While using a helper function is
a common coding pattern for hashtable lookups, this is
not an exhaustive solution and the state-of-the-art [10]
requires manual annotations.

In addition, a popular technique to handle roadblocks
is hybrid fuzzing, in which a concolic executor is used to
aid the fuzzer [16], [61], [79]. For the checksum checks,
the concolic engine can be used to repair the checksums on
crashing testcases. For the other two kinds of roadblocks,
in theory, it should be possible to solve them with this

technique but concolic engines struggle to solve hashmap-
like lookups due to the complexity of handling symbolic
pointers.

8.2. Meaningful inputs generation

A problem that fuzzers face is the inability to stress
code paths behind the parsing stage. While generic muta-
tors are very good in stressing parsers with invalid inputs,
in order to fuzz deep in the program we need mutators
able to go beyond the parser.

A widely adopted solution is to guide the input gen-
eration with a model of the input format, that can be a
grammar [9], [72] or a block-based model [59], using an
internal representation, like the AST, that is easy to mutate
while preserving validity.

An important field is the research into the automation
of this process, as writing an input model is still a human
task. So in the past year, some solutions were proposed
to infer how the input bytes are handled by the program
with the goal of mutating them accordingly [13], [29].

Another important property of inputs that some
domain-based fuzzers may want to preserve is semantic
validity. For instance, when fuzzing a compiler, a testcase
that uses undefined variables is syntactically valid, but
the compilation will fail. Fuzzers such as [32], [35] im-
plement semantic-preserved mutations to fuzz JavaScript
interpreters behind the compilation stage.

8.3. Hunting non-crashing faults

While the algorithmic improvements to fuzz testing
play an important part in the game, the discrimination
between testcases that trigger or not a fault is another
important room for fuzzers’ enhancement.

It is easy to spot bugs that cause a crash in the
application just by observing the exit status for instance
on UNIX systems, but many bugs are silent and do not
corrupt the application state enough to cause a crash [53].

An example of this kind of bugs is many logic bugs
related to integer arithmetic. While in some application the
invalid state may be propagated further in the code and
cause a crash, in many others this kind of faults remain
silent.

In order to catch these bugs, the targets, in addition
to the fuzzer instrumentation, are transformed to include
tripwires and assertions to check the validity of the pro-
gram’s states. Many fuzzers offer the support to the LLVM
sanitizers, ASan [69] for many memory corruption bugs
and UBSan [1] for generic undefined behavior in C/C++
for instance. Other sanitizers to catch specific bug classes
exist too, like [33].

9. Concluding Remarks

In this paper we discussed how the information ex-
tracted from the Data Dependency Graph can be inte-
grated with the classic edge coverage to provide a better
feedback for fuzzing. Our experiments showed that, for
applications that have a rich set of data dependencies, this
approach leads to the discovery of more and diverse bugs.
Moreover, we hope that our technique and prototype based
on AFL++ and LLVM will be adopted by users to fuzz
programs alongside the existing coverage metrics.



Acknowledgments

We would like to thank the anonymous reviewers
for their constructive feedback and Slasti Mormanti for
the useful tips. This project has been supported by the
Defense Advanced Research Projects Agency (DARPA)
under agreement number FA875019C0003.

References

[1] Clang User’s Manual. Undefined behavior sanitizer. https://clang.
llvm.org/docs/UndefinedBehaviorSanitizer.html. [Online; accessed
17 Sep. 2021].

[2] Critical Edges Elimination Pass. https://llvm.org/doxygen/
BreakCriticalEdges 8cpp source.html. [Online; accessed 08 Feb.
2022].

[3] Circumventing Fuzzing Roadblocks with Compiler
Transformations. https://lafintel.wordpress.com/2016/08/15/
circumventing-fuzzing-roadblocks-with-compiler-transformations/,
2016. [Online; accessed 10 Sep. 2021].

[4] afl-cov. https://github.com/mrash/afl-cov, Accessed February 28,
2022.

[5] Datadependencegraph class reference in the llvm framework. https:
//llvm.org/doxygen/classllvm 1 1DataDependenceGraph.html,
Accessed February 28, 2022.

[6] Definition of ddg in the llvm framework. https://llvm.org/docs/
DependenceGraphs/index.html, Accessed February 28, 2022.

[7] Fuzzbench configuration. https://google.github.io/fuzzbench/, Ac-
cessed February 28, 2022.

[8] Alfred V Aho, Monica S Lam, Ravi Sethi, and Jeffrey D Ullman.
Compilers: principles, techniques and tools. 2020.

[9] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick
Jauernig, Ahmad-Reza Sadeghi, and Daniel Teuchert. NAUTILUS:
Fishing for deep bugs with grammars. In NDSS, 2019.

[10] Cornelius Aschermann, Sergej Schumilo, Ali Abbasi, and Thorsten
Holz. Ijon: Exploring deep state spaces via fuzzing. In 2020 IEEE
Symposium on Security and Privacy (SP), pages 1597–1612. IEEE,
2020.

[11] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert
Gawlik, and Thorsten Holz. Redqueen: Fuzzing with input-to-state
correspondence. In NDSS, volume 19, pages 1–15, 2019.

[12] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In
USENIX annual technical conference, FREENIX Track, volume 41,
page 46. Califor-nia, USA, 2005.

[13] Tim Blazytko, Cornelius Aschermann, Moritz Schlögel, Ali Ab-
basi, Sergej Schumilo, Simon Wörner, and Thorsten Holz. GRI-
MOIRE: Synthesizing structure while fuzzing. In 28th USENIX
Security Symposium (USENIX Security 19), pages 1985–2002.
USENIX Association, August 2019.

[14] Rastislav Bodik and Rajiv Gupta. Partial dead code elimina-
tion using slicing transformations. In Proceedings of the ACM
SIGPLAN 1997 conference on Programming language design and
implementation, pages 159–170, 1997.

[15] Marcel Böhme, Van-Thuan Pham, and Abhik Roychoudhury.
Coverage-based greybox fuzzing as markov chain. IEEE Trans-
actions on Software Engineering, 45(5):489–506, 2017.

[16] Luca Borzacchiello, Emilio Coppa, and Camil Demetrescu.
Fuzzing Symbolic Expressions. In Proceedings of the 43rd In-
ternational Conference on Software Engineering, ICSE ’21, 2021.

[17] Cristian Cadar, Daniel Dunbar, Dawson R Engler, et al. Klee:
unassisted and automatic generation of high-coverage tests for
complex systems programs. In OSDI, volume 8, pages 209–224,
2008.

[18] Qiong Cai, Lin Gao, and Jingling Xue. Region-based partial dead
code elimination on predicated code. In International Conference
on Compiler Construction, pages 150–166. Springer, 2004.

[19] Jian-Liang Chen, Feng-Jian Wang, and Yung-Lin Chen. An object-
oriented dependency graph for program slicing. In Proceedings.
Technology of Object-Oriented Languages. TOOLS 24 (Cat. No.
97TB100240), pages 121–130. IEEE, 1997.

[20] P. Chen and H. Chen. Angora: Efficient fuzzing by principled
search. In 2018 IEEE Symposium on Security and Privacy (SP),
pages 711–725, 2018.

[21] Yaohui Chen, Mansour Ahmadi, Boyu Wang, Long Lu, et al.
MEUZZ: Smart seed scheduling for hybrid fuzzing. In 23rd
International Symposium on Research in Attacks, Intrusions and
Defenses (RAID 2020), pages 77–92, 2020.

[22] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng,
Limin Sun, and Zhenkai Liang. Dtaint: detecting the taint-style
vulnerability in embedded device firmware. In 2018 48th Annual
IEEE/IFIP International Conference on Dependable Systems and
Networks (DSN), pages 430–441. IEEE, 2018.

[23] Animesh Basak Chowdhury, Raveendra Kumar Medicherla, and
R Venkatesh. Verifuzz: Program aware fuzzing. In International
Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 244–249. Springer, Cham, 2019.

[24] Daniele Cono D’Elia, Camil Demetrescu, and Irene Finocchi.
Mining hot calling contexts in small space. Software: Practice
and Experience, 46(8):1131–1152, 2016.

[25] Brendan Dolan-Gavitt, Patrick Hulin, Engin Kirda, Tim Leek,
Andrea Mambretti, Wil Robertson, Frederick Ulrich, and Ryan
Whelan. Lava: Large-scale automated vulnerability addition. In
2016 IEEE Symposium on Security and Privacy (SP), pages 110–
121. IEEE, 2016.

[26] Gregory J Duck, Xiang Gao, and Abhik Roychoudhury. Binary
rewriting without control flow recovery. In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 151–163, 2020.

[27] Jeanne Ferrante, Karl J Ottenstein, and Joe D Warren. The program
dependence graph and its use in optimization. ACM Transactions
on Programming Languages and Systems (TOPLAS), 9(3):319–
349, 1987.

[28] Andrea Fioraldi, Daniele Cono D’Elia, and Davide Balzarotti.
The use of likely invariants as feedback for fuzzers. In 30th
USENIX Security Symposium (USENIX Security 21), pages 2829–
2846. USENIX Association, August 2021.

[29] Andrea Fioraldi, Daniele Cono D’Elia, and Emilio Coppa. WEIZZ:
Automatic grey-box fuzzing for structured binary formats. In
Proceedings of the 29th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2020. Association for
Computing Machinery, 2020.

[30] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse.
Afl++: Combining incremental steps of fuzzing research. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20), 2020.

[31] Shuitao Gan, Chao Zhang, Xiaojun Qin, Xuwen Tu, Kang Li,
Zhongyu Pei, and Zuoning Chen. Collafl: Path sensitive fuzzing.
In 2018 IEEE Symposium on Security and Privacy (SP), pages
679–696. IEEE, 2018.

[32] Samuel Groß. Fuzzil: Coverage guided fuzzing for javascript
engines. 2018.

[33] Istvan Haller, Yuseok Jeon, Hui Peng, Mathias Payer, Cristiano
Giuffrida, Herbert Bos, and Erik van der Kouwe. Typesan: Prac-
tical type confusion detection. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security,
CCS ’16, page 517–528, New York, NY, USA, 2016. Association
for Computing Machinery.

[34] Christian Hammer. Information flow control for Java: a compre-
hensive approach based on path conditions in dependence graphs.
2009.

[35] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. CodeAl-
chemist: Semantics-aware code generation to find vulnerabilities
in javascript engines. 2019.

[36] Dominik Harmim, Vladimır Marcin, and Ondrej Pavela. Scalable
static analysis using facebook infer. Excel@ FIT’19.

https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://clang.llvm.org/docs/UndefinedBehaviorSanitizer.html
https://llvm.org/doxygen/BreakCriticalEdges_8cpp_source.html
https://llvm.org/doxygen/BreakCriticalEdges_8cpp_source.html
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://lafintel.wordpress.com/2016/08/15/circumventing-fuzzing-roadblocks-with-compiler-transformations/
https://github.com/mrash/afl-cov
https://llvm.org/doxygen/classllvm_1_1DataDependenceGraph.html
https://llvm.org/doxygen/classllvm_1_1DataDependenceGraph.html
https://llvm.org/docs/DependenceGraphs/index.html
https://llvm.org/docs/DependenceGraphs/index.html
https://google.github.io/fuzzbench/


[37] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. Magma:
A ground-truth fuzzing benchmark. Proceedings of the ACM on
Measurement and Analysis of Computing Systems, 4(3):1–29, 2020.

[38] Mark Heffernan and Kent Wilken. Data-dependency graph trans-
formations for instruction scheduling. Journal of Scheduling,
8(5):427–451, 2005.

[39] Mark Heffernan, Kent Wilken, and Ghassan Shobaki. Data-
dependency graph transformations for superblock scheduling. In
2006 39th Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO’06), pages 77–88. IEEE, 2006.

[40] Chin-Chia Hsu, Che-Yu Wu, Hsu-Chun Hsiao, and Shih-Kun
Huang. Instrim: Lightweight instrumentation for coverage-guided
fuzzing. In Symposium on Network and Distributed System Security
(NDSS), Workshop on Binary Analysis Research, 2018.

[41] David A Kinloch and Malcolm Munro. Understanding c programs
using the combined c graph representation. In ICSM, pages 172–
180, 1994.

[42] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael
Hicks. Evaluating fuzz testing. In Proceedings of the 2018 ACM
SIGSAC Conference on Computer and Communications Security,
pages 2123–2138, 2018.

[43] Jens Knoop, Oliver Rüthing, and Bernhard Steffen. Partial dead
code elimination. ACM SIGPLAN Notices, 29(6):147–158, 1994.

[44] David J Kuck, Robert H Kuhn, David A Padua, Bruce Leasure, and
Michael Wolfe. Dependence graphs and compiler optimizations.
In Proceedings of the 8th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 207–218, 1981.

[45] Chris Lattner and Vikram Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO
2004., pages 75–86. IEEE, 2004.

[46] Chingren Lee, Jenq Kuen Lee, and TingTing Hwang. Compiler op-
timization on instruction scheduling for low power. In Proceedings
13th International Symposium on System Synthesis, pages 55–60.
IEEE, 2000.

[47] LLVM Project. libFuzzer – a library for coverage-guided fuzz
testing. https://llvm.org/docs/LibFuzzer.html, September 2018.
[Online; accessed 17 Sep. 2021].

[48] Shan Lu, Pin Zhou, Wei Liu, Yuanyuan Zhou, and Josep Torrellas.
Pathexpander: Architectural support for increasing the path cover-
age of dynamic bug detection. In 2006 39th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO’06), pages
38–52. IEEE, 2006.

[49] Valentin JM Manès, Soomin Kim, and Sang Kil Cha. Ankou:
Guiding grey-box fuzzing towards combinatorial difference. In
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering, pages 1024–1036, 2020.

[50] Masahiro Matsubara, Kohei Sakurai, Fumio Narisawa, Masushi En-
shoiwa, Yoshio Yamane, and Hisamitsu Yamanaka. Model check-
ing with program slicing based on variable dependence graphs.
arXiv preprint arXiv:1301.0041, 2013.

[51] Jonathan Metzman, László Szekeres, Laurent Simon, Read
Sprabery, and Abhishek Arya. Fuzzbench: an open fuzzer bench-
marking platform and service. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, pages
1393–1403, 2021.

[52] Barton P. Miller, Louis Fredriksen, and Bryan So. An empir-
ical study of the reliability of unix utilities. Commun. ACM,
33(12):32–44, December 1990.

[53] Marius Muench, Jan Stijohann, Frank Kargl, Aurélien Francillon,
and Davide Balzarotti. What you corrupt is not what you crash:
Challenges in fuzzing embedded devices. In NDSS 2018, Network
and Distributed Systems Security Symposium, 2018.

[54] Stefan Nagy and Matthew Hicks. Full-speed fuzzing: Reducing
fuzzing overhead through coverage-guided tracing. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 787–802, 2019.

[55] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano
Giuffrida. Parmesan: Sanitizer-guided greybox fuzzing. In 29th
USENIX Security Symposium (USENIX Security 20), pages 2289–
2306, 2020.

[56] Karl J Ottenstein and Linda M Ottenstein. The program depen-
dence graph in a software development environment. ACM Sigplan
Notices, 19(5):177–184, 1984.

[57] Rohan Padhye, Caroline Lemieux, Koushik Sen, Laurent Si-
mon, and Hayawardh Vijayakumar. FuzzFactory: Domain-specific
fuzzing with waypoints. Proc. ACM Program. Lang., 3(OOPSLA),
October 2019.

[58] H. Peng, Y. Shoshitaishvili, and M. Payer. T-fuzz: Fuzzing by
program transformation. In 2018 IEEE Symposium on Security
and Privacy (SP), pages 697–710, May 2018.

[59] V. Pham, M. Boehme, A. E. Santosa, A. R. Caciulescu, and
A. Roychoudhury. Smart greybox fuzzing. IEEE Transactions
on Software Engineering, 2019.

[60] Marco Pistoia, Satish Chandra, Stephen J Fink, and Eran Yahav. A
survey of static analysis methods for identifying security vulnera-
bilities in software systems. IBM Systems Journal, 46(2):265–288,
2007.

[61] Sebastian Poeplau and Aurélien Francillon. Symbolic execution
with symcc: Don’t interpret, compile! In 29th USENIX Security
Symposium (USENIX Security 20), pages 181–198, 2020.

[62] Sebastian Poeplau and Aurélien Francillon. Symqemu:
Compilation-based symbolic execution for binaries. In Proceedings
of the 2021 Network and Distributed System Security Symposium,
2021.

[63] Chenxiong Qian, Xiapu Luo, Yu Le, and Guofei Gu. Vulhunter:
toward discovering vulnerabilities in android applications. IEEE
Micro, 35(1):44–53, 2015.

[64] Dudekula Mohammad Rafi, Katam Reddy Kiran Moses, Kai Pe-
tersen, and Mika V Mäntylä. Benefits and limitations of automated
software testing: Systematic literature review and practitioner sur-
vey. In 2012 7th International Workshop on Automation of Software
Test (AST), pages 36–42. IEEE, 2012.

[65] Sanjay Rawat, Vivek Jain, Ashish Kumar, Lucian Cojocar, Cris-
tiano Giuffrida, and Herbert Bos. Vuzzer: Application-aware
evolutionary fuzzing. In NDSS, volume 17, pages 1–14, 2017.

[66] Alexandre Rebert, Sang Kil Cha, Thanassis Avgerinos, Jonathan
Foote, David Warren, Gustavo Grieco, and David Brumley. Op-
timizing seed selection for fuzzing. In 23rd USENIX Security
Symposium (USENIX Security 14), pages 861–875, 2014.

[67] Marc Roper. Software Testing, 1994.

[68] B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global value
numbers and redundant computations. In Proceedings of the
15th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, POPL ’88, pages 12–27. Association for
Computing Machinery, 1988.

[69] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitriy Vyukov. Addresssanitizer: A fast address sanity checker.
In 2012 USENIX Annual Technical Conference (USENIXATC 12),
pages 309–318, 2012.

[70] Chayanika Sharma, Sangeeta Sabharwal, and Ritu Sibal. A survey
on software testing techniques using genetic algorithm. arXiv
preprint arXiv:1411.1154, 2014.

[71] Yan Shoshitaishvili, Ruoyu Wang, Christopher Salls, Nick
Stephens, Mario Polino, Andrew Dutcher, John Grosen, Siji Feng,
Christophe Hauser, Christopher Kruegel, et al. Sok:(state of) the
art of war: Offensive techniques in binary analysis. In 2016 IEEE
Symposium on Security and Privacy (SP), pages 138–157. IEEE,
2016.

[72] Prashast Srivastava and Mathias Payer. Gramatron: Effective
grammar-aware fuzzing. In Proceedings of the 30th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA
2021, New York, NY, USA, 2021. Association for Computing
Machinery.

[73] Michael Sutton, Adam Greene, and Pedram Amini. Fuzzing: brute
force vulnerability discovery. Pearson Education, 2007.

[74] Jinghan Wang, Yue Duan, Wei Song, Heng Yin, and Chengyu
Song. Be sensitive and collaborative: Analyzing impact of coverage
metrics in greybox fuzzing. In 22nd International Symposium on
Research in Attacks, Intrusions and Defenses (RAID 2019), pages
1–15, 2019.

https://llvm.org/docs/LibFuzzer.html


[75] Lei Wang, Qiang Zhang, and PengChao Zhao. Automated detection
of code vulnerabilities based on program analysis and model
checking. In 2008 Eighth IEEE International Working Conference
on Source Code Analysis and Manipulation, pages 165–173. IEEE,
2008.

[76] Mark Weiser. Program slicing. IEEE Transactions on software
engineering, (4):352–357, 1984.

[77] Fabian Yamaguchi, Nico Golde, Daniel Arp, and Konrad Rieck.
Modeling and discovering vulnerabilities with code property
graphs. In 2014 IEEE Symposium on Security and Privacy, pages
590–604. IEEE, 2014.

[78] Fabian Yamaguchi, Alwin Maier, Hugo Gascon, and Konrad Rieck.
Automatic inference of search patterns for taint-style vulnerabili-
ties. In 2015 IEEE Symposium on Security and Privacy, pages
797–812. IEEE, 2015.

[79] Insu Yun, Sangho Lee, Meng Xu, Yeongjin Jang, and Taesoo Kim.
Qsym: A practical concolic execution engine tailored for hybrid
fuzzing. In Proceedings of the 27th USENIX Conference on Se-
curity Symposium, SEC’18, pages 745–761. USENIX Association,
2018.

[80] Michał Zalewski. American Fuzzy Lop - Whitepaper. https:
//lcamtuf.coredump.cx/afl/technical details.txt, 2016. [Online; ac-
cessed 17 Sep. 2021].

[81] Zeineb Zhioua, Stuart Short, and Yves Roudier. Static code analy-
sis for software security verification: Problems and approaches. In
2014 IEEE 38th International Computer Software and Applications
Conference Workshops, pages 102–109. IEEE, 2014.

https://lcamtuf.coredump.cx/afl/technical_details.txt
https://lcamtuf.coredump.cx/afl/technical_details.txt

	Introduction
	Background
	Data Dependency Graphs
	Coverage Guided Fuzzing

	Methodology and Implementation
	DDG construction
	Filtering
	Instrumentation

	Evaluation
	Experiment Setup
	Comparison against edge coverage
	Effects of our instrumentation filters
	Comparison against different instrumentation strategies
	Queue Explosion
	Code Coverage
	FuzzBench
	Third Dataset
	Classes of Bugs

	A Bug Case Study
	Discussion
	Limitations and Future Work
	Related Work
	Increasing code coverage
	Meaningful inputs generation
	Hunting non-crashing faults

	Concluding Remarks
	References

