


THE FUTURE OF THE BRAIN





E S S A Y S  B Y  T H E  W O R L D ’ S  

L E A D I N G  N E U R O S C I E N T I S T S

E D I T E D  B Y  

G A R Y  M A R C U S  A N D  J E R E M Y  F R E E M A N

P R I N C E T O N  U N I V E R S I T Y  P R E S S

P R I N C E T O N  A N D  O X F O R D



Copyright © 2015 by Gary Marcus and Jeremy Freeman
Requests for permission to reproduce material from this work should be sent to Permissions, 
Princeton University Press
Published by Princeton University Press, 41 William Street, Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press, 6 Oxford Street, Woodstock, Oxfordshire 
OX20 1TW

press.princeton.edu

Jacket design by Karl Spurzem

All Rights Reserved

ISBN 978-0-691-16276-8

Library of Congress Control Number:  2014938489

British Library Cataloging-in-Publication Data is available

his book has been composed in Minion Pro

Printed on acid-free paper. ∞

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1



C O N T E N T S

List of Contributors ix

Preface
Gary Marcus and Jeremy Freeman xi

M A P P I N G  T H E  B R A I N

Building Atlases of the Brain 3
Mike Hawrylycz with Chinh Dang, Christof Koch, and Hongkui Zeng

Whole Brain Neuroimaging and Virtual Reality 17
Misha B. Ahrens

Project MindScope 25
Christof Koch with Clay Reid, Hongkui Zeng, Stefan Mihalas, Mike 

Hawrylycz, John Philips, Chinh Dang, and Allan Jones

he Connectome as a DNA Sequencing Problem 40
Anthony Zador

Rosetta Brain 50
George Church with Adam Marblestone and Reza Kalhor

C O M P U T A T I O N

Understanding the Cortex through Grid Cells 67
May- Britt Moser and Edvard I. Moser

Recording from Many Neurons Simultaneously: From 
Measurement to Meaning 78

Krishna V. Shenoy

Network Neuroscience 90
Olaf Sporns



v i  • 

Large- Scale Neuroscience: From Analytics to Insight 100
Jeremy Freeman

S I M U L A T I N G  T H E  B R A I N

Whole Brain Simulation 111
Sean Hill

Building a Behaving Brain 125
Chris Eliasmith

L A N G U A G E

he Neurobiology of Language 139
David Poeppel

Translating the Genome in Human Neuroscience 149
Simon E. Fisher

Color plates follow p. 160

S K E P T I C S

Consciousness, Big Science, and Conceptual Clarity 161
Ned Block

From Circuits to Behavior: A Bridge Too Far? 177
Matteo Carandini

Lessons from Evolution 186
Leah Krubitzer

Lessons from the Genome 194
Arthur Caplan with Nathan Kunzler

he Computational Brain 205
Gary Marcus

Con t en t s



  •  v i i

I M P L I C A T I O N S

Neurotechnology 219
John Donoghue

he Miswired Brain, Genes, and Mental Illness 234
Kevin J. Mitchell

Neural Dust: An Untethered Approach to Chronic Brain- 
Machine Interfaces 243

Michel M. Maharbiz with Dongjin Seo, Jose M. Carmena, Jan M. 
Rabaey, and Elad Alon

A F T E R W O R D

Neuroscience in 2064: A Look at the Last Century 255
Christof Koch and Gary Marcus

Glossary 271

Index 275

Con t en t s





C O N T R I B U T O R S

Misha B. Ahrens
HHMI, Janelia Farm Research Campus, Ashburn, Virginia

Ned Block
New York University

Arthur Caplan
New York University, Langone Medical Center

Matteo Carandini
University College London

George Church
Harvard Medical School

John Donoghue
Brown Institute for Brain Science, Brown University

Chris Eliasmith
University of Waterloo, Ontario, Canada

Simon E. Fisher
Max Planck Institute for Psycholinguistics and Donders Institute for Brain, 

Cognition & Behaviour, Radboud University, Nijmegen, the Netherlands

Jeremy Freeman
HHMI, Janelia Farm Research Campus, Ashburn, Virginia

Mike Hawrylycz
Allen Institute for Brain Science, Seattle, Washington

Sean Hill
Brain Mind Institute, École Polytechnique Fédérale de Lausanne, Switzerland

Christof Koch
Allen Institute for Brain Science, Seattle, Washington



x  • 

Leah Krubitzer
University of California, Davis

Michel M. Maharbiz
University of California, Berkeley

Gary Marcus
New York University and Allen Institute for Brain Science, Seattle, Washington

Kevin J. Mitchell
Smurit Institute of Genetics and Institute of Neuroscience, Trinity College,  

Dublin

May- Britt Moser and Edvard I. Moser
Centre for Neural Computation, Kavli Institute for Systems Neuroscience,  

Norwegian University of Science and Technology, Trondheim, Norway

David Poeppel
New York University

Krishna V. Shenoy
Departments of Electrical Engineering, Bioengineering, and Neurobiology, 

Stanford University

Olaf Sporns
Indiana University, Bloomington

Anthony Zador
Cold Spring Harbor Laboratory, New York

Con t r i bu t o r s



P R E F A C E

here’s never been a more exciting moment in neuroscience than now. 
Although the ield has existed for two centuries, going back to the days 
of Phineas Gage and the tamping iron that exploded through his let 
frontal lobe, progress has in many ways been slow. At present, neurosci-
ence is a collection of facts, still awaiting an overarching theory; if there 
has been plenty of progress, there is even more that we don’t know. But a 
conluence of new technologies, many described in this book, may soon 
change that.

To be sure, there is long history of advances, even from the earli-
est days, oten leveraging remarkably crude tools to great efect. In the 
mid- 1800s Paul Broca got the irst glimpse into the underpinnings of 
language by doing autopsies on people who had lost linguistic func-
tion because of brain damage to speciic cortical areas. Near the end of 
the nineteenth century, Camillo Golgi discovered that he could visual-
ize neurons under a microscope by staining them with silver nitrate, 
and Santiago Ramón y Cajal used the technique to develop remarkably 
prescient characterizations of neuronal structure and function. In 1909 
a brilliant ophthalmologist named Tatsuji Inouye launched functional 
brain mapping, by methodically studying victims of gunshot wounds 
during the Russo- Japanese war, noting that wounds to the visual cor-
tex impaired his patients’ vision, and wounds to particular locations af-
fected vision in particular regions of the visual ield.

In the latter part of the twentieth century, noninvasive forms of brain 
imaging, like functional magnetic resonance imaging (fMRI), came on 
the scene. But as useful as such tools are, current noninvasive techniques 
are like fuzzy microscopes; they blur the ine detail of neural activity in 
both space and time. Ultimately, looking at an fMRI scan is like looking 
at a tiny pixelated version of a detailed, high- resolution photograph.

In nonhuman animals, which can be studied with more invasive 
techniques, the gold standard until recently was the “single neuron re-
cording,” which uses thin electrodes to monitor the electrical activity 
associated with neural iring. Action potentials are the currency of the 
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brain, and directly measuring them has led to many fundamental in-
sights, such as Hubel and Weisel’s discovery that neurons in the visual 
cortex are “tuned” or selective for particular visual features. But looking 
at one neuron at a time tells an incomplete story at best; the neuroscien-
tist Rafael Yuste has likened it to “understanding a television program 
by looking at a single pixel.”

As we write this, it is clear that neuroscience is undergoing a revolu-
tion. Optogenetics, introduced in 2005, makes it possible to engineer 
neurons that literally light up when active, switching them on and of 
with a laser; multielectrode recordings, which allow recordings from 
hundreds or even thousands of neurons are inally becoming practical, 
and new forms of microscopy can record the activity of nearly every 
neuron in a living, transparent ish. For the irst time, it is realistic to 
think that we might observe the brain at the level of its elementary parts.

• • • • • • 

Still, three fundamental truths make the brain more challenging to un-
derstand than any other biological system.

First is sheer numbers. Even in the ly or the larval zebraish brain 
there are one hundred thousand neurons. In the human brain there are 
over 85 billion. On top of that, the word neuron makes it sound like 
there is only one kind, whereas in fact there are several hundred kinds, 
possibly more, each with distinctive physical characteristics, electrical 
characteristics, and, likely, computational functions. Second, we have 
yet to discover many of the organizing principles that govern all that 
complexity. We don’t know, for example, if the brain uses anything as 
systematic as, say, the widespread ASCII encoding scheme that com-
puters use for encoding words. And we are still shaky on fundamen-
tals like how the brain stores memories and sequences events over time. 
hird, many of the behaviors that seem characteristically human— like 
language, reasoning, and the acquisition of complex culture— don’t have 
straightforward animal models.

he Obama BRAIN Initiative, the European Human Brain Project, 
and other large- scale programs that may begin in Asia aim to address 
some of the challenges in understanding the brain. It seems reason-
able that we can expect, over the next decade, an enormous amount of 
new data at an unprecedented level of detail, certainly in animals, and 
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perhaps in humans as well. But these new data will raise new questions 
of their own. How can researchers possibly make sense of the expected 
onslaught of data? How will we be able to derive general principles?

And for that matter, will collecting all these data be enough? How 
can we scale up data analysis to the terabytes to come, and how can we 
build a bridge from data to genuine insight? We suggest that one key 
focus must be on computation. he brain is not a laptop, but presumably 
it is an information processor of some kind, taking in inputs from the 
world and transforming them into models of the world and instructions 
to the motor systems that control our bodies and our voices. Although 
many neuroscientists might take for granted that the principal process 
by which the brain does its work is some form of computation, almost 
all agree that the most foundational properties of neural computation 
have yet to be discovered. Our hope is that computation can provide a 
universal language for describing the action of the brain, especially as 
theorists and experimentalists come closer together in their quest.

Given the complexity of the brain, there is no certainty we will come 
to fully or even largely understand the brain’s dynamics anytime soon; 
in truth, there is reason for hope, but no guarantees. his book, with 
chapters by pioneers like Christof Koch and George Church, represents 
our best guesses— and our esteemed contributors’ best guesses— about 
where we are going, what we are likely to ind out, and how we might 
get there.

But it also admits where we might stumble along the way. If this book 
is a reader’s guide to the future, it’s not a foolproof crystal ball; if any-
thing, it’s more like a time capsule. Part of the fun will be for scientists, 
policy makers, and the public to come back to these essays a decade 
hence, to, as one colleague put it, “reassess its scientiic claims, aspira-
tions, and methodological promises, and adjust the aspirations of the 
next generation of neuroscientiic endeavors accordingly.” We couldn’t 
agree more.

Gary Marcus and Jeremy Freeman
March 2014

P re fa ce





M A P P I N G  T H E  B R A I N

In the jargon of neuroscience, to map the brain is to understand two 
things: all of the brain’s myriad connections (equivalent to drawing a 
map of all the roads and buildings in the United States) and all of the 
“traic” (neural activity that occurs on those roads). “Connectomes” are 
like highway maps, “activity maps” record the traic as the brain is en-
gaged in behavior. Like Google Maps, we ultimately need many “layers” 
of information, telling us about landmarks (like the folds of the cortex), 
annotations about particular types of neurons (the brain likely has close 
to a thousand), and ultimately about the pathways of neurons that are 
involved in particular kinds of behaviors.

he essays in this part tell a story— from the current, cutting edge 
to the future— about technological advances that will allow us to map 
out as much of that territory as possible. Most complex organisms have 
hundreds of thousands, if not millions or billions, of neurons. For de-
cades, neuroscientists have recorded from just a few at a time, inferring 
something about a complex system based on incomplete measurements. 
Mike Hawrylycz narrates the history of brain anatomy, from the earliest 
drawings of neural circuits by Ramón y Cajal to ongoing, cutting- edge 
eforts to obtain and annotate high- resolution anatomical maps of the 
entire human brain at cellular resolution. Misha Ahrens describes an 
approach called light- sheet microscopy for monitoring neural activity 
from the entire brain of a transparent organism, the zebraish, and to do 
so during behavior in intact animals. Christof Koch describes a con-
luence of emerging methods— anatomical, physiological, and optical— 
that are making it possible to characterize neural activity across large 
swaths of the visual cortex of the mouse. Looking further into the fu-
ture, Anthony Zador and George Church describe novel approaches to 
characterizing neural anatomy, speciically neural connectivity, that use 
genetic techniques to indirectly encode information about connectivity 
in sequences of DNA. Church discusses how these approaches might 
even be extended to record the iring of neurons over scales much larger 
than optical or electrophysiological methods currently allow.





B U I L D I N G  AT L A S E S  O F  T H E  B R A I N

Mike Hawrylycz

With Chinh Dang, Christof Koch, and Hongkui Zeng

A Very Brief History of Brain Atlases

he earliest known signiicant works on human anatomy were collected 
by the Greek physician Claudius Galen around 200 BCE. his ancient 
corpus remained the dominant viewpoint through the Middle Ages 
until the classic work De humani corporis fabrica (On the Fabric of the 
Human Body) by Andreas Vesalius of Padua (1514– 1564), the irst mod-
ern anatomist. Even today many of Vesalius’s drawings are astonishing 
to study and are largely accurate. For nearly two centuries scholars have 
recognized that the brain is compartmentalized into distinct regions, 
and this organization is preserved throughout mammals in general. 
However, comprehending the structural organization and function of 
the nervous system remains one of the primary challenges in neuro-
science. To analyze and record their indings neuroanatomists develop 
atlases or maps of the brain similar to those cartographers produce.

he state of our understanding today of an integrated plan of brain 
function remains incomplete. Rather than indicating a lack of efort, 
this observation highlights the profound complexity and interconnec-
tivity of all but the simplest neural structures. Laying the foundation of 
cellular neuroscience, Santiago Ramón y Cajal (1852– 1934) drew and 
classiied many types of neurons and speculated that the brain consists 
of an interconnected network of distinct neurons, as opposed to a more 
continuous web. While brain tissue is only semitranslucent, obscuring 
neuronal level resolution, a certain histological stain Franz Nissl (1860– 
1919) discovered, and known as the Nissl stain, can be used to stain 
negatively charged RNA in the cell nucleus in blue or other visible col-
ors. he development of this stain allowed the German neuroanatomist 
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Korbinian Brodmann (1868– 1918) to identify forty- three distinct re-
gions of the human cerebral cortex based on cytoarchitectural orga-
nization using this Nissl stain. hese pioneering works of Brodmann, 
Constantin von Economo, Marthe Vogt, and others mapped cyto-  and 
myeloarchitectural landscape of the human cortex based on painstak-
ing visual inspection and characterization of a few observable cellular 
properties such as cell shape, density, packing, and such.

Since Vesalius, most atlases of the brain have been drawn on paper, 
with the most recent versions in vivid color delineating hundreds of 
structures. Such atlases have been drawn for most of the important 
model organisms studied in the laboratory and provide key bench- side 
experimental references. As with most aspects of modern biology, how-
ever, technology has been a driving factor in improved understanding 
of brain organization. Neuroimaging techniques evolved over the last 
twenty years have now allowed neuroscientists to revisit the subject of 
brain mapping, with the modern brain atlas more akin to a digital data-
base that can capture the spatiotemporal distribution of a multitude of 
physiological and anatomical data. Modern techniques such as mag-
netic resonance imaging (MRI), functional magnetic resonance imaging 

Figure 1. a. Cover of the work De humani Corporis fabrica libri septem, published by 
Andreas Vesalius in 1543. he work was the irst major advance in human anatomy 
since the Greek physician Galen. b. A page from the ith chapter of the book showing 
the cortex and ventricles of the brain.

a b



Bu i l d i ng  A t l a s e s  o f  t he  B ra i n  •  5

(fMRI), difusion MRI, magnetoencephalography (MEG), electroen-
cephalography (EEG), and positron emission tomography (PET) have 
provided dramatic improvements in brain imaging for research, clinical 
diagnosis, and surgery. Digital atlases based on these techniques are ad-
vantageous since they can be warped, mathematically or in silico, to it 
each individual brain’s unique anatomy.

he origin of modern brain mapping for clinical use lies with the 
seminal work of Jean Talairach, who in 1967 developed a 3D coordinate 
space to assist deep brain surgical methods. his atlas was generated 
from two series of sections from a single sixty- year- old female brain, and 
was later updated by Talairach and P. Tournoux in a printed atlas design 
for guiding surgery. Today biomedical imaging forms a crucial part of 
diagnosis and presurgical planning, and much time and resources are 
invested in the search of imaging biomarkers for diseases. Atlases have 
been used in image- guided neurosurgery to help plan “stereotaxic,” that 
is, coordinate referenced, neurosurgical procedures. Using this data, 
surgeons are able to interpret patient- speciic image volumes for ana-
tomical, functional, and vascular relevance as well as their relationships.

he ield of digital atlasing is extensive and includes high- quality 
brain atlases of the mouse, rat, rhesus macaque, human, and other 
model organisms. In addition to atlases based on histology, magnetic 
resonance imaging, and positron emission tomography, modern digital 
atlases use gene expression, connectivity, and probabilistic and multi-
modal techniques, as well as sophisticated visualization sotware. More 
recently, with the work of Alan Evans at the Montreal Neurological 
Institute and colleagues, averaged standards were created such as the 
Colin27, a multiple scan of a single young man, as well as the highly ac-
cessed MNI152 standard. While inherently preserving the 3D geometry 
of the brain, imaging modalities such as MRI, CT, and PET do not usu-
ally allow for detailed analysis of certain structures in the brain because 
of limitations in spatial resolution. For this reason it is common to use 
very high- resolution 2D imaging of in vitro tissue sections and employ 
mathematically sophisticated reconstruction algorithms to place these 
sections back into the 3D context of the brain.

Today digital brain atlases are used in neuroscience to characterize 
the spatial organization of neuronal structures, for planning and guid-
ance during neurosurgery, and as a reference for interpreting other data 



6  •  Hawr y l y c z

modalities such as gene expression or proteomic data. One ultimate aim 
of neuroscientiic inquiry is to gain an understanding of the brain and 
how its workings relate to activities from behavior to consciousness. 
Toward this end, brain atlases form a common coordinate framework 
for summarizing, accessing, and organizing this knowledge and will un-
doubtedly remain a critical- path technology in the future.

The Genetic Brain

he development of the techniques of modern molecular biology and 
eventually whole genome sequencing opened the door for understand-
ing the genetics of the brain, and new perspectives on the study of brain 
anatomy are emerging with the availability of large- scale spatial gene 
expression data. he brain consists of at least several hundred distinct 
cell types whose complete classiication is still at present elusive. Each 
cell type is related to its function with its gene expression pattern, for ex-
ample, on/of, high/low, as a key determinant. Gene expression data can 
be collected through a variety of techniques, and exploration of these 

Figure 2. Regions of the human cerebral cortex delineated by Korbinian Brodmann 
using Nissl stain histology. Brodmann identiied forty- three distinct regions that today 
still serve as a guide for studying distinct functional areas in the human cortex.
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data promises to deliver new insights into the understanding of rela-
tions between genes and brain structure.

Early gene expression studies used methods such as northern blots, 
which combine electrophoresis separation of RNA molecules followed 
by hybridizing probes for detection. At one time this method was the 
gold standard for conirming gene expression, but it ultimately gave way 
to more quantitative methods. he microarray revolution dramatically 
increased our ability to proile genes by hybridizing many gene probes 
on a single gene chip. Today rapid digital sequencing technology can 
count individual RNA fragments that can subsequently be mapped back 
to the genome once it is known for an organism.

In 2001, Paul Allen, cofounder of Microsot, assembled a group of 
scientists, including James Watson of Cold Spring Harbor Laboratory 
and Steven Pinker, then at MIT, to discuss the future of neuroscience 
and what could be done to accelerate neuroscience research. During 
these meetings the idea emerged that a complete 3D atlas of gene ex-
pression in the mouse brain would be of great use to the neuroscience 
community. he mouse was chosen due to the wealth of existing genetic 
studies and for practical reasons. Of the potential possible techniques, 
the project chose a technique for mapping gene expression called in situ 
hybridization (ISH) (automated by Gregor Eichele of the Max Planck 
Institute and colleagues), which uses probes that bind to mRNA within 
sectioned but intact brain tissue and thereby preserves spatial context 
(see color plate 1).

In 2006, an interdisciplinary scientiic team at the Allen Institute 
for Brain Science, funded by Paul Allen and led by Allan Jones, deliv-
ered the irst atlas of gene expression in a complete mammalian brain, 
publically available online at www.brain-map.org. Since then, the Allen 
Institute has expanded its projects to provide online public resources 
that integrate extensive gene expression, connectivity data, and neuro-
anatomical information with powerful search and viewing tools for the 
adult and developing brain in mouse, human, and nonhuman primate 
(see igure 3 for an example). In addition to the data there are colori-
metric and luorescent ISH image viewers, graphical displays of ISH, 
microarray and RNA sequencing data, and an interactive reference atlas 
viewer (“Brain Explorer”) that enables 3D navigation of anatomy and 

http://www.brain-map.org
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gene expression across these datasets. (Approximately ity thousand 
users worldwide access the Allen Brain Atlas resources each month.) 
Scientists have mined the atlases to search for marker genes in various 
brain regions associated with diseases, to identify diferent cell type 
markers, to delineate brain regions, and to compare gene expression 
data across species.

Extending this work to humans, the Allen Human Brain Atlas was 
made public in May 2010 and is the irst anatomically comprehensive 
and genome- wide, three- dimensional map of the human brain. his 
transcriptional atlas of six adult human brains contains extensive histo-
logical analysis and comprehensive microarray proiling of several hun-
dred precise brain subdivisions and has revealed that gene expression 
varies enormously by anatomical location, with diferent regions and 
their constituent cell types displaying robust molecular signatures that 
are highly conserved between individuals.

Prox1 Trpc6

Crlf1 Slc39a6

Figure 3. Genes whose expression pattern is highly correlated with Prox1 (upper let) in 
dentate gyrus of the hippocampus. hese genes were found by starting with the image 
for gene Prox1 and searching for patterns whose spatial pattern of gene expression 
strongly resembled Prox1. Combinations of expression patterns such as these may help 
to reine our present understanding of the function of the hippocampus.
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In particular, these data show that 84 percent of all genes are ex-
pressed somewhere in the human brain and in patterns that while com-
plex are substantially similar from one brain to the next. he analysis of 
diferential gene expression and gene coexpression relationships dem-
onstrates that brain- wide variation strongly relects the distributions of 
the major cell types such as neurons, oligodendrocytes, astrocytes, and 
microglia, all of which are essential to brain function. Interestingly, the 
neocortex displays a relatively homogeneous transcriptional pattern but 
with distinct features associated selectively with primary sensorimotor 
cortices and with enriched frontal lobe expression. Interestingly, the 
spatial topography of the neocortex is strongly relected in its molecular 
topography, that is, the closer two cortical regions are, the more similar 
their gene expression patterns remain.

Several other signiicant eforts toward understanding the genetic 
basis of brain organization are underway, including the Edinburgh 
Mouse Atlas Project (EMAP) (www.emouseatlas.org), which contains 
substantial spatial and temporal data for mouse embryonic develop-
ment, and the Rockefeller University– based GENSAT project of Na-
than ial Heintz and colleagues that seeks to characterize gene expression 
patterns using Bacterial Artiicial Chromosomes (BAC) in genetically 
modiied mice (www.gensat.org), as well as BGEM (www.stjudebgem 
.org), GenePaint (www.genepaint.org), EurExpress (www.eurexpress 
.org), and MGI (http://www.informatics.jax.org), all generally user 
friendly with useful tutorials.

A Standard Brain?

Does a standard or normal brain exist? his is less likely for humans 
than genetically bred mice, but mapping neuroscientiic and clinical 
data onto a common frame of reference allows scientists and physicians 
to compare results between individuals. One main reason for standard-
ization is that multiple and diverse brains can be transformed into a 
standard framework that maximizes our ability to understand their 
similar features. Another is that it allows us to identify how unique or 
unusual features in a particular brain may difer from an average pop-
ulation. With modern advanced image processing capabilities, digital 

http://www.eurexpress.org
http://www.eurexpress.org
http://www.genepaint.org
http://www.stjudebgem.org
http://www.stjudebgem.org
http://www.emouseatlas.org
http://www.gensat.org
http://www.informatics.jax.org
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atlases can serve as the framework for building standard atlases and for 
surveying the information linked to it. In contrast to basic data reposi-
tories, which allow for simple access to data through a single interface, 
sophisticated digital atlases backed by appropriate technology can act as 
hubs facilitating access to multiple databases, information sources, and 
related documents and annotations. hese may act as a scafold from 
which to share, visualize, analyze, and mine data of multiple modalities, 
scales, and dimensions.

Many of these ideas of standardization grew out of a major initiative 
of the National Institutes of Health in the 1990s called the “Decade of 
the Brain,” where a number of digital and electronic resources were cre-
ated to enable the uniication and integration of the various subields of 
neuroscience. One outcome of this work is the ield of neuroinformatics, 
or the application of computer-  and mathematical- based technologies 
to organize and understand brain data. he ultimate goal of neuroinfor-
matics is to bring together brain architecture, gene expression, and 2D 
and 3D imaging information into common frames of reference. Major 
organizations have evolved around mapping brain data, such as the 
International Consortium for Human Brain Mapping (www.loni.ucla 
.edu/ICBM/About) and the International Neuroinformatics Coordinat-
ing Facility (INCF, www.incf.org). hese eforts have led to atlases such 
as the standard Talairach Atlas and the Montreal Neurological Institute 
(MNI) standard that have been extensively used in neuroscience.

One consideration in standardizing brain atlases is the type of co-
ordinate system used. As Alan Evans of the Montreal Neurological In-
stitute remarks, “he core concept within the ield of brain mapping 
is the use of a standardized or ‘stereotaxic’ 3D coordinate framework 
for data analysis and reporting of indings from neuroimaging experi-
ments. his simple construct allows brain researchers to combine data 
from many subjects such that group- averaged signals, be they structural 
or functional, can be detected above the background noise.” he con-
cept of a coordinate system is fundamental to digital atlases and requires 
two basic components: the speciication of an origin in the stereotaxic 
space and a mapping function that transforms each 3D brain from its 
native coordinates to that of the atlas. A major step in addressing these 
issues, and a standard tool set that allows diferent types of neuroscience 
data to be combined and compared, is now in development for one of 

http://www.incf.org
http://www.loni.ucla.edu/ICBM/About
http://www.loni.ucla.edu/ICBM/About
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the most important subjects in experimental neuroscience: the mouse, 
Mus musculus. his project is an international collaboration in digital 
atlasing and is sponsored in part by the International Neuroinformatics 
Coordinating Facility (INCF).

The Connected Brain

Much recent evidence indicates that the vast interconnected network 
of the human brain is responsible for our advanced cognitive capabili-
ties, rather than a simple expansion of specialized regions of the brain 
such as the prefrontal cortex. his may apply in particular to diseases 
associated with potentially aberrant wiring such as schizophrenia, au-
tism, and dyslexia. he importance of circuit considerations for difer-
entially characterizing disorders such as major depression, anxiety, and 
obsessive- compulsive disorder, and substance abuses including nicotine 
addiction, is now being widely recognized.

It is now understood that neuropsychiatric disorders likely result 
from pathologies at the system level, with both complex genetic and en-
vironmental factors impacting neural circuitry. As Jason Bohland and 
colleagues point out in a recent 2009 proposal for a “mesoscale,” that is, 
medium scale, connectome in PLOS Computational Biology: “For those 
[diseases] with heritable susceptibility efects, genetic polymorphism 
and cellular processes play a greater role, but anatomical circuits remain 
critical to understanding symptoms and developing therapies.” In Par-
kinson’s disease, for example, drug-  and stimulation- based therapeutic 
interventions do not occur at a particular cellular lesion site, but rather 
are contingent on understanding interactions within the extrapyramidal 
motor system of neurons.

he irst uniied approach to deining connectional atlases of the brain 
was proposed by Olaf Sporns (Indiana University) and Patrick Hag-
mann (Lausanne). In 2005 they independently suggested the term “con-
nectome” to refer to a complete map of the neural connections within 
the brain. his term was directly inspired by the concurrently ongoing 
efort to sequence the human genetic code, and since then the ield of 
connectomics (see chapters by Sporns and Zador, this volume) has been 
concerned with assembling and analyzing connectome datasets. (he 
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term connectome was most recently popularized in Sebastian Seung’s 
book Connectome, which discusses the high- level goals of mapping the 
human connectome, as well as ongoing eforts to build a 3D neural map 
of brain tissue at the microscale.)

he irst complete neural circuit in any organism was found in the 
common worm Caenorhabditis elegans, and research into its molecular 
and developmental biology was begun in 1974 by Nobel laureate Sydney 
Brenner. C. Elegans has since been used extensively as a model organism 
in biology. Using high- resolution electron microscopy and manual an-
notation of hundreds of images, the circuit- mapping project was a major 
tour de force of neuroanatomy, resulting in a 341- page publication by 
the Royal Society in 1986 by John White and Brenner titled “he Struc-
ture of the Nervous System of the Nematode Caenorhabditis elegans.” 
Other landmark studies include a study of the areas and connections 
of the visual cortex of the macaque published by Daniel Felleman and 
David Van Essen in 1991 and of the thalamo- cortical system in the fe-
line brain by J. W. Scannel and colleagues in 1999. Since then several 
neuroinformatics databases of connectivity have emerged, such as the 
online macaque cortex connectivity tool CoCoMac (www.cocomac.org) 
and the Brain Architecture Management System (BAMS, http://brancusi 
.usc.edu).

Several years ago, supported both by public and private funding, a 
series of independent projects were launched to map the connectome of 
the laboratory mouse at the mesoscale. Among these projects the Allen 
Institute embarked on a large- scale efort to develop a regional and cell 
type speciic three- dimensional connectivity map. his Allen Mouse 
Brain Connectivity Atlas uses a combination of normal and genetically 
modiied mice together with genetic tracing approaches and a high- 
throughput serial 2- photon tomography system to image the labeled 
axons throughout the entire brain. High- resolution coronal images are 
sampled every 100 μm (0.1 mm), resulting in a large 750- GB dataset 
per brain. At the end of 2013, approximately 1,500 terabytes of data (or 
1.5 petabytes) will have been generated, all mapped onto a common 3D 
reference space of high spatial idelity that allows for identiication of 
the neural circuitry that governs behavior and brain function.

Mapping the connectome of the human brain is one of the great sci-
entiic challenges of the twenty- irst century. he Human Connectome 

http://brancusi.usc.edu
http://brancusi.usc.edu
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Project (HCP, http://www.humanconnectome.org) is tackling a key as-
pect of this challenge by elucidating some of the main neural pathways 
that underlie brain function and behavior. Due to the immense com-
plexity and comparatively large size of the human brain, the HCP (see 
chapter by Sporns, this volume) is taking a more macro approach to 
mapping large- scale circuitry, comprehensively mapping human brain 
circuitry in a target number of 1,200 healthy adults using a combina-
tion of noninvasive neuroimaging techniques such as MRI, EEG, and 
fMRI.

Accurate parcellation of fMRI imaging activity into component areas 
of the brain is an important consideration in deciphering its connectiv-
ity, and it takes us back to our original discussion of anatomy. Modern 
imaging techniques have enabled parcellation of localized areas of cor-
tex and have been accomplished by using difusion tractography and 
functional imaging to measure connectivity patterns and deine corti-
cal areas based on these diferent connectivity patterns. Such analyses 
may best be done on a whole brain scale and by integrating types of 
noninvasive imaging. It is hoped that more accurate whole brain par-
cellation may lead to more accurate macroscale connectomes for the 
normal brain, which can then be compared to disease states. he HCP 
images and their parcellations are being made available to the public 
through a public interface called the ConnectomeDB at http://www 
.humanconnectome.org, mentioned above.

he current noninvasive imaging techniques cannot capture the 
brain’s activity at a neuronal level, and mapping the connectome at a 
cellular level in vertebrates currently requires postmortem microscopic 
analysis of limited portions of brain tissue. he challenge of doing this 
on a grand scale is quite major, as the number of neurons comprising 
the brain easily ranges into the billions in more highly evolved organ-
isms, with the human cerebral cortex alone contains at least 1010 neurons 
and linked by 1014 synaptic connections. A few of the main challenges of 
building a microscale mammalian connectome today include: the data 
collection would take years given current technology; annotation tools 
are insuicient to fully delineate and extract information at a neuronal 
scale; and, not least, the algorithms necessary to map relevant connec-
tions and build the connectivity graphs are not yet fully developed. To 
address these machine- vision and image- processing issues, the Open 

http://www.humanconnectome.org
http://www.humanconnectome.org
http://www.humanconnectome.org
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Connectome Project (openconnectome.org) is a crowd- sourcing initia-
tive to meet this challenge. Finally, statistical graph theory is an emerg-
ing discipline that is developing sophisticated pattern recognition and 
inference tools to parse these brain graphs.

The Future Brain

Development of large- scale brain atlases is now a major undertaking in 
neuroscience. While it may not be possible to systematically map each 
of the one hundred billion neurons any time soon in any given individ-
ual brain, modern mapping techniques are providing atlases of remark-
able resolution and functionality.

Several recent advances in neuroimaging support the possibility of 
deep and large- scale mapping, and this goal may be less audacious than 
seems at irst. For example, using a combinatorial color labeling method, 
Brainbow, which is based on the random expression of several types of 
luorescent proteins, Josh Sanes and Jef Lichtman at Harvard are able to 
mark individual neurons with one of over one hundred distinct colors. 
he labeling of individual neurons with a distinguishable hue then al-
lows the tracing and reconstruction of their cellular structure, includ-
ing long processes within a block of tissue. Labeling techniques such as 
these allow for classiication and visualization of microscopic neurons. 
Another approach aimed at classifying diversity in the synaptic code, 
called array tomography, has been developed by Stephen Smith at Stan-
ford, and can also achieve combinatorial labeling of synaptic connec-
tions using electron microscopy.

Recently, in a processing tour de force, nearly 7,500 sections of an 
individual human brain were sliced and scanned and mapped onto a 
3D reconstructed brain at 20- micron isotropic resolution, that is, in 
all three spatial dimensions. his project is the culmination of years 
of work from the Katrin Amunts and Karl Zilles laboratory at Jülich, 
Germany, with semiautomated informatics reconstruction by Evans in 
Montreal. he atlas called BigBrain is a thin- sliced histology project that 
ofers nearly cellular resolution, that is, detail close to the level of the 
cell. Because of the nearly continuously collected sections and the 3D 
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image reconstruction, BigBrain is a dataset 125,000 times bigger than a 
typical MRI! Atlases based on MRIs do not allow for the visualization 
of information at the level of cortical cells and layers, although this atlas 
will allow that. However, to make BigBrain into a full- ledged atlas it will 
need to be annotated, that is, it will need to provide the anatomic struc-
tural delineations that outline the ine structure of the brain.

he BigBrain efort indicates that high- resolution 3D microscopy is 
still not at a level of resolution to map the inest structures in the brain. 
However, advances are being made in 3D imaging as well. In 2013, in 
a highly publicized article in Nature, a method was developed to sub-
ject the brain to a three- dimensional network of hydrophilic polymers 
and then to remove the lipids from the brain by electrophoresis. he 
brain remains fully intact but optically transparent and macromolecule 
permeable. Using mouse brains, the authors show intact- tissue imag-
ing of long- range projections, local circuit wiring, cellular relationships, 
and subcellular structures. his method, called “CLARITY,” uses intact- 
tissue in situ hybridization and immunohistochemistry with multiple 
rounds of staining and de- staining in nonsectioned tissue to visualize 
gene expression or protein binding. he method is still being reined but 
may be useful for human postmortem imaging as well.

Alternative computational processing techniques will also be neces-
sary to deal with the massive data these new atlases generate. In 2012, 
a Citizen Science project called EyeWire, launched by Sebastian Seung 
of MIT, began attempting to crowd source the mapping of the connec-
tome through an interactive game in which contributors try to map the 
retinal connectome (Zador’s chapter herein outlines another possible 
approach to this problem).

Large- scale atlases of the brain are providing content to the neuro-
science community through molecular, cellular, functional, and con-
nectomic data. he transition from print to digital atlases has been 
revolutionary, as it has allowed navigation, 3D reconstruction, and vi-
sualization from the smallest nuclei to macroscale regions. Digital at-
lases have also transformed clinical neuroscience, and all stages from 
pre-  to postoperation of surgery in some way use digital atlases. It is 
likely that in the near future we will have annotated 3D microscale at-
lases of the structure of the human brain. In several years it should be 
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possible to achieve near complete axon and synaptic connectivity in a 
substantial segment of the human cortex, thereby elucidating the de-
tailed complexity of its cortical circuitry. Atlases will continue to be 
more integrated into scientiic and clinical worklows, thus aiding in 
discovery science and providing novel ways of diagnosing, monitoring, 
and treating disease.



W H O L E  B R A I N  N E U R O I M A G I N G  
A N D  V I R T U A L  R E A L I T Y

Misha B. Ahrens

Historically, the brain has been studied in small chunks, such as by re-
cording from individual or small groups of cells, making it challenging 
to relate discoveries at the small network level to function that relies on 
whole- brain mechanisms. As this book goes to press, there are a number 
of eforts underway aimed at recording activity from ever- more neurons 
simultaneously, presumably an important step toward a fuller under-
standing of how the brain works and how the computations the many 
thousands or billions of its constituents perform make up the function 
of the whole (see chapter by Shenoy, this volume). In this essay, we lay 
out a strategy for imaging from virtually all the neurons in the brain of 
a vertebrate animal, the larval zebraish.

Before explaining how it might be done, it is important to understand 
at the outset why even that— imaging from all neurons— is not enough 
for fully understanding brain function. Looking at brain activity in iso-
lation ignores the physical context of this organ: the brain resides inside 
a body with its own dynamics, and the body, in turn, operates in a physi-
cal environment that follows the laws of nature. he neurons inside the 
brain are massively interconnected, but, critically, the output of the 
brain directly feeds back into it through the environment, because “de-
cisions” the brain makes lead to actions that change the coniguration 
of the body and the external environment and that elicit new sensory 
input, which in turn is processed by the brain, forming what is called the 
sensorimotor loop. his loop is important— for example, visual input 
resulting from a decision to start walking is processed diferently from 
the same visual input in the absence of that decision. In this sense, un-
derstanding the brain might therefore best be seen as a holistic problem 
of understanding the entire dynamical system as a whole: brain, body, 
and environment.



18  •  Ah ren s

In certain cases, we can develop a reasonable understanding of neu-
ral function without a holistic view, working strictly from the bottom 
up. For example, much progress has been made in understanding the 
retina, olfactory bulb, primary visual cortex, and the peripheral audi-
tory system, to the extent that it is now possible, for example, to create 
cochlear implants that allow some deaf people to hear (see chapter by 
Donoghue herein). Other questions, which involve, for example, inter-
actions between sensory input, memory and action, may best be ad-
dressed by studying all parts of the whole— all sensory input, activity of 
all neurons, all motor output, and the pathways from motor output back 
to sensory input.

In collaboration with Florian Engert, Philipp Keller, and others, 
building on work in insects and mammals and on developments in mi-
croscopy, we developed two experimental systems that are starting to 
allow for the holistic study of the dynamical system described above in 
a vertebrate species, the zebraish. he irst piece of technology creates 
an artiicial context for the nervous system by means of virtual reality, 
facilitating neural recordings because the animal’s head stays in place; 
the second gives us the ability to record from almost every neuron in the 
larval zebraish brain— about 80,000 out of the total of 100,000 neurons. 
Taken together, the hope is that exhaustive measurement of context as 
well as of neural activity will allow insights into neural function that 
were hitherto unachievable.

Closing the Sensorimotor Loop

Many real- world behaviors, such as walking or lying, depend on real- 
time feedback and can be altered based on that feedback. In walking, 
for example, a stumbling organism may correct gait based on feedback 
to the vestibular and visual systems. To study the behavior holistically, 
this other part of the complete dynamical system— the relation between 
brain and the environment— has to somehow be incorporated into the 
experimental setup.

Since the 1960s, researchers have been incorporating such real- time 
feedback for the study of behavior in insects. Scientists like Karl Götz 
and Martin Heisenberg created such experimental systems for lies, 
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which they glued to a thin wire and allowed to lap their wings. A signal 
from a sensitive torque meter that measures miniature rotational forces 
as the lies tried to steer let or right was used to rotate a drum so that a 
visual pattern moved in the opposite direction. In this way a stationary 
ly was given the realistic visual feedback it would have received were 
it freely lying. Essentially, this formed a simple virtual- reality ride for 
the ly. he goal of this research isn’t just to fool animals into thinking 
they are freely behaving when they’re not; it is to understand the de-
tails of their behavior and, ultimately, how the brain controls the animal. 
herefore, more recently, researchers have taken this approach one step 
further and have started recording from brains of animals embedded 
in such closed- loop virtual- reality systems. With the heads of the ani-
mals stationary, the brain is relatively easily accessible to neural record-
ings, via microscopes and electrodes. In recent work by David Tank and 
others, mice run around in three- dimensional virtual- reality environ-
ments, while the activity of neurons representing their spatial location 
or decision processes is monitored.

In studying larval zebraish, we took a slightly diferent approach, 
using paralyzed animals. In this preparation, the brains are entirely sta-
tionary, hence easy to record from or manipulate. How can one create a 
virtual- reality environment for a paralyzed animal, when the goal is to 
study how the body, brain, and the environment interact dynamically? 
he particular paralysis method we used afects only the connection 
between neurons and the muscles, but the central nervous system and 
the spinal cord still function: the neural commands to the tail muscles 
are still intact. We can record from these neurons and interpret their 
activity as relecting the animal’s intent, akin to how the characters in 
the movie he Matrix moved through their virtual world via recordings 
from their brains.

When passed through an audio ampliier, the neural recordings from 
the ish’s tail have a characteristic crackling sound in the rhythm of the 
tail undulations of freely swimming ish. hese signals could be con-
verted into virtual swim bouts that propelled the animals through a 
virtual reality environment displayed underneath them using a video 
projector. As such, we were now in a position to record from the brains 
of these animals during behavior. he next question is what brain area 
to record from, since the generation of behavior relies on sensory 
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systems, motor systems, and everything in between. In the larval ze-
braish, our approach was to try and record from almost all neurons at 
the same time.

Whole- Brain Neuron Imaging

he larval zebraish has a number of experimental advantages that 
neuroscientists have recently started to exploit and that eventually al-
lowed us to build a microscope to record from almost all of its neurons. 
At a young larval stage, about a week old, these animals actively swim 
around, performing behaviors such as exploration, food seeking, and 
simple forms of learning. heir brains are small, consisting of about 
100,000 neurons, which presumably makes it an easier system to under-
stand than large mammalian brains. Moreover, they share much of their 
brain architecture with that of humans. Perhaps most importantly, they 
are transparent, and certain mutants lack pigment in the skin, which al-
lows light microscopes to penetrate down to the deepest layers of their 
brain, so that essentially all neurons are accessible for imaging. Further-
more, zebraish are a genetic model organism and can be made to ex-
press genetically engineered proteins in all or subsets of neurons. In the 
last two decades, scientists have created proteins that report neural ac-
tivity through calcium-dependent luorescence, such that when a neu-
ron is active and signals to other neurons, these proteins inside the cell 
become brighter. In this way, light microscopes can measure neural ac-
tivity at the cellular level. In addition, using so- called optogenetic tools, 
they can perturb neural activity by exciting or silencing individual neu-
rons with diferent colors of light. In zebraish larvae this can be done 
in essentially any neuron by virtue of its transparency and its small size.

Where various microscopy techniques are available, one that is rel-
atively fast and still retains subcellular spatial resolution is light- sheet 
microscopy. he principle behind this method is to “optically section” 
the tissue that is being imaged. his means that at any one time only a 
thin plane of the sample is being illuminated, while all other parts of the 
imaged volume are kept in the dark.

We and others recently increased the speed of light- sheet microscopy 
to such an extent that it can be applied to neuroscience. We built a new 
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light- sheet microscope that, for the irst time, could image activity of al-
most all neurons in the brain of the larval zebraish fast enough to track 
dynamics of neuronal activity (about 80,000 neurons, measured up to a 
few times per second).

Now, whole- brain interactions between neurons can be investigated; 
questions can be asked about how groups of neurons “work together” 
across the entire brain. As a irst pass at looking at the neuronal dynamics 
in the live brain of the larval zebraish, we measured whole- brain neuro-
nal activity while the ish was doing nothing in particular. It turned out 
that the brain is very active— a sea of activity is present, including slowly 
evolving activity, sudden lashes, and, sometimes, large bursts of coordi-
nated activity across the entire brain of the animal (see color plate 2a).

Understanding Complex Whole- Brain Data

he resulting datasets are enormous and generate new challenges: How 
can one make sense of such a jungle of neural activity? Although net-
works of neurons communicate in many complex ways, the most basic 
activity can arise by one neuron simply relecting the activity level of 
another, so that if one neuron is highly active, certain others are, too. 
We searched for such populations of neurons that were active together 
at some points in time and silent together at others. Such groups of neu-
rons can be pulled out by a relatively simple algorithm: out of the jungle 
of neural activity arose two populations of neurons in the hindbrain, 
each showing strongly correlated— or strongly anticorrelated— activity 
in a set of neurons. hese populations had a well- deined anatomical 
structure, one consisting of six tightly packed, symmetrically arranged 
clumps of neurons, and the other consisting of two tracts lined by col-
umns of cell bodies (plate 2b, magenta and green, respectively). Within 
the seemingly confusing tangle of neural activity, these sets of neurons 
appear to be tightly communicating, with a purpose that hopefully will 
be discovered in the future.

It is now possible, in principle, to investigate entire sensorimotor 
transformations and learning processes across the whole brain, from 
sensory input to behavior. his is especially important because certain 
brain functions cannot easily be decomposed into constituents and 
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need to be studied at the whole- brain level. Take, for example, a human 
adjusting its walking pattern to a sudden gust of strong wind to keep 
it from toppling over. A plausible descriptive mechanism is as follows: 
circuits controlling movements generate the walking rhythm (which we 
here call the motor program); the wind hits the body and is reported 
by sensors in the skin; the vestibular system— the system responsible 
for the sense of balance— kicks in as it senses an unintended shit in 
the body’s position; both the visual system and the vestibular system 
signal to the motor system to change its motor program; and higher- 
order cognitive control makes sure that the change in walking behavior 
stays in place for the remainder of the journey, until the wind subsides. 
Since multiple control systems, distributed over many brain areas, are 
involved in controlling this behavior, it should really be studied at the 
whole- brain level. he same goes for many other questions; for instance, 
how do large groups of neurons coordinate to represent an important 
feature of the visual environment, and how does the entire brain re-
spond to an odor signaling the presence of food and guide the ish to 
its source? More generally, whole- brain techniques address the very es-
sence of the brain: that all its elements are directly or indirectly in com-
munication with one another.

Future Prospects

Even if we are now in a position to measure a much larger number 
of variables that would previously have remained unknown— activity 
throughout the entire brain, the behavior, and all the details of the pro-
vided sensory feedback— many challenges remain. Perhaps irst and 
foremost, one must ind out what to look for— what problems is the 
brain actually solving? What aspects of reality (or virtual reality) are 
important to an animal, and what strategies does it use to approach the 
challenges it faces? Identifying what the brain does— what behaviors in 
generates, in which circumstances— has to happen alongside studying 
how it does so.

Next, once a series of experiments has generated the appropriate data, 
what does one do with it? In my lab, we aim to understand how the brain 
of the larval zebraish implements behaviorally relevant computations. 
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Although probably easier than understanding how the human brain 
works, with its billions of neurons, a comparison to a roughly thirty- 
cell nervous system that controls the stomach of decapod crustaceans 
is humbling; ater decades of research, this system is still yielding new 
and surprising insights into the function of nervous systems, and it can 
be safely said that the thirty- cell network is still not fully understood. 
his underlines the challenges that lie ahead for understanding a one- 
hundred- thousand- neuron system. How does one extract principles of 
brain function from recordings of this network? Computational neuro-
scientists, such as our collaborator Jeremy Freeman, are actively work-
ing on methods for analyzing the ever- larger datasets that neuroscience 
generates. he more data we have about the nervous system, the tighter 
we can constrain models of it. In a real sense, whole- brain imaging with 
behavior, and computational neuroscience, are perfect partners (see 
chapters by Shenoy and Freeman, this volume).

On a more technical note, our current method for measuring activ-
ity in almost all neurons is relatively slow compared to the millisecond 
times cale at which neurons communicate: each neuron is observed 
roughly once per second. To look at how neurons communicate at mil-
lisecond timescales, speed increases will be necessary by reining or 
developing new microscopy techniques used for volumetric imaging. 
Similar improvements in the genetically encoded sensors of neural ac-
tivity are necessary.

Finally, measurements of neural activity are, of course, not enough 
for understanding the system. Functional observations have to be un-
derstood mechanistically; given a neuron’s behavior in the midst of the 
sea of activity of other neurons, can we understand one in terms of the 
others? To constrain this problem and to really understand how neurons 
communicate, we must know the wiring properties between the neu-
rons. Genetic techniques, and methods based on electron microscopy, 
will complete the picture by providing such anatomical information; 
work on generating such data has already begun. Finally, perturbing the 
dynamical system rather than just observing it is another necessary in-
gredient for understanding it. Can we build conceptual and predictive 
models for how this brain works, then make a prediction of what it would 
do when a set of neurons suddenly falls still? hese types of hypotheses 
need to be tested, and optogenetic tools such as channelrhodopsin and 
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halorhodopsin, capable of exciting and silencing neurons when hit by 
diferent colors of light, allow for this and have already been used in 
a series of elegant studies that explore the causal role of genetically or 
anatomically deined neuronal populations.

he brain is an organ that evolved within the dynamical environment 
that consists of the body and the external world, and is the “irst re-
sponder” within that system (it responds on a timescale of a hundred 
milliseconds; other organs are much slower). he meaning of “under-
standing brain function” depends in part on the researcher asking the 
question, but, most likely, the path to a holistic understanding requires 
studying it on all the diferent scales; we need to understand molecu-
lar mechanisms and single- neuron dynamics to construct a picture of 
how network function arises from these building blocks. Conversely, 
to understand how these collaborate and form the whole that is greater 
than the parts one needs theories of global brain function. Hopefully, 
holistic approaches such as those described above will help us construct 
just that.
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he human brain, with its eighty- six billion nerve cells, is the most com-
plex piece of organized matter in the known universe. It is the organ 
responsible for behavior, memory, and perception, including that most 
mysterious of all phenomena, consciousness. Neuroscience, the disci-
pline that seeks to understand the principles underlying the brain’s op-
eration, has over the past century and a half of its history uncovered 
its constitutive elements— membrane channels, synapses, and nerve 
cells. Yet their stunning heterogeneity, sheer numbers, and the breath-
taking diversity in which they are assembled has resisted reductionist 
understanding of anything but minute aspects of its behavior. Further-
more, given the interbraided nature of the nervous system— with many 
neurons receiving input from literally thousands of other neurons and 
making output with thousands— an inexhaustible multiplicity of fac-
tors inluence any one neuronal action. Yet understand it we must! Not 
only because the relationship between objective events in the brain and 
subjective phenomena in the mind remains one of the deepest scien-
tiic puzzles but also because of the intolerable toll that nervous system 
pathologies and injuries take on individuals, their families, and society 
at large.

Given the diiculty of the task and the brief span of our life, let us 
focus on a more circumscribed problem: that of understanding how 
information is represented and transformed in the neocortex, the pro-
verbial gray matter of the brain. he neocortex is a layered structure 
whose thickness varies by a factor of about two while its surface area 
varies by ity thousand between the smoky shrew and the blue whale. A 
unique hallmark of mammals, the neocortex is a highly versatile, scal-
able computational tissue that excels at real- time sensory processing 
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across modalities, making and storing associations, and planning and 
producing complex motor patterns, including speech. he neocortex 
consists of smaller modular units, columnar circuits that reach across 
the width of the cortex, repeated iteratively within any one cortical area. 
hese modules vary considerably in connectivity and properties among 
regions. he computational function of a neocortical column— iltering 
the input, detecting features, context- dependent ampliication, look- up 
table, line attractor, predictive coder, and so on— remains unclear, with 
some controversy whether there is, indeed, a single canonical function 
performed by any and all neocortical columns. Yet neocortical archi-
tecture and genomic expression pattern is remarkably constant across 
species and regions— albeit with many exceptions. And unlike worms 
and lies with their high degree of stereotypy, in which genetically deter-
mined neural circuits mediate innate behaviors, mammalian neocorti-
cal circuits are shaped by the experiences of their ancestors, in the form 
of genetic specialization within cortical regions, as well as by personal 
experiences in the form of synaptic learning, and exploit more general- 
purpose, lexible population coding principles that are highly sensitive 
to context. In that sense, the cortical column may be the closest that na-
ture has come to evolving a universal Turing machine, a machine whose 
settings are adapted by a combination of genomic and learned (synap-
tic) mechanisms to the particular statistics of its input, be it visual, olfac-
tory, linguistic, or otherwise.

Of Men and Mice

A deep understanding of the cortex necessitates querying the relevant 
microvariables, in particular spiking neurons, by recording the occur-
rences and timing of action potentials. Active neurons rapidly assemble 
and disassemble into far- lung coalitions that can be tracked from the 
sensory periphery to motor structures. Mapping, observing, and inter-
vening in such widespread but highly speciic cellular activity can best 
be accomplished by shiting emphasis from humans (in which many 
techniques are ethically precluded) to an evolutionary related model 
organism that allows comprehensive measurement and intervention, 
that of the mouse, Mus musculus. he two species, whose last common 
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ancestor lived around seventy- ive million years ago, share much of their 
genome. Indeed, 99 percent of mouse genes have a direct counterpart in 
the human genome, with an average 85 percent similarity level at the 
nucleotide level. Data from the Allen Mouse and Human Brain Atlases 
indicate that there are a myriad of diferences between the cellular- level 
expression of genes between mice and humans (just as there are between 
any two species). he biggest salient diferences at the level of the cortex 
can be found between visual and somatosensory cortices, relecting the 
importance of foveal vision for humans and whiskers for mice.

Beyond these, there are two very obvious diferences between the 
human and the mouse brain— accessibility and size. First, for obvious 
ethical reasons, the living human brain can only be probed at the re-
quired cellular level under rare conditions, primarily for neurosurgery. 
Conversely, with appropriate care for the well- being of the animal, the 
smooth neocortex of the mouse is fully accessible to electrophysiologi-
cal and optical imaging techniques. Furthermore, experiments with ap-
propriately modiied viruses to stain, mark, turn on, or turn of mo-
lecularly identiied subpopulations of neurons permit unprecedented 
control of mouse brain circuitry. his cannot be emphasized enough. 
he exploding use of opto-  and pharmacogenetics methods that deli-
cately, transiently, reversibly, and invasively control deined events in 
deined cell types at deined times constitute a suite of interventionist 
tools that allows neuroscience to move from correlation to causation, 
from observing that this circuit is activated whenever the subject is con-
templating a decision to inferring that this circuit is necessary for de-
cision making. Second, the human brain is more than three orders of 
magnitude larger than the mouse brain— 1.4 kg weight versus 0.4 g; a 
1- liter volume versus a sugar cube; eighty- six billion nerve cells versus 
seventy- one million for the entire brain and sixteen billion versus four-
teen million nerve cells for the neocortex.

Project MindScope

he overall similarity of the mouse and the human brains, and the much 
smaller size of the former, makes it feasible to mount a large- scale, com-
prehensive, and focused efort to map out the detailed circuitry at the 
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cell- type speciic level and to record, visualize, perturb, and model the 
spiking activity of a signiicant fraction of all cortico- thalamic neurons 
underlying a few, archetypical behaviors in mice. In this manner, un-
derstanding how sensory information is coded, transformed, and acted 
upon at the timescale of a one or a few perception- action cycles (< 2 
sec.) can be achieved by a sustained, focused, and high- throughput ef-
fort that encompasses ive, tightly interwoven, research strands. We call 
this efort project MindScope.

MindScope is part of a ten- year, high- throughput, milestone-driven 
efort announced in March of 2012, an endeavor involving several 
hundred scientists, engineers, and technicians. Philanthropist Paul G. 
Allen, who founded the institute in 2003, pledged US$300 million for 
the irst four years of this ambitious plan. He also committed to the 
construction of a new 270,000- square- foot building in Seattle, to be oc-
cupied in late 2015.

MindScope focuses on the visual system and visuo- motor behaviors 
in the young adult laboratory mouse. Institute scientists seek to un-
derstand the computations that lead from photons to behavior by ob-
serving and modeling the physiological transformations of signals in 
the cortico- thalamic visual system (see color plate 3). Participants want 
to catalog and characterize the cellular building blocks of the cortico- 
thalamic complex, their dynamics, and the cell- type speciic and in-
dividual connectomes. Scientists want to know what the animal sees 
and how it thinks in a quantitative manner. his requires the tight in-
tegration of results across distinct methods and scientiic disciplines— 
classical and molecular neuroanatomy, electro-  and optical- physiology 
in behaving animals, computer modeling of the cellular populations and 
their dynamics, and theoretical considerations concerning the design 
and operation of the overall system.

Mapping Out Cell Types and Their Connectivities

To achieve these ambitious goals, we rely on a set of genetically engi-
neered mice that have one or a few speciic neuronal cell types marked 
in each mouse. Taking advantage of the unique gene expression patterns 
of each neuronal cell type, we create transgenic mouse lines in which the 



P ro j e c t  MindS cope  •  29

promoters of speciic genes are used to express a master control gene, 
most oten the Cre recombinase. Such Cre driver lines (see glossary) are 
used to efectively induce controlled mutations in speciic cell types or 
at a speciic point in time. hey can also be combined with a variety of 
in- house reporter mouse lines or engineered viral vectors to control the 
expression of various efector genes to label and manipulate neurons. 
Such transgenic mice are powerful genetic scalpels that enable us to dis-
sect circuit components. We have constructed more than forty such Cre 
driver lines that comprehensively cover excitatory and inhibitory cell 
types in the cortico- thalamic circuit continue to generate more reined 
ones as our knowledge about diferent cell types grows, and have made 
them publicly available through the Jackson Laboratory.

On the efector side, we incorporate state- of- the- art molecular tools 
for monitoring and manipulating circuits. hese include various luo-
rescent proteins (such as GFP) for visualizing neuronal morphology and 
connectivity, genetically encoded calcium indicators such as GCaMP6 
(see chapter by Ahrens, this volume) for reporting neuronal activities, 
and light- driven opsins such as channelrhodopsin for altering neuronal 
activities. hat is, once we have identiied a molecular zip code for any 
one set of neurons, we can label this set and turn it on or of for any-
where between milliseconds to hours. hese genetic tools provide the 
foundation for our experimental investigations.

Several years ago, we embarked on a large- scale efort to develop a 
regional and cell- type speciic three- dimensional connectivity map 
(projectome). his Allen Mouse Brain Connectivity Atlas (see chapter 
by Hawrylycz, as well as www.brain-map.org) uses a genetic tracing ap-
proach and a high- throughput, serial two- photon tomography system 
to image the GFP- labeled axons throughout the entire brain in a pipe-
lined manner in thousands of mice (see below). We couple high- speed 
two- photon microscopy with automated vibratome sectioning of an en-
tire mouse brain. High- resolution coronal images are sampled every 100 
µm, resulting in a 0.75 TB dataset per brain. About 2,000 such datasets 
have already been generated, all registered into a common 3D reference 
space with high spatial idelity. his allows quantitative analyses of the 
entire dataset, parsed into half a million 100 x 100 x 100 µm3 pixels, and 
mapped onto 295 anatomically deined regions based on the Allen Ref-
erence Atlas ontology tiling all of brain space. he next step is an even 
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more focused exploration of the visual cortico- thalamic circuitry and its 
associated cell- type speciic connectivity using a true 3-D atlas with 10 
µm isotropic resolution.

We will comprehensively characterize the physiological, anatomi-
cal, and transcriptional properties of cell types in the visual cortico- 
thalamic system (we estimate < 100 such types). Our goal is to derive 
a comprehensive taxonomy of cell types for this circuit. Biological het-
erogeneity at cell- type and single- cell levels may underlie the functional 
diversity, lexibility, and plasticity of the neural circuits, as well as the 
genetic underpinning and environmental inluence unique to each in-
dividual animal.

We plan a three-pronged attack at the single cell level. Firstly, we will re-
cord the full spectrum of biophysical and intrinsic iring properties of cell 
types both in slices and in the living brain under a standard electrophysio-
logical protocol from patch- clamp recordings taken at the cell body. Fur-
thermore, we will use generalized leaky integrator models to accurately 
replicate the observed subthreshold voltage and spike timing behavior 
using computer simulations. Secondly, we will image and reconstruct full 
morphologies of thousands of neurons to characterize their dendritic tree 
and their proximal and distal axonal arborizations throughout the brain. 
hirdly, we aim to classify cell types by partial (qPCR) or near- full (RNA- 
seq) read- out of the mRNA species transcribed in thousands of individual 
cells. Finally, we will investigate the detailed physiological properties, in 
particular the short- term changes in synaptic strength, of synaptic con-
nections between partner neurons of the same or of diferent types. his 
vast amount of data will feed into our large- scale modeling eforts to gen-
erate conceptual and realistic circuit models and theories about circuit 
computation (see below). As in our past eforts, these data will be freely 
and publicly available in an online, curated database of cell types.

While the morphology and biophysical properties of cell types gives 
an outline of the connections between cortical neurons, highly inter-
connected local cortical circuits have far more structure than the statis-
tics of pair- wise measurements would predict. In addition to statistical 
rules of regional and cell- type speciic connectivity, higher- order con-
nectivity rules among groups of cells relate to functional speciicity. We 
are therefore planning further anatomical studies of ine- scale connec-
tomics in the visual cortex: the study of synaptic networks (w

ij
) between 
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individual neurons (i and j) in cortical circuits. hese studies will in-
clude large- scale reconstructions of cortical circuits with serial- section 
electron microscopy as well as more targeted experiments using rabies 
virus for trans- synaptic labeling. Because speciic individual connec-
tions in cortical networks are likely to be related to speciic physiological 
responses, these anatomical experiments will be carried out in animals 
in which single neurons had previously been studied physiologically 
during behavior.

Recording the Activity of a Large Ensemble of Neurons

he ultimate goal of MindScope is to understand the computations per-
formed by the cortex. We chose the visual system as our entry into the 
mind of the mouse. Although its visual acuity is about 50x lower than 
that of humans with their fovea, it retains most of the anatomical and 
physiological features that make vision the best- studied sensory modal-
ity. While much is known about whisker-  and olfactory- triggered be-
havior in mice, the range of visuo-motor behaviors mice are capable of 
remains to be explored.

Visual information originates in photoreceptors. In the common 
laboratory mouse that we use (C57BL/6J), there are about six to seven 
million rods and 180,000 cones in each eye. he resultant analogue in-
formation percolates through the retina and generates action potentials 
in about 50,000 ganglion cells. hese come in about twenty lavors with 
distinct morphologies, response patterns, and molecular signatures, 
each one of which tiles visual space. Many of these project to the 18,000 
neurons of the lateral geniculate nucleus (LGN), part of the visual thala-
mus. he axons of LGN cells in turn connect with some of the 360,000 
neurons of the primary visual cortex (V1). Detailed anatomical trac-
ing has revealed its rather elaborated hierarchical structure with about a 
dozen visual associational cortical areas surrounding V1 (compared to 
at least three dozen in primates). he visual information is further pro-
cessed while passing through V1 and associational cortical areas, mak-
ing up a network of networks (see color plate 3).

We are planning a series of increasingly complex visuo- motor behav-
iors, centered around visual invariant object recognition, to record how 
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these behaviors inluence receptive ield and other properties in V1 and 
how the cortical circuitry in turn shapes behavior. We can train mice 
to make a discrimination between two simple stimuli (for example, a 
let-  versus a right- tilted grating) while they run and assess the efects of 
disrupting neural activity in speciic cell types, cortical layers, or cortical 
areas while monitoring the activity of large ensembles of neurons.

Classically, the spiking activity of neurons has been studied with 
electrophysiology. Multielectrode recordings, previously achieved with 
handcrated electrical probes, have entered the silicon age. Commercially 
available probes with up to sixty- four sites per shank are currently avail-
able, leaving room for dramatic improvements. We are engaged in a con-
sortium with other institutions to create high site- count silicon probes, 
with integrated circuitry to amplify and multiplex the signals from 512 
sites per single shank. Active circuitry at the base of the shank will amplify, 
ilter, and multiplex these signals such that only a handful of wires will 
have to be connected of chip. he goal in the coming years is to record 
from a large fraction of the cortical neurons making up a minicolumn. 
he assignment of these neurons to speciic cell types has now becoming 
possible with the Cre- mediated expression of channelrhodopsin, which 
makes speciic cell types directly excitable by light for identiication.

Functional imaging of neurons in the behaving mouse has reached 
the point that recording the activity of hundreds of individual, geneti-
cally targeted neurons has become routine. Two- photon microscopy 
visualizes luorescently labeled neurons with suicient resolution to 
identify individual spines. Combined with genetically encoded calcium 
indicators such as GCaMP6, which provide signals that are dominated 
by action potentials in the soma, it is possible to resolve bursts of spikes 
in hundreds of neurons at video rates (of course, this is considerably 
slower than the submillisecond resolution of electrophysiological re-
cordings). Because all of the visual cortical areas lie directly below the 
surface of the skull, we can target each of these areas for physiologi-
cal imaging, sometimes in the same experiment. Recently it has even 
become possible to record the spiking activity of individual axons and 
presynaptic boutons, so that the signals provided by projection neurons 
can be recorded in the target area. herefore, in addition to the inter-
areal anatomical connectivity map (projectome) described above, we 
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plan to delineate a functional projectome: a comprehensive map of the 
physiological signals sent between visual areas from identiied cell types 
during diferent states of the animal (including deep sleep, running, and 
one or more visuo- motor tasks involving spatial attention and invariant 
object recognition).

Structured Science: Bringing Quantitative and High- Throughput 
Tools from Industry to Neuroscience

We seek to greatly speed up the acquisition of relevant biological data 
by linking together multiple platforms, from surgery to electron- 
microscopic reconstruction and annotation of circuits, from behavioral 
suites to two- photon calcium imaging, into high throughput, standard-
ized pipelines using quality control (QC), standard operating proce-
dures (SOP), milestones, and other tools that are de rigueur in the bio-
technology industry. Core to every one of our atlasing projects at the 
Allen Institute has been a clear deinition of our target product and a 
methodical mapping of milestones and deliverables through a detailed 
project- planning and management process. We combine the appropri-
ate multidisciplinary scientiic and technical teams, including biologists, 
modelers, data analysts, and engineers, to industrialize processes and 
execute on delivering the product on time and within budget.

Each module is linked into a large- scale data generation pipeline 
where standard operating procedures (SOPs), supply chain manage-
ment, and careful quality control measures are all employed in a high- 
throughput setting. Once generated, data enters our Informatics Data 
Pipeline where it goes through multiple rounds of processing and qual-
ity control on its way to becoming part of one of our freely available on-
line products. Depending on the nature of the work going through our 
Structured Science laboratories, any one module might be supporting 
multiple data generation pipelines or directly supporting exploratory 
work by one of our research scientists.

Our newest online data product, the Allen Mouse Brain Connectivity 
Atlas (www.brain-map.org), is an excellent example of our large- scale 
pipeline approach. We industrialize transgenic mouse generation and 
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characterization, stereotaxic rAAV tracer injections, and serial two- 
photon tomography, and link these data generation modules to a robust 
informatics data pipeline to generate the main datasets for the atlas prod-
uct (igure 1). To meet the goals of this project, we scaled up our ability 
to generate, characterize, and breed large numbers of Cre driver mouse 
lines and to coordinate these activities with a dedicated core of surgeons 
that carried out precise rAAV tracer injections on a daily basis for sev-
eral years. his pipeline provides thousands of injected mice brains for 
serial two- photon tomography using six TissueCyte 1000 systems. Each 
system sections and images one brain per day (sampled at 0.35 µm in 
x- y, much less in z), six days a week, in an industrialized setting where 
we fully monitor the ~20 hour runs and have on call staf ready to sup-
port any run problems outside of normal business hours. he output 
from the irst three data generation modules is raw two- photon image 
data from a matrix of injections in wild- type and Cre driver line mice. 
hese data are then ready for multiple stages of processing and quality 
control as part of the complete pipeline.

his includes automated data processing, search, visualization, and 
analysis of a large and complex dataset. Developed as an enterprise sys-
tem for scalability, it consists of a number of algorithmic modules that 
are integrated into an internally developed laboratory information man-
agement system (LIMS) and job scheduling and submission backbone. 
hese components form a fully automated pipeline, capable of process-
ing one petabyte (1015 bytes) of imaging data per year.

he inal product is delivered via a web application at www.brain-map 
.org. It allows users to search for projections of one or more structure(s) 
to other structure(s), search similar connectivity patterns and for virtual 
retrograde connections, view and download the original primary data 
in high resolution, view data in both 2D and 3D along with the Allen 
Reference Atlas to provide anatomical context, view and analyze one or 
more datasets and download all computed values to perform large- scale 
data mining and analysis.

We plan to apply similar project management techniques to the gen-
eration of high- quality data products for understanding the structure 
and function of mouse cortical neurons and cortico- thalamic circuits 
under both in vitro and in vivo conditions.

http://www.brain-map.org
http://www.brain-map.org
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Modeling the Brain by Integrating Diverse Data and Theory

he sheer complexity of the nervous system makes development of 
quantitative biophysical and more abstract point neuron and network 
models critical to understand their function. here are two sets of ob-
servables that relate to the function of the organism and which brain 
models will need to reproduce: neuronal activity (subthreshold mem-
brane potential and spiking behavior) and the animal’s choice behavior. 
Even though we initially plan to use a fairly naturalistic foraging behav-
ior, running on a wheel, this represents only a small subset of possible 
behaviors the animal is capable of. We seek to construct models that 
have a high likelihood of generalizing to as of yet unobserved behav-
ior. As such, we restrict ourselves to mechanistic models that reproduce 
characteristics of neuronal activity. he level of detail over which the 
model aims to reproduce the neuronal activity, population statistics of 
identiied cell types, and responses of individually characterized neu-
rons is determined by the levels of resolution at which we plan to quan-
tify the mouse connectome, both cell type–speciic connections, w

αβ
, as 

well as individual connections, w
ij
. Since the vast majority of the infor-

mation passed between cortical neurons are spikes, we will build a series 
of visual models linking structure to spikes.

We plan to parameterize a series of synaptic, neuronal, and small 
circuit models that reproduce neuronal input- output relations. Models 
for LGN and V1 neurons will be constrained by correlated slice elec-
trophysiology, morphology, and transcriptomic data. For synapses, the 
focus is on the correct parameterization of short- term plasticity be-
tween the multitudes of cell types. We will initially use generalized leaky 
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Figure 1. Allen Mouse Brain Connectivity Atlas data generation and information 
management pipeline.
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integrate- and- ire units to model neurons, as known convex optimiza-
tion methods allow us to ind a unique set of parameters that best it 
the measured subthreshold voltage and spiking behavior. Biophysical 
models have an intrinsic beauty, as they incorporate a wealth of infor-
mation known about the system on top of the point neuron models: 
morphology, voltage-dependent currents and synapses and their lo-
cations, and rely exclusively on their physical description. However, 
they are very diicult to parameterize and parameter searches is one 
of the most computer- intensive part of modeling. An open question 
is whether there are canonical circuits that occur oten enough to be 
analyzed as modules: cortical interneurons- pyramids microcircuits, 
cortico- thalamic loops, and so on. As it is true for all of biology, discov-
ering modularity is the key principle that allows us to avoid what has 
been referred to as the complexity brake. Since most of the components 
are parameterized from slice data, we have to incorporate both modula-
tory and direct synaptic input from other cortical and thalamic regions.

A large number of the brain regions connect to and inluence activity 
in the visual areas, some set the level of vigilance, while some provide 
auditory, somatosensory, or motor signals. To quantify this background 
state, we developed a population statistic method that reproduces the 
subthreshold and the spiking activity of a population of simple neuro-
nal point models under conditions of homogeneous synaptic input. It 
can be applied to very large networks, up to the entire brain to mimic 
the sleeping brain or “resting state” activity. he essential parameters for 
such a model are the cell- type connectome and dynamical properties of 
neurons and modules.

For the system- level models, we plan to build network models that 
incorporate all the processing levels and modules we characterize and to 
use modeling description languages and other simulation tools that allow 
inclusion of hybrid modules (mix and match); for example, visual areas 
outside of the primary visual cortical area (V1) described by population 
statistics, V1 by spiking populations, and a limited number of neurons by 
biophysical details, aimed at reproducing in vivo physiology. his multi-
resolution approach limits the computation time spent on regions that 
have modest efects on simulations outputs (as characterized by sensitiv-
ity analysis) as well to ease the understanding of the simulation results.
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It will be critical to characterize system models in terms of their 
spatiotemporal receptive ields; that is, the region in visual space from 
which a precisely timed series of visual stimuli can evoke a response (as 
in a direction- selective visual neuron that best responds if a bar is moved 
in one direction). Subsequent analysis steps involve behavioral state de-
pendence and context integration in the processing of a natural visual 
scene the mouse is likely to be sensitive to. We also plan to reconstruct 
the visual input based on the observed neuronal activity and models of 
what the neurons code for in an image (so- called mind- reading tech-
niques using Bayesian methods). hese reconstructions will allow us to 
test speciic coding models in a quantitative manner: for example, is the 
quality of reconstruction a function of how salient these features are? 
While our emphasis is on models of stimulus encoding, decoding stands 
in a dialectic relationship to encoding— for the better our understand-
ing of how neurons encode stimuli, the better decoding will be.

A inal step in constructing models is to link them with the observed 
animal choices in a task. A hybrid model containing components at very 
diferent levels that is mapped to behavior is very useful in predicting 
which components and which details do contribute to observable out-
comes using sensitivity analysis techniques. his analysis is crucial for 
making predictions of the consequences of opto- genetic interventions 
on network activity.

Yet even if we could record from every single spike from every neu-
ron in the brain and could simulate every such spike in a gargantuan 
biophysical simulation, we would still not understand the deep prin-
ciples underlying its processing (see also chapter by Freeman, this vol-
ume). Answering questions such as, What is the function of feedback 
pathways to the thalamus? Is the brain organized in a series of linear- 
nonlinear feedforward processing stages modulated by feedback (as in 
the most popular model of primate vision)? How are objects repre-
sented? How can these representations be manipulated and learned? 
To what extent does the cortex perform predictive coding or Bayesian 
inference to adjust its settings? and so forth, requires a concerted theo-
retical efort that works hand in glove with the experimental and the 
modeling eforts. Such theoretical considerations will complement our 
modeling eforts.



38  •  Ko ch

As modelers, theoreticians, anatomists, and physiologists are all sited 
together and work on the same cortico- thalamic system, both modeling 
and theory will guide our future experimental investigation, establish-
ing a tight virtuous loop between what can be measured, what should be 
modeled, and what can be understood.

Toward Large- Scale, Open- Source Science

Neuroscience is a splintered ield, with worldwide about ten thousand 
independent laboratories pursuing distinct questions, across spatiotem-
poral scales ranging from nm to cm and from μsec to years, with a diz-
zying variety of tools. In a 2012 commentary in Nature, Koch and Reid 
wrote about the challenges of studying the brain under these conditions 
in the era of Big Science. Because students must write irst- author papers 
to graduate, and faculty must publish in high- impact and hypercompeti-
tive journals to obtain grant support and tenure, the modern academic 
research enterprise encourages maximal independence among experi-
ments and groups. Indeed, when attending the annual Society for Neuro-
science meeting one is struck by the speed with which its sixty thousand 
or more practicing neuroscientists are heading away from each other 
in all possible orthogonal directions in a sociological form of Big Bang. 
While this is necessary in the romantic, exploratory phase of any science, 
a more systematic and thorough exploration of canonical circuits and 
behaviors is called for as neuroscience enters a more mature phase.

his orthogonality among groups has prevented the emergence of 
common standards and a handful of canonical, large-scale projects. For 
example, there is no universally accepted deinition for identifying ac-
tion potentials in noisy electrical recordings from diferent neuronal 
tissues. Instead, dozens of distinct spike detection and classiication al-
gorithms are in use. In order to gain a competitive edge and for lack of 
funding to manage and curate online repositories of data, hard- gained 
information is amassed and rarely made accessible online. Molecular 
compounds and transgenic animals are only shared ater the initial pa-
pers describing them have been published in print. All of this has made 
comparison across laboratories diicult, replication of speciic experi-
ments arduous, and has signiicantly slowed progress.
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MindScope is also an experiment in the sociology of neuroscience, 
heralding the arrival of large- scale science in a ield populated by small 
groups. It will require rewarding the team for the collective efort rather 
than rewarding a few lead investigators. Integrating distinct scientiic 
methods originating with an individualistic academic environment with 
a more team- driven corporate approach constitutes the true challenge 
of MindScope. By assembling a large team of specialists focused on a 
common set of goals, techniques, and standards, MindScope will achieve 
much more than any one specialist can on their own. For only then can 
the massive and disparate anatomical, imaging, and physiological data 
be synthesized into a mathematical and predictive framework of how all 
elements it together and act as a whole to give rise to intelligence and 
consciousness. We envision a day, not far in the future, where a small 
number of highly sophisticated, equipped, and stafed brain observato-
ries will complement the academic landscape.

While MindScope seems daunting, other scientiic ields have suc-
cessfully carried out much more massive undertakings, such as the con-
struction of high- energy particle accelerators, telescopes, or the human 
genome efort. hese involve hundreds to thousands of scientists, engi-
neers, and technologists and operate over a timescale of decades with 
commensurate budgets funded by national governments, foundations, 
and private donors. In a manner comparable to how physical scientists 
build instruments to gaze at distant events at the edge of the universe, 
brain scientists must build observatories to peer at proximal events in-
side the skull that give rise to the mind that wonders and peers.

Acknowledgment. None of this would be possible without the unprec-
edented generosity and long- term vision of our institute founders and 
benefactors, Jody and Paul G. Allen. his generosity and vision enables 
us to do things that have never been done before and to signiicantly 
speed up the arrival of the day when we will understand the human 
brain and the many pathologies it sufers from.



T H E  C O N N E C T O M E  A S  A  D N A 
S E Q U E N C I N G  P R O B L E M

Anthony Zador

Each year more than thirty thousand neuroscientists gather to share 
what they have discovered, enough to ill thousands of scientiic papers. 
he rate of progress is staggering. Yet we still don’t really understand 
how the brain works.

Why? I would argue that the reason we don’t understand how the 
brain works is that we are missing crucial information. Although we 
know a great deal about molecules and single neurons, and also about 
the gross organization of brain areas, our knowledge is scarce between 
these two extremes, at the level of neural circuits. For this a vital prereq-
uisite is knowing the wiring diagram. he good news is that because of 
recent advances in technology, it may soon be possible to obtain the wir-
ing diagram, or “connectome,” of the brain at single neuron resolution.

Proof that we are not there yet— that we still haven’t “solved” the 
brain— comes from the fact that we are still apparently quite far from 
being able to build one. If we really understood the principles behind 
thought, we could build a machine capable of humanlike thinking.

But so far we can’t. At the dawn of the computer age over half a cen-
tury ago, expectations were high that computers would soon perform 
many of the same cognitive functions that humans do. Herbert Simon, 
one of the fathers of artiicial intelligence (AI), predicted in 1965 that 
“machines will be capable, within twenty years, of doing any work a 
man can do.” Of course, these predictions turned out to be wildly of 
the mark.

It soon became clear that some cognitive functions were harder to 
train computers to perform than others. he surprise was that tasks that 
were easy for a person oten turned out to be hard for a machine, and 
vice versa. Many apparently simple tasks, on which toddlers make con-
siderable progress in their irst two or three years— drinking from a cup, 
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tumbling with a friendly dog, or identifying the villain in an animated 
fairy tale— are very challenging for machines. Computers today play 
better chess than any human world champion, but because of the primi-
tive state of machine vision and allied ields we still don’t have domestic 
robots loading our dishwashers.

Why is that? Is there something special about biological computation 
that renders it so superior in some domains? Or could such functions 
be replicated with classical computer architecture? At the risk of greatly 
oversimplifying a very complex history, one might say that diferent 
answers to this question have historically led to two very diferent ap-
proaches. On the one hand, those who held that there was nothing spe-
cial about biological wetware went on to pursue what are now thought 
of as classical AI approaches. On the other hand, some researchers 
believed that the style of brain computation is what makes biological 
systems superior, and that only by building computational engines on 
those same principles would we match the capacity of real organisms. 
his latter view led eventually to the ield of connectionism— neural 
networks and machine learning.

Although the roots of neural networks can be traced back to the 1950s 
and even deeper, one might conveniently date the modern Renaissance 
of the ield to the publication of Rumelhard and McClelland’s PDP books 
in 1986. he parallel distributed processing (PDP) manifesto proposed 
that the key features of brain- like computation were that it was parallel 
and distributed. Many simple summation nodes (“neurons”) replaced 
the single central processing unit (CPU) of computers. he computation 
was stored in the connection matrix, and programming was replaced by 
learning algorithms such as Paul Werbos’s backpropagation. he PDP 
approach promised to solve problems that classic AI could not.

Although neural network and machine learning have proven to be 
very powerful at performing certain kinds of tasks, but they have not 
bridged the gap between biological and artiicial intelligence, except in 
very narrow domains, such as optical character recognition. What is 
missing? One possibility is that even neural networks are not “biologi-
cal” enough. For example, in my PhD thesis I explored the possibility 
that endowing the simple summation nodes of neural networks with 
greater complexity, such as that provided by the elaborate dendritic 
trees of real neurons, would qualitatively enhance the power of these 
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networks to compute. But the advantages turn out to be quantitative 
only; adding that particular sort of biological idelity scarcely allowed 
us to span the biological- computational gap as we had hoped. An al-
ternative and more popular idea was and is that we need to develop 
more sophisticated learning algorithms. Indeed, what began as one of 
the leading conferences in the neural network ield, Neural Information 
Processing Systems (NIPS), quickly evolved into a conference focused 
almost exclusively on machine learning. But thus far decades of work in 
machine learning have not suiced to decrypt the brain.

At this point we must take seriously the possibility that neither more 
biologically realistic networks nor better learning algorithms will solve the 
problem. Rather, biological organisms may be very efective at perform-
ing certain computations because they have evolved a highly specialized 
set of inely optimized algorithms for solving them, a “bag of tricks.” hese 
“tricks” may deal with the many special cases and exceptions needed to 
render the algorithms efective over a wide range of real- world scenarios. 
his view is anathema to theorists in search of a small set of unifying prin-
ciples to explain biological computation. But perhaps it is sensible when 
one considers that organisms have been subjected to several hundred mil-
lion years of selective pressure to evolve an efective bag of tricks. he 
brain might be what Gary Marcus has called a “kluge,” a clumsy and inel-
egant solution that gets the job done, without necessarily being beautiful.

he bag- of- tricks hypothesis does not imply that good, general- 
purpose algorithms are unnecessary, only that they are not suicient. 
Even the best bag of tricks in the hands of an amateur magician doesn’t 
make for a good magic show. In the same way, the kernel of Google’s 
success as a search engine lay in the PageRank algorithm (which ranks 
pages according to the number and quality of links pointing to that 
page), but Google’s current preeminence in search stems from careful 
tweaking of (according to Google) over two hundred other “clues,” or 
tricks (http://bit.ly/1fTz2C6), such as the freshness of the page and the 
user’s geographical location. he bag- of- tricks hypothesis raises the 
possibility that biological intelligence may represent the distillation of 
such a vast “training set”— the life- and- death experiences of our myriad 
ancestors over hundreds of millions of years of evolution— that even the 
most sophisticated learning algorithms may fail to discover them, sim-
ply because their training sets are far too small.

http://bit.ly/1fTz2C6
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I have reluctantly embraced the bag- of- tricks hypothesis as the ex-
planation for why biological intelligence continues to outshine artii-
cial intelligence— reluctantly, because this view implies that there is no 
grand insight that will reveal to us how the brain works, and catalyze 
the creation of intelligent machines. Instead, the bag- of- tricks model 
suggests that if we are to build machines that perform well on certain 
classes of real- world problems, we must either dissect the tricks biologi-
cal intelligence uses or invent our own. Connectomes, at the single neu-
ron level, may allow us to provide the information we need to reverse 
engineer the brain. 

he good news is that the tools and techniques needed are almost 
within our grasp.

he natural circuit to study for insight into biological intelligence is 
the neocortex, the structure widely credited with endowing us with our 
intelligence. he cortex is uniquely mammalian and achieves greatest 
elaboration in primates, especially humans. he basic structure of the 
cortex is largely preserved across mammals, so that a bit of cortex from 
a rodent does not appear very diferent from the corresponding bit in a 
monkey. Within an organism, cortical structure is fairly uniform, so that 
a bit of cortex involved in processing sound is not that diferent from 
another bit involved in processing touch.

hese and other considerations suggest that the cortex is a modular 
structure. It appears that protomammals may have evolved the cortex to 
solve the very challenging problem of scaling of neural circuits. Presum-
ably having a bigger brain endows an organism with an evolutionary 
advantage in terms of greater behavioral lexibility, but from an evolu-
tionary perspective it is not necessarily straightforward to incorporate 
new neurons into a circuit. Circuit architectures that work for small cir-
cuits do not necessarily work for large circuits. For example, all- to- all 
connectivity scales quadratically with the number of neurons (all-to-
all connectivity in a 10 neuron circuit requires only 100 connections, 
whereas in a million neuron circuit a thousand billion connections 
would be needed), so quickly becomes impractical as the number of 
neurons grows. Furthermore, modularity helps solve the development 
problem of wiring up a brain. In some organisms, such as the worm C. 
elegans, the entire neural circuit (consisting of 302 neurons and about 
7,000 synapses) is speciied precisely by the genome, but specifying each 
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connection in the genome quickly becomes impractical as the number 
of bits needed to specify all the connections exceeds the number of bits 
in the genome.

he basic cortical module is oten taken to be the same as the cortical 
column— a vertically organized collection of cortical neurons that re-
spond similarly to, for example, sensory input. However, understanding 
the cortical module requires not only that we understand the local cir-
cuitry within a column but also the inputs and outputs of the module. A 
given cortical region is intimately associated with other cortical regions, 
as well as with other structures such as the thalamus and striatum.

he modularity of cortical architecture gives us hope that we will un-
derstand biological intelligence. It suggests that our goal should be to 
understand the basic organization of the cortical module, how it is wired 
together with other modules, and how modules from diferent brain 
areas are specialized to perform speciic functions. he circuit architec-
ture common to most or all cortical modules may relect the basic shared 
structure of cortical algorithms, whereas circuit motifs found only in 
specialized cortices may relect special tricks needed to process speciic 
kinds of information. Understanding these basic principles of cortical 
organization will lay the foundation for decoding the bag of tricks en-
coded in the wiring of neural circuits. Note that in this view, there need 
not be anything fundamentally special about the cortex. Rather, under-
standing it is merely a prerequisite for decoding the bag of tricks, in the 
same way that learning FORTRAN is a prerequisite for learning many 
algorithms useful in numerical analysis— algorithms that can then read-
ily be reimplemented in C or any other language. Once we understand 
the basic principles of cortical computation, there is no reason to think 
we could not reimplement them in an artiicial silicon brain.

To reverse engineer biological intelligence we must understand how 
speciic neural circuits solve well- deined problems. he obvious model 
organism in which to conduct such studies today is the mouse. Mice 
are genetically accessible, which allows us to bring to bear the full ar-
mamentarium of modern molecular biology. Rodents can be trained to 
perform sophisticated sensorimotor decision tasks similar to those used 
in nonhuman primates. Moreover, it is now possible to monitor the ac-
tivity of hundreds or thousands of neurons simultaneously, using cal-
cium imaging (see chapter by Ahrens, this volume). Other approaches, 
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such as the DNA ticker tape proposed by Konrad Körding (Northwest-
ern) and George Church (see his chapter herein), raise the possibility 
that we may eventually be able to record from even more. hus it is 
possible to record and manipulate neural activity in animals performing 
well- deined behaviors that require speciic computations.

What has lagged behind is the technology for unraveling the detailed 
wiring of the circuit, the “connectome.” Current approaches to deter-
mining the connectome are based almost exclusively on microscopy. 
Unfortunately, microscopy is poorly suited to the study of neural con-
nectivity because brains are macroscopic structures, whereas unam-
biguous determination of a synaptic connection requires electron mi-
croscopy (EM). So far, the complete connectome has been established 
for the worm C. elegans. However, determining even this simple con-
nectome (302 neurons connected by ~7,000 synapses) was a heroic task, 
requiring over ity person- years of labor.

here are two main challenges to using EM to reconstruct the con-
nectome. Reconstruction based on EM requires imaging many very 
thin (~10 nm) 2D tissue sections and then aligning successive sections 
to infer the 3D structures from which they were derived. he irst chal-
lenge is that acquiring the data is very diicult. Traditional EM meth-
ods have neither the requisite throughput nor accuracy— even a few lost 
sections can severely compromise the reconstruction, necessitating ex-
tremely reliable sectioning methods. he second challenge is analysis. 
Inferring the 3D structure from 2D sections requires matching the cor-
responding neuronal structure in each successive image. hus to trace 
an axonal process across 1 mm requires tracking that axon across each 
of ~105 individual sections. An error in even a single section raises the 
possibility that a particular axonal process will be assigned to the wrong 
parent cell body. Although there has recently been impressive progress 
improving its accuracy and throughput, electron microscopy remains 
an inherently challenging approach to connectomics, particularly for 
studying long- range connections such as those to and from the thala-
mus, striatum, and other cortical regions.

However, until recently there was no alternative to EM for solving the 
connectome at single neuron resolution.

To circumvent the considerable challenges associated with EM- based 
connectomics, my laboratory is developing an entirely novel class of 
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approaches called BOINC (Barcoding Of Individual Neuronal Connec-
tions). BOINC relies on high- throughput DNA sequencing, a technol-
ogy originally developed to sequence genomes from humans and other 
organisms. he appeal of using sequencing is that its cost is plummet-
ing: it is now possible to sequence an entire human genome (~three bil-
lion nucleotides) for a bit more than $1,000, compared with $1 million 
in 2007 (for James Watson’s genome), and more than $2 billion for the 
human genome project (2001). Indeed, the cost of sequencing is fall-
ing at a rate that exceeds even Moore’s law, which states that computer 
power doubles every two years. DNA sequencing has not previously 
been proposed for connectomics, but we reasoned that if we could con-
vert neural connectivity into a sequencing problem, we could render it 
tractable using current, low- cost techniques.

We are pursuing several strategies for converting connectomics into 
a sequencing problem, but all BOINC methods must solve three chal-
lenges. First, we must express a unique sequence of DNA— a DNA “bar 
code”— in each neuron in the brain. Since DNA consists of long strings 
of four nucleotides (A, T, G, C), a bar code consisting of a random string 
of thirty nucleotides can uniquely label 430 = 1018 neurons, far more than 
the number of neurons in the mouse cortex (< 107 neurons). hus the 
vast majority of neurons will have a unique bar code. Second, we must 
induce each neuron to share copies of its bar code with its synaptically 
coupled partners. Finally, we join pre-  and postsynaptic bar codes into 
a single molecule suitable for high- throughput DNA sequencing. he 
presence of a joined pair of pre-  and postsynaptic bar codes indicates 
that those two neurons are connected. It is thus straightforward to ill in 
the entries of the (sparse) connection matrix directly from the observed 
bar code pairs.

he irst challenge is to bar code neurons. he most appealing so-
lution is to make a transgenic mouse engineered with a genomic cas-
sette— a speciic sequence of DNA inserted into a known location on 
a chromosome— that is scrambled randomly in each neuron. his cas-
sette would consist of special short sequences of DNA termed “recom-
binase sites,” S, which lank intervening sequences X

1
, X

2
, .  .  .  X

N
 (in 

which each X is used to denote a short sequence of nucleotides like X = 
AAGGCCCCATTA). he transgenic mouse would also be engineered 
to transiently express a special protein, termed a “recombinase,” which 
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inverts the DNA between a pair of recombinase sites. hus in one neu-
ron the original germ- line sequence S X

1
 S X

2
 S X

3 
S might be scrambled 

to produce S x
3 
S X

1
 S x

2
 S (where lowercase letters are used to denote 

the inverse sequence, x = ATTACCCCGGAA for the example above), 
whereas in another neuron scrambling might generate S X

2
 S x

3
 S X

1 

S. he theoretical diversity D achievable by this strategy grows rapidly 
with the number of intervening sequences N as D = 2NN!, which is the 
number of sequences of N playing cards, assuming cards are not only 
shuled but can also be lipped face up or down. Although such recom-
bination, or scrambling, may seem fanciful, it is in fact analogous to the 
mechanism by which antibody diversity is generated in the vertebrate 
adaptive immune system. Recombination solves the problem of how to 
endow individual cells— all derived from a single egg and therefore by 
default genetically identical— with unique sequences.

he second challenge is to share bar codes between synaptically 
connected neurons. We have previously outlined an approach to this 
based on Pseudorabies virus (PRV), a member of the Herpes virus 
family (Zador et al., PLOS Biology, 2012). PRV, like all viruses, is es-
sentially a core of genetic material (DNA in the case of PRV) wrapped 
in a protein coat. Unlike most viruses, however, PRV propagates from 
neuron to neuron across the synaptic clet. PRV evolved this method of 
propagation (which it shares with rabies virus, to which it is otherwise 
unrelated) as a way of penetrating the nervous system while evading 
immune surveillance. Because PRV moves eiciently across synapses, 
neuroscientists have long used it to trace neural circuits; tracing stud-
ies oten use an attenuated form of PRV that can only propagate in the 
retrograde direction. For BOINC, we engineered the genetic material in 
this PRV to include a bar code, so that a neuron passes its bar code to 
each of its synaptically connected partners. hus each neuron becomes 
a bag of bar codes, a bag containing copies of its own bar code as well as 
of its synaptically connected partners.

he third challenge is to join bar codes within a neuron. To achieve 
this we express a specialized protein called an integrase. Like the re-
combinase described above that inverts DNA lanked by recombination 
sites, the integrase also acts upon pairs of integrase sites. However, the 
integrase irreversibly joins the DNA at the sites, forming a single piece 
of DNA out of two. By positioning the bar code sequences near the 
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integrase sites, we ensure that the single piece of DNA thus formed con-
tains two bar codes in sequence. his single piece of DNA can be ampli-
ied by conventional methods and sent for high- throughput sequencing.

BOINC has two key advantages over electron microscopy. First, it is 
much cheaper. Given current (2013) costs, a mouse cortex with < 107 
neurons and perhaps 1010 synapses might require a few weeks and 
about $10,000 to sequence, numbers that will only improve as sequenc-
ing technology advances. Second, BOINC is particularly well suited to 
studying long- range projections because the error rate does not increase 
with the length of the projection. hus BOINC can be used to study 
not only local circuitry within a cortical module but also its long- range 
connections.

Two limitations of BOINC in its simplest form are that (1) it has 
no natural representation of space, so that the identity of a bar code 
provides no information about its spatial position in the circuit (for 
example, auditory versus visual cortex), and (2) it has no natural rep-
resentation of cell type, so that the identity of a bar code provides no 
information about whether the associated neuron is, for example, ex-
citatory versus inhibitory. We can address the irst concern by keeping 
track of the brain area from which each bar code is obtained at the time 
of dissection, prior to extracting the nucleotide bar codes. he spatial 
resolution here can be as low as 100 μm or even lower, suicient to as-
sign each bar code to a deined anatomical region. We address the sec-
ond concern by barcoding not only synaptic connections but also the 
“transcriptome” associated with a given neuron. he transcriptome is 
the collection of mRNA (messenger RNAs) transcripts that couple a 
cell’s DNA to the proteins it expresses. hese mRNAs deine whether a 
neuron is excitatory or inhibitory as well as provide other information 
such as the cortical layer from which it was obtained. hus we envision a 
connection matrix in which associated with each neuronal bar code are 
a few additional bits of information specifying the neuron’s position in 
the circuit and its identity.

A cheap and rapid method for deciphering the wiring diagram of a 
neural circuit or of an entire organism would have a profound impact 
on neuroscience research. Many neuropsychiatric diseases such as au-
tism and schizophrenia are thought to result from disrupted neuronal 
connectivity, but identifying the disruptions even in mouse models is a 
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major challenge given current technology. More fundamentally, knowl-
edge of the neuronal wiring diagram would provide a foundation for 
understanding neuronal function and development in the same way that 
knowing the complete genomic sequence provides the starting point for 
much of modern biological research in the postgenomic era. BOINCing 
may not solve the brain, but it promises to bring us one step closer.



R O S E T TA  B R A I N

George Church

With Adam Marblestone and Reza Kalhor

The Multileveled Complexity of the Brain

As with many biological systems studied in the past, the more we look 
at the brain, the more we ind complexity. To start, the neurons are 
packed densely in a 3D matrix with upwards of 100,000 neurons and 
900,000,000 synaptic connections per cubic millimeter of brain tissue. 
Moreover, neurons come in hundreds (or perhaps thousands) of func-
tionally distinct cell types with unique morphologies and molecular 
(epigenetic) identities.

Synaptic connections can be excitatory or inhibitory and can trans-
mit information using more than one hundred distinct neurotransmit-
ter molecules. hese connections change strength, break, and reform 
over time, and can even alter which neurotransmitters they use in re-
sponse to experience. Furthermore, gaseous messengers (which perme-
ate indiscriminately across cell membranes) and long- range electrical 
interactions may allow communication beyond the conines of yester-
day’s chemical and electrical synapses.

Neurons are not the whole story: other cells like glia, once viewed 
as mere metabolic support infrastructure, are now thought to play im-
portant roles in dynamic information processing. For example, neurons 
make synapses onto glia, and glia release neurotransmitters that modu-
late information low between nearby neurons.

Going deeper, each cell (whether neuron, glial cell, or otherwise) is 
composed of a network of self- assembling molecular machines, the dy-
namics of which is used not only to construct the electrochemical com-
puting elements (neurons) but also to dynamically store and manipulate 
information within genetic logic circuits and synaptic protein assemblies.
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On the other hand, the fully functional brain self- organizes from a 
less- structured precursor during development and learning. If we un-
derstood the rules governing these self- organization processes, we could 
begin to know which aspects of the brain’s complexity are relevant or ir-
relevant, at diferent scales and in diferent types of neural computation. 
he apparent complexity will likely continue to pile on, however, at least 
until we understand the principles underlying brains and minds much 
better, so that we know something about what to look for and what to 
expect. his presents a “chicken and egg problem” for our present mo-
ment in neuroscience; we must look ever- more comprehensively at the 
brain’s complexity in order to have hope of understanding any deeper 
simplicity it may possess— not to mention ixing its ailments and inter-
facing to it with appropriately high bandwidths.

Approaches to Comprehensive Brain Mapping and Modeling

Recently initiated large- scale eforts in neuroscience have focused on 
three projects: connectomics (mapping which neuron is synaptically 
connected to which others; see chapters by Sporns, Zador, and Hawrylycz 
herein), brain activity mapping (observing the electrical “traic” along 
these “synaptic highways,” see chapters by Shenoy and Koch), and large- 
scale brain simulation (integrating data from all areas of neuroscience 
to construct biophysically realistic models that can be compared with 
experiment, see chapter by Hill). While each of these endeavors is ex-
traordinarily valuable, none on its own is matched in scope to the brain’s 
multileveled complexity. Furthermore, it is not always obvious how to 
put these projects together, or easy to do so in practice, since each has 
missing pieces that the others don’t make up for.

For example, having an activity map without a connectome could 
tell us much about emergent behaviors across large neural networks but 
might not be suicient to reconstruct the underlying circuitry. Having a 
connectome would be informative as to circuit architecture, but would 
not necessarily specify the excitatory or inhibitory nature of synapses 
and would represent only a static picture, leaving mysterious the rules 
of development and plasticity that construct the circuits in the irst place 
(acquiring many connectomes at diferent time points could help, but 
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this would be diicult to do for a single animal). Simulations are power-
ful as a means to integrate diverse types of knowledge into predictive 
models that can be compared with experiment, but without data even 
more ine- grained, comprehensive, and multifaceted than activity maps 
and connectomes, these simulations may be too underconstrained to 
relect the important aspects of the brain’s functional architecture.

What Might the “Right” Dataset Look Like?

Before we despair in the complexity and give up on the brain entirely, it 
behooves us to ask a childlike question: regardless of apparent feasibil-
ity, what dataset would we ideally like to have to help understand how 
the brain’s structural and functional biological levels interlink to form 
an integrated system?

At a minimum, we would like to observe, simultaneously— within a 
single brain— information that reports on all of the levels of complexity 
that we outlined above. As a start, we could imagine a dream experi-
ment that would report on:

Cell types
Connections
Connections strengths and types
Developmental lineages
Histories of electrical activity patterns over time
Histories of molecular changes over time

To imagine what this dataset would represent, an analogy to a very 
diferent ield is useful. he Rosetta Stone is a 1,700- pound tablet bearing 
three inscriptions, carved one above the other into the stone: a priestly 
decree in honor of King Ptolemy V in ancient Egyptian hieroglyphics, 
in ancient Greek script, and in demotic script.

Because it presented the exact same statement in three diferent lan-
guages, two of which were known and the third unknown, it provided a 
key resource for cracking the then- unknown code of the hieroglyphics. 
Similarly, a Rosetta Brain would convey information about multiple in-
terrelated phenomenological levels of the brain’s biology and allow these 
levels to be directly compared to one another with single- cell precision. 
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hus each neuron in a Rosetta Brain would report a record not only 
of its own electrical activity pattern and of its connectivity but also of 
its developmental lineage, cell type, and history of synaptic and ion- 
channel protein concentrations.

Abstracting the Problem

In the rest of the chapter, we suggest a way in which all this might be 
possible. Our approaches start with the fact that all of the observations 
we wish to make across the diferent levels of a Rosetta Brain come 
down, in essence, to operations of labeling and counting. For example, 
a connectome is at its core a gigantic matrix, specifying whether or not 
cell X is synaptically connected to cell Y, where X and Y may be any 
of 100,000,000 neurons (in the mouse brain). As Tony Zador and col-
leagues proposed (see the chapter on sequencing the connectome), if 
each cell had a unique name (a unique string of letters), which we can 
also think of as an ID card or bar code, then for each name string, we 
would merely need to ask whether

(name string #1, name string #2)

is within the list of known connections, to ind out if the corresponding 
synaptic connection is present.

Developmental lineages of neurons are equally simple, in concept; 
just give each cell a unique bar code, but such that the children of cell X 
have bar codes of the form

child(bar code of cell X)

and those cells’ children have bar codes like

child(child(bar code of cell X))

and so on.
he many neural cell types, although traditionally deined by the 

complex morphologies of axons and dendrites irst glimpsed under the 
microscopes of Camillo Golgi and Santiago Ramón y Cajal, can also 
be deined by a process of discrete counting. Indeed, all of the cells in 
the body share (very closely) the same genome, the diferences between 



54  •  Chu r ch

them being due to the diferent levels of expression of the diferent 
genes. From the Central Dogma of Molecular Biology we know that 
gene expression, which accounts for the phenotypic diferences between 
the body’s genetically identical cells proceeds as

DNA →(transcription) Messenger RNA →(translation) Protein

and thus, by counting the numbers of each messenger RNA in a cell, we 
can determine its cell type.

he same goes for tracking the history of molecular expression in 
the cell over time, for example, to observe changes in gene expression 
that accompany learning and memory; except here you need not only 
to count molecules but also to label these molecules with time stamps— 
digital strings that encode the current time. his would be similar to how 
a grocery store tracks its sales: every time a bar- coded item is scanned 
at the checkout counter, the time is also recorded, and the time- stamped 
bar codes are entered into a database.

It is less obvious how connection strengths and types can map into 
this language, but in principle, these could be inferred by counting the 
abundances of diferent proteins on either side of the synapse, since the 
distribution of neurotransmitter receptors and other synaptic proteins 
ultimately determines the nature of the synapse. A further variable that 
inluences connection strength is number of distinct synapses (axon 
terminal to dendritic spine contacts) made by cell X onto cell Y. hus 
a means to count individual synapses would provide a crude index of 
connection strength.

here is yet another way in which connection strengths could be 
determined, however, if we had access to another level of the Rosetta 
Brain: electrical activity histories. If we had the full electrical activity 
histories of cell X and cell Y at a suiciently high temporal resolution, it 
would be possible to “see,” in these time traces, the moments at which 
an electrical impulse (also known as an “action potential” or “spike”) 
from cell X is transmitted across a synapse to generate an impulse in cell 
Y shortly thereater (in cooperation with inputs from many other cells 
that synapse onto cell Y). By tracking the statistics and relative timings 
of impulses from cells across the network, one could determine an efec-
tive “functional connectivity” between every pair of cells. Furthermore, 
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by combining this functional connectivity information with informa-
tion about the underlying anatomical connectivity matrix, it might be 
possible to compute the actual synaptic strengths between synaptically 
adjacent cells. In efect, by combining suiciently rich, redundant, and 
interconnected datasets, it may be possible to “ill holes” in any one such 
dataset. Although this leads to highly nontrivial statistical problems, 
progress is already being made on reconstructing anatomy from activity 
in the smallest neural circuits.

Sequence Space: An Exponential Resource Matched to the 
Brain’s Vastness

We’ve conceptually reduced the problem of constructing a Rosetta Brain 
to massive repetition of a simple operation: reading (and counting) of 
“bar codes” or “labels.” We’ve seen that if each cell, each synapse, or each 
molecule could have a unique bar code— and ideally a bar code that also 
encodes a time stamp— then by counting these bar codes and correlat-
ing them with independent measurements of the cell’s electrical activity 
history, we could potentially combine these data to infer an enormous 
amount about the brain’s structure and dynamics. But how do you gen-
erate and read “bar codes” at the subcellular level?

hat’s where DNA comes in. Although we are taught in school to 
think of DNA as the medium in which the cell stores its genome (its 
genetic blueprint and instruction set), the capabilities of DNA as an in-
formation storage molecule go far beyond that. Indeed, DNA can take 
on any sequence of the four chemical letters: A, T, C, and G (for in-
stance, ATATAGATAGATCACCCAGAAGATAGGAT is a perfectly 
valid string of DNA). his simple observation— that DNA can store any 
string, not just those used as biological blueprints in the genomes of 
existing organisms— has startling implications for many areas of sci-
ence and technology because it provides us with a strategy to extend 
information technology to the molecular level and to integrate it with 
biological systems.

Meanwhile, sequencing technologies developed in academia and 
industry have put DNA sequencing on a cost- performance trajectory 
that outpaces Moore’s law, which governs the improvements in silicon 
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microprocessor technology that have brought us from arm- sized cellu-
lar phones to Google Glass in only two decades. Many of the same con-
cepts have been adapted to DNA synthesis, which is now on a similar 
trajectory. his has resulted in the ability to read and write information 
into DNA with unprecedented ease, as demonstrated recently by the 
2012 DNA encoding and subsequent reading of the text of a complete 
book (Regenesis, Basic Books).

Suppose we have a string of DNA twenty- ive letters (deoxyribonu-
cleotides) in length. How does the number of distinct DNA sequences of 
this length compare with the number of synapses in the brain?

# of DNA sequences of length 25 nucleotides = 425 
# of synapses in human brain = 1014 ~ 423

hus the number of possible DNA sequences of length 25 exceeds the 
number of synapses in the human brain by a factor of nearly 100. Fur-
thermore, it is easy to make a test tube with all 425 possible DNA se-
quences of length 25. First, mix together all four letters (A, T, C, and G) 
so that they react to form all pairs (AA, AT, AC, AG, TA, TT, TC, TG, 
CA, CT, CC, CG, GA, GT, GC and GG). hen take these pairs and add 
in all four nucleotides to make all triplets. Repeat this 25 times and you 
have all possible DNA sequences of length 25 in your test tube.

Now take a test tube with many copies of all these random DNA se-
quences, which we can also call “DNA bar codes,” of length 40 (length 
25 is cutting it a bit too close for comfort), and suppose that one could 
randomly insert one such sequence in each of the roughly 100 million 
(108) neurons in the mouse brain. hen what is the likelihood that two 
mouse neurons end up with the same bar code? his is mathematically 
identical to the famous Birthday Problem: in a group of k people, what 
is the likelihood that any two people share the same birthday (among n 
= 365 possibilities). Here k = 108 and n = 440, and it turns out that the 
chance that two neurons end up with the same DNA bar code in this 
scenario is less than 1 in 100,000,000,000.

hus by supplying a random DNA bar code to each cell in the mouse 
brain, we can give each cell a unique label. Similarly, the trick to carry-
ing out all the labeling and counting operations needed for our Rosetta 
Brain is to encode as much of the relevant information as possible in a 
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DNA form. But how, in practice, can we read these DNA sequences in 
the context of an intact brain?

In situ Sequencing: A Key Tool for Rosetta Brain

Normally, when we sequence DNA in the lab, the DNA starts out as 
molecules freely difusing in a clear liquid in a test tube. We put the test 
tube into a machine, and out comes a long text ile with line ater line of 
DNA letters and associated metadata.

he project we describe would require the comparable processes 
to happen inside brain slices. In a sequencing machine, the individual 
DNA molecules are randomly deposited on a lat glass surface (like a 
microscope slide), where they are then trapped in place. Next, DNA 
polymerase, which makes copies of DNA, is added to the reaction. DNA 
polymerase builds up a copy of the chain from freely loating individual 
letters (A, T, G, and C). It thus spits out many identical copies of each 
DNA molecule on the surface, which become trapped right next to it, 
forming a cluster or colony of identical DNA molecules at a particu-
lar spot, which can be seen under a microscope. hen another copy is 
made, except this time, chemically modiied versions of A, T, G, and C 
are used, each of which is attached to a diferent color of luorescent dye: 
A- red, T- green, G- blue, C- yellow. hus when DNA polymerase makes 
a copy of the DNA strands in a particular colony, moving letter by letter 
along the chain, the colony will show up in red under the microscope 
when A- red is added to the chain, and similarly for the other colors. 
By recording the changing colors of the spots, the machine— which is 
basically a microscope plus some plumbing to pump in the A, T, G, C, 
and polymerase at the right times— can read the sequences of DNA 
molecules all across the glass surface at the same time. his mode of 
doing DNA sequencing with a microscope is part of what has allowed 
sequencing technology to become so cheap— because the microscope 
can see many colored spots at once at diferent positions on the surface.

In a postmortem brain, which we have removed from the animal 
and sliced into thin slices so that we can look through each slice with a 
microscope (a thin enough slice will be largely transparent), we could 
do something comparable, beginning by applying chemicals to “ix” the 
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tissue so that it does not degrade over time and is mechanically rigid. 
hen, instead of doing our sequencing- by- microscopy on a clean glass 
surface with DNA strands deposited on it, we can do sequencing- by- 
microscopy on a slice of brain with DNA or RNA strands already inside it! 
We call this new technology Fluorescent In Situ Sequencing (FISSEQ) 
because it uses a luorescent microscope to do DNA sequencing using 
colored nucleotides “in situ,” or in other words, inside an intact slice of 
brain tissue.

Image Analysis

Fluorescence In Situ Seqencing
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(RNA or DNA)
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Figure 1. Fluorescent In Situ Sequencing (FISSEQ): a. Sequencing by synthesis: a 
microscope records the changing colors of DNA spots as luorescent DNA letters are 
incorporated into growing chains by a polymerase. Each spot is made of many copies 
of a single “parent” molecule. b. his results in a set of identiied points, each labeled 
by its corresponding sequence.
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Applying In situ Sequencing to Determine Cell Type,  
Connectivity, and Lineage

As in situ sequencing continues to improve, we will possess a powerful 
means to create an “annotated connectome,” or in other words, a con-
nectivity map where the cell type of each neuron is known. To do this, 
we need three things:

 1. Delivery of a unique DNA bar code to each neuron. his could be 
done using random DNA sequences as described above, shuttled 
to each neuron and inserted into its genome by using a harmless 
(genetically modiied) virus.

 2. A luorescent label, which speciically sticks to synapses, to allow 
us to see in the microscope where the synapses are located.

 3. An in situ sequencing microscopy setup with high spatial resolu-
tion (the synapses are packed so densely that only a few wave-
lengths of visible light can it in between, perhaps requiring the 
use of “super- resolved” light microscopies).

To determine connectivity, we can then look in the microscope for 
the locations of synapses and apply in situ sequencing to read the se-
quences of the nearby bar codes on either side of the synapse. his will 
tell us which cell bar codes are paired with which other cell bar codes 
across synapses. (See chapter by Zador for a more sophisticated ver-
sion of this scheme, where viruses are used to shuttle DNA bar codes 
between synaptic partners— this could enable DNA sequencing to be 
used to read out a connectome using commercially available sequencing 
technologies [as opposed to the emerging in situ technology]! On the 
other hand, by directly sequencing the bar codes in a microscope using 
the in situ methodology, we would avoid the need to shuttle bar codes 
from cell to cell across synapses, as is required in Zador’s approach.)

To determine the cell type annotations, we can directly apply the in 
situ sequencing approach to the messenger RNAs inside each cell, which 
will provide us with a “proile” or “pattern” of its gene expression, which 
is a good indicator of the cell type. To determine cell lineage in addition 
to cell type, we need DNA bar codes that change slightly every time 
a cell division occurs. hen, by tracing back these small changes, we 
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can determine the “family tree” of each cell. his is similar to the way 
researchers already use DNA sequencing (applied to genomes, not bar 
codes) to determine the family trees of actual human families, except 
applied to diferent cells within a single brain.

Approaches using electron microscopy (which allows roughly 100x 
higher resolution than standard light microscopy can provide) also have 
the ability to combine functional studies with detailed probing of the un-
derlying circuit connectivity. In these “EM Connectomics” approaches, 
connections and cell types must be inferred from the high- resolution 
microscopy images, because electron microscopy is less easily combined 
with multicolor molecular reporters and DNA sequencing. his poses 
challenges since axons must be tracked over large distances inside huge 
image stacks and synaptic connections, and cellular morphologies must 
be computationally inferred from high- resolution image data. Doing so 
requires slicing the brain into nanometer- thin slices, which means that 
the density of data in all three dimensions is higher than would be re-
quired in an optical approach. EM Connectomics is extremely powerful, 
and remarkable progress is being made on both hardware and image 
analysis, as demonstrated by recent complete- circuit reconstructions of 
retinal circuits in the ly and mouse. Yet because of the exponentially 
rich information- encoding capacity of DNA, and its facile readout 
through sequencing, we would suggest that a Rosetta In Situ Sequenc-
ing approach may have complementary features, particularly in that it 
naturally integrates multiple forms of data.

In situ Immune Microscopy of Synaptic Proteins to Determine 
Synapse Strengths

So far, we haven’t speciied a great way to obtain the synaptic strengths 
and types. Fortunately, with the same microscope used for in situ se-
quencing, we can apply well- known techniques for visualizing synaptic 
proteins, which rely on special forms of molecular recognition called 
antibodies to bind a speciic color to a speciic synaptic protein. Because 
the distribution of synaptic proteins is an indicator of the strength and 
type of the synapse, we can use this method in concert with in situ se-
quencing to further annotate the connectome with synaptic parameters. 
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We could even combine this antibody staining approach with in situ 
sequencing by linking DNA strands to speciic antibodies. his would 
efectively give us the ability to simultaneously read out 4N colors instead 
of just 4 colors (just as we can with RNAs already, see above).

Encoding Neural Electrical Activities into DNA?

What about time- dependent phenomena, most importantly the rapidly 
varying electrical activity of each neuron— a.k.a. the activity map. Is it 
possible to read this out from in situ DNA sequencing as well? Although 
it might sound unlikely to map between dynamic cellular electricity and 
static strands of DNA, we can foresee at least one way of doing so.

Imagine again a DNA polymerase copying a long DNA strand. To do 
so, it works its way from one end of the strand to the other, efectively 
reading the identity of each nucleotide along the chain and then grab-
bing, from solution, the complementary nucleotide to form the next link 
in the strand representing the copy. Now imagine that we could “mess up” 
this copying process just for an instant, so that mistakes would be made 
and the wrong letters incorporated into the chain. If we knew when the 
polymerase started going at one end, we could track approximately when 
this perturbation occurred by looking at the position along the chain 
where the cluster of mistakes occurred. If the perturbation happened 
later, the polymerase will be farther along the chain, and thus the cluster 
of mistakes will occur farther out along the chain from the starting point.

Now imagine if we could cause the polymerase to make more or less 
copying mistakes in response to the instantaneous level of neural activ-
ity. hen the pattern of mistakes along the DNA chain would be like a 
“ticker tape” record of the pattern of neural activity in time. One poten-
tial way to make this happen relies on the fact that when neural electri-
cal activity occurs, calcium ions rush into the cell. hese calcium ions 
could make their way to the polymerase and disrupt its idelity of copy-
ing, causing more mistakes to occur in the presence of high calcium.

Although there are many challenges that must be overcome to get such 
molecular ticker tapes running in the lab, this idea has already spawned 
intellectual descendants that may be easier to implement; for instance, to 
record events on slower timescales into a DNA storage medium for later 
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readout by sequencing. It will then be possible to record time- varying 
histories of molecular events in the cell into a static medium, DNA, and 
then to read out those histories using in situ sequencing.

Importantly, even before these technologies are in place, we can also 
read out the electrical activity patterns for at least a small number of 
cells with already- extant methods, such as using wired electrodes to di-
rectly sense the electrical voltage associated with neural impulses. hen, 
the same brain used in these experiments can be subject to the Rosetta 
in situ sequencing procedure to read out other salient aspects of its 
structure and dynamics.

Architecture for a Rosetta Brain Experiment

Putting this all together, we can imagine an experiment as follows.

Part I. Living animal

• Deliver appropriate DNA bar codes or other molecular markers
• Do as many experiments on a behaving organism as possible
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Figure 2. Molecular recording devices: the dynamic low of ions across the cell mem-
brane during neural activity could be recorded into DNA by modulating the copying 
mistakes made by a DNA polymerase. his would allow readout of the activity history 
by DNA sequencing ater the fact, so that real- time access to each neuron by external 
devices is not required during recording.
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• Stimulate as much as possible
• Record electrical activity from as many neurons as possible in real 

time, via traditional methods

Part II: In situ

• Chemically ix the brain and slice through the head to create trans-
parent sections

• Perform in situ sequencing and in situ microscopy of synaptic 
proteins

• In this inal step, get as much information as possible about the 
nervous system via in situ microscopy and sequencing: cell types, 
developmental lineage bar codes, connectome bar codes, antibody 
staining of synaptic proteins, and ideally molecular ticker tape ac-
tivity time- series data.

The Future

Obtaining the massive interrelated datasets resulting from a Rosetta 
Brain would be just the irst step. It should be made easy enough to cre-
ate a Rosetta Brain that many small labs could make their own, under 
diferent experimental conditions designed to test a wide range of in-
luences and hypotheses. Rosetta Brains should be compared between 
individual animals to understand how brains vary and what they have 
in common. Systematic approaches would also be possible— Rosetta 
Brains would be ideal as datasets to compare against putative large- scale 
brain simulations. hey could be used to ask many questions at once, in 
a real brain, as is already possible in a computational brain model, and 
to probe how each variable is related to many others.
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C O M P U T A T I O N

Even with a map of every neuron and every connection in the brain, 
we will only be part way there. A road map would tell us a lot about 
the United States— it would be clear that New York City and Chicago 
are major hubs, and that there are roads of diferent magnitude, and 
so forth. But there is much that could not be inferred from maps alone 
(even if traic were superimposed). Where some organs (like the liver 
or the nose) make sense almost immediately once we understand their 
constituent parts, the brain’s operating principles continue to elude us.

In part, that’s because the brain is an organ of computation: whereas 
liver cells remove toxins, and the nose ilters out pollutants, nerve cells 
exist to compute; the real trick is to igure out what they are computing. 
And, to use an analogy from computers, it is as if we are trying to reverse 
engineer the operating system, the sotware, and the protocols and con-
ventions (like USB, the ASCII code, and TCP/IP) for communication— 
all at once. he challenge is enormous.

In this section, we’ll hear about how some leading researchers are ap-
proaching the challenge of understanding the brain’s computations. We 
begin with the work of May- Britt Moser and Edvard Moser, who are 
dissecting the neural circuitry underlying spatial navigation. heir work 
provides a detailed link between the anatomy and physiology of a par-
ticular brain area and the computation it appears to be performing; it 
is a paradigm of what we hope the ield of neuroscience will be able to 
achieve throughout the brain. Krishna Shenoy describes a philosophy of 
data analysis that tries to see the forest through the trees: it is one thing 
to analyze a neuron or two at a time, but how we do begin to understand 
the interaction of thousands or even millions of neurons? Olaf Sporns 
emphasizes the role of large- scale networks in the brain and argues that 
the mathematics of collective and emergent behavior can provide im-
portant insight into neuroscience and a framework for interpreting the 
big data that will emerge. Jeremy Freeman describes the onslaught of 
data that is coming in neuroscience. He explains how new technologies 
may help us handle it, but also why truly understanding the brain will 
require more that just knowing what to do with the data.





U N D E R S TA N D I N G  T H E  C O RT E X  
T H R O U G H  G R I D  C E L L S

May- Britt Moser and Edvard I. Moser

One of the ultimate goals of neuroscience is to understand the mamma-
lian cerebral cortex, the outermost sheet of neural tissue that covers the 
cerebral hemispheres. All mammalian brains have a cortex, but during 
evolution, the size of the cortex has expanded enormously, and in the 
largest brains the growth has resulted in extensive folding, with much 
of the cortical surface getting buried in deep grooves, or sulci and is-
sures. he cortex is the site where most cognition and intellectual activ-
ity takes place. hinking, planning, relection, and imagination depend 
on it. Memories are stored there, and the cortex takes care of language 
interpretation as well as language production. Moreover, although the 
cortex can be found across the whole range of mammalian species, the 
expansion of this brain structure is thought to underlie the ampliica-
tion of the intellectual repertoire in humans.

Can We Understand the Cortex?

What is the neural basis of the intellectual functions of the cortex? At 
its outer limits— such as in deciphering the neural basis of higher brain 
functions— the cortex may at irst seem quite unreachable. But it is im-
portant to remember that the cortex also performs more tangible opera-
tions, such as interpreting inputs from the sensory environment. he 
cortical interpretation of sensory signals has for a long time served as 
the neuroscientist’s window into the cortex. By studying, for example, 
how signals from photoreceptors, olfactory receptors, or touch recep-
tors are represented at early stages of brain processing, in the primary 
sensory cortices, neuroscientists have made quite signiicant progress 
in describing and understanding some of the operational language of 
the cortex.
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A major breakthrough in the analysis of sensory cortices was the 
discovery of cells that responded selectively to local features of the vi-
sual ield. In a series of experiments that started at the end of the 1950s, 
David Hubel and Torsten Wiesel showed that neurons in the primary 
visual cortex ired speciically when line segments of a speciic orien-
tation were presented to the visual ield. he linear receptive ields of 
these cells difered from the circular center- surround ields of cells at 
earlier stages of processing, in the retina and in the thalamus. Hubel and 
Wiesel showed that cells with diferent orientation preferences, or dif-
ferent preferences for inputs from the let and right eyes, were organized 
in columns of cells with similar functional properties. hese indings 
pointed to a functional architecture for visual computation in the pri-
mary visual cortex and provided unprecedented insight into how visual 
input was fragmented and reassembled at diferent stages of the visual 
system and how function was divided across diferent elements of the 
visual circuit. heir work started a new era of neuroscience in which the 
visual cortex served as a guide to cortical computation, with an impact 
far beyond the direct implications for the mechanisms of vision. Similar 
progress has subsequently been made in other sensory systems, and we 
are beginning to understand how senses as diverse as olfaction, taste, 
and touch are encoded at the level of cortical circuits.

However, while remarkable insights have been made at the early 
stages of cortical processing, where the irst transformations of sensory 
input take place, little is known about how the brain works at subse-
quent levels, in the higher- order integrative parts of the cortex— the 
“high- end cortices.” Yet this is probably the territory of the most chal-
lenging cognitive operations, such as the production of thought, deci-
sions, or complex memories. One of the reasons for the inaccessibility 
of the higher parts of the cortex is that as the distance from the sensory 
receptors increases, the iring of the neurons becomes increasingly de-
coupled from the speciic features of the sensory environment. As such, 
it becomes diicult to ind correlates in the external world that possess 
any predictable relationship to the iring pattern of the recorded cells. At 
the high end of the cortical hierarchy, iring may be triggered via a mul-
titude of converging sensory channels as well as intrinsic processes not 
corresponding to any particular input. When we do not know the active 
inputs to a cortical area at any given time, and those inputs originate 
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from areas whose workings we also do not understand, it is diicult to 
relate the activity of a cell from one of the high- end cortices to any par-
ticular behavioral function.

The Mammalian Space Circuit: A Window to  
the High- End Cortices

One exception to the apparent decoupling from the external world is the 
space- encoding cell population of the hippocampus and the entorhinal 
cortex, located at the very top of the cortical hierarchy, many synapses 
away from any of the primary sensory cortices (see color plate 4). In 
this system, cells have remarkably predictable iring correlates. Many 
cells in this part of the brain ire only when the animal is in a speciic 
set of locations in its local environment. he preferred locations difer 
from cell to cell, such that as a population, the cells ire in unique com-
binations at every location in the environment. Because of these unique 
activity combinations, the cells efectively serve as a map of the animal’s 
position.

he study of the neural basis of space began in 1971, when John 
O’Keefe and John Dostrovsky, at University College London, used mi-
croelectrodes to record natural activity of neurons in the hippocampus 
of freely moving rats (igure 1). hey were able to pick up impulses, or 
action potentials, from individual cells in CA1, one of the major sub-
ields of the hippocampus. Many of their cells responded speciically to 
the animal’s location in the environment. hese cells were named “place 
cells.” When the rat was in the cell’s “place ield,” the cell ired at a high 
rate. As soon as the rat let this area, the activity decreased and remained 
low until the next time the animal came to the place ield. O’Keefe and 
his colleagues soon discovered that most hippocampal cells had place 
ields and that the exact iring locations difered from one cell to the 
next. Collectively the population of place cells was found to generate 
a map of the environment, with a unique constellation of active cells 
at every single position. he strict relationship between neural activity 
and a property of the environment— the animal’s location— was unique 
among all the recordings that had been made in higher- end cortices by 
that time.
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During the decades following the discovery of place cells, accumulat-
ing evidence suggested that place cells have functions that extend be-
yond a speciic role in the mapping of the physical space. his idea was 
reinforced by the observation that diferent maps could be activated by 
small variations in the appearance of the environment, suggesting that 
if the brain has a general map for distances and directions that does not 
care about what the environment looks like, then such a map should 
be located elsewhere. Motivated by these considerations, we started, at 
the turn of the millennium, to search for spatial representations outside 
the hippocampus. In our irst study, with Vegard Brun and a few other 
graduate students, we recorded from CA1, the hippocampal subregion 
where place ields had been identiied thirty years earlier. In some of the 
animals we removed the intrinsic connections of the hippocampus, leav-
ing intact only the direct input from the entorhinal cortex, upstream of 
the hippocampus. Somewhat to our surprise this interference with local 
hippocampal circuits did not abolish the tendency for CA1 cells to ire in 

Figure 1. Most of our knowledge of the mammalian space circuit has been obtained 
from rats and mice. Rodents have a well- developed entorhinal and hippocampal cortex 
and demonstrate excellent spatial memory and navigation— skills thought to depend 
on these cortical systems.
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speciic locations. Place cells remained place cells. his implied that un-
less the place signal was generated entirely by local CA1 processes, the 
cells must have received critical spatial input from the entorhinal cortex. 
he indings drew our interests to this unexplored cortical region, one 
synapse upstream. his brain area turned out to be a gold mine.

Grid Cells and Grid Maps

In 2004 and 2005, together with our students Marianne Fyhn, Torkel 
Hating, and Sturla Molden, and our colleague Menno Witter, we in-
serted recording electrodes directly in the medial entorhinal cortex, in a 
part of the area that was strongly connected to the locations in the hip-
pocampus where place cells were normally studied. he indings were 
quite striking. Individual cells had discrete iring ields, like place cells 
in the hippocampus, but each cell had multiple ields, and the ields were 
arranged in a remarkably regular pattern (igure 2). Collectively, the ir-
ing ields of an individual cell deined a periodic triangular array cov-
ering the entirety of the animal’s environment, like the cross points of 
graphic paper rolled out over the surface of the test arena, but with equi-
lateral triangles as the smallest repeating unit, as on a Chinese checkers 
board. Because of their grid- like periodic iring pattern of these cells, 
we named them grid cells. he grid structure was similar for all grid 
cells, but the spacing of the ields, the orientation of the axes, and the 
x- y location of the grid ields varied. Grid cells were initially observed 
in rats, then we found them in mice, and more recently they have been 
described also in bats, monkeys, and humans, suggesting that they are 
present widely across the mammalian branch of the phylogenetic tree.

A striking property of the grid cells was the persistence of the iring 
pattern in the presence of changes in the animal’s speed and direction. 
Moreover, when two grid cells were recorded at the same time, the rela-
tionship between their grid ields tended to replicate from one environ-
ment to the next. If the grid ields of two simultaneously recorded cells 
overlapped in one task, they would generally overlap in the next too. 
he rigidity of this relationship was quite diferent from the behavior of 
place cells in the hippocampus, which, based on the work of Bob Muller 
and John Kubie at SUNY Downstate Medical Center, were known to 
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have the capacity to switch between completely uncorrelated iring pat-
terns. he coherent iring patterns of simultaneously recorded grid cells 
suggested that the same grid map was used over and over again, point-
ing to the grid cells— and not the place cells— as a likely implementation 
of a universal brain metric for space.

However, are all grid cells part of the same map, or are there several 
maps? In the earliest studies, we recorded from few cells at the time, and 
those cells were generally from the same location in the entorhinal cor-
tex. It was not possible to infer the structure of the grid map from those 
limited recordings. In more recent work, with Hanne and Tor Stensola 
in our lab, we have been able to increase the number of neurons by an 
order of magnitude. By 2012, we were able to record from more than 
180 grid cells across widespread regions of the entorhinal cortex in the 
same animal. hese recordings revealed that grid cells are organized 
into a small number of maps with discrete properties (see color plate 5). 
Diferent grid maps varied on a number of parameters, including the 
spacing of the grid ields and the orientation of the grid axes. At the 
dorsal end of the entorhinal cortex, near the top, most grid cells had 
tightly packed grid ields and all seemed to belong to the same module. 
As we moved away from the dorsal border, cells from other modules, 
with a larger grid spacing, joined the ensemble, and at the deepest posi-
tions, cells with large grid scales oten predominated. A total of four grid 

Figure 2. Grid cells in entorhinal cortex of the rat brain. hree grid cells are shown. 
Let: cell with short spatial wavelength; right, cell with long spatial wavelength. Each 
panel shows the trajectory of a foraging rat in a 2.2 m wide square enclosure (gray) 
with the spike locations of one cell superimposed on the track (black). Each black dot 
corresponds to one spike. Modiied from Stensola et al. (2012).
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modules were identiied in each animal, but the total number may be 
larger because only a part of the entorhinal cortex was sampled.

What is most striking about the modular organization of the grid cells 
is that individual modules can respond quite independently to changes 
in the spatial layout of the environment. Testing animals with cells 
from four modules in a square box that was compressed to a rectangle 
(see color plate 6) showed this. Cells from Module 1— the most dorsal 
module— did not respond to the compression and kept their original 
iring locations in the common area of the two boxes. In contrast, in 
cells from larger modules (Modules 2– 4), the grid ields were squeezed 
in one direction in proportion to the shrinkage of the recording box. 
hese observations suggest that, at least in principle, diferent modules 
can respond independently of one another when the geometry of the 
environment is changed. Apparently the grid network consists of four or 
more discrete maps that may or may not respond in a coherent manner.

What could be the advantage of organizing the brain’s map of space 
in this way? Why would four or more maps be better than just a single 
coherent map? he answer may lie in the way the grid map is used “down-
stream” in the hippocampus. While the majority of the cells in the hippo-
campus are place cells, the hippocampus is also critical for certain types of 
memory, oten referred to as declarative memories. hese are memories 
that we are conscious of— or can “declare”— including memories of facts 
and events. Space is a fundamental element of these memories. Because 
we store thousands of declarative memories every day, the hippocampus 
needs to ind a way to keep them all apart. his is where grid modules 
may be useful. If two modules respond independently to a change in the 
environment, their coactivity will change. he change in coactivity will 
activate a new subset of cells in the hippocampus. Each relative displace-
ment among the grid modules may lead to a diferent activity combina-
tion, which in turn may activate a diferent set of hippocampal neurons. 
hus with only a handful of grid modules, it is possible for the entorhinal 
cortex to link itself to a large number of hippocampal activity patterns, 
and putative memories, much like the way a combination lock can store 
100,000 codes with only 5 counters that each run from 0 to 9. By combin-
ing input from a small number of independent grid modules, hippocam-
pal cell populations may acquire the ability to generate huge numbers of 
discrete representations individualized to speciic places and experiences.
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How Are Grid Cells Generated?

One fascinating property of grid cells is that such a regular iring pat-
tern appears so high up in the cortex, far away from the sensory inputs 
that deine the distinct receptive ields of many neurons in the primary 
sensory cortices. In sensory systems, sensory representations oten ap-
pear to get more disorderly as the number of synapses from the sensory 
receptors increases. In contrast, the grid pattern is highly regular, un-
like the structure of activity observed so far in areas upstream of these 
cells. he perfectly hexagonal iring pattern of the grid cells does not 
correspond to any property of the animal’s sensory environment and 
thus more likely relects mechanisms that are intrinsic to the entorhinal 
cortex. What could those mechanisms be— how does a network gener-
ate hexagonal iring ields?

While the mechanism of grid formation remains to be established, 
observations suggest that hexagonal iring patterns emerge as an equilib-
rium state in competitive networks where all cells inhibit all other cells in 
their vicinity. heoretical studies and computational modeling show that 
in a network where all cells are connected to all other cells within a cer-
tain range, via inhibitory connections, hexagonally patterned iring will 
appear spontaneously as a resting state (see color plate 7). In collabora-
tion with Yasser Roudi and Menno Witter and their colleagues, we have 
shown that entorhinal cells— in the cell layer that contains the most pro-
totypical grid cells— are connected exclusively via inhibitory interneu-
rons, and that such connections can lead to the formation of hexagonally 
spaced iring in a model network. Grid cells are perhaps just one of many 
examples in nature where hexagonal arrangements emerge through self- 
organizing processes as a result of evenly distributed competitive forces.

Grid Cells Are Not Alone

Soon ater the discovery of grid cells in 2005, it became clear that these 
cells are not the only spatial cell types in the entorhinal network. Grid 
cells were the most predominant cell type in the supericial parts of the 
entorhinal cortex, particularly in the cell layer that contains the strong 
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inhibitory connections, but with Francesca Sargolini and other students 
in our lab, we found in 2006 that a large proportion of the entorhinal 
cell population is direction modulated. hese cells, which are similar 
to a cell type Jim Ranck and Jef Taube discovered in other brain re-
gions twenty years earlier, ire selectively when the rat points its head in 
a certain direction. Some of these cells are grid cells at the same time, 
iring in grid ields only when the animal moves in the cell’s preferred 
direction. In 2008, with Trygve Solstad, we subsequently found that 
grid cells and head direction cells intermingle with yet another novel 
cell type— the border cell. hese cells ired speciically when the animal 
was close to one or several borders of the local environment, such as a 
wall or an edge. When the box was stretched, the iring ield followed 
the wall, and when a new wall was inserted, a new iring ield emerged 
along the insert. Both head direction cells and border cells retained their 
properties when the animal was moved to a diferent environment. Two 
head direction cells that ired in the same direction in one environment 
tended to ire in the same direction also in other environments, and two 
border cells with similar wall preferences in one box would have the 
same preferences also in another box. he rigidity of the head direction 
and border cells, as well as the grid cells, suggests that the entorhinal 
maps are used universally across many environments, much unlike the 
hippocampal place- cell map, which appears to set up new activity com-
binations for every single environment or experience.

he presence of multiple spatial cell types in the same neural system, 
such as place cells, grid cells, head direction cells, and border cells, raises 
some obvious questions. One is how they are related— are place cells formed 
from grid cells, border cells, or other cells, and are the entorhinal cells, in 
turn, dependent on place cells? Recent work by Sheng- Jia Zhang and Jing 
Ye in our lab has shown that the hippocampus receives projections from a 
variety of entorhinal functional cell types. he most abundant input comes 
from grid cells, pointing to these as a major source for place information, 
but also border cells and even cells with no clear spatial correlate project 
signiicantly to the hippocampus. How place cells are generated from these 
inputs remains an open question, but the observations raise the possibil-
ity that place cells receive signals from a variety of sources, perhaps in a 
redundant manner allowing them to respond at speciic locations in re-
sponse to changing sources of inputs. It is also possible that the functional 
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input to a given place cell varies over time, perhaps with grid cells provid-
ing motion- related input at one moment and border cells providing geo-
metric inputs at a diferent moment. Clear answers to the mechanisms for 
transformation of signals from one cell type to another will hopefully be 
obtained during the next few years, considering that experimental tools for 
addressing such questions are now becoming available.

What We Can Learn from Grid Cells

With the discovery of place cells and grid cells, as well as other spatial 
cell types, it has become possible to study neural computation at the 
high end of the cortical hierarchy, quite independently of sensory inputs 
and motor outputs. A huge beneit of these cell types is the clear cor-
respondence between the iring pattern and a property of the external 
world— in this case the animal’s location in the environment. he pres-
ence of an experimentally controllable iring correlate, combined with 
the access to multiple discrete cell types, makes it possible to determine 
not only how each of the iring patterns is generated but also how the 
iring patterns get transformed from one cell type to the next within 
the network. Grid cells may not only help us understand how repre-
sentations are generated in high- end cortices, but such knowledge may 
also feed back to the sensory cortices, where intrinsic and top- down 
processes may play a greater role than what was previously appreciated.

he space circuit of the mammalian hippocampus and entorhinal 
cortex is one of the irst nonsensory “cognitive” functions of the cortex 
that may be understood in mechanistic detail within a not too distant 
future. Understanding how space is created in this circuit may provide 
important clues about general principles for cortical computation, ex-
tending well beyond the domain of space into the realm of thinking, 
planning, relection, and imagination.
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R E C O R D I N G  F R O M  M A N Y  
N E U R O N S  S I M U LTA N E O U S LY
FROM MEASUREMENT TO MEANING

Krishna V. Shenoy

he human brain is comprised of approximately one hundred billion 
neurons, yet most of what is known comes from measuring the activ-
ity of one neuron at a time. Or, at the other extreme, studies rely on 
measuring the aggregate activity of thousands to millions of neurons at 
a time. his profound measurement limitation is changing rapidly. It is 
now possible to measure activity from many hundreds to thousands of 
individual neurons all at the same time, and it is widely believed that it 
will soon be possible to measure from many hundreds of thousands, or 
even millions, of neurons. As game changing as these breakthroughs are, 
several barriers to converting raw biological measurements into fun-
damental scientiic meaning remain. Two of these challenges— making 
sense out of activity from large numbers of neurons and the importance 
of “levels of abstraction”— are discussed below.

Measuring Activity from Large Numbers of Neurons  
in the Brain

Neuroscientists seek to understand the function and dysfunction of 
the nervous system, including, ultimately, the human brain. he rea-
sons for this pursuit are simple: to advance scientiic knowledge about 
one of, if not the, most complicated systems in the universe as well as 
to help alleviate the burden of neurological disease and injury. In order 
to understand how a system like the brain operates one must measure 
its internal workings, much like understanding a computer requires 
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measuring voltages and currents throughout its circuitry. In the case of 
the brain, this means measuring electrical activity (for example, action 
potentials, ield potentials), chemical activity (for example, neurotrans-
mitters, ion concentrations), and likely both throughout its neural cir-
cuitry. Pioneers in neuroscience have relied on various measurements 
in order to take accurate readings of electrical and chemical activity, 
and these measurements have tended to focus either on individual 
neurons (for example, intracellular electrode, extracellular electrode) 
or on aggregate activity from numerous neurons (for example, EEG, 
MEG, fMRI). Similarly, powerful stimulation technologies have been 
used to causally perturb neural activity and observe the consequences 
(for example, electrical microstimulation, TMS, optogenetics).

While many seminal discoveries, insights, and Nobel Prizes have re-
sulted from these measurement (and stimulation) technologies, a re-
newed appreciation for the complexity of the overall nervous system 
and the associated need for measuring simultaneously from many in-
dividual neurons have arisen in recent years. Fortunately, technologi-
cal innovation has risen to meet this need, making it now possible to 
measure from hundreds to thousands of individual neurons at the same 
time. For example, genetically encoded calcium indicators (for example, 
GCaMP, see chapter by Ahrens, this volume) allow calcium concentra-
tion changes associated with action potentials from thousands to tens of 
thousands of individual neurons to all be optically imaged simultane-
ously. he full potential of this class of measurement is still being real-
ized, with animal models ranging from immobilized worms, walking 
transgenic mice, and freely moving rats already in use, to possibilities on 
the horizon including monkeys performing a variety of cognitive tasks.

More traditional electrode- based technologies have also scaled up in 
recent years. One example— a one- hundred- electrode array— is shown 
in igure 1a. One or more of these arrays can be implanted permanently 
in the brains of rats, monkeys, and humans (as part of FDA pilot clinical 
trials focused on neural prostheses to help people with paralysis). hese 
electrodes can measure electrical activity (extracellular action poten-
tials, ield potentials) from tens to hundreds of individual neurons while 
animals perform a variety of cognitive tasks including sensory, decision 
making, and motor behaviors as shown in igure 1b.
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Even more revolutionary measurement technologies are also being 
developed, but the two technologies described above serve as examples 
that it is now possible to record simultaneously from hundreds to thou-
sands of individual neurons.

Making Sense out of Activity from Large Numbers of Neurons

he irst challenge to converting this newfound torrent of neural mea-
surements into fundamental scientiic meaning is to ask how to “make 
sense of the data.” his is a deceptively simple- sounding question, as it 
would appear that we could just keep analyzing the measured data as we 
always have but now do so with a lot more presumably beneicial data. 
However, this would be overlooking many likely beneits of having mas-
sively parallel neural measurements where each neuron is measured with 
high temporal precision. Moreover, there may also be additional new in-
formation available such as cell type, axonal and dendritic projection pat-
tern, and synaptic connection strengths. By analogy again to a computer, 
if presented with the opportunity to measure from one thousand transis-
tors simultaneously it would save time relative to measuring one thou-
sand transistors one at a time— but there are other far more important 
advantages as well. he reasons for this are developed more fully below.

Are there diferent ways forward? here are undoubtedly many po-
tential ways forward, and at least one has been pursued in recent years 
and is termed the “dynamical systems approach” since it is borrowed and 
adapted from physical science and engineering where dynamical systems 
design and analysis is a staple. hree central elements to the dynamical 
systems approach are as follows. First, measured neural data constitute a 
time series, where there is correlation structure between measurements 
nearby in time. As such some form of temporal smoothing may be ap-
propriate, and may help combat noise inherent in neural measurement. 
his is depicted in igure 1c– e. Second, the simultaneously measured 
neural data constitute a high- dimensional dataset but putatively actually 
occupies fewer dimensions. Dimensionality reduction, a major topic in 
machine learning and statistics, can be used to infer a lower- dimensional 
manifold on which the data reside. his is depicted in igure 1f. Taken 
together it is possible to visualize the nominally important dimensions 
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that vary in the data and to then see how these population neural tra-
jectories correspond to cognitive variables, such as the time it takes the 
arm to start moving following a “go” cue (reaction time, RT) or the di-
rection in which the arm will move (see again igure 1b). It is important 
to note that very- low- dimensional visualizations, such as two-  or three- 
dimensional igures drawn on paper, almost certainly miss some infor-
mation. hus such visualizations are useful for building intuition, but 
answering scientiic questions must be done with higher- dimensional 
data where little if any information is lost. Finally, the dynamical systems 
approach seeks to estimate, quantitatively, the rules governing the evolu-
tion of the population neural state. his is akin to ascertaining Newton’s 
laws from observations of a ball rolling on an uneven surface such that 
momentum, friction, and elasticity can be characterized. Together, visu-
alizing lower- dimensional population neural trajectories, so as to gener-
ate hypotheses about how the neural circuit is working as a whole and 
relates to (single- trial) behavior, and identifying the equations of motion 
(for example, using a family of techniques known as systems identiica-
tion) are a framework for leveraging massively parallel neural measure-
ments into nominally meaningful scientiic insights.

The Importance of “Levels of Abstraction”

he second challenge to fruitfully converting unprecedented volumes of 
neural data into scientiic discoveries and insights— as opposed to po-
tentially “drowning in data”— is to know what to pay attention to. his 
is certainly easier said than done when it comes to the brain, which is 
still poorly understood and it is unclear what details matter at a given 
level of investigation. Does the detailed connection pattern and synaptic 
strengths for each neuron matter when attempting to relate population 
neural activity to an arm movement? Does the exact pattern of action 
potential emission times matter when neurons must constantly contend 
with (probabilistic) synaptic failure? hese questions, and countlessly 
many more, are open questions in neuroscience. Nevertheless, we can 
likely beneit by at least being aware that other ields in physical sci-
ence and engineering contend with similar problems by adopting a well- 
proven philosophy for the design and analysis of physical systems.
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his ubiquitous and essential concept to understanding and design-
ing physical systems is termed “levels of abstraction.” We anticipate that 
levels of abstraction will be of growing importance when investigating 
biological systems, including the brain. We describe here an analogy 
between a well- understood electronic system and the nervous system in 
order to highlight the potential merits of increasingly employing levels 
of abstraction in brain science.

Modern computer systems are comprised of several integrated cir-
cuits (“chips”) connected together, and connected with peripherals such 
as displays, keyboards, and networked devices. Consider just one of 
these chips, the central processing unit (CPU), and how we can under-
stand how it works. At the smallest level are atoms arranged precisely 
to bestow transistors with the desired electrical properties. Transistors 
come in a multitude of sizes and types, number in the billions, and form 
the next level of the CPU. he third level is the wiring between the tran-
sistors, which can be quite complex and have hundreds of millions of 
individual wires, due to wires bridging over and tunneling under each 
other similar to a metropolitan highway system. he fourth and inal 
level, again broadly speaking, is the sotware. Sotware ranges from 
the detailed control of speciic hardware (machine code) through the 
more global coordination of resources and data (operating system, al-
gorithms). he sotware level is distinct from the other three because 
it resides in the pattern of electrical states (1s and 0s), as opposed to 
being physically manifest, and because it can grow to essentially arbi-
trary complexity by expanding well beyond the not uncommon millions 
of lines of code.

What does this have to do with the brain? Any detailed, literal com-
parison between the brain and a CPU is doomed. Examples of this type 
of lawed, detailed comparison that have been put forth in recent years 
include likening a computationally rich neuron to a computationally im-
poverished transistor (that is, a simple switch in a digital system), or liken-
ing the three- dimensional point- to- point connections between neurons 
to the essentially two- dimensional and relatively less general connections 
among transistors. Nevertheless, a broad comparison may help highlight 
how the levels of abstraction concept is anticipated to help shed insights 
on how the brain works. Importantly, this concept is related to David 
Marr’s trilevel hypothesis, where in broad terms Marr’s computational 
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and algorithmic/representational levels are grouped, for brevity, into the 
sotware level, and his physical level appears here as the irst three levels 
to relect the increasingly detailed physical information available.

At the smallest level, there is similarity between material science fo-
cused on atomic design of silicon, dopants, and oxygen and molecular 
neuroscience focused on channel proteins, synapses, and neurotrans-
mitters (see igure 2). While this detailed understanding is critical, some 
of the detail must be “abstracted away” in order to facilitate understand-
ing (and the ability to design) at the next level, or else complexity will 
grow rapidly and the fundamental principles will be obscured. For ex-
ample, aggregate properties and statistical descriptions of the materi-
als must be brought forward, but speciic locations of individual atoms 
must be let behind.

At the next level, there is similarity between device engineering fo-
cused on converting materials properties into transistors sizes and types 
so as to achieve the needed electrical properties and dynamics, and cel-
lular neuroscience focused on neuron geometry, channel conductance, 
and membrane potential so as to understand electrical and neurotrans-
mitter properties and dynamics. Again, the exquisitely interesting and 

Software ‘Software’

Wires Axons

Transistors Neurons

Atoms

Abstraction

Proteins

Figure 2. Levels of abstraction for a CPU (let column) and the brain (right column). 
Arrows indicate how detailed information at one level is abstracted away, so as to pass 
along only the essential operating principles and characteristics to the next level. Ar-
rows are bi- directional to indicate that abstraction is beneicial both to understanding 
how physical implementation impacts sotware capability (bottom- up) as well as how 
sotware requirements impact physical design (top- down).
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important transistor designs must be abstracted away, passing to the 
next level only a few simple current- voltage rules. Without such ab-
straction, or simpliication, understanding and designing the next level 
would be intractable both analytically and computationally. What to 
include or exclude when abstracting away detail when it comes to cel-
lular neuroscience, or molecular neuroscience before that, is of course 
an open question, and we do not propose an answer. Instead we high-
light the need for this question to be addressed, since for many physical 
systems, including the CPU considered here, a comprehensive under-
standing and the ability to design would simply not be possible without 
abstraction between levels.

At the third level, there is similarity between circuit design and com-
puter architecture focused on the optimal wiring between transistors 
and between chips, and neuro- anatomy and connectomics (see chapters 
by Sporns, Zador, and Hawrylycz, this volume) focused on the detailed 
wiring and wiring rules between neurons within a brain area and be-
tween brain regions. Again abstraction is essential in the CPU case as 
the overall hardware capabilities and limits are of paramount impor-
tance when working at the next (sotware) level, and, similarly, it is an-
ticipated that the overall neural “hardware” capabilities and limits are of 
primary importance when working at the next (neural “sotware”) level. 
How best to abstract away detail in the neural context is again an open 
question, perhaps especially so as the neural hardware changes through 
time (that is, development, learning, plasticity), unlike most electronic 
hardware.

At the fourth and inal level, there is similarity between computer 
architecture and computer science— focused on designing machine 
codes, operating systems, and algorithms that orchestrate all informa-
tion processing— and on systems and cognitive neuroscience, includ-
ing network modeling— focused on the relationship between neural 
activity and sensation, perception, decisions, actions, and more abstract 
thought. In broad terms, this is the level of the CPU that faces the great-
est challenge if the levels of abstraction discipline is not followed. his 
is because inheriting the full complement of details from the three prior 
levels would leave one attempting to understand an existing CPU (that 
is, reverse engineering) or designing a new CPU hopelessly confused in 
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the morass of information; without any prioritization as to the proper-
ties that are of direct relevance and those that, while critical to each 
prior level, are no longer essential to understanding at the inal level one 
cannot see the forest through the trees.

With the levels of abstraction concept in place, it becomes possible 
to glean new insights into the fundamental operation of a CPU at this 
inal level and, we anticipate, the same will be possible for the brain. As 
an example, consider what could be learned about a CPU with a few 
hundred oscilloscopes. With one oscilloscope it is possible to measure 
the electronic waveform from one transistor terminal, discover that 
voltages tend to be either high or low (that is, binary), see that voltages 
change very fast (for example, ns) and do so according to a master clock 
(for example, 5 GHz), and one could then conjecture that the transistor 
is part of an adder, memory register, or data bus. Moreover, if it is pos-
sible to place the CPU in exactly the same state again and now measure 
from a diferent transistor terminal it should be possible to, across many 
such measurements, build up a more complete picture.

If instead a few hundred oscilloscopes measure a few hundred tran-
sistor terminals at the same time then it is possible to discover addi-
tional crucial properties of the CPU. his includes how transistor states 
are coordinated through time (that is, circuit dynamics), how the system 
functions during normal operation where the same exact set of transis-
tor states may seldom if ever be seen twice, and to postulate the essential 
features of the sotware. For example, it is possible to understand the 
ine- timing coordination principles among a set of transistors respon-
sible for adding two numbers, as well as to understand how faulty coor-
dination between transistors (that is, a timing “glitch” caused by a design 
“bug”) leads to arithmetic mistakes, all without needing to have the same 
two numbers added repeatedly and all control circuitry in precisely the 
same state, which may be essentially impossible. his is possible by vir-
tue of simultaneous measurements, dimensionality reduction and dy-
namical systems analysis methods and modeling, and, again, levels of 
abstraction— which assures that detailed knowledge of atoms, transistor 
sizes/types, and wiring that are not essential to proceed with analyses 
well suited for this inal level of investigation do not cloud the investiga-
tion or answers. Similarly, we anticipate that measuring from hundreds 
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to thousands of neurons simultaneously and analyzing these data with 
methods capable of revealing fundamental operating principles (for ex-
ample, dimensionality reduction, dynamical systems, network model-
ing) should now be possible and insightful. For example, it may now be 
possible to understand how populations of neurons in the brain make 
decisions based on a constant, and seldom if ever repeated, low of sen-
sory and goal information experienced as part of everyday life.

It is important to note that while, for simplicity, the four broad levels 
are described from “bottom up” and the importance of levels of abstrac-
tion is also emphasized in this unidirectional fashion, this is only half 
the story (see igure 2). In the CPU analogy is it equally important to 
apply levels of abstraction starting at the fourth level (for example, what 
general classes of sotware/algorithms need to be supported) and pro-
ceeding toward the irst level (for example, what materials are needed to 
support a certain type of transistor performance). his also completes 
the design cycle, as well as moves closer to a comprehensive under-
standing, by relating the sotware/system requirements all the way to the 
materials and transistor choices and tradeofs. One would expect this to 
also be the case with neural systems. A better understanding of the key 
neural computational principles should help deepen understanding of 
anatomical connection patterns, single neuron computation, molecular 
underpinnings and their various design trade- ofs.

Summary

We are currently in the midst of a neurotechnology revolution that is 
making it possible to measure (and stimulate) thousands and potentially 
millions of neurons simultaneously. his unprecedented access to neu-
ral data is on the one hand extremely exciting and on the other hand 
profoundly humbling. What will we do with all of these data? How will 
we make sense out of it all, and how can we even begin to think about 
what details matter to each level of understanding and question being 
posed? While it is tempting to carry on with inherently single- neuron- 
oriented analyses, or to treat this unique neural dataset as just another 
“big data” dataset and unleash somewhat generic machine learning al-
gorithms on it, both would likely limit the full extent of insights that are 
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believed to be possible. We discussed here just two of the key challenges 
moving forward, and we ofer two possible approaches— dynamical sys-
tems analyses and the levels of abstraction philosophy.

Further Reading

Churchland, M. M., B. M. Yu, M. Sahani, and K. V. Shenoy. 2007. “Techniques for Ex-
tracting Single- Trial Activity Patterns from Large- Scale Neural Recordings.” Current 
Opinion in Neurobiology, special issue on new technologies (17): 609– 18.

Diester, I., M. T. Kaufman, M. Mogri, R. Pashaie, W. Goo, O. Yizhar, C. Ramakrishnan, 
K. Deisseroth, and K. V. Shenoy. 2011. “An Optogenetic Toolbox Designed for Pri-
mates.” Nature Neuroscience (14): 387– 97.

Gilja, V., P. Nuyujukian, C. A. Chestek, J. P. Cunningham, B. M. Yu, J. M. Fan, M. M. 
Churchland, M. T. Kaufman, J. C. Kao, S. I. Ryu, and K. V. Shenoy. 2012. “A High- 
Performance Neural Prosthesis Enabled by Control Algorithm Design.” Nature Neu-
roscience (15): 1752– 57.

Shenoy, K. V., M. Sahani, and M. M. Churchland. 2013. “Cortical Control of Arm Move-
ments: A Dynamical Systems Perspective.” Annual Review of Neuroscience (36): 
337– 59.

Yu, B. M., J. P. Cunningham, G. Santhanam, S. I. Ryu, K. V. Shenoy, and M. Sahani. 
2009. “Gaussian- Process Factor Analysis for Low- Dimensional Single- Trial Analysis 
of Neural Population Activity.” Journal of Neurophysiology (102): 614– 35.



N E T W O R K  N E U R O S C I E N C E

Olaf Sporns

Unraveling the mechanisms and principles that create mind and cog-
nition from the activity of roughly eighty-six million neurons in the 
human brain remains one of the most alluring as well as urgent scientiic 
pursuits. he urgency of the task is underscored by the immense and 
growing health, social, and economic impact of brain and mental disor-
ders. How can we get closer to a more complete understanding of how 
the brain works? Certainly, progress will in part come from the slow 
and gradual accumulation of increasingly more detailed insights about 
neural mechanisms. But as I will argue in this essay, neuroscience will 
also need to shit perspective, toward embracing a view that squarely 
acknowledges the brain as a complex networked system, with many levels 
of organization, from cells to cognition, that are individually irreducible 
and mutually interconnected.

Indeed, connectivity is a core theme of the age we live in. For hu-
mans, connectivity (to the Internet that is) is now considered to be so 
fundamentally empowering that the United Nations has proposed it as a 
basic human right. For scientists across a wide range of disciplines, con-
nectivity is emerging as a major focus for understanding and managing 
the behavior of complex systems. At the forefront of these eforts, bio-
logical researchers have grown increasingly aware of complex networks 
formed by interactions among molecules and cells, giving rise to the 
entirely new ield of systems biology. As it turns out, the functioning 
of cells critically depends on gene regulatory, signaling, and metabolic 
networks that shape interactions among molecules, and interactions 
among cells are crucial for building and maintaining whole organisms.

his core theme of connectivity is now rapidly gaining ground in 
neuroscience. here is a growing realization that virtually all aspects 
of integrative brain function depend on the action of networks— those 
created by connections among neurons and brain regions. hese con-
nections are vitally important for neuronal information processing and 
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computation, and disturbances of connectivity appear to be associated 
with most disease states of the brain. he important role of connectiv-
ity in brain function is the main motivation behind the drive to create 
a complete map of the brain’s connections, now commonly called the 
connectome (see chapter by Zador, this volume). he main thesis of this 
essay is that the current and future growth of network neuroscience, the 
emerging science of brain networks, will fundamentally advance our 
understanding of brain function.

Moving from Circuits to Networks

Of all organs of the human body, the brain’s function is perhaps the 
hardest to succinctly deine. Simplistic and overly reductive notions 
tend to run into serious problems. To mention a colorful example, 
the nineteenth- century German scientist Karl Vogt once wrote that 
“thoughts stand in the same relation to the brain as gall does to the liver 
or urine to the kidneys.” When he expressed this idea in public, a phi-
losopher interjected that the longer one listens to Professor Vogt, the 
more one tends to believe him. Clearly, more sophisticated ideas and 
models are in demand.

One reason for the diiculty in understanding the brain is that there is 
a vast gap between the functioning of any one of its billions of nerve cells 
and the functioning of the brain as a whole. Looking back on the history 
of neuroscience, some of the most fundamental insights have unques-
tionably come from studies of single neurons. Indeed, the “neuron doc-
trine,” the notion that the nerve cell or neuron is the fundamental unit of 
brain function, has been the unshakable foundation of modern neuro-
science for over a century. housands of studies employing a broad range 
of tools from microelectrode recordings to functional neuroimaging 
have shown that neurons can exhibit oten remarkably speciic response 
properties. he activity of individual neurons can represent highly com-
plex stimuli or events such as the appearance of a person’s face, the sound 
of a familiar voice, the contraction of eye muscles, or the direction of 
limb movements. Going beyond responses to current inputs, activity in 
speciic neurons is involved in recalling past experience or in signaling 
the anticipation of future reward. Neuronal activity is associated with 
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virtually the entire repertoire of complex mental processes like working 
memory, attention, visual imagery, or even dream states.

What endows neurons with these remarkably diverse response prop-
erties? he answer is (at least) threefold. First, neurons express extremely 
complex sets of molecules that generate and sense the electrical signals 
that underlie all neuronal responses and synaptic transmission. Second, 
neurons have very distinct shapes or morphologies that play an impor-
tant role in the way synaptic inputs are converted into the neuron’s out-
put, usually in the form of an action potential. But molecules and mor-
phology are not enough to explain neuronal responses— a major role 
is played by neuronal connections, the synaptic links that tie neurons 
together into vast networks. Take away a neuron’s connections and it 
becomes deaf and mute, cut it of from inputs and it becomes unable 
to exert any inluence whatsoever. he power of neurons derives from 
their collective action as part of brain networks, bound together by con-
nections that allow them to interact, compete, and cooperate. “Brain 
cells ire in patterns,” as Steven Pinker once put it when challenged on 
the Colbert Report to explain brain function in ive words. And these 
patterns are orchestrated by connections.

Although we have known for a long time that neurons are connected 
into circuits, and that it is this circuit activity that drives all perception, 
thought, and action, I would argue that modern concepts of networks 
add an important new dimension. he more traditional way of thinking 
in terms of circuits is based on the notion of highly speciic point- to- 
point interaction among circuit elements with each link transmitting 
very speciic information, much like an electronic or logic circuit in a 
computer. he action of the circuit as a whole is fully determined by the 
sum total of these speciic interactions. A corollary is that circuit func-
tion is fully decomposable (given complete data) into neat sequences of 
causes and efects. In this sense, circuits resemble Laplacian models of 
classical mechanics, with circuit elements exerting purely local efects 
on each other and with connections mediating speciic causal roles.

In contrast, modern approaches from complexity theory and network 
science emphasize that global outcomes are irreducible to simple local-
ized causes, and that the functioning of the network as a whole tran-
scends the functioning of each of its individual elements. One key con-
cept is that of “emergence.” Emergence builds on the basic observation 
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that collective interactions among the elements of complex networked 
systems oten give rise to new properties that do not exist at lower levels 
of organization. In the case of large networks of neurons, powerful man-
ifestations of “emergent phenomena” are global states of brain dynamics 
in which large populations of neurons engage in coherent and collective 
behavior. Such dynamics emerge from very large numbers of local inter-
actions that are individually weak and yet collectively powerful enough 
to create large- scale patterns. Take as an example the phenomenon of 
neural synchronization, the coordinated iring “in sync” of large num-
bers of nerve cells. Synchronization clearly depends on neuronal inter-
actions mediated by synaptic connections, but it is not attributable to 
any speciic causal chain of interactions in a circuit model. Instead, syn-
chronization is the global outcome of many local events orchestrated by 
the network as a whole, the coordination of a myriad of weak dynamic 
couplings along connections between nerve cells.

Synchronization is only one example of global network dynamics 
that results from many elementary network interactions. Another par-
ticularly intriguing example is the so- called critical state, a dynamic re-
gime where a system engages in a wide range of lexible and variable 
behaviors. Poised between order and randomness, the critical state may 
allow neuronal systems to exhibit a rich repertoire of dynamic patterns, 
balance sensitivity to current input with memory of the past, and show 
a high capacity for computation. While criticality can occur in many 
diferent types of networks, it does appear that some network attributes, 
including several that have been found in brain networks, promote or 
stabilize critical dynamics. While much work remains to be done in 
drawing links between network architecture and brain dynamics, shed-
ding light on how networks shape cooperative interactions among inter-
connected neurons will likely add a new dimension to more traditional 
views of neuronal circuits.

Meeting the Challenge of “Big Data”

Collective and emergent behavior of complex networks is ubiquitous. It 
is found not only in the brain but also in other biological systems like 
cells and ecosystems, and even in social and technological networks. 
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he efects of such collective network dynamics are all around us. In 
fact, we are personally becoming more and more enmeshed in systems 
whose emergent behavior can be very nontrivial and hard to predict, 
with sometimes far- reaching consequences for well- being and survival 
(think inancial systems and climate change). Signiicant scientiic ef-
forts are underway to more accurately model how the dynamics of so-
ciotechnological systems can impact economic stability, inluence the 
spread of global pandemics, or trigger the onset of revolution or war. 
hese eforts are fueled by an ever- increasing ability to record, store, and 
mine digital data on social and economic behavior. he advance of what 
is currently fashionably called “big data” appears unstoppable.

Neuroscience, it turns out, is on the brink of its own “big data” 
revolution. Supplementing more traditional practices of small- scale 
hypothesis- driven laboratory research, a growing number of large- scale 
brain data collection and data aggregation ventures are now underway, 
and prospects are that this trend will only grow in future years. For 
example, the European Community has just embarked on a ten- year 
quest to simulate a human brain in a supercomputer (see chapter by 
Hill, this volume). In the United States, the Human Connectome Proj-
ect, a comprehensive survey of human brain connectivity across the 
healthy adult population will soon (by 2015) yield more than a petabyte 
of high- quality brain imaging data. Even more ambitious proposals 
to create accurate maps of how neurons connect at the synaptic scale 
would result in even more outlandish amounts of data. Mapping the 
roughly one hundred trillion synaptic connections of a human brain 
would by some estimates generate on the order of a zettabyte of data (a 
zettabyte corresponds to one million petabytes). For comparison, that’s 
about equal to the amount of digital information created by all humans 
worldwide in the year 2010. And recently proposed eforts to map the 
human brain’s functional activity at the resolution of individual cells and 
synapses might dwarf even these numbers by orders of magnitude. he 
coming data deluge is likely to transform neuroscience, from the slow 
and painstaking accumulation of results gathered in small experimental 
studies to a discipline more like nuclear physics or astronomy, with giant 
amounts of data pulled in by specialized facilities or “brain observato-
ries” that are the equivalent of particle colliders and space telescopes.
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What to do with all this data? Physics and astronomy can draw on a 
rich and (mostly) solid foundation of theories and natural laws that can 
bring order to the maelstrom of empirical data. heories enable signii-
cant data reduction by identifying important variables to track and thus 
distilling a torrent of primary data pulled in by sophisticated instruments 
into interpretable form. heory translates “big data” into “small data.” A 
remarkable example was the astronomer Edwin Hubble’s discovery of 
the expansion of the universe in 1929. Integrating over years of obser-
vation, Hubble reported a proportional relationship between redshits 
in the spectra of galaxies (interpreted as their recession speeds) and 
their physical distances. Viewed in the context of cosmological mod-
els Albert Einstein and Willem de Sitter formulated earlier, these data 
strongly supported cosmic expansion. his monumental insight came 
from a dataset that comprised less than ity data points, compressible 
to a fraction of a kilobyte. When it comes to applying theory to “big 
data,” neuroscience, to put it mildly, has some catching up to do. Sure 
enough, there are many ways of analyzing brain data that are useful and 
productive for extracting regularities from neural recordings, iltering 
signal from noise, deciphering neural codes, identifying coherent neu-
ronal populations, and so forth. But data analysis isn’t theory (see also 
chapters by Freeman and Shenoy, this volume). At the time of this writ-
ing, neuroscience still largely lacks organizing principles or a theoretical 
framework for converting brain data into fundamental knowledge and 
understanding.

Network science may be one appealing candidate for ofering such 
a theoretical framework. Network approaches have already proven ex-
tremely useful for organizing and interpreting big brain data. One area 
where network concepts are sharply on the rise is cognitive neuroscience, 
especially studies that use noninvasive neuroimaging to map human 
brain activity. Traditionally, there was much interest in isolating speciic 
regions of the brain that became activated in association with speciic 
stimuli, mental states, or tasks. More recently, there has been a shit in 
interest from activation to coactivation studies that take into account 
not only which regions are active but also their dynamic interactions 
that result in networked brain activity. his shit was catalyzed by the re-
alization that the brain is never completely inactive, even when a person 



96  •  Spo rn s

is awake but does not engage in externally cued attention- demanding 
cognitive processes, a rather unconstrained and task- free state oten re-
ferred to as “rest.” he resting brain turns out to be a cauldron of activity, 
which is both seemingly spontaneous and highly organized into spatial 
and temporal patterns. Many aspects of these patterns are shared across 
individuals and, at least in part, relect the anatomical connections that 
link brain regions to each other. Application of network science tools 
and methods have revealed numerous “resting- state networks,” sets of 
brain regions whose activity is highly correlated in the course of resting 
brain activity. Importantly, these resting- state networks closely resemble 
sets of brain regions that are consistently coactivated as the brain is chal-
lenged across a broad range of sensory inputs or tasks. For example, 
tasks that require the direction of attention to a portion of the external 
environment, such as quickly detecting targets in cued locations of the 
visual ield, reliably activate a distributed set of speciic brain regions in 
the frontal and parietal cortex. At rest, the same set of regions is found 
to undergo correlated luctuations in neural activity. hese relations be-
tween task- driven and task- free patterns of activity are consistent with 
the idea that the resting brain rehearses or recapitulates a set of network 
states, each of which are associated with diferent domains of human 
cognition.

As these studies at the large scale of whole brain activity suggest, dis-
tributed networks rather than localized brain regions may be fundamen-
tal units of how the brain is organized and how it responds. Network 
approaches have not only been instrumental in revealing this organiza-
tion, they are also increasingly important for tracking down biological 
substrates of brain and mental disorders. Speciic disturbances of how 
brain networks are conigured and how they dynamically respond and 
interact have been documented in a range of disorders, from neuro-
degenerative conditions such as Alzheimer’s disease to mental illnesses 
such as schizophrenia. A common theme is that of disconnection— a 
disturbance or loss of connectivity among speciic neurons and brain 
regions that manifests in speciic impairments of integrative cognitive 
ability. For example, in the case of schizophrenia numerous studies 
comparing connectivity in the brains of patients and healthy controls 
have shown an association of clinical symptoms with impaired func-
tional coupling between parietal and prefrontal regions, possibly the 
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result of “mis- wiring” in long- distance interregional projections. Such 
mis- wiring not only disrupts speciic pathways and connections, it 
also results in global changes in the way the entire network processes 
information— somewhat like the widespread disruption of traic pat-
terns ater closure of a single highway or air transportation hub.

Going beyond diagnosis, network approaches may also become 
important for developing new interventions and therapies. If network 
disturbances underlie common disease states, efective therapy and re-
covery may involve coaxing the disrupted network back into a regime 
where functionality is restored. A surprising adjunct in this endeavor of 
inding ways to treat brain networks is the use of sophisticated computer 
models that can reproduce and predict the dynamic activity of human 
brain networks.

Building Virtual Brains

Brain models have evolved tremendously over the past two decades, 
from the historically useful but biologically unrealistic constructs of 
“artiicial neural networks” to biologically based computational models 
that combine the major ingredients of neuronal biophysics and connec-
tivity to create realistic brain dynamics (see chapters by Hill and Elia-
smith, this volume). hese models are computational analogues of com-
plex brain networks, and they are beginning to provide fundamentally 
new insights into how brains respond and compute. As models, their 
construction is simple— sets of neural elements and their anatomical 
interconnections, the latter typically derived from empirical measure-
ments, and a set of dynamic equations that are based on the electrical 
response properties of nerve cells. he complete model is set in motion 
by exposing it to external inputs as well as some source of internal noise. 
Once in motion, the model’s neural elements produce simulated activity 
traces that can be analyzed and processed in ways that closely resemble 
how scientists look at experimental data. A big advantage of the mod-
eling approach is that unlike the empirical brain, the model’s internal 
workings are completely known and the model’s structure can be modi-
ied in order to explore how its activity changes. Models of this kind 
have already provided important insights. hink back to the “resting” 
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brain— given that there are no explicit tasks or inputs, what accounts 
for the reproducible spatiotemporal patterns that are so characteristic 
of resting brain activity? Computational models have shown that these 
patterns strongly depend on a combination of several factors, includ-
ing the layout of structural connections among brain regions, balanced 
local coupling of excitatory and inhibitory neuronal populations, and 
the presence of conduction delays and dynamic noise. Take away any 
of these ingredients and the activity of the model will no longer match 
what is empirically observed.

Computational models have become powerful tools in many disci-
plines, from astrophysics to traic engineering, and they will play an 
increasingly prominent and indispensable role in neuroscience. Of par-
ticular importance will be network- based models of “virtual brains”— 
models that, not unlike the global simulators employed in climate fore-
casting, allow drawing links between variations in local parameters that 
determine brain connectivity and resulting changes at the global scale, 
for example, those manifesting in patterns of brain dynamics. In the 
near term, such models will become computational platforms to explore 
the efects of localized brain lesions such as those that might result from 
stroke or brain trauma on network communication across the remain-
ing brain. In the middle term, more sophisticated models will begin to 
implement models of pathophysiological processes that can mimic the 
progression of disease states involving neurodegeneration or develop-
mental abnormalities. In the longer term, computational models based 
on individual patient data may become useful tools for designing thera-
peutic interventions that are tailored to that patient’s very own brain 
network— perhaps opening the door to “personal connectomics” as a 
component of clinical practice.

hese developments are perhaps closer than most of us think. One 
reason is the continued rapid rise in computational power per unit cost. 
Another important reason is the convergence of network science ap-
proaches across a broad expanse of biological, social, and technological 
systems. his convergence creates enormous opportunities for synergy 
and collaboration that would have been unthinkable even a few years 
ago. It will also drive the development of new recording probes and ob-
servational tools. he growing realization that brain function depends 
on connectivity and network interactions among many elements and 
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processes mandates the development of sophisticated empirical and an-
alytic methods for mapping and tracking these network interactions. Fi-
nally, linking brain networks to behavior will mean stepping beyond the 
boundaries of the nervous system to consider how connectivity within 
the brain is modulated by the dynamic coupling of brain and environ-
ment (see chapter by Ahrens, this volume). Neurons don’t just passively 
respond to inputs— by contributing to motor activity and behavior they 
actively determine what the inputs are. Capturing this dynamic inter-
play between brain and behavior will require an extension of the con-
cept of functional connectivity from intrinsic brain networks into the 
environment. Clearly, the enormous complexity of brain networks will 
pose formidable challenges for the foreseeable future.

As I look to the future, it seems inevitable that neuroscience will con-
tinue to move from focusing on components to mapping and modeling 
their interactions, building on a reconceptualization of the brain as a 
complex networked system. I expect that this shit towards network neu-
roscience will lead to fundamentally new insights. As many studies have 
shown, the organization and architecture of networks from a surprising 
range of real- world systems (cells to society) express a set of shared and 
common themes and motifs. Network neuroscience suggests that the 
brain is another example of such a system. So, perhaps the brain is less 
special than we previously thought. While the brain is certainly unique 
in that it mediates all personal experience, we may ind it does so by fol-
lowing a set of general and universal laws that govern the functioning of 
complex networks.

Further Reading

Sporns, O. 2011. Networks of the Brain. Cambridge, MA: MIT Press.
Strogatz, S. 2004. Sync: How Order Emerges from Chaos in the Universe, Nature, and 

Daily Life. New York: Hyperion.
Swanson, L.W. 2011. Brain Architecture: Understanding the Basic Plan. New York: Ox-

ford University Press.



L A R G E -  S C A L E  N E U R O S C I E N C E
FROM ANALYTICS TO INSIGHT 

Jeremy Freeman

he brain contains millions of neurons. Equally vast is the range of any 
creature’s experience in an ever- changing world.

Yet the laboratory typically limits both the scale of neural measure-
ment and the complexity of behavioral context. An experimenter might 
record the response of a single sensory neuron to a tiny set of stimuli in 
order to determine which stimulus triggers the most vigorous response. 
Or an experimenter might measure the activity of a few isolated motor 
neurons while an animal performs one simple behavior, which allows the 
researcher to establish a clear relationship between the behavior and the 
neural responses. By such simpliication, however, we might be missing 
the forest for a handful of trees. Almost surely, a complete understanding 
of the brain will demand a more holistic approach: complex behavior re-
lects information processing across the entire nervous system, involving 
the coordinated activity of thousands or millions of neurons of diverse 
type and function within and across multiple circuits and brain areas. New 
technologies are now, inally, allowing us to probe the activity of thousands 
of neurons simultaneously while animals perform rich, ethologically rel-
evant behaviors: mice running on balls exploring virtual mazes, ish swim-
ming against moving backgrounds, or lies lying toward virtual targets.

But what do we do now that we have these tools? How do we begin 
to understand the vast quantities of data we are beginning to collect? 
Standard techniques can help with some of the basics, like extracting 
signals from noise— if we know where to look, and if we can handle the 
scale of the data. But how do we use the mountains of data to extract a 
rich theoretical understanding of how the brain really works?

• • • • • • 

he irst thing to understand about neural data is that the immedi-
ate output of an experiment— for example, a set of images of calcium 
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luorescence from a microscope— is never a straightforward list of neu-
ral responses at each moment in time. Rather, we always have to infer 
what the brain is doing because the images themselves are messy and 
indirect. Images of neural activity are rife with movement and other ar-
tifacts, akin to the grainy, oten blurry photos taken by early digital cam-
eras. As a result, the irst step in neural data analysis is almost always to 
address the low- level challenge of sorting signal from noise. Computer 
algorithms can process source signals, remove artifacts, and extract the 
relevant components. In some cases the goal of these initial steps is rel-
atively straightforward, for example, minimizing the motion between 
successive frames. But inding the best solution still poses a challenge. In 
other cases there is a surprising degree of subtlety. For example, in each 
of the images from a calcium imaging experiment there are millions of 
pixels. Depending on the neural circuit, cell type, and calcium indicator 
under study, those pixels correspond to a complex mixture of cell bodies 
and extensions from those cell bodies, including axons and dendrites. 
To analyze the data, we can use sophisticated algorithms to isolate the 
signals from cell bodies, discarding the rest of the image; alternatively, 
we can interrogate the response of every single pixel, capturing as much 
functionally relevant information as possible, but losing the landmarks 
that cell bodies provide. In truth, there is no absolute answer; the only 
consensus thus far is that the choice will probably depend on the scien-
tiic question asked. Even at this early stage of analysis, computer algo-
rithms play a critical role in data analysis. And good scientiic judgment 
is key in sorting through the many options.

Higher levels of analysis aim to ind patterns in neural responses that 
are related to sensory input, behavioral output (and concomitant sen-
sory feedback), behavioral state (as induced by modulatory processes), 
or most likely, to a complex mixture of all three. he biggest challenge 
is never knowing ahead of time the “right” analysis. Consider measur-
ing neural responses during a fairly straightforward task: a mouse runs 
on a ball, is presented with a few diferent visual stimuli on a screen, 
and then must indicate a response. Even here, in a situation far from 
the rich experience of the mouse roaming in the real world, many pa-
rameters are potentially relevant to neural responses. hose include the 
stimulus itself, how fast the animal was running, what her behavioral 
response was, whether she got the answer right or wrong, and aspects of 
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her state that might be diicult to characterize explicitly, such as atten-
tion or arousal.

How do we relate neural responses to all of these parameters? How 
are the parameters in turn related to one another? How should features 
of the behavior be represented for such analysis? Answering these ques-
tions falls under the broad category of “functional modeling,” which 
aims to relate neural responses to observable features of the external 
world (see chapter by Carandini herein). Of course, the goal is not sim-
ply to reproduce the complete neural response pattern, like a high- tech 
tape recorder; the goal instead is to characterize what the brain is doing 
in terms that can aid our intuition and understanding and help consoli-
date our hypotheses. For example, the various neurons within a circuit, 
due to their type, morphology, projections, or laminar speciicity, may 
difer in the degree to which their responses relect each of the proper-
ties listed above. Functional modeling can begin to paint a picture of 
the computations these diferent elements of the circuit are performing. 
Coupled to appropriate anatomical information, they may reveal a pic-
ture of what the circuit does, what it is for.

When studying more complex representations, like those involved in 
motor control, the joint dynamics of neurons are particularly critical, 
and examining the response of one neuron at a time— or the grand av-
erage of all neurons— yields an incomplete, and potentially misleading, 
picture. A set of relatively theory- neutral techniques known as dimen-
sionality reduction can sometimes uncover simpler structure hidden in 
high- dimensional patterns of joint activity (see chapter by Shenoy). But 
a tacit assumption of these methods is that all neurons under study are 
of the same kind and are doing roughly the same sort of work. his as-
sumption breaks down when we examine larger fractions of the brain 
simultaneously and consider the extraordinary diversity and speciicity 
of neural circuits. What if neurons of a particular type only respond 
when a pattern of response is present in another cell type, as might 
arise when a circuit’s function is switched on or of by modulatory pro-
cesses? What about “command” neurons that may be few in number, 
respond only once in a long experiment, and thus remain hidden from 
low- dimensional representations but are in fact crucial to the circuit’s 
computation? In such cases, we might not ind such features in the data 
unless we deliberately look for them. Prior theoretical principles or 
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hypotheses— as opposed to pure bottom- up data mining— can become 
part of the analysis process. Sometimes it may be enough to “let the data 
speak for itself,” but even that “speaking” can proceed only through ac-
tive and creative data exploration, not brute force.

In order to perform lexible and exploratory analytics on neural data, 
we must scale up our analyses to handle the massive datasets we are 
starting to collect. A typical two- photon calcium imaging experiment 
that monitors responses over a small region of mouse cortex (~1,000 
neurons) yields 50– 100 GB of data, and a typical light- sheet imaging 
experiment that monitors responses over the entire brain of the larval 
zebraish (~100,000 neurons) currently yields 1– 5 TB (see chapter by 
Ahrens). Faster frame rates and longer experiments could soon yield 
100– 200 TB per experiment. By comparison, the social networks Twit-
ter and Facebook collect hundreds of TBs of data from their users every 
day. Neuroscience is thus quickly entering the realm of massive, web- 
scale data.

At these scales, even simple analyses can take hours or days to per-
form, and more complex analyses are sometimes out of the question. 
Exploratory data analysis requires trying many analyses, and if each one 
takes a day, the size of the data becomes a major bottleneck for prog-
ress. Fortunately, the massive investments in “big data” from places 
like Google and Amazon have yielded novel approaches, like Google’s 
MapReduce and the open- source counterpart Hadoop, which enable 
large- scale distributed computing; a terabyte can be analyzed by a clus-
ter distributed through the cloud, rather than on a single machine at 
an individual investigator’s desktop. An automatic front end to a large 
network of computers allows a scientist to focus on the goals of her algo-
rithm rather than on the details of how work is distributed, scheduled, 
and executed across the cloud, thus enabling new analyses that would 
otherwise be unthinkable.

In my own lab, we have been adapting one of the most recent, and 
most exciting, large- scale data processing platforms— an open- source 
project called Apache Spark— to the problem of neural data analysis. 
Although primarily used in industry, Spark is ideally suited to the chal-
lenges of neuroscience data analysis because of three key advances. 
First, it introduces a primitive for data sharing that allows distributed 
data to be cached (that is, preloaded). When analyzing neural data, we 
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oten want to load it, apply all the kinds of analyses described above, and 
interactively inspect the results. Rather than reload the data for every 
analysis, Spark can cache TBs of data into distributed RAM, enabling 
rapid access as though the data were on a local machine, as well as sup-
porting complex algorithms involving many iterations. Second, Spark 
provides powerful abstractions, accessible through its APIs (application 
programming interfaces) in Python, Java, and Scala, that make it easy to 
write and prototype analyses, helping the user focus on the algorithm, 
not the details of implementation. hird, Spark includes a module, 
Spark Streaming, for doing real- time analyses on streaming data. Spark 
itself is a set of primitives for distributed computing, and we have built 
a library on top of it, called hunder (http://github.com/freeman-lab 
/thunder), for fast, easy, and interactive large- scale neural data analysis 
and visualization. With this library, analyses that would have previously 
taken a day can run within seconds or minutes, including regression, 
spatial and temporal factorization, time series modeling, and ever more 
complex alternatives. his library provides us, and the neuroscience 
community, with a nearly unprecedented opportunity for exploratory, 
large- scale neural analytics.

• • • • • • 

Scaling up analysis is crucial, but it is just a prerequisite for progress, 
not progress itself. Especially when studying more complex behaviors, 
or more complex aspects of sensory representation, nearly an ininite 
number of inputs could be presented to an animal, or behaviors moni-
tored, or task conigurations tested. Efectively exploring these options 
is not a problem of data analysis but rather of designing targeted experi-
ments in lockstep with the analysis. In many cases I expect the inal an-
swer will come not from an analysis but from a clever, and surprisingly 
simple, experiment.

As an example, I will describe a story from my graduate work in the 
visual system of the primate. he work concerned how visual signals 
are represented and transformed along the processing pathway of the 
primate visual system. It has long been known that the earliest stages of 
vision— the retina, and the thalamus— represent the presence of light 
and dark across our ield of view. he irst stage of cortical processing, 
primary visual cortex (or V1), represents not only the presence of light 

http://github.com/freeman-lab/thunder
http://github.com/freeman-lab/thunder
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but also its shape. he responses of neurons in V1 speciically depend 
on whether a pattern, like a bar or an edge, is oriented vertically, hori-
zontally, or diagonally. he discovery of this “orientation selectivity” by 
David Hubel and Torsten Wiesel in 1959 provided a fundamental in-
sight into the cortical representation of visual information. But there 
exists a hierarchy of areas beyond V1, including V2, V3, V4, and several 
more, each of which are thought to represent increasingly complex, and 
behaviorally relevant, aspects of a visual scene. Our understanding of 
most of these areas remains limited, but V2 has been one of the most 
perplexing. Higher areas have been found to contain neurons selective 
for complex objects and shapes, like faces, but despite decades of work, 
the “function” of V2 neurons has remained mysterious.

One approach to characterizing visual responses is brute- force data 
collection: we measure responses to a large ensemble of random pat-
terns of light and dark and examine the subset of patterns that elicited a 
response to reveal what the neuron encodes. his approach succeeds in 
V1 (revealing oriented edges), but it fares poorly in V2. We speculated 
at the time, and now know with some conidence, that this is because 
responses in V2 selectively encode visual elements that are signiicantly 
more complex than those encoded in V1 and thus are extremely un-
likely to arise in a random pattern, no matter how long the experiment. 
hey are also diicult to identify through intuition (unlike, say, faces or 
objects).

As an alternative to brute- force data collection, we developed a hy-
pothesis of what V2 might be doing by integrating several pieces of com-
putational and neuroscientiic knowledge: the kinds of inputs V2 neu-
rons received (predominantly from V1), what image properties could 
theoretically be represented by performing computations on those in-
puts, and which of those properties are found in the images encountered 
by an animal and would thus be behaviorally useful to encode. he key 
of the hypothesis: V2 neurons care not only about the presence of ori-
ented patterns but also about their organization and statistical codepen-
dencies. In other words, they care whether, for example, patterns of two 
orientations or sizes tend to occur alongside each other in an image. 
We used this hypothesis, coupled to a computer algorithm for image 
synthesis, to construct targeted visual stimuli to present to V2 neurons. 
We then performed experiments in which we recorded responses of 
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neurons in both V1 and V2 to these stimuli and found that responses 
to our stimuli diferentiated the two areas better than in any previous 
reports.

hese experiments have not, as yet, fully explained the function of 
V2. hey were also fundamentally limited: we recorded the activity of a 
small number of neurons in each area, with no knowledge of cell type 
or laminar speciicity, in the context of a highly unnatural behavior (an 
animal looking at images on a screen). But as we acquire richer and 
more complex tools and datasets in other systems, the moral is worth 
remembering: we arrived at an important insight about neural compu-
tation not through the collection of a massive dataset, or even a complex 
analysis, but rather through computationally driven insight and care-
fully designed experimental stimuli.

he era of large- scale neural data analysis is just beginning, but the 
importance of analytical and experimental interplay is already at the 
core of my lab’s new work in this domain. In a collaboration with Misha 
Ahrens, for example, we are using whole- brain calcium imaging in the 
larval zebraish to monitor responses while animals perform tasks in 
which simple sensory inputs elicit motor behaviors. We develop large- 
scale analyses that try to identify and disentangle signals related to sen-
sory processing, motor behavior, ongoing neural dynamics, or some 
complex mixture of all three; and these analyses provide tantalizing 
hints as to the spatiotemporal structure of neural computation. But the 
same analyses oten motivate new experiments in which we isolate each 
of these diferent components through controlled, yet still ethologically 
relevant, behaviors. Making sense of these data in turn requires new 
analyses, although oten more targeted than the exploratory analyses 
that motivated the experiment. Analysis and experiment remain in con-
stant interplay.

his moral is crucial as we prepare neuroscience for the future. A 
presumption emerging in our ield is that the strategy for success is to 
collect masses of data, and then, only aterward, to distill from that data 
an understanding of how the brain works. In some domains, this rather 
static strategy— collect data irst, analyze later— may be both reasonable 
and proitable. Take, for example, the problem of segmenting neurons 
from anatomical images to identify connectivity. Achieving that goal will 
demand powerful algorithms, but the goal itself is clear, so the analysis 
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can proceed somewhat independently of data acquisition and experi-
ment. But the more we stray from such well- deined problems, the less 
realistic that sort of static strategy may be. In most cases, we do not quite 
yet know which data we want to collect. Even if it is clear which kinds 
of measurements we want to make (for example, whole- brain calcium 
imaging of the larval zebraish, two- photon imaging of multiple areas of 
mouse cortex), it is not clear which behaviors the organism should be 
performing while we collect those data, or which environment it should 
be experiencing. It is hard to imagine a single dataset, however massive, 
from which the truths we seek will emerge with only the right analysis, 
especially when we consider the nearly ininite set of alternative experi-
ments we might have performed. Instead, we need an iterative process 
by which we move back and forth between using analytic tools to iden-
tify patterns in data and using the recovered patterns to inform and 
guide the next set of experiments. Ater many iterations, the patterns we 
identify may coalesce into rules and themes, perhaps even themes that 
extend across diferent systems and modalities. And with luck, we might 
ultimately arrive at theories of neural computation, which will shape 
not only the design of our experiments but also the very foundations of 
neuroscience.





S I M U L A T I N G  T H E  B R A I N

Europe is in the process of investing over a billion euros in a project to 
simulate the human brain. Here, Sean Hill, one of the leaders in that ef-
fort, describes what the European project plans to do. Chris Eliasmith 
describes an alternative approach. he European efort starts with ine- 
grained details about individual neurons and the synapses between them 
and tries to work upward, from a detailed understanding of the logic of 
neural wiring toward an understanding of how that wiring underwrites 
behavior. Eliasmith starts closer to behavior, trying to build a more 
abstract model that captures behavior and psychological mechanisms 
while remaining faithful to known facts about neural organization.





W H O L E  B R A I N  S I M U L AT I O N

Sean Hill

Richard Feynman famously said, “What I cannot create, I do not un-
derstand.” To truly understand the brain we need the tools to create it, 
in brain atlases, computer models, and simulations. In this essay I will 
talk about the Human Brain Project (HBP, www.humanbrainproject 
.eu), which has recently been awarded European Commission funding 
(~one billion euros over ten years) to provide a series of information- 
technology- based platforms aimed speciically at enabling a global col-
laboration between neuroscientists and driving innovation in neurosci-
ence, medicine, and computing (see color plate 8). he platforms to be 
delivered are for Neuroinformatics, Medical Informatics, Brain Simu-
lation, High Performance Computing, Neuromorphic Computing and 
Neurorobotics— each to be open for use by the global research com-
munity. hese platforms are designed to bring together data about the 
brain, integrate it in unifying brain models, run simulations, analyze 
and visualize the results, and test hypotheses. he project aims to trig-
ger a global, collaborative efort to understand the human brain, while 
enabling advances in neuroscience, medicine, and future computing. 
he primary objective is to provide the capability to build and simulate 
models of the entire human brain within ten years.

Creating to Understand

Virtually all neuroscientists agree that we don’t yet understand the 
human brain. But how can we build a model of something we don’t 
understand? Should we wait until we understand the brain to build a 
model of it? Or can the act of building a model itself serve as a key 
tool in the process of our ultimate understanding of the brain? At the 
Human Brain Project, we argue that the very act of organizing the data, 

http://www.humanbrainproject.eu
http://www.humanbrainproject.eu
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identifying which data is missing, and evaluating how much the avail-
able data can tell us about the structure and function of the brain is es-
sential to understanding the brain. Currently we lack the tools to search 
and access neuroscience data, we lack comprehensive atlases that tell us 
which parts of the brain have been mapped and those that have not. We 
also lack the tools to evaluate whether a particular piece of data is es-
sential or irrelevant to understand the function of the brain.

Even many basic questions remain poorly understood. Why, for ex-
ample, does the brain have so many diferent types of neurons? here 
are many diferent classes of neurons with unique electrical and mor-
phological properties— there are likely thousands, but at this point we 
actually don’t even know how many distinct neuron types there are. We 
also don’t know whether it is a reasonable simpliication to assume (as 
many computational modelers do) that the number of neuron classes 
ultimately comes down to just two— excitatory and inhibitory. By con-
structing a model that contains the full diversity of cell types— even for 
a single brain circuit— we can begin to evaluate the role of each type of 
neuron under diferent conditions and provide insight into their func-
tion in healthy brains as well as their potential impact in brain disorders 
and gain purchase on the essential question of which simpliications are 
and are not appropriate.

Another way that whole brain modeling and simulation helps cre-
ate understanding is through formalizing the best theories of high- level 
brain function and testing their consistency with the underlying neu-
roscience data. Simulations are the proving ground for these high- level 
theories; they must be shown to be consistent with biological data in 
order to be valid.

here are many ways to approach modeling the brain (see also chap-
ters by Eliasmith and Koch), but none that are yet a clear winner. Bot-
tom- up modeling starts from data describing some of the lowest levels 
of detail— genes, molecules, neurons, synapses, and circuits— and aims 
to be faithful to all the known biological details measured in today’s 
neuroscience laboratories. Top- down brain modeling involves develop-
ing and testing theories of brain function at a level of abstraction that 
typically leaves out details of individual cells and synapses. Top- down 
brain theories aim to provide important high- level structure scafolding 
into which the biological details can be framed. Currently, high- level 
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models of brain function can recreate some basic cognitive processes 
and behaviors, and bottom- up high- idelity biophysical models can 
capture many details that relate gene expression products to cellular, 
synaptic, and even microcircuit activity. However, there is currently no 
model that can accurately predict the relationship between gene ex-
pression and cognition or behavior. he Human Brain Project aims to 
bridge the two.

Where’s the Data?

A prerequisite to creating a whole brain model is the emerging new 
discipline called neuroinformatics— the endeavor to apply computing 
technology to help solve the challenges neuroscientists face in organiz-
ing, sharing, and gaining insight from their data.

Scientists have produced millions of papers and petabytes of data 
about the brain describing these many levels of detail— and the pace 
is growing even faster. Since 1990, the number of publications alone 
has grown from around 30,000 to nearly 100,000 per year in 2013. he 
number and size of large- scale datasets are also rapidly increasing— a 
recently produced single human brain scan consumes 1 terabyte (a 
thousand gigabytes) of storage— enough to ill the storage on a single 
laptop. he Allen Institute for Brain Science, a partner in the HBP, has 
led the ield of neuroscience in demonstrating how to produce large- 
scale data— with their irst atlas of gene expression of all 21,000 genes in 
the mouse brain. he Allen Institute produced over a petabyte (a million 
gigabytes) of data this year in the course of a single study to character-
ize mouse brain connectivity, and now, with further investment from 
Paul Allen, the institute is planning to acquire a tremendous amount 
of data about the mouse and human brain cell types, brain circuitry, 
and behavior over the next ten years (see chapters by Koch and Haw-
rylycz herein). he US Human Connectome Project is likewise produc-
ing peta bytes of data describing the major connectivity pathways of the 
human brain and their link to individual genetics. he US BRAIN ini-
tiative will also signiicantly increase the amount of data available about 
brain structure and activity through the development of new technol-
ogy and techniques. Other initiatives, like those that aim to improve the 
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quality of scientiic data through increased incentives for sharing, will 
also increase the sheer amount of data.

How will we make use of all this data? Already, individual scientists 
can only read a small fraction of the publications produced in a year, 
and it is a tremendous challenge for an individual scientist to under-
stand more than a few aspects of brain structure or function. Sometimes 
it is diicult to know for sure even if a given experiment has already 
been performed or not.

A start comes from the many websites, databases, search engines, 
analysis services, and tools for neuroscience that have been developed 
and shared around the world. he decade of the brain in the 1990s 
brought the NIH Human Brain Project, which encouraged (and funded) 
neuroscientists to produce and share neuroscience data in online da-
tabases. However, the challenge of integrating this data soon became 
apparent— every lab used their own methods for gathering data, their 
own language for describing it, and their own ways of organizing it in 
databases with many diferent data formats. hus it was extremely dif-
icult to bring together data from diferent laboratories in order to gain 
insight about the brain. Many laboratories, for example, don’t agree on 
the number of cell types in the brain, or even the deinition of a cell type, 
let alone agreeing to the names of neurons!

One key ingredient, essential if not always high proile, is careful data 
integration, the precise annotation of data and management to under-
stand how each piece of data relates to the others. Modern data inte-
gration methods, including precise metadata annotation, standard vo-
cabularies and ontologies for describing protocols, methods and brain 
structures, reference coordinate spaces and “big data” analytics for per-
forming analysis and data integration of large multiscale datasets are 
required. Data intensive science is a term that has come to be applied to 
data- driven eforts making use of modern analytic and machine learn-
ing methods to ind patterns and structures in a sea of data.

he World Wide Web was invented by physicists looking for new 
ways to improve collaboration between scientists scattered around the 
planet. As this technology has been brought to bear on the lives of ev-
eryday citizens, virtually everyone has felt the impact of the information 
technology revolution on their lives— access to news, information, shop-
ping; social networks; online audio and video; massive online computer 
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services. he world has changed in the last few decades. Neuroscience 
needs to adopt these tools and techniques to share and integrate data 
about the brain.

To cope with these challenges, an international organization— the 
International Neuroinformatics Coordinating Facility (INCF, www 
.incf.org) was conceived by the Global Science Forum of the OECD and 
launched in 2005. his organization (in which I am now the scientiic 
director) was given the mandate of coordinating standards and infra-
structure for neuroscientists to share and integrate data globally. INCF 
coordinates neuroscientists around the world in agreeing on standard 
vocabularies for brain structures and neurons, coordinate systems for 
mapping the brain, mathematical modeling languages, and metadata 
and ile format standards. INCF has worked closely with partners, in-
cluding the Allen Institute, University of Oslo, Duke University, Univer-
sity of Edinburgh, and others, to develop a standard coordinate space 
for mouse brain data, dubbed “Waxholm Space” and web services to 
facilitate translation between mouse brain atlases. In addition, in col-
laboration with the Neuroscience Information Framework (NIF, San 
Diego) it has produced community consensus ontologies and nomen-
clatures for neurons and brain structures, which have been placed in 
a public wiki (www.neurolex.org) employing the latest semantic web 
technologies. INCF supports working groups of experts from around 
the world to produce new standards, tools, services, and guidelines for 
the global community. With the advent of multiple large- scale brain ini-
tiatives around the world, INCF is well positioned to help coordinate 
standards and infrastructure between such projects at a global scale. 
INCF has agreed to coordinate some of the tools for brain atlases in the 
HBP Neuroinformatics Platform, and the HBP will build of of INCF 
infrastructures and adhere to INCF standards and guidelines whenever 
applicable.

Next Generation Brain Atlases

One emerging tool for neuroinformatics— and key for building whole 
brain models— is building new types of brain atlases (see chapter by 
Hawrylycz). Brain atlases have been essential in making progress in 

http://www.incf.org
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understanding the organization of the brain. Traditional brain atlases 
were primarily anatomical, focusing on brain landmarks and features 
to identify brain regions. Today, new forms of brain atlases are emerg-
ing that bring together many more types of data. For example, eforts 
are emerging to combine data about gene expression, cellular data, and 
connectivity into new brain atlases. By combining multiple types of data 
into a single atlas, we can learn important relationships and principles; 
for example, how cell types from diferent regions connect to each other.

In the same way that early explorers relied on maps, even though they 
were originally coarse and error prone, neuroscientists are beginning to 
build atlases that anchor diferent types of data and help complete the 
layers of the complex brain maps that are gradually emerging. Ensuring 
data is registered and accessible through such next- generation atlases 
will surely be an important way of organizing and analyzing brain data. 
Building atlases depends on two key aspects: using jointly agreed upon 
vocabularies or ontologies to label data and locating the data in a stan-
dardized atlas coordinate space. For example, neuroscientists today use 
diferent words to refer to the same brain area. For example, in the visual 
system, reticular nucleus of the thalamus, nucleus reticularis, and perige-
niculate nucleus all refer to the same brain structure— making it diicult 
to ind all data about this single brain region. Ontologies formalize the 
deinitions of these structures and their names (and synonyms) so that 
the relationships between entities are explicit. Alternatively, by anno-
tating the data with the spatial coordinates of where it was measured, 
it would be associated with the volume that has been named reticular 
nucleus of the thalamus. Careful curation of data and annotating it using 
the next generation semantic web technologies and spatial coordinates, 
each piece of data will be part of a rich brain atlas integrated with a web 
of knowledge about the brain.

he Neuroinformatics Platform, coordinated by groups from the 
École Polytechnique Fédérale de Lausanne (EPFL), Karolinska Insti-
tute, University of Oslo, Forschungszentrum Jülich, Universidad Poli-
técnica de Madrid, and Radboud Universiteit Nijmegen, will provide 
the tools for organizing neuroscience data in atlases that bring together 
collections of data about the mouse and human brains from around the 
world. It will provide tools for analysis of brain structure data (includ-
ing electron micrographs and optical images) and functional brain data 
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(including intracellular single cell voltage traces and parallel recordings 
of hundreds of neurons). It will also provide tools for predictive neurosci-
ence analyses. Predictive neuroscience (described below) uses all avail-
able data and constraints to predict missing data describing the struc-
ture of the nervous system. All data, analyses, and predictions will be 
registered to the brain atlases. hese neuroinformatics brain atlases will 
be the single source of curated and quality- controlled data for building 
brain models in the project.

Predictive Neuroscience

It is highly unlikely that the human brain will be fully mapped— with 
all the elements and possible interactions measured and quantiied. In 
addition, much of the available data will actually come from other spe-
cies, including mice. So a key part of the Neuroinformatics work and 
throughout the project is to use predictive neuroscience— applying the-
ory to identify principles that can be used to ill in missing data and 
parameters based on the available data and knowledge. One example 
would be to use gene expression data for single cells combined with im-
munohistochemical staining to make predictions for the composition of 
cell types within a brain area. Another example is to identify principles 
that govern synapse positioning and other synaptic parameters so that 
a model can be constructed before all possible synaptic pathways have 
been completely characterized. Predictive neuroscience will be used 
to always provide the “best guess” for missing data, and these predic-
tions will then be the focus for ongoing validations and further targeted 
experiments.

In the case of synapse positions, a recent study from the Blue Brain 
Project showed that it is possible to predict the distribution of synapse 
locations for many types of synaptic pathways in the cortex from the 
shapes of the axons and dendrites alone. he same study showed that 
there are some speciic exceptions to this principle, and this inding is 
guiding follow- up experiments to acquire targeted data. In addition, the 
study revealed that the fact that every neuron has a unique individual 
shape is actually essential to ensure that the cortical wiring diagram re-
mains stable and is robust to damage. he microscale connectivity is 



118  •  H i l l

thereby used to derive principles governing macroscale cortical wiring. 
hus, predictive neuroscience can serve as a key tool in illing in missing 
values, deining and prioritizing new experiments, and identifying key 
nervous system principles.

Building the Brain

he Brain Simulation Platform, led by HBP partners from EPFL, GRS- 
SIM, and the Royal Institute of Technology in Stockholm, will guide 
neuroscientists through the process of building models of proteins, 
cells, synapses, circuits, brain areas, and whole brains. At each step, a 
scientist will be prompted through the web interface to select the data, 
analysis methods and model- building methods necessary to construct 
the model. he building worklow will be populated by default param-
eters derived from the selected dataset, but these can be overridden so 
that the scientist is free to test hypotheses or examine “what- if ” sce-
narios. For example, the worklow may populate a neural circuit with a 
high density of neurons taken from a normal brain, but the researcher 
using the platform may wish to examine the impact of reducing neuron 
density— as can occur during degenerative diseases such as Alzheimer’s. 
his can be accomplished by overriding the cell density parameters for 
the circuit building worklow.

A catalog of all known and characterized cell types will then be used 
to compose and populate brain circuits. For example, in the Blue Brain 
Project, we have identiied ity- ive morphological types of neurons in 
the cortical microcircuit of the rat. he morphologies of model neurons 
can be drawn directly from reconstructions of real neurons or synthe-
sized by algorithms that capture the statistical properties of each type. 
Future work will identify relationships between gene expression and 
morphological properties— the goal is to predict the morphological 
type from transcriptomic data. his will be essential for building mod-
els of human brain circuitry where cell reconstructions are diicult to 
acquire and are expected to remain sparse.

In addition to the morphological types, eleven electrical types with 
distinct iring behaviors have been characterized in rat cortical circuitry. 
Each morphological type can exhibit multiple electrical behaviors— the 
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combination of morphological and electrical types deines an additional 
cell type. here are 207 of these “morphoelectric” types in the cortical 
microcircuit. As with the morphological properties, it will be important 
to develop models that predict the electrical features and iring behav-
iors from gene expression. Learning such principles will be key to syn-
thesizing model human neurons that have not been fully characterized 
experimentally.

Connectivity is determined through algorithms that compute the 
connectivity made possible due to physical proximity of neuronal ibers, 
but then it imposes additional constraints including axonal bouton den-
sity and dendritic spines. As new rules and principles governing con-
nectivity are discovered they can be used to generate the connections.

Synaptic plasticity rules will be layered in to further reine the con-
nectivity with speciic activity patterns. Microcircuits are patterned to 
build brain areas, and long- range connectivity is layered in to connect 
them to complete whole brain circuits. At each stage of building, data 
is the driving force— with theory providing the guiding principles— 
providing constraints for optimization processes to build the functional 
models.

Neuroscientists using the Brain Simulation Platform will have the 
freedom to add their own methods of building models, drawing on the 
pool of data in the Neuroinformatics Platform to constrain and parame-
terize models in diferent ways in order to recreate nervous system phe-
nomena at diferent scales. he goal is to provide neuroscientists with 
the tools to explore the impact of their own data at the systems level as 
well as to help deine and prioritize new experiments.

The Virtuous Loop

Validation of the model is a key part of the knowledge discovery pro-
cess. In the Blue Brain Project, automatic validations are run on every 
new model— continually evaluating the model and comparing against 
thousands of biological experimental indings. Attention is focused on 
those areas where simulation results difer from biological indings. 
When these two deviate, it indicates that either the available data or the 
model (or both) are insuicient to explain the observed biological data. 
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For example, in one early simulation, blocking the activity of an en-
tire population of interneurons failed to signiicantly alter the network 
activity. Given experimental indings that clearly showed the contrary, 
attention was focused on the synaptic conductances assigned for this 
population of neurons. By seeking speciic data to help more accurately 
model these conductances, the model was improved and the repeat of 
this test now showed the importance of these cells in shaping network 
dynamics.

Using simulated instruments, like virtual electrodes and simulated 
imaging techniques, the scientists can directly compare the model activ-
ity to their own experiments. In collaboration with scientists at the Allen 
Institute, the Blue Brain Project has developed a model of the local ield 
potential— the signal measured when a wire electrode is placed in the 
brain. Simulations thus instrumented with this virtual electrode have 
revealed new insights into the causal link between single cell activity 
and the “brain- wave” phenomena measured by extracellular electrodes, 
including that dendritic currents may shape the local ield potential.

If the model replicates experimental indings (that were not used 
to build the model in the irst place), this is evidence the experimental 
indings can be explained by the measured data. However, if the model 
does not replicate a particular experiment, that result is also extremely 
informative— guiding the neuroscientist to acquire additional speciic 
data to reine the model- building process. In either case, the model pro-
vides an important tool to test the relevance and impact of neuroscience 
data on a precise scientiic question.

Unifying Brain Models

he core strategy within the Human Brain Project is to continually pro-
duce new releases of unifying brain models. A unifying brain model is 
the model that best accounts for all available data by reproducing the 
greatest array of experimental data. here may be branches to test new 
ideas and new approaches in modeling the brain circuitry, but the model 
that reproduces the greatest number of experimental indings while ac-
counting for the most data will be tagged as the current release. his 
follows the open source model of code releases— many contributors will 
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add improvements, but the consortium will release a single improved 
new version. When an improvement to a model reproduces an addi-
tional experimental inding (without diminishing previous results) it 
can then be accepted as a new, validated model. Any new version of a 
model must demonstrate that it is an improvement over previous mod-
els and reproduces more experimental results. hus a virtuous loop is 
formed of continuous data integration and model reinement, resulting 
in a unifying model that integrates large sets of data that can be used to 
test new hypotheses and make speciic new predictions.

hese unifying models then serve as the key tools to extracting simpli-
fying principles. Are all the details necessary to explain nervous system 
function? What happens if basket cells are removed, or all neuron types 
are collapsed to only excitatory and inhibitory simpliied models? What 
would happen if the brain were damaged in an accident? Do we need to 
model the full dendritic arbor? he unifying model becomes a tool— a 
new integrated representation of the latest data and knowledge— with 
which we can test simplifying hypotheses of brain structure and func-
tion. he model becomes a tool to iteratively try diferent strategies of 
simpliication and validation— always learning what the impact is on 
brain activity and function when leaving out a particular detail. It is 
these simpliications that represent the core insights and principles to 
be gained from this project.

Behavior: The Brain- Body- Environment Connection

Behavior is the major output of the brain. he primary output of the 
brain is the control of our muscles and movements, which are the basis 
of behavior and language. At the same time the primary input to the 
brain comes from our senses: vision, hearing, smell, taste, and touch. 
Understanding the brain will not succeed without providing sensory 
input, and we cannot understand the brain’s ability to produce behav-
ior without motor outputs. hus it is essential to provide a simulated 
body to couple with a simulated brain. In fact the two together form a 
closed- loop system that will be an indispensible part of understanding 
the brain. he Neurorobotics Platform, led by the Technical University 
of Munich, will construct a platform that will provide simulated bodies 
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and sensory organs of varying levels of detail to enable the primary goal 
of producing sensory input and translating motor output signals from 
simulated nervous system activity into virtual movements. Computa-
tional models of the retina, cochlea, and other senses will be virtually 
embodied in simulated models that capture head position and move-
ment characteristics. In addition, the platform will include the simu-
lation of virtual environments, modeling real- world physics, that can 
mimic traditional behavioral and cognitive testing paradigms as well as 
more free- ranging environments. Eventually, the models may progress 
to include more detailed interfaces between spinal cord and individual 
muscles, but they will start out in a much simpler form, for example, 
translating neural impulses into movement commands. hese two com-
ponents, simulated bodies and simulated environments, will be the core 
of a closed- loop simulation engine to be coupled with the large- scale 
brain simulations. Ultimately, simulating a virtual mouse in a virtual 
maze will provide an important tool for understanding the causal mech-
anisms of cognition, how the brain creates memories, makes decisions, 
and generates behavior.

Modeling Brain Disorders and Diseases

he Medical Informatics Platform, led by Centre Hospitalier Univer-
sitaire Vaudois (CHUV), EPFL, and University College London, is 
charged with making it possible to analyze large quantities of clinical 
data (across many hospitals and clinics) to build biological signatures 
of brain disorders and diseases. his means using machine learning to 
mine many thousands of patient records (without personally identify-
ing any individual) to ind characteristic disease signatures for disorders 
such as Alzheimer’s, Parkinson’s, or depression. he data will be used 
to ind rules from the analysis of demographic data, lab tests, genetic 
information, and brain imaging. hese rules can then be used to help 
diagnosis, predict prognoses, and develop new treatments for patient 
populations. he disease signatures that will characterize things like 
protein levels, brain area volumes, and cell densities will serve as tools 
for parameterizing whole brain models of disease. he simulations of 
these models can help identify potential targets for treatment.
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Ethics

Simulating a whole brain raises important ethical issues. he HBP has 
committed substantial resources to monitoring and discussing ethical 
issues during the course of the project. Even if a tool that simulates the 
human brain is a long way of, it is important that a dialogue begin be-
tween scientists, citizens, and society at large to establish a process for 
guiding policy on the types of simulations that should be pursued. For 
example, would it be responsible to build simulations of a brain that is 
larger than the human brain, or how should we approach the study of 
conscious experience or pain? As with all scientiic advances, it is im-
portant that scientists and society jointly discuss and establish respon-
sible policies and guidelines.

Swarm Science

One goal of the Human Brain Project is to trigger and facilitate a new 
wave of global collaboration in neuroscience. Much as the CERN was 
conceived as an international resource for physics experiments, the 
HBP aims to serve as a global resource for neuroscience and provide a 
new instrument for understanding the brain.

With an Internet accessible tool to access neuroscience data, build 
models, and run simulations of brain circuitry, the HBP will create an 
opportunity for the global neuroscience community to collaborate in 
a way that has not previously been possible. he HBP portal will also 
integrate scientiic social networking and make it possible to share data, 
analyses, models, simulations, and publications. Because each of these 
can be fully attributed to their contributors, it will become possible to 
develop new incentives for data sharing and collaboration. Impact scores 
can take into account which datasets, analyses, or models are the most 
highly used or rated. he social network graphs can be used to develop 
recommendations for data, models, or publications of interest to indi-
vidual researchers. he portal will also support dynamic team building; 
it will bring together the best researchers to tackle speciic challenges 
in understanding the brain. If successful in engaging the community, 
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the aim is to have swarms of scientists attacking the major challenges of 
understanding the brain and its disorders together— in an environment 
where every individual will receive credit for his or her contribution.

A Global Effort to Understand the Brain

Initiatives to understand the brain and its disorders are emerging all 
around the globe: the Allen Institute for Brain Science, the US BRAIN 
Initiative, One Mind for Research, the Human Brain Project, and new 
initiatives forming in China, Japan, and Australia. No single initiative 
will accomplish the goal of understanding the brain alone; a spirit of 
global cooperation will be essential.
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B U I L D I N G  A  B E H AV I N G  B R A I N

Chris Eliasmith

One of the grand challenges that the National Academy of Engineers 
identiied is to reverse engineer the brain. Neuroscientists and psychol-
ogists would no doubt agree that this is, indeed, a grand challenge.

But what exactly does it mean to “reverse engineer” a brain? In gen-
eral, reverse engineering is a method by which we take an already made 
product and systematically explore its behavior at many levels of de-
scription so as to synthesize (that is, build) a similar product. We at-
tempt to identify its components and how they work, as well as how 
they are composed to give rise to the global behavior of the system. With 
systems as complex as the brain (or a competitor’s silicon chip), the syn-
thesizing step is usually carried out as a sotware simulation.

Reverse engineering the brain could bring many beneits. For in-
stance, it would allow us to better understand the biological mecha-
nisms that the brain employs and how they tend to fail in disease. At 
a more abstract level, reverse engineering the brain might allow us to 
discover efective information- processing strategies that we can import 
into our own engineered devices. Perhaps more surprisingly, our un-
derstanding of the basic properties of physical computation also stand 
to beneit from such research— neurons, ater all, do not compute like 
a typical digital chip. In short, reverse engineering the brain will allow 
us to: (1) understand the healthy and unhealthy brain and develop new 
medical interventions, (2) develop new kinds of algorithms to improve 
existing machine intelligence, and (3) develop new technologies that ex-
ploit the physical principles exhibited by neural computation.

here are currently several large- scale brain simulations already 
being developed, each aiming to understand the actions of a million 
neurons or more. One project, supported by the Defense Advanced 
Research Projects Agency (DARPA), is IBM’s SyNAPSE project, which 
aims to build a new kind of computer patterned ater the brain. hat 
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team recently announced a ive- hundred- billion- neuron simulation 
(the human brain has about one hundred billion neurons). he individ-
ual neurons in SyNAPSE resemble actual neurons in that they generate 
neural action potentials (or “spikes”) to communicate, and they incor-
porate some elements of individual neuron physiology (although they 
are much simpler than their biological counterparts in that they have 
no spatial extent and model only a few of the many currents found in a 
cell). A second high proile brain model is the €1 billion Human Brain 
Project, which grew out of the Swiss Blue Brain project, a simulation of 
(thus far) one million neurons. Although the total number of neurons 
simulated is small by comparison to the SyNAPSE project, the Human 
Brain Project aspires to model individual neurons in considerable de-
tail, capturing neuron shape, hundreds of currents, and the dynamics of 
neural spiking for each cell. he trade- of for this increase in biological 
detail is that each neuron is far more computationally costly to simulate. 
Compared to the few equations per neuron in the SyNAPSE project, the 
Human Brain Project simulations have hundreds of equations per neu-
ron. While this level of detail can be surpassed by adding more detailed 
molecular dynamics or including the important contributions of glial 
cells, at present this degree of biological idelity is much higher than in 
other large- scale models.

From a reverse engineering perspective, large- scale simulations are 
an important step forward. hey establish the computational feasibility 
of simulating large numbers of components. However, existing large- 
scale brain simulations like SyNAPSE and the Human Brain Project lack 
a key ingredient for successful reverse engineering: showing how the 
vast array of neural components relate to behavior. As yet, these models 
do not remember, see, move, or learn, so it is diicult to evaluate them 
in terms of what is, arguably, the purpose of the brain.

Behavior and the Brain

My group has taken a diferent approach, aimed at understanding the 
neural underpinnings of behavior. Our most recent model, called Spaun 
(Semantic Pointer Architecture Uniied Network), has a single eye, 
which takes digital images as input, and a single, physically simulated 
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arm, which it moves to provide behavioral output (see igure 1a). Inter-
nally, its 2.5 million neurons generate neural spikes to process the input 
(for example, recognize and remember digits) and generate relevant out-
put (for example, draw digits with its arm; see igure 1b). hese neurons 
are organized to simulate about twenty out of the approximately one 
thousand diferent areas typically identiied in the brain (see igure 2a). 
hese areas were chosen to provide a suitably rich set of functions while 
remaining computationally tractable. he biophysical model of individ-
ual neurons that Spaun uses is quite simple. As in the SyNAPSE project, 
only a few equations are needed to describe each neuron. hese neurons 
communicate using neural action potentials (spikes). When impacting 
a neighboring neuron’s synapse, these spikes elicit a simulated version of 
one of four neurotransmitters (out of the tens or hundreds of diferent 
kinds) found in the brain. Again, this level of physiological and ana-
tomical detail provides a practical compromise between computational 
simplicity and functionality.

One of Spaun’s virtues, relative to SyNAPSE and the Human Brain Proj-
ect, is its global, brain- like structure. Whereas the neurons in SyNAPSE 
form a largely undiferentiated, or statistically uniform mass, in Spaun 
they are organized to relect the known anatomy and function of the 
brain. One set of neurons is modeled ater those in the frontal cortices, 
playing important roles in working memory and the tracking of task con-
text. Other neurons make up a simulated basal ganglia, where they help 
the model learn new behavioral strategies and control the low of infor-
mation throughout much of the cortex. Still others are modeled ater the 
neurons in the occipital lobe, allowing Spaun to visually recognize hand-
written digits it has never seen before. Neurons in Spaun are physiologi-
cally similar (that is, using the kinds of neurotransmitters found in that 
part of the brain, spiking at similar rates, and such), functionally similar 
(that is, are active in similar ways under similar behavioral circumstances 
as in the brain), and are connected in a similar manner (that is, receiving 
inputs from and projecting out to some of the same brain areas that a 
real neuron would) to neurons in the corresponding area of a biological 
brain (see igure 2a). For example, there are two diferent kinds of me-
dium spiny neurons in the simulated basal ganglia that receive cortical 
projections and are inhibitory, but they have diferent kinds of dopamine 
receptors and project to diferent parts of the globus pallidus.
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Figure 1. A serial working memory task in Spaun. a. A conceptual description of the 
processing Spaun performs. It is irst shown a randomly chosen handwritten digit that 
it compresses through its visual system, allowing it to recognize the digit and map it 
to a conceptual representation (or “semantic pointer,” SP). hat representation is then 
further compressed by binding it to its position in the list and storing the result in 
working memory. Any number of digits can be shown in a row and will be processed 
in this manner. Once a question mark is shown, Spaun proceeds to decode its working 
memory representation by decompressing the items at each position and sending them 
to the motor system to be written out, until no digits remain. b. A screen capture from 
the simulation movie of this task, taken 2.5 s into the simulation time course shown in 
c. he input image is on the right; the output is drawn on the surface beside the arm. 
Spatially organized (neurons with similar tuning are near one another), low- pass- 
iltered model neuron activity is approximately mapped to the relevant cortical areas 
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To evaluate the model we compared it to a range of empirical data, 
drawn from both neurophysiological and behavioral studies. For in-
stance, a common reinforcement learning task asks rats to igure out 
which of several actions is the best one, given some probabilistic re-
ward (as if it were choosing between better-  and worse- paying tables in 
a casino). Single neuron spike patterns can be recorded from the ani-
mals while they are performing this task. Spaun matches the behavioral 
choice patterns of the rat, but in addition, the iring patterns of neurons 
in the ventral striatum of both the model and the rodent exhibit similar 
changes during delay, approach, and reward phases of this task.

here are several examples of Spaun’s neural iring patterns reproduc-
ing those found in real brains. In comparing to spiking data gathered 
from monkeys performing a simple working memory task, Spaun ex-
hibits the same spectral power changes of populations of neurons (and 
of single neurons) while performing the same task. Similarly, by com-
paring to data from a monkey visual task, we have shown that the tun-
ing of neurons in the primary visual area of the model matches those 
recorded in monkeys. In each case, the spiking data from the model and 
the animal were analyzed using exactly the same methods, to generate 
appropriate comparisons.

While matches to single neuron data can help build conidence in 
the basic mechanisms of the model, if we want to understand human 
cognition, it is oten the case that such data is unavailable. As a result, 
in studying humans we must oten rely more on behavioral compari-
sons. Here again, Spaun provides a good it in many cases. For example, 

and shown in gray scale (dark is high activity, light is low). hought bubbles show 
example spike trains, and the results of decoding those spikes are in the overlaid text. 
For striatum (Str), the thought bubble shows decoded utilities of possible actions, and 
in globus pallidus internus (Gpi) the selected action is darkest. c. Time course of a 
single trial of the serial working memory task for four digits. he stimulus row shows 
input images. “A3” indicates it is performing task 3 (serial working memory), the 
triangles provide structure to the input, and the question mark indicates a response is 
expected. he arm row shows digits drawn by Spaun. Other rows are labeled by their 
corresponding anatomical area. Similarity plots (solid gray lines) show the dot product 
(i.e., similarity) between the decoded representation from the spike raster plot and 
concepts in Spaun’s vocabulary. Raster plots in this igure are generated by randomly 
selecting 2,000 neurons from the relevant population and discarding any neurons with 
a variance of less than 10 percent over the run. Adapted from Eliasmith (2013).
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Figure 2. he architecture of the Spaun model. a. he anatomical architecture of the 
model (using standard anatomical abbreviations) drawn on the outline of a brain to 
indicate correspondences between model components and brain areas. Lines with 
circular endings indicate inhibitory projections. Lines with square boxes indicate 
modulatory connections exploited during learning. Other connections are excitatory. 
b. he functional organization of the model showing information low between com-
ponents. hick lines indicate information low between elements of model cortex, thin 
lines indicate information low between the action selection mechanism (basal ganglia) 
and model cortex, and rounded boxes indicate elements that can be manipulated to 
control the low of information within and between subsystems. he circular end of 
the line connecting reward evaluation and action selection indicates that this connec-
tion modulates connection weights. Line styles and ills indicate the mapping to the 
anatomical architecture in a. Adapted from Eliasmith (2013).
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Spaun makes the same kinds and frequency of errors as humans dur-
ing a serial working memory task (this task requires remembering and 
repeating back a list of numbers). his suggests that the neural mecha-
nisms in the model are plausible, although evidence is indirect. Simi-
larly, Spaun takes the same length of time per count as people do when 
internally counting numbers. Moreover, it also parallels people in show-
ing an increase in the variance of the reaction of time for longer counts, 
reproducing Weber’s famous law from psychophysics. here are many 
tests yet to be run, but as we continue to test the model in a variety of 
ways— both neurally and behaviorally— we strengthen our case that the 
principles we have used for reverse engineering the brain are on the 
right track.

his case is made signiicantly stronger by noting that it is the exact 
same model being used in each of these comparisons. Mathematical 
models, like Spaun, oten have parameters that are tuned to match spe-
ciic experimental results. his leads to the common worry that a model 
is “overit” to a particular experiment or type of experiment. However, 
we have made signiicant eforts to allay this concern. For example, the 
decay rate of working memory is set using data from human experi-
ments that are not included in any of the eight tasks that Spaun does. 
Many of the other parameters are set automatically using three prin-
ciples of neural implementation that we have developed over a decade 
of research (Eliasmith and Anderson 2003). But, most importantly, no 
matter how they are set, they remain constant across all of the tasks 
that Spaun performs (or, more accurately, only the model can change 
them itself, through learning). By leaving these parameters untouched 
across experiments, and by testing the model against a wide variety of 
experiments, such concerns of overitting become less plausible because 
the parameters are clearly not picked to work only under one or a few 
experimental conditions.

One of the central reasons for constructing such a model is to deter-
mine what it can teach us about how the brain functions. Interestingly, 
Spaun has generated several speciic predictions that are currently being 
tested. For instance, the model exhibits a particular pattern of errors on 
question answering tasks, despite a constant reaction time in respond-
ing to questions. In particular, questions about either the identity or po-
sition of an item are more likely to be incorrectly answered the closer 
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they are to the middle of the list. To the best of our knowledge this task 
has not yet been run on people, consequently it is an ideal prediction 
to test. Spaun has also given rise to speciic neural predictions. For ex-
ample, it suggests a particular pattern of similarity between the neural 
activity during encoding of a single item in working memory, versus en-
coding that same item along with other items. Speciically, the similarity 
of neural iring in Spaun drops of exponentially as items are added. his 
prediction contradicts that from other models of working memory in 
which the similarity stays constant. As a result, this particular predic-
tion is an excellent test of the mechanisms and assumptions of Spaun.

In contrast to large- scale simulations that produce a lot of neural ac-
tivity but little observable behavior, I would argue that Spaun is provid-
ing detailed, quantiiable insights into the organization and function of 
the brain. (Videos of many of the experiments run on Spaun can be 
found at http://nengo.ca/build-a-brain/spaunvideos.)

Coordinated for Flexibility

One key contribution of Spaun relative to many competing architectures 
is that Spaun can perform a variety of diferent behaviors, much like an 
actual brain. For example, Spaun can use its visual system to recognize 
numbers that it then organizes into a list and stores in its working mem-
ory. It can later recall this list and draw the numbers, in order, using its 
arm. Furthermore, Spaun can use this same visual system to parse more 
complex input and recognize patterns in digits it hasn’t seen before. To 
do so, it uses the same memory system, but in a slightly diferent way. As 
well, it uses other brain areas that it didn’t use in the list recall task. hat 
is, Spaun can deploy the same brain areas in diferent ways depending 
on what task it needs to perform (see igure 2b).

his kind of “lexible coordination” is something that sets animal 
cognition apart from most current artiicial intelligence. Animals can 
determine what kinds of information processing needs to be brought 
“online” in order to solve a given challenging problem. In other words, 
diferent, specialized brain areas are coordinated in a task- speciic— that 
is, lexible— way to meet a challenge presented by the environment. As 
people, this ability comes very naturally to us, so it is an ability that we 

http://nengo.ca/build-a-brain/spaunvideos
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oten overlook. When I switch from composing an e- mail to reading a 
book, to making a drink, to chasing my cat, I have coordinated many 
diferent parts of my brain in many diferent ways, and oten with little 
delay in between. Because animals have evolved in a dynamic, challeng-
ing environment, this kind of behavioral lexibility is critical. In fact, 
Merlin Donald and others have suggested that humans are incredibly 
evolutionarily successful because they exhibit this kind of adaptability 
better than almost any other species.

One of the central goals of the Spaun project is to develop a preliminary 
understanding of how this kind of lexible coordination occurs in the mam-
malian brain. As a result, there is an important distinction in the model be-
tween midbrain and cortical regions. he midbrain regions, dominated by 
the basal ganglia, play a crucial role in coordinating information process-
ing largely carried out in the cortex. So the architecture of Spaun essentially 
consists of an “action selector” (the basal ganglia), which monitors the 
current state of the cortex and determines how information needs to low 
through the cortex to accomplish a given goal. However, the basal ganglia 
itself doesn’t perform complex actions. Instead, it helps organize the cortex, 
so the massive computing power available there can be directed at the cur-
rent problem in the right way. his allows Spaun to perform any of eight 
very diferent tasks in any order, while remaining robust to unexpected 
input and noise. Spaun determines what task to do by understanding its 
input. When it sees the letter “A” followed by a number, Spaun determines 
how to interpret subsequent input (for example, “A3” means that it should 
memorize the list of numbers it is shown next; see igure 1b).

The Benefits of Reverse Engineering

It is perhaps not surprising that in the mammalian brain, the basal 
ganglia have been found to be important for selecting what to do next. 
Problems including damage and neurodegeneration in the basal ganglia 
result in behaviors related to addiction, anxiety, and obsessive compul-
sive disorder. As well, the tremors associated with Parkinson’s disease 
ind their root in a malfunction of these areas. Consequently, under-
standing the mechanisms that underwrite lexible coordination have 
signiicant consequences for health.
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In a similar vein, Spaun has allowed us to cast light on the cogni-
tive decline associated with aging. here is currently a long- standing 
debate about whether or not the known reduction in brain cells with 
aging is related to the measured decline in performance on cognitive 
tests. he Raven’s Progressive Matrices (RPM) test is a standard IQ test 
that has oten been used to track this kind of change. he RPM test 
asks subjects to igure out how to complete a visual pattern of some 
kind. In fact, one of the tasks that Spaun performs is modeled ater this 
test (and Spaun has been shown to perform about as well as a human 
of average intelligence). More recently, my lab has developed a model 
using the same architecture as Spaun that is able to perform the exact 
same test as is used on human subjects. Again, it performs about as 
well as average humans. Because the model has neurons, we can, for 
the irst time, explore the causal relation between damaging those cells 
(as happens naturally during aging) and performance on the RPM. By 
running hundreds of versions of this kind of model, we can show that 
the performance of the models reproduces the standard “bell curve” of 
human populations, and that neuron loss due to aging can cause a uni-
form shit downward in that distribution. In short, we have been able 
to show how the cognitive decline due to aging could be a direct result 
of neuron loss.

Less obviously, understanding brain mechanisms is likely to provide 
us with new insights into how to build intelligent artiicial systems. At 
the moment, most successes in machine intelligence master a single 
ability: machines are good at playing chess, or answering Jeopardy! ques-
tions, or driving a car. People, of course, can be quite good at all of these 
tasks. I believe this is because people can lexibly coordinate their skills 
in ways not currently available to machines. While most of the speciic 
tasks that Spaun performs can be reproduced by artiicial intelligence 
algorithms, the variety of tasks that Spaun performs is atypical of the 
ield. Interestingly, Spaun also exhibits a nascent ability to learn new 
behaviors on its own (speciically, it can learn to choose diferent ac-
tions based on rewards in a limited manner), while preserving abilities 
it already has. One focus of future research on Spaun is to expand this 
ability to allow it to learn much more sophisticated tasks on its own, 
either through explicit instruction or through trial and error learning.
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Building a Physical Brain

Even if we did understand the algorithms of the brain, it is not clear that 
we could usefully implement them on the computers of today. his is be-
cause the physical strategies the brain adopts for processing information 
lie in stark contrast to those we currently use in our computers. Silicon 
chips in our computing devices are engineered to eliminate uncertainty: 
transistors are either “on” or “of.” his precision comes at the price of 
high power usage. Desktop computers of today typically use hundreds 
of watts. he brain, in contrast, uses only about 25 watts, and it performs 
far more sophisticated computations. And, it seems, the brain relies on 
highly unreliable, noisy devices: synapses fail much of the time, neu-
rotransmitters are packaged in variable amounts, and the length of time 
it takes an action potential to travel down an axon can change.

hrough reverse engineering, researchers have noticed these funda-
mental diferences and have been motivated to develop “neuromorphic” 
silicon chips. Several of these chips arrange basic analog components 
of silicon chips in a manner that models of the behavior of cells in the 
cortex; these models have voltages with dynamics like those of neurons, 
and even communicate using spikes and synapses the way neurons do. 
Millions of such neurons can be arranged into a space smaller than a 
deck of cards and use less than 3 watts of power. In addition, they run 
in real time. his is important, since Spaun, for example, takes about 
2.5 hours of real time to simulate 1 second of behavior using a digital 
supercomputer and kilowatts of power.

One reason these chips are promising is that many are currently fab-
ricated with decades- old digital technology. Consequently, as they are 
moved to newer, already available, fabrication facilities they will be able 
to exploit the exponential improvement in component density. Further-
more, the limits on size afecting digital technology may not apply in 
the same way to neuromorphic approaches. his is because these limits 
are oten a consequence of noise resulting from unexpected behaviors 
when devices get very small. Neuromorphic technology, being modeled 
ater the noisy, stochastic brain, has faced such problems throughout 
its development: like the brain, neuromorphic hardware tends to be 
low power, analog, and asynchronous. hese features tend to make the 
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efects of noise very salient— efects usually “engineered away” in digital 
hardware. Consequently, the improvements in computing power and ef-
iciency we tend to expect of digital technology may now be more read-
ily realized by brain- based approaches.

However, one challenge in usefully employing such neuromorphic 
hardware has historically been a lack of methods for systematically pro-
gramming noisy, low- power, highly variable hardware of this type. But, 
as we continue to reverse engineer neural algorithms to build large- scale 
brain models, we have been concurrently developing such methods. In-
deed, the same techniques used to build Spaun (called the Neural Engi-
neering Framework, or NEF; Eliasmith and Anderson 2003) have been 
used to program several diferent kinds of neuromorphic chips. Conse-
quently, the future of both neuromorphic programming and large- scale 
brain modeling are intimately tied. Together I believe they will usher 
in a new era of low- powered, robust, lexible, and adaptive computing.

In conclusion, eforts to address the grand challenge of reverse en-
gineering the brain are clearly underway. Large- scale models at various 
levels of biological detail are being developed around the world. Models 
like Spaun— models that connect the activity of individual neurons to 
behavior— are an important part of that efort, as they provide fertile, 
speciic hypotheses that stand to signiicantly improve our understand-
ing of how the brain works. While Spaun has forty thousand times fewer 
neurons than are in the human brain, it nevertheless provides testable 
and predictive ideas about neural organization and function. As such 
models improve— and they are likely to do so exponentially in the com-
ing years— they will have far- reaching consequences for the development 
of new treatments and new technologies. hese models will begin to shed 
light on one of the most complex physical systems we have ever encoun-
tered, and, in so doing, change our basic understanding of who we are.
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L A N G U A G E

Language is uniquely human, at least in the sense of our being able to 
talk not just about the here and now but about the abstract, the complex, 
the future, and the hypothetical. Language is also uniquely diicult to 
study; there are no direct animal models (though birdsong can be infor-
mative), and sharp ethical limits constrain what techniques can be used. 
If most work in neuroscience is on vision and motor control, it’s partly 
because those areas of the mind are more easy to study.

David Poeppel argues that the key challenge in understanding lan-
guage is to bridge between a vocabulary of neural elements (such as 
axons and cell bodies) and a vocabulary of linguistic elements (such 
as nouns and verbs). He suggests that techniques such as brain imag-
ing have not been adequate to the task but give hints into research that 
might take us closer. Simon Fisher explores an analogous set of chal-
lenges in bridging between DNA, genes, brains, and complex behavior, 
focusing on the case of human language. As he puts it, “we are at a wa-
tershed in genomics research, one that is set to transform multiple ields 
of neuroscience in unprecedented ways.”





T H E  N E U R O B I O L O G Y  O F  L A N G U A G E

David Poeppel

The Origin and Transformation of Research on  
the Neurobiology of Language

he ease, speed, and apparent automaticity with which we can greet a 
friend, follow a conversation, or read this sentence belie the consider-
able complexity of such seemingly efortless language tasks. Even the 
most elementary linguistic “event,” say recognizing a single spoken 
word (“prose”), requires the coordination of a number of complex sub-
processes (for example, analysis of the basic acoustic signal attributes, 
phonetic decoding, look- up/matching of the item in one’s mental dic-
tionary, retrieval of the word’s pronunciation instructions, meaning, 
and grammatical speciications). And comprehending or producing a 
sentence (“Composing prose is an arduous afair”) entails the subtle or-
chestration of dozens of underlying component operations.

Typically, one becomes aware of the internal structure and complex-
ity of language processing only when it goes wrong; for example, follow-
ing a stroke, in the case of developmental language impairment, or with 
severe dyslexia. In fact, it was a stroke and its medical work- up by the 
French neurologist Paul Broca in 1861 that played a critical role in one of 
the foundational insights for all of the neurosciences: the concept of func-
tional localization. Broca described a language deicit and was able to re-
late it to a speciic brain injury in the let inferior frontal lobe. his “deicit- 
lesion- correlation” approach has formed the basis for an impressive list 
of insights about brain organization for many aspects of perception and 
cognition— and in Broca’s case, the eponymous brain region is thought to 
be one of the paradigmatic brain regions mediating (parts of) language.

Neuropsychological research of this type dominated the study of brain 
and language until the 1980s. Although the ability to discover neurobio-
logical mechanisms was (and is) very restricted, this line of work has oten 
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been thoughtfully tied to psychological and linguistic research. Indeed, 
many of the functional dissociations we now take for granted originated 
with the careful documentation of linguistic deicits subsequent to local 
brain injuries. It is now beyond dispute that the parts are realized in dif-
ferent brain regions and by diferent mechanisms. However, the assign-
ment of functions to brain regions remains a challenge. In part this has 
to do with questions about the granularity of the functions (what are the 
right level(s) of description? Language? Syntax? Noun phrase? Syntactic 
Constituent?), and in part it has to do with uncertainty about the biologi-
cal “units” to which one ascribes a localized function (Region? Column? 
Microcircuit? Neuron?). A statement such as “Broca’s area underpins lan-
guage production” (or “speech,” or “syntax,” or other broad categories of 
linguistic experience) is not just grossly underspeciied, it is ultimately 
both misleading and incorrect. Broca’s region is not monolithic but in-
stead is comprised of numerous subregions as speciied by cytoarchitec-
ture, immunocytochemistry, laminar properties, and so on. And domains 
of language such as “syntax” are similarly not monolithic but shorthand 
for complex suites of underlying representations and computations. It is 
perhaps not surprising that a brain area such as Broca’s region is therefore 
implicated in many functions, some of which are not even particularly 
tied to language. For example, in addition to language- speciic functions 
such as syntactic processing or phonology (which, one might note, are 
diferent in kind, although clearly linguistic), functional imaging studies 
have attributed to Broca’s area the processing of hierarchically organized 
motor actions as well as rhythm processing. While such functions are re-
lated to language processing in a broad sense, they apply to many other 
domains of cognition. Future work ought to focus on “decomposing” or 
fractionating such complex psychological functions into putative primi-
tive operations to account for the wide range of phenomena that are me-
diated by anatomically complex brain structures such as Broca’s area.

Two Challenges for the New Neuroscience of Language

Current research attempts to align language research with issues at the 
core of systems neuroscience: detailed neurophysiological and neuro-
anatomic characterizations of language processing as well as questions of 
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neural coding. Some interesting empirical and theoretical challenges lie 
ahead. Two ideas for future work to grapple with are raised here, (i) a 
practical one and (ii) a principled one. he practical challenge has to do 
with how to conceive of the main form of data at the basis of cognitive 
neuroscience: maps of the brain and maps of brain activation. he maps 
problem concerns the extent to which (spatial and temporal) information 
about brain activity can provide a satisfactory description of the neural 
basis of complex brain functions. New advances in technology are mak-
ing it possible to record from populations of neurons with ine spatial and 
temporal resolution in model systems, but insofar as the study of language 
is speciic to humans, the ield has necessarily relied on noninvasive meth-
ods. he techniques that currently dominate the ield (whether spatially 
specialized, such as fMRI, or temporally specialized, such as EEG or MEG) 
predominantly characterize results in terms of spatial attributes (that is, 
local topographic organization, processing streams like dorsal versus ven-
tral pathways, or networks of interconnected brain regions). Characteriz-
ing brain activity in spatial terms is intuitively straightforward and pleas-
ing (spot A “does”/executes function X, spot B underpins function Y, and 
so on), oten more or less correct at a broad level, and has captured the 
professional and the popular imaginations. While such approaches have 
been criticized extensively— and oten with good reason, given that lo-
calization of function, even if accurate, is not equivalent to a mechanistic 
explanation— the fact that there exists some localization of function is an 
important feature of brain organization that merits explanation.

Current analyses show that some area or set of areas is selectively 
modulated in the context of some experimental design, and it is then 
argued that activation of a given region underlies, for example, “phono-
logical processing,” or “lexical access,” or “syntax.” Such results are, how-
ever, inevitably merely correlational. Even when systematic relations are 
implicated consistently between brain regions and certain functions, we 
ind no explanation for why things are organized as they are, nor any 
sense of which properties of neuronal circuits account for the execution 
of function. To put it in a slogan, localization is not explanation.

In fact, even the highest- resolution data from (existing or to be de-
veloped) new techniques will remain inadequate— unless we succeed 
in decomposing language tasks into the types of primitives or com-
putational elements that can be related to local brain structure and 
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function. An intermediate step, in other words, is to determine theoreti-
cally well- motivated (from linguistics, psychology, computer science), 
computationally explicit, and biologically realistic characterizations of 
function to advance to better linking hypotheses. In summary, the maps 
problem— the thorough characterization of brain regions underpinning 
language processing— should be considered an important intermediate 
step, but it remains an intermediate way station that will yield corre-
lational insights but not mechanistic explanations. he maps problem 
is, however, a “mere” practical limitation, that is, it is a relatively well- 
deined problem, and developing the linking hypotheses at the right 
level of granularity (discussed below) can plausibly yield satisfying de-
scriptions of the relevant brain regions.

he principled challenge (as opposed to the above, practical one) deals 
with what we might call the “alignment” between the basic elements or 
primitives of language (such as syntactic units) and those of neurobi-
ology (for example, neural circuits). What is the formal and causal re-
lationship between the “parts list” of cognition and the “parts list” of 
neurobiology? he problem of mapping is the challenge of specifying 
the formal relations between two sets of inventories, the inventory con-
structed by the language sciences and that constructed by the neurosci-
ences. he cognitive sciences, including linguistics and psychology, pro-
vide analyses of the ontological structure of various domains (let us call 
this the “human cognome,” that is, the comprehensive list of elementary 
representations and operations); neurobiology similarly provides a list of 
the neural structures that have been identiied to have functional signii-
cance. he infrastructure of linguistics— building on formally speciied 
concepts such as syllable or noun phrase or discourse representation, and 
such— provides a structured body of concepts that allows linguists to 
investigate generalizations about languages that speakers bring to bear, 
about the course of language acquisition, about online language process-
ing, about historical change of languages, and so on. he neurosciences— 
deining units of analysis such as dendrite or cortical column or long- term 
potentiation— outline the structural and functional features of the brain. 
But how do these ostensibly diferent units of analysis relate? he sim-
plest mappings one might conceive of make little sense; there is unlikely 
to be any straightforward mapping between a neuron and a syllable or 
a cortical column and noun phrase, yet we have little idea even how to 
state more complex (but perhaps plausible) mappings. he fact is that we 
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have essentially no idea how the “stuf of thought” relates to the “stuf of 
meat,” in the case of speech and language, and much the same is true in 
virtually all domains of higher cognition. Bridging language and neuro-
biology in an explanatory fashion requires the formulation of computa-
tionally explicit linking hypotheses at the right level of abstraction.

A critical question for future research concerns at what level of ab-
straction to articulate such linking hypotheses. A starting point is the 
approach the vision scientist David Marr champions: separating com-
putational, algorithmic, and computational levels of description. In the 
context of work on brain and language, the computational level of analy-
sis is provided by linguistics and psychology, the implementational level 
by systems and cognitive neuroscience. A focus on the algorithmic/rep-
resentational level (computer science, psycholinguistics, computational 
neuroscience) might provide a productive new perspective on formulat-
ing hypotheses that bridge between high- level computational and low- 
level implementational concerns. To provide an explicit example: many 
aspects of language processing, at the lexical, sentential, or discourse lev-
els, require some (allegedly) simple operation such as concatenation (X, 
Y ≥ X − Y; for example, “long paper” or “the tree” or “three blind mice”). 
Concatenating elements is seemingly simple and certainly ubiquitous— 
but has subtle properties (for example, does the conjunct, when further 
processed, carry the functional identity of X or Y, a property oten called 
“headedness”?). his very straightforward operation has, as yet, no neu-
robiological account. It would constitute stunning progress if, in a few 
years, we could provide a mechanistic explanation for how neural cir-
cuits are arranged to compute “red boat” or “tasty apple.” Despite the 
terriic progress that cognitive neuroscience of language has made in the 
last twenty years, mechanistic neurobiological explanations are lacking.

Some Promising Directions: Correlational Examples,  
with Explanatory Ambitions

Syntactic Primitives

he goals of syntactic research over the last twenty years align well 
with the goals of cognitive and systems neuroscience (for example, in 
work on computational vision, see chapter by Carandini): to identify 
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fundamental neuronal computations that (i) underlie a large number 
of (linguistic) phenomena, and (ii) rely as little as possible on domain- 
speciic properties. As a concrete example, the syntactic theory known 
as minimalism, developed by Chomsky and others, has formulated a 
two- step syntactic function called “Merge” (see above re concatenation) 
that separates into a domain- general computation that combines ele-
ments (somewhat akin to binding, in the context of systems neurosci-
ence), and a probably more domain- speciic computation that labels the 
output of the binding computation:

(1)  Bind: Given an expression A and an expression B, bind  
A,B → {A,B}

(2)  Label: Given a combined {A,B}, label the complex A or  
B; → {A A,B} or {B A,B}

Recent work in linguistics suggests that many of the complex properties 
of natural languages can be modeled as repeated applications of these 
Bind and Label computations. Furthermore, the formal characterization 
of these computations in set- theoretic terms provides a computational- 
level description similar to the formal characterization of neuronal 
computations in other domains of cognition (for example, normaliza-
tion functions in vision). his new direction in syntactic theory marks a 
radical departure from earlier theories, which contained a large number 
of disparate kinds of rules and relied heavily on domain- speciic prop-
erties of those rules. he time seems right for a renewed collaboration 
between syntacticians and cognitive/systems neuroscientists, teaming 
up to search for the neural circuits that subserve fundamental syntactic 
computations like Concatenate/Combine/Bind and Label, and ultimately 
the neuronal encoding of the computations themselves. Cognitive and 
systems neuroscientists who were dissuaded by the many rules of earlier 
syntactic theories may be heartened to learn that linguists have already 
begun to reformulate syntactic theories in terms of (putative) funda-
mental neuronal computations.

Speech Perception and Cortical Oscillations: Emerging Computational Principles

Recognizing spoken language requires parsing or chunking relatively 
continuous input into discrete units that can connect with the stored 
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information that forms the basis for processing, or informally, words. 
In addition to such a parsing stage, there must also exist a decoding 
stage in which parsed acoustic information is transformed into rep-
resentations that underpin linguistic computation. In the last decade, 
functional anatomic and physiological studies have identiied the in-
frastructure of the language- ready brain. In particular, the functional 
anatomy of speech sound processing is comprised of a distributed corti-
cal system encompassing regions along (at least) two streams. A ventral, 
temporal lobe pathway provides the substrate to map from sound input 
to meaning/words. A dorsal path along parietal and frontal lobes allows 
for the sensorimotor transformations that underlie the mapping to out-
put representations.

Speech contains information (required for successful decoding) 
that is carried at multiple timescales: intonation- level information at 
the scale of 500– 1,000 ms; syllabic information closely correlated to 
the acoustic envelope of speech at the scale of 150– 300 ms; and rap-
idly changing featural (and phonemic) information at the scale ~20– 80 
ms. he diferent aspects of signals (slow and fast temporal modula-
tions, frequency composition) must be analyzed for successful recogni-
tion. Psychophysical and neurophysiological experiments suggest that 
neuronal oscillations at diferent frequencies (delta 1– 3 Hz, theta 4– 8 
Hz, low gamma 30– 50 Hz) may provide some of the mechanisms that 
form the basis for parsing and decoding speech. In order to achieve 
the parsing/chunking of naturalistic input into manageable units, one 
mesoscopic- level mechanism is argued to consist of the sliding and 
resetting of temporal windows, implemented as phase locking of low- 
frequency activity to the envelope of speech and resetting of intrinsic 
oscillations on privileged timescales. he successful phase resetting of 
neuronal oscillations provides time constants (or optimal temporal in-
tegration windows) for parsing and decoding speech signals. It has been 
shown recently in both behavioral and physiological experiments that 
eliminating such oscillatory phase- resetting operations compromises 
speech intelligibility. Such studies connect the neural infrastructure 
provided by neural oscillations to well- known perceptual challenges in 
speech recognition. An emerging generalization suggests that acoustic 
signals must contain an “edge,” that is, an acoustic discontinuity that the 
listeners use to chunk the signal at the appropriate temporal granularity. 
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Acoustic edges in speech are likely to play an important causal role in 
the successful perceptual analysis of complex auditory signals, and this 
type of perceptual analysis is closely linked to the existence and causal 
force of cortical oscillations.

Computational Neuroanatomy of Speech Production

Research on speech production is typically conducted in the context of 
two distinct traditions, psycholinguistics, where insights at the level of 
phonemes, morphemes, and phrasal level units are sought, and motor 
control/neural systems, concerned with kinematic forces, movement 
trajectories, and feedback control. hese areas of research are, some-
what surprisingly, rarely linked. A standard argument regarding the dis-
connection states that the two approaches are focused on diferent levels 
of production tasks: psycholinguists work at an abstract and perhaps 
even amodal level of analysis; motor control/neuroscientists examine 
lower- level articulatory control processes. However, closer examination 
reveals provocative convergence, suggesting that both approaches have 
much to gain by working toward integration. For example, psycholin-
guistic research has documented the existence of a hierarchically orga-
nized speech production system in which planning units ranging from 
articulatory features to words, intonational contours, and even phrases 
are used. Motor control approaches, on the other hand, have emphasized 
the role of eference copy signals from motor commands and the role of 
internal forward models (the tacit “knowledge” an organism has of its 
action systems and efectors, providing the ability to calculate predicted 
outcomes of actions) in motor learning and control (see related exam-
ples in chapter by Shenoy). Integration of such notions from the two 
traditions has generated several hierarchical feedback control models 
of speech production that provide elegant links between the domains. 
he architecture of these models typically derives from state feedback 
models of motor control, but new models incorporate processing levels 
that have been identiied in psycholinguistic research. he architecture 
includes a motor controller that generates forward sensory predictions. 
Communication between the sensory and motor systems is achieved by 
an auditory– motor translation system.
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Building Meaning from Smaller Parts

Whether as speech, sign, text, or Braille, the essence of human language 
is its unbounded combinatory potential: the systems of syntax and se-
mantics permit the composition of an ininite range of expressions from 
a inite (and rather limited) set of elementary building blocks. Con-
structing complex meanings is not just the concatenation of strings. he 
combinatory operations of language are subtle and invite systematic in-
vestigation. Why, for example, does every native English speaker have 
the clear intuition that “piling the cushions high” results in a high pile 
and not high cushions, whereas “hammering the ring lat” gives you a 
lat ring instead of a lat hammer? Questions of this type are answered 
by research in theoretical syntax and semantics, research areas that ofer 
detailed cognitive models of the representations and computations that 
derive such complex linguistic meanings. To date, research on neurolin-
guistics (at least semantics) has remained almost entirely disconnected 
from this body of work. Consequently, our understanding of the neu-
robiology of the combination of words and the composition of mean-
ing is generic and coarse. Neuroscientiic work on syntax and semantics 
typically implicates a general network of “sentence processing regions,” 
but the computational details have not been addressed. Recent research 
aims to bridge this gap: for example, some recent studies systematically 
vary the properties of composition to investigate the detailed computa-
tional roles and spatiotemporal dynamics of the diferent brain regions 
participating in the construction of complex meaning. he combina-
tory network this research implicates comprises at least the let anterior 
temporal lobe and the angular gyrus. Of these regions, the let anterior 
temporal lobe operates early (~200– 300 ms) and appears specialized 
to the combination of predicates with other predicates to derive more 
complex predicates (as in red boat). he roles of the other regions appear 
to be more general and later in time (~400 ms). Contrary to hypotheses 
that treat natural language composition as monolithic and localized to 
a single region (say, Broca’s area), the emerging picture suggests that 
composition is achieved by a network of regions that vary in their com-
putational speciicity. By connecting the neurobiology of language to 
formal models of linguistic representation, the work decomposes the 
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various computations that underlie the brain’s combinatory capacity. 
Note that such results are not yet explanatory; they correlate between 
putative linguistic primitives and cortical areas. However, this interme-
diate problem can form the basis for subsequent studies, building to-
ward mechanistic, explanatory relations between neuronal circuitry and 
hypothesized elementary functions.

he study of language and its neural foundations is poised to play a 
pivotal role in the investigation of complex brain function. he research 
builds on a rich theoretical basis, established ater decades of research 
on the computations and representations that comprise language. More-
over, the neurobiological approaches to study language are of increas-
ingly high resolution and analytic sophistication. he signiicant gaps 
can be addressed: we are missing relevant computational analyses (at 
the right level of abstraction) to link language processing and neurosci-
ence. As a consequence, the particular emphasis should be on compu-
tational linking hypotheses. Only then will the realistic goal of a new 
“computational neurobiology of language” be in our grasp.
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T R A N S L AT I N G  T H E  G E N O M E  
I N  H U M A N  N E U R O S C I E N C E

Simon E. Fisher

At the beginning of 2001, geneticists reported the initial drat sequence 
of the genome of Homo sapiens, the outcome of a huge efort that had 
occupied thousands of scientists across the world for more than a de-
cade, with a price tag of several billion dollars. By 2004 this initial drat 
had been converted into an almost complete representation; the re-
searchers estimated that over 99 percent of the human genome was now 
covered with high accuracy (less than one error in every 100,000 letters 
of DNA). In the years that followed, thanks to the ingenuity of a new 
breed of molecular biologists, we witnessed an astonishing transforma-
tion in DNA sequencing technologies. he costs, resources, and time 
required for reading of the letters of any person’s individual genome 
have dropped dramatically. At the time of writing this piece (late 2013), 
an entire human genome, or at least a very large proportion of it, can be 
accurately sequenced for just a few thousand dollars in a matter of days, 
with cheaper and quicker “third- generation” methods about to pitch us 
head irst into an era of personalized genomics. Clinical geneticists are 
already using the new sequencing tools to aid diagnosis and treatment 
of an array of diferent diseases, while many members of the general 
public, curious about their own hidden biology, are voluntarily sending 
of saliva samples to genomics companies for analysis.

In the early 1990s, when I began my research career, I was charged 
with decoding a speciic stretch of one human chromosome; the pace 
of change since then is simply breathtaking. However, in some sense 
the rise of genomics remains a bittersweet victory. We are privileged to 
be the only organism on earth capable of directly reading our own ge-
netic makeup, not only documenting that of the species as a whole, but 
also able to catalog the myriad variations in each individual member. 
At the same time, we remain woefully ignorant of what all this means 
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for neurons, for the brain, and for human cognition and behavior. his, 
then, could be a key challenge laid down for future generations of neu-
roscientists: to properly decipher how the diferent words and phrases 
of the book that is our genome translate into a thinking, remembering, 
talking, feeling person. Here, I want to share a few thoughts on how 
the ield might move toward this goal. In the interest of space, I will 
focus on one particular aspect of the human condition, but the issues 
highlighted have broad relevance. When it comes to the workings of the 
brain, every researcher has their favorite trait. My own passion is the 
enigma of human language— to my mind perhaps the most fascinating 
and perplexing phenomenon in all of biology. Can the novel tools of 
genomics help to unravel this mystery?

At irst glance it seems absurd to search for explanations of human 
language at the level of DNA. he particular language we use cannot be 
encoded within our genes; it is obviously something we need to learn. 
An infant growing up surrounded by Japanese speakers learns Japanese, 
while the identical child exposed to German input during development 
would have become luent in German. Without exposure to a language, 
a child does not acquire it. Yet at a deeper level, genes lie at the very 
heart of this process, helping to build a brain that is inely tuned for 
soaking up speech and language skills from the social environment.

his is not a new idea by any means. Over the course of many de-
cades, multiple complementary lines of supporting evidence have been 
highlighted. Human children, it has been repeatedly noticed, do not 
need explicit instruction to acquire linguistic proiciency, and the suite 
of coordinated abilities they develop is astonishing in its sophistication. 
A few years of implicit learning, based on limited input, is enough to 
turn a silent infant into a master wordsmith, accumulating large vo-
cabularies, working out how to combine them into a potential limitless 
number of meaningful sentences, and performing astounding feats of 
muscular control to convert those sentences into streams of sound, be-
coming adept at reverse- engineering the spoken utterances of others. 
Moreover, human brain mappers have made considerable progress in 
uncovering the neural architecture that supports these language- related 
functions. Although the original models early neurologists put forward 
are now known to be oversimpliications, the clear consensus of modern 
neuroscience is that there are deined sets of circuits in the human brain 
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that play crucial roles in linguistic expression, perception, and under-
standing. (Whether or not such circuits are speciic to language remains 
an area of debate.) Comparative approaches, investigating the cognitive 
and communicative abilities of other species, indicate that aspects of 
human language, most notably its extraordinary generative capacity, 
are unrivaled in the natural world. Curiously enough, chimpanzees, the 
animals most closely related to us, cannot remotely match the linguistic 
capacities of humans, despite intensive training experiments that have 
sought to prove otherwise.

he above observations provide indirect support for the existence 
of genetic inluences on human speech and language capacities. What 
about direct evidence from the genome itself? Is it possible to go fur-
ther and identify the key genes? In 2001, the same year the drat human 
genome was published, my colleagues and I described the irst such 
gene, called FOXP2. We reported that people with damaged versions 
of FOXP2 sufer from a single- gene disorder afecting speech and lan-
guage. A typically developing child acquires the exquisite art of speech 
articulation with consummate ease, learning to make rapid coordinated 
sequences of movements of mouth, lips, jaw, tongue, sot palate, and lar-
ynx, and exploiting these capabilities to accurately produce novel utter-
ances. But if a child carries a mutation disturbing FOXP2, these skills are 
disrupted. During speech, she or he makes mistakes that are inconsistent 
(that is, they can difer from one time to the next) and that get worse as 
the intended utterances become more complicated. Although intensive 
speech therapy can help to some degree, people with FOXP2 mutations 
have persistent deicits— as adults, they still ind it frustratingly hard to 
correctly reproduce words like “catastrophe” or “hippopotamus,” doing 
especially badly if the words are completely novel to them (for example, 
pronounceable nonsense words with multiple syllables, like “perplister-
onk” or “contramponist”). In- depth studies of FOXP2 mutation cases 
suggest that these diiculties may stem from underlying impairments in 
the brain’s capacity to program sequences of speech movements. Inter-
estingly, the disorder is not conined to speech, afecting diverse aspects 
of spoken and written language, including production and comprehen-
sion of grammar.

Mutations that disrupt FOXP2 are rather rare; roughly a dozen fami-
lies and cases have been reported in the literature so far. Most of what 
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is known about the associated disorder comes from intensive studies 
of one especially large family (tagged the “KE” family), in which iteen 
relatives across three generations carry the same etiological mutation. 
In fact, it was the availability of such a big family that allowed us to zero 
in on FOXP2 in the irst place, in the days before the new genomics 
truly took of. But beyond the known examples of FOXP2 mutations, 
there are a great many other cases of unexplained speech and language 
disorders in the world; indeed, in most individuals with speech and lan-
guage disorders, both copies of FOXP2 are intact. It is a safe bet, then, 
that other genes are acting as risk factors in a signiicant proportion, 
especially since analyses of identical and nonidentical twins show that 
speech and language disorders are highly heritable. he availability of 
cheap, quick, and easy whole genome sequencing will give geneticists 
unprecedented opportunities for discovering novel causal mutations 
and for probing more deeply into the molecular machinery that sup-
ports speech and language.

However, there is a major hitch. Over the past decade we humans 
have become experts in reading our own genomes, and in cataloging 
the genetic variations in each of us. But we are seriously lagging behind 
when it comes to interpreting what we are reading. To steal a crude anal-
ogy from the language sciences, it is as though a native monolingual 
English speaker has become adept at reading out long complex Russian 
texts, luently and with perfect pronunciation, but he understands the 
meaning of barely a handful of the words that he is speaking.

To put it in concrete terms, consider some practical examples from 
the ield’s irst forays into high- throughput sequencing of human DNA. 
Rather than going straight for the full three billion nucleotide letters, 
some researchers have stripped down the issues (and the costs) by se-
quencing just a subset, the ~2 percent of our genetic makeup that codes 
for proteins, called the exome. (Individual protein- coding parts of genes 
are called exons, and molecular biologists have a compulsion to coin 
terms carrying an “ome” suix; this somewhat peculiar habit is even 
spilling over into other disciplines.) Although only a small percentage 
of our genome in real terms, the exome is the part that we know most 
intimately, the easiest to connect to biological pathways. It comprises 
roughly 20,000 genes that encode the amino acid sequences of proteins. 
hese proteins display an incredibly diverse array of functions: enzymes 
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that catalyze reactions, structural proteins that shape the cell, receptors 
and channels that sit in cellular membranes signaling molecules that 
help one cell communicate with another, regulatory factors that control 
the activity of other genes and proteins, and so on, all coming together 
to form the basic machinery of every cell. When a mutation occurs in 
a protein- coding gene, it may alter the amino acid sequence of the en-
coded protein, which could change the protein’s shape. While many 
such mutations are benign, or have a subtle impact on properties of the 
protein, others can severely disturb its function, and some even yield a 
complete lack of the protein in question. A very large proportion of the 
single- gene disorders that afect the human population (cystic ibrosis, 
muscular dystrophy, Huntington’s disease, and many others) are known 
to be caused by speciic mutations disturbing protein- coding genes.

Beyond the exome, the remainder of the genome includes many 
stretches of DNA (once thought of as junk) that may have complicated 
roles in regulating how the exome works. While progress is being made, 
geneticists still struggle to make sense of this dark matter of the genome, 
in particular to understand the biological signiicance of variations that 
afect it. So, targeting the protein- coding genes, by sequencing a whole 
exome rather than dealing with an entire genome, seems a smart way of 
simplifying things when searching for causal variants in newly ascer-
tained families with a disorder or trait of interest. (Although, of course, 
there is potential to miss the true culprit if it lies outside the exome.) 
When geneticists began exome sequencing in earnest, they encountered 
an unexpected complication. It turns out that each human individual 
carries a surprisingly high number of potentially deleterious mutations, 
typically more than one hundred. hese are mutations that alter or dis-
turb protein sequences in a way that is predicted to have a damaging 
efect on protein function, based on bioinformatic (computer- based) 
analyses. Each mutation might be extremely rare in the population, or 
even unique to the person or family in which it is found. How do we 
sit out the true causal mutations, the ones that are functionally impli-
cated in the disorder or trait we are studying, against a broader back-
ground of irrelevant genomic change? Sometimes we can rely on a lucky 
convergence of indings, for example, where distinct mutations in the 
same gene pop up in multiple diferent afected families or cases. But in 
absence of this kind of serendipity, an alternative route is to carry out 
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laboratory work designed to decipher the biological consequences of 
suspected causal mutations.

here is an impressive and expanding tool kit available for addressing 
this question. It is now standard practice to culture human cells at the 
laboratory bench, insert diferent variants of candidate genes, observe 
the consequences for the functions of the encoded proteins, and test 
for efects on cellular properties. Neuronal precursors can be grown in 
a lask, genetically manipulated, and a cocktail of growth factors can 
be applied to yield diferentiated electrically excitable cells with the 
properties of functioning neurons. It has even become possible to use 
samples taken from non- neural tissues (for example, a skin punch or 
blood sample from a patient with a developmental language disorder) 
and turn these into distinct types of neuron- like cells in the laboratory; 
the procedures are not yet cheap enough for them to be routine, but 
this could change rapidly. Many valuable insights can be gained from 
cell- based analyses, the nature of which will vary depending on the class 
of gene being studied. At the molecular level, experiments can iden-
tify whether the gene, and the protein it encodes, is part of a network 
of other genes and proteins and ind out how its interactions might be 
disturbed by candidate mutations. At the neuronal level, it is possible to 
use cellular systems to assess the impact of particular gene variants on 
key processes such as proliferation, migration, diferentiation, plasticity, 
and programmed cell death.

here are also ample opportunities for taking such work beyond in-
dividual neurons into circuits and behavior, through the availability of 
animal models that can be genetically manipulated. Here the humble 
laboratory mouse has made a vast impact, providing a mammalian 
system in which it is feasible to make ever more sophisticated changes 
at the genetic level. Mutations can be inserted almost anywhere in the 
mouse genome with remarkable precision. Genes of interest can be in-
activated in particular brain structures or speciic neural circuits, at se-
lected developmental time points. heir expression can be silenced at 
one point of life, then reactivated at another. Advances in techniques of 
electrophysiology and optogenetics allow researchers to directly target 
the functions of particular sets of neurons in a highly controlled manner 
in the living mouse and to make connections to behavioral outputs and 
cognitive performance.
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Here we return to the story of FOXP2, since this is an area where 
functionally oriented experiments have made (and will continue to 
make) a substantial contribution. he FOXP2 gene encodes a special 
type of control protein, called a transcription factor, that regulates how 
other genes (its targets) are switched on and of. We have taken FOXP2 
mutations observed in cases of speech and language disorder and stud-
ied their impact using human neuron- like cells that can be grown in the 
laboratory. For example, remember the KE family in which there are 
iteen afected relatives with speech/language disorder, all carrying the 
same mutation in the FOXP2 gene. his genomic variant is predicted 
to alter an amino acid residue at a crucial point of the encoded pro-
tein. In my lab we produced the mutant KE protein in human cells and 
demonstrated that it was not able to regulate target genes in the normal 
way. Next, by using genetic engineering to insert the KE mutation into 
mice, we were able to evaluate its impact on the brain at multiple lev-
els, including initial development of neural circuitry in the embryo and 
subsequent functions in the postnatal nervous system. he experiments 
revealed early disruptive efects on the branching and process length 
of neurites— outgrowths that emerge from the cell bodies of neurons, 
eventually developing into dendrites or axons. Our mouse research also 
showed that the KE mutation reduces the plasticity of neural circuits, 
that is, their ability to modulate responsiveness to stimuli, a key aspect 
of learning and memory. he particular circuits that seem to be afected 
are ones that are already known to be important for learning to make 
sequences of movements— fascinating in light of the speech sequencing 
diiculties of humans with FOXP2 mutations.

As our work with targeted mutations shows, even when we are in-
terested in an aspect of behavior that appears unique to humans, we 
can still learn a lot through investigations of other species, especially 
once we have an entry point in the shape of a candidate gene. FOXP2 
appeared early in evolution— most vertebrates carry a version of this 
gene, leading to publications describing its neural functions in a wide 
range of animals, not just humans and mice (as above), but also mon-
keys, ferrets, rats, bats, and ish. One particularly beautiful example of 
how FOXP2 has participated in the biology of other species comes from 
elegant neurobiological research in songbirds, which showed that the 
avian counterpart to FOXP2 is crucial for the ability of a male zebra 
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inch to learn its song. he data are consistent with the view that speech 
and language skills did not appear out of the blue but are built on neuro-
genetic mechanisms with a deep evolutionary history. his does not of 
course discount the idea that the neurogenetic mechanisms have been 
subject to modiication on the human lineage, or that such modiica-
tions could have been relevant for our evolution. Indeed, there has been 
much interest in the demonstration of protein- coding diferences be-
tween FOXP2 in humans and chimpanzees (as well as more recent work 
on human- Neanderthal sequence diferences elsewhere in this gene). 
Again, functional experiments are playing a central part in helping sci-
entists to assess the biological relevance of the sequence changes, using 
the same systems (cell lines, mouse models, and such) as those used for 
investigating the mutations that cause disorder.

Even so, if we want to comprehensively join the dots between genes 
and human cognition, we cannot only depend on growing cells in the 
laboratory or making genetically modiied animals. In recent years a 
new weapon has been added to the armory, one that could be power-
ful for making links to the human brain but that has to be wielded 
with care. Neuroimaging genomics involves the coupling of high- 
throughput DNA screening with state- of- the- art methods for non-
invasive characterization of human brain structure and function, in-
cluding magnetic resonance imaging, difusion weighted imaging, and 
magnetoencephalography. For those laboratories with access to the ap-
propriate equipment, it is now— in principle— straightforward to test 
for correlations between the speciic genetic variants that people carry 
and aspects of their brains captured by these neuroimaging methods; 
examples include volumes of subcortical structures, thickness and sur-
face area of cortical regions, strength of connectivity between difer-
ent neural sites, levels of activation during a cognitive task, as well as 
changes in oscillatory activity. Keen neuroscientists running cutting- 
edge brain imaging experiments can add a genetic component to their 
studies simply by asking each participant to spit into a DNA collection 
tube. hey can send these samples of for genome- wide genotyping, 
a technique that documents the variation at hundreds of thousands 
of points across all chromosomes, or they might even use them for 
whole genome sequencing (once the prices are low enough). hen it is 
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a matter of testing for association between gene variants and the brain 
measure of interest.

Such prospects are exciting, especially because we might gain insights 
into neurogenetic mechanisms by studying the general population, to 
complement investigations of unusual cases like the KE family. For in-
stance, those of us interested in human communicative capacities might 
hope to discover common gene variants that are associated with varied 
thickness, area, or asymmetry of key cortical regions that are linked to 
language. Or we could screen human cohorts for common gene vari-
ants that are correlated with altered activation of such regions during 
language tasks. And there are already reports in the literature of these 
kinds of studies. At the same time, however, some words of caution are 
necessary.

Already, by themselves, genomics and neuroimaging can each in-
dependently generate bewilderingly complex sets of data, with vast 
numbers of data points. When marrying up these two diferent kinds 
of hugely complex datasets, the risk of spurious associations becomes 
extremely high. It is essential to develop sophisticated approaches, both 
to guard against false positives and to increase chances of uncovering 
the real biological relationships, which are expected to have small efect 
sizes. Language imaging genomics is still in its infancy. he use of large 
sample sizes and well- constrained hypotheses— tightly focused on par-
ticular candidate genes or speciic neural features— will help safeguard 
its future as an important tool for revealing molecular underpinnings of 
language.

To conclude, as I have shown in this essay, we are at a watershed in 
genomics research, one that is set to transform multiple ields of neuro-
science in unprecedented ways. Future generations of neuroscientists 
are extraordinarily fortunate to have access to a wealth of data and tech-
niques ofered up by the revolution in sequencing methods. hey face 
an exciting challenge— to distil all these As, Gs, Ts, and Cs into mean-
ingful insights regarding the biological underpinnings of some of our 
most mysterious traits, such as speech and language. By taking advan-
tage of an ever- growing tool kit for investigating gene function, it will at 
last be possible to bridge the mechanistic gaps between DNA, neurons, 
circuits, brains, and cognition.
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S K E P T I C S

Even with the enormous investments in neuroscience that are antici-
pated, we may still have a lot let to igure out. Using consciousness as 
an example, Ned Block argues that the real rate- limiting step in our 
understanding may be theory, rather than data. Matteo Carandini cau-
tions us that it is too much to expect to be able to bridge directly from 
neurophysiology to behavior, and how computation might help ill the 
gap. Leah Krubitzer reminds us of the risks in assuming that science 
can be accomplished on a timetable, and Arthur Caplan highlights the 
practical and ethical concerns, and consequences, of a brain mapping 
project, including how to fund it, what to do with the data, and how to 
decide when we’ve succeeded. Finally, Gary Ma rcus argues that cur-
rent conceptual frameworks for understanding complex cognition and 
behavior are impoverished, and that in order to make progress the ield 
of neuroscience must signiicantly broaden its search for computational 
principles.
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Plate 1. a. Allen Reference Atlas plate for a sagittal section (i.e., front to back) of 

the mouse brain. b. In situ hybridization image of a calcium-binding gene (Calb 1), 

showing expression in the cortex (top layer of b), striatum (let center), hippocampus 

(curved shape below cortex), and cerebellum layer (top right in layer). Image courtesy 

Allen Institute for Brain Science.
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Plate 2. a. Near- simultaneous activation of many neurons across the brain of the larval 

zebra ish. In gray is shown the anatomy, in color code is the neural activity during one 

point in time. Right panel represents a maximum- intensity projection from the side, let 

panel from the top. b. Populations of neurons that are activated together. Two such popu-

lations, discovered by computational analysis of the raw data, are shown in green and 

magenta. Scale bar: 100 μm. Adapted from Ahrens, Orger, Robson, Li, and Keller (2013).

Plate 3. Connections between cortical regions involved in visual perception. Axon 

pathways from four distinct cortical visual areas are projected onto the Allen Mouse 

Brain Connectivity Atlas (http://connectivity.brain-map.org). hese cortical regions 

are highly interconnected and are also linked with the thalamus (pink) and midbrain 

(purple). he front of the brain is toward the right. Courtesy of Julie Harris, Allen 

Institute for Brain Science.
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Plate 4. Cortical hierarchy, with entorhinal cortex and hippocampus at the apex. Let: 

Connectivity map showing hierarchy of visual areas of the cortex. Sensory cortices 

appear at the bottom (RGC, retinal ganglion cells; LGN, lateral geniculate nucleus). 

he entorhinal cortex (ER) and the hippocampus (HC) appear at the top, connected 

indirectly to RGC and LGN, as well as other sensory systems (not shown), all via 

multiple synapses. One of the goals of modern neuroscience is to understand the 

working principles of high- end cortices such as the entorhinal cortex and hippocam-

pus. Adapted, by permission of Oxford University Press, from Felleman and van Essen 

(1991). Right: Schematic drawing of primate neocortex showing how hippocampus 

(bottom) and entorhinal cortex (middle) are thought to bind together representations 

across widespread regions of the cortex. Reproduced, with permission from AAAS, 

from Squire and Zola- Morgan (1991).
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Plate 5. Modular organization of grid cells. Grid spacing is shown as a function of 

location of cells along the dorsal- to- ventral axis of the entorhinal cortex. Each dot 

corresponds to one cell. Stippled lines indicate that cells cluster into four groups with 

discrete values for grid spacing. Color- coded autocorrelation maps at the top show 

hexagonal iring patterns of individual cells representative for each of the grid modules 

(red is high activity; blue is low activity). Modiied from Stensola et al. (2012) and 

Buzsaki and Moser (2013).
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Plate 6. Color- coded rate maps showing diferent responses among simultaneously 

recorded grid cells in an experiment where the environment is changed from a square 

to a rectangular shape. Stretch- correlation curves to the right show spatial correlation 

 between the compressed environment and the overlapping part of the original envi-

ronment. While the two upper cells maintain their iring ields at the original location 

 (maximal correlation at zero stretch), the ields of the four cells at the bottom are 

compressed in proportion to the change in the width of the environment (maximal 

correlation when the box is stretched back to the original shape). he upper and lower 

cells belong to diferent modules. Modiied from Stensola et al. (2012).
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Plate 7. Computational model showing spontaneous formation of hexagonal iring pat-

terns in grid cells. A hexagonal grid pattern forms spontaneously (here over a period of 

500 ms) on a two- dimensional neuronal lattice consisting of stellate cells that have all- 

or- none inhibitory connections with each other. Each pixel corresponds to one cell in 

the network. Neurons are arranged on the lattice according to the x- y locations of their 

grid ields. Rings indicate area of inhibition around two example cells. Reproduced 

from Couey et al. (2013).
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Plate 9. Panel a depicts the brain of a person looking at a superimposed red house and 

green face using red and green glasses, the efect of which is to transmit the image of the 

house to one eye and the face to the other eye. As indicated in b, the percept alternates 

between face and house, with only very brief mixtures, a phenomenon known as binoc-

ular rivalry. In c the subject is shown alternating pictures of a face and a house. he re-

sult is that in the crucial brain areas for perceiving faces and for perceiving places, there 

was no signiicant diference between the internally driven face/house alternation and 

the externally driven face/house alternation. he changing percept involved alterations 

in visual areas in the back of the head and also frontal areas responsible for monitoring 

and organizing responses. From Tong et al. (1998). With permission of Elsevier.



C O N S C I O U S N E S S ,  B I G  S C I E N C E ,  A N D 
C O N C E P T U A L  C L A R I T Y

Ned Block

With enormous investments in neuroscience looming on the horizon, 
including proposals to map the activity of every neuron in the brain, it 
is worth asking what questions such an investment might be expected 
to contribute to answering. What is the likelihood that high- resolution 
mapping will resolve fundamental questions about how the mind works? 
I will argue that high- resolution maps are far from suicient, and that 
the utility of new technologies in neuroscience depends on developing 
them in tandem with the psycho- neural concepts needed to understand 
how the mind is implemented in the brain.

Using high school geometry, we can understand why a rigid round 
peg won’t it into a square hole in a board; mapping every single par-
ticle in the peg and board would be of little use without the high school 
geometrical account, as Hilary Putnam once noted. Similarly, a map of 
the activation of every neuron in the brain will be of no use without a 
psychological level understanding of what those activations are doing. 
For this reason, advocates of high- resolution mapping have advocated a 
“functional brain map.” It is easy to add the word “functional,” but mas-
sive quantities of data alone cannot produce theoretical breakthroughs 
in understanding the mind at a psychological level. Using the example 
of consciousness, I will discuss one of the obstacles to constructing a 
functional brain map that explains how neural activations function to 
underlie human psychology and how the obstacle can be circumvented 
without high- density brain imaging. he obstacle is the measurement 
problem of inding consciousness in the brain.

The Measurement Problem

he measurement problem of inding consciousness in the brain de-
pends on the fundamental distinction between consciousness and 
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cognition. Consciousness is what it is like to have an experience. Cogni-
tion includes thought, reasoning, memory, and decision, but all of these 
cognitive processes can occur unconsciously. Consciousness and cog-
nition can causally interact, and of course cognition can be conscious, 
but they fall on opposite sides of a joint in nature. I will focus on the 
diference between conscious perception— what it is like to have a per-
ceptual experience— and perceptual cognition— the processes in which 
perceptual experiences play a role in thought, reasoning, and the con-
trol of action. If an experimenter wants to know whether a subject in 
an experiment has consciously seen, say, a triangle, the subject has to 
do something, for example, say whether a triangle was present. For a 
subject to categorize what was seen as a triangle requires computational 
processes, say retrieving a representation of a triangle from memory and 
comparing the conscious percept with the memory trace, and there will 
be a further cognitive process of deciding whether to respond, and then 
if the decision is to respond, enumerating and deciding among candi-
date responses and generating a response. Further, one of the cognitive 
processes that can occur during a conscious percept of a triangle is a 
decision whether to further attend to the triangle, and subsequently the 
top- down attentional processes themselves. Since these cognitive pro-
cesses are all in service of cognitively accessing the perceptual informa-
tion and applying that information to a task, let us lump these cognitive 
processes all together as processes of cognitive access. he measurement 
problem, then, is how to distinguish the brain basis of consciousness 
from the brain basis of cognitive access.

Note that the measurement problem is distinct from David Chal-
mers’s “hard problem” of consciousness, the problem of explaining why 
the brain basis of an experience of red is the brain basis of that type 
of experience rather than the experience of green or no experience at 
all. he hard problem depends on a prior notion of “brain basis” of the 
experience of red. We should be able to say what the brain basis of the 
experience of red is even if we cannot explain why that brain basis is 
the basis of that experience rather than another experience.

Why is the measurement problem a problem? Cognitive neurosci-
entists have identiied many specialized circuits in the brain. he meth-
odology is simple: compare the circuits that are active in, say, face per-
ception with those that are active in other kinds of perception or when 
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there is no perception. his methodology has resulted in the identiica-
tion of the “fusiform face area” and two other linked face areas. Why 
can’t neuroscientists just use the same idea applied to consciousness: 
compare what is happening in the brain during a conscious percept with 
what is happening in the brain during a comparable unconscious per-
cept? One useful procedure involves presenting the subject with a series 
of stimuli that are at the threshold of visibility. Given the probabilistic 
nature of visual processing, the subject sometimes does and sometimes 
does not see threshold stimuli consciously. he stimuli remain the same, 
only the consciousness changes, so the perceptual processes common to 
both conscious and unconscious perception can be distinguished from 
the processes underlying consciousness of the stimulus. his is the “con-
trastive method.” he problem is that, as just noted, we can only tell the 
diference between conscious and unconscious perception on the basis 
of the subject’s response. So when we compare conscious with uncon-
scious perception, we inevitably lump together the neural basis of the 
conscious percept with the neural basis of the response to that percept. 
Since the neural basis of the response underlies the very cognitive pro-
cesses that I have lumped together as “cognitive access,” the contrastive 
method inevitably conlates the neural bases of conscious perception 
with the neural basis of cognitive access to the perceptual content. he 
problem has seemed so severe that many regard it as intractable, resign-
ing themselves to studying what I have called “access consciousness,” 
that is, an amalgamation of the machinery of consciousness together 
with the machinery of cognitive access.

Further, as Lucia Melloni and her colleagues have recently shown, 
there are always precursors to a conscious state that may not be part of 
the neural basis of consciousness (Aru et al. 2012). For example, whether 
one sees a stimulus or not depends not only on luctuations in attention 
but also on luctuations in spontaneous brain activity that occur before 
the stimulus that may set the stage for consciousness without being part 
of it. To solve the measurement problem we must manage to separate 
consciousness from the nonconscious processes that inevitably accom-
pany it in the situations in which we know consciousness obtains.

Indeed, the measurement problem is even thornier than I have sug-
gested so far. Consider, for example, a type of brain injury (involving le-
sions in the parietal lobe) that causes a syndrome known as visuo- spatial 
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extinction. If the patient sees a single object on either the let or the 
right, the patient can identify it, but if there are objects on both sides, 
the patient claims not to see one of the items; if the brain damage is on 
the right, the patient will claim to not to see the item on the let because 
perceptual ibers cross in feeding to the brain. However, in one such case 
in which a patient identiied as “GK” was presented with two objects, 
including a face on the let that he said he did not see, Geraint Rees 
showed him to have activation in the relevant face area (the “fusiform 
face area”) to almost the same degree as when he reported seeing the 
face. How could we ind out whether GK has a conscious face experi-
ence that he does not know he has? It may seem that all we have to do 
is ind the neural basis of face experience in unproblematic cases and 
ascertain whether this neural basis obtains in GK when he says he sees 
nothing on the let. he problem is that subjects who report seeing a face 
difer from those who deny seeing a face in activation of the neural basis 
of cognitive access to seeing a face in the frontal and parietal lobes. So it 
seems that in order to answer the question about GK we must irst de-
cide whether the neural basis of cognitive access to seeing a face is part 
of the neural basis of the conscious experience of seeing a face. And this 
was the question we started with.

One might wonder whether it even makes sense for GK to have a 
conscious face experience that he does not know about. What makes the 
measurement problem so problematic is the possibility that some aspect 
of cognitive access is actually partly constitutive of consciousness itself. 
If cognitive access is partly constitutive of consciousness itself, then GK 
could not possibly have a face experience he does not know about. If we 
do not solve the measurement problem, we could record every detail 
of activation in the face circuit and other circuits in the brain without 
determining whether those activations are conscious or unconscious.

he measurement problem is particularly trenchant for conscious-
ness, but aspects of the problem arise for other mental phenomena. 
Masses of high- resolution data about neural activations are no use 
without an understanding of what the neural activations are doing at 
a psychological level. Once we have a theory at the psychological level, 
high- resolution brain data may tell us whether the theory makes correct 
predictions. But without the theory at the psychological level, the data 
are of no use no matter how high the resolution.
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Cognitive versus Noncognitive Theories of Consciousness

his issue— of whether cognitive access is part and parcel of 
consciousness— divides the ield. Cognitive theories of consciousness 
say yes. Stanislas Dehaene, Jean- Pierre Changeux, and their colleagues 
(2011) have advocated a “global neuronal workspace” theory of con-
sciousness. According to that theory, neural coalitions in the sensory 
areas in the back of the head compete with one another, the winners 
triggering “ignition” of larger networks via long- range connections to 
frontal areas responsible for a variety of cognitive functions. he activa-
tion of the central network feeds back to the peripheral sensory activa-
tions, maintaining their iring. Once perceptual information is part of 
a dominant coalition, it is available for all cognitive mechanisms and is 
said to be “globally broadcast” (see igure 1).

Hierarchy of

modular processors

High-level processors

with strong long-distance

interconnectivity

Automatically

activated

processors
Processors 

mobilized

into the 

conscious

workspace

Figure 1. Diagram of the global neuronal workspace. Neural processors are symbolized 
by circles and connections between them by lines. Filled circles and bold lines indicate 
activation. he outer circles indicate sensory input, whereas the center indicates the 
areas in the front of the brain responsible for cognition. From Dehaene and Nacchache 
(2001). With permission of Elsevier.
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According to the global neuronal workspace theory, consciousness 
just is global broadcasting. Many philosophers and scientists hold ver-
sions of this view, including Sid Kouider, Daniel Dennett, and in a more 
attenuated form, Jesse Prinz. his is a cognitive theory of conscious-
ness because the global workspace governs cognitive processes such as 
categorization, memory, reasoning, decision, and control of action. An 
alternative cognitive theory of consciousness David Rosenthal and Hak-
wan Lau (2011) hold emphasizes higher- order thought: a perception is 
conscious if it is accompanied by a thought about that perception. (he 
thought is higher order in that it is about another mental state.)

An opposed point of view, which Victor Lamme, Ilja Sligte, Annelinde 
Vandenbroucke, Semir Zeki, and I hold, is that activations in perceptual 
areas in the back of the head can be conscious without triggering global 
broadcasting. It is not part of our view that there can be conscious ex-
perience without any possibility of cognitive access, but only that there 
can be conscious experience without actual cognitive access. his point 
is shown in an experimental paradigm from Victor Lamme’s laboratory 
illustrated in igure 2. he subject sees a circle of rectangles, then a gray 
screen, then another circle of rectangles. A line appears indicating the 
position of one of the rectangles. he line can occur with the second cir-
cle of rectangles as in A, or with the irst circle as in B, or in the middle, 
as in C. he subject is supposed to say whether the indicated rectangle 
changes orientation between the irst and second circle. Subjects can do 
this almost perfectly in B but are bad at it in A with a capacity of only 
four of the eight rectangles. he interesting case is C when the line ap-
pears during the gray screen. If the subjects are continuing to maintain 
a visual representation of all or almost all the rectangles (as they say 
they are doing), the diference between C and B will be small, and this 
is what is found. Subjects have a capacity of almost seven of the eight 
rectangles even when the line appears in the gray period 1.5 seconds 
ater the irst circle. he point illustrated here is that subjects can have 
a conscious experience of all the rectangles even though it is only pos-
sible to actually cognitively access half of them. hus Victor Lamme and 
I argue that contrary to the views of those who favor a cognitive theory 
of consciousness, the neural basis of consciousness does not include the 
neural basis of actual cognitive access.
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As you might guess, this dispute has involved heavy polemics. In his 
2014 book, Stanislas Dehaene says our point of view leads to dualism. 
He says, “he hypothetical concept of qualia, pure mental experience 
detached from any information- processing role, will be viewed as a 
peculiar idea of the prescientiic era” (Dehaene 2014, 221). Of course, 
Lamme, Zeki, and I do not think that phenomenal consciousness has no 
information- processing role. We think that consciousness greases the 
wheels of cognitive access but can obtain without it.

he measurement problem under discussion is how it is possible for 
evidence to count one way or the other as between cognitive and non-
cognitive theories of consciousness, given that our ability to ind out 
whether a perception is conscious or not depends on cognitive processes 

a

b

c

Stim 1 (500 ms)
Gray interval

(200 -1500 ms) Stim 2

Figure 2. A perceptual task used in Victor Lamme’s laboratory at the University of 
Amsterdam. A circle of rectangles is presented for half a second, then a gray screen for 
a variable period, then a new circle of rectangles. At some point in this process the sub-
ject sees a line that indicates the position of one of the rectangles. he subject’s task is 
to say whether the rectangle at that position has changed orientation between the irst 
and second circle of rectangles. From Lamme (2003). With permission of Elsevier.
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by virtue of which the perception surfaces in the very behavior that pro-
vides evidence of consciousness. Some theorists have held that the mea-
surement problem may be solved by new technology, a subject to which 
we now turn.

Transgenic Mice and the Optogenetic Switch

Global broadcasting involves not only feed- forward low of activation 
but heavy feedback from frontal to sensory areas. Christof Koch and 
Nao Tsuchiya (2014) propose to use transgenic mice whose neural genes 
have been rendered sensitive to light, for example, by being infected with 
genetically altered viruses. In these mice, top- down feedback from fron-
tal to sensory areas can be turned of optogenetically by light sources on 
the skull or optical ibers implanted in the brain. If there is no top- down 
attentional feedback there can be no “ignition” and no global broadcast-
ing. Koch and Tsuchiya predict that without attentional feedback, the 
mice will be able to consciously see a single object with no distractors. 
On their view, top- down attention may only be required to single out an 
item in the visual ield from other items. For example, one can detect a 
red “T” without top- down attention if it is the only visible object, but it 
takes top- down attention to detect a red “T” when the display also con-
tains distractors: black “T”s and red “F”s.

Suppose their prediction is conirmed that the mice will be able to 
do a task without distractors but not when there are distractors. How 
we are supposed to know whether the mice whose top- down feedback 
has been deactivated by the optogenetic switch are doing their tasks 
consciously? Koch and Tsuchiya propose to use postdecision wagering 
in which the mice express their conidence in their choice by in efect 
betting on whether the choice is right or not. Here is how postdecision 
wagering works in people: the subject is given credits that are worth 
money. In each trial the subject makes a decision as to whether there 
was a stimulus present and then bets on whether that decision was right. 
here is a condition known as blind- sight in which destruction of parts 
of the lowest- level visual cortex render the subjects incapable of con-
sciously seeing objects in the destroyed part of the visual ield. Subjects 
can guess with very high degrees of accuracy what is presented, but they 
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have the phenomenology of guessing, not of seeing. hese blind- sight 
subjects bet very poorly in postdecision wagering since they have no 
idea which of their guesses are right, and that has suggested that betting 
can provide an index of conscious perception.

It turns out that animals can do something equivalent to betting to 
get more food pellets. And Koch and Tsuchiya say that one may be able 
to use postdecision wagering to test whether the optogenetic mice are 
consciously seeing the stimulus. High conidence would suggest con-
scious perception; low conidence unconscious perception. But won’t 
the shutting of of top- down processes ruin wagering in the mice? Koch 
and Tsuchiya think that conidence may be mediated by diferent top- 
down processes from those involved in attention and global broadcast-
ing and so may not be turned of by the optogenetic switch.

One way to think about this proposal is to try to imagine what it 
would be like to be an optogenetic mouse. Suppose you are a transgenic 
being whose optogenetic switch has been lipped so as to preclude top- 
down attention. And suppose Koch and Tsuchiya are right that you 
would have conscious experience. What would that experience be like? 
Without top- down attention, that experience would be a kaleidoscopic 
chaotic array of fragmentary perceptions in all sensory modalities with 
no sustained attention in one modality or on one thing rather than an-
other. (Alison Gopnik has suggested that this is what it is like to be an 
infant in the irst months of life since these infants have many more syn-
apses and more myelination in sensory areas than in the frontal areas 
responsible for top- down attention.) Suppose that before the switch is 
lipped, you had been trained to respond to a red “T” either by itself or 
in a sea of black “T”s and red “F”s. Now the switch is lipped and you 
have a visual impression of the red “T” as part of “blooming buzzing 
confusion” of percepts in all sensory modalities. How much would you 
bet that your perception of the red “T” was accurate? It is certainly pos-
sible that the efect of the kaleidoscopic chaotic perception would be to 
lower one’s conidence in any one percept.

Now suppose instead that the prediction of Koch and Tsuchiya is 
wrong— that when the optogenetic switch is lipped, it knocks out con-
scious perception as well as top- down attention. Without top- down sig-
nals there can be no global broadcasting. Still, the subject might be able 
to reliably guess whether there is a red “T” on the basis of unconscious 
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perception as with the blind- sight patient. How would betting behavior 
be afected? All but one of the blind- sight patients that have been stud-
ied have had a partially blind and partially sighted ield. he one human 
blind- sight patient whose entire visual ield was blind was able to walk, 
with apparent conidence, through an obstacle- laden hallway. So it is 
hard to predict how conident a perceiver with only unconscious vision 
would be. In sum, betting might not correlate with consciousness once 
the optogenetic switch was lipped.

he upshot is that although the use of transgenic mice could make an 
important contribution, it would just be another line of evidence that 
cries out for interpretation.

Nonconceptual Representations and the Measurement Problem

Coming to grips with the measurement problem requires rethinking the 
basic ideas we are using. Here is a model of perception that appears in 
Tyler Burge’s monumental Origins of Objectivity (2010).

Burge distinguishes between an attribute, say the circularity of the 
plate, and a perceptual representation, what he calls an “attributive,” 
for example, a perceptual representation of circularity. he format of a 
perceptual representation is iconic and can be represented in words as 
“hat X” where the “that” is an element that picks out an individual, the 
plate on the let in igure 3, and the “X” is a pure perceptual representa-
tion that picks out the circularity of the plate. he next stage to the right 
of the perception in igure 3 is a basic perceptual judgment in which the 
perceiver judges that the item is circular. Note: “hat X” contains no 
concept, whereas “hat is circular” contains the concept circular; and 
“hat X” does not make a statement or judgment, that is, it does not say 
that anything is so or is the case. A basic perceptual judgment like “hat 
is circular” is produced via the application of the concept of circularity 
to the percept to yield a structured propositional mental representation.

Why are we discussing percepts and concepts? Coming to grips with 
the measurement problem depends on understanding of the diference 
between two kinds of experiences: nonconceptual perceptions and con-
scious perceptual judgments involving concepts.
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What is a concept? As I am using the term “concept,” a concept is a 
constituent of a thought or judgment that applies to something, as “cir-
cular” applies to the plate.

It is extremely important to keep separate concepts from what they 
are concepts of, a common confusion. For example, Bruno Latour infa-
mously claimed that Ramses II could not have died of tuberculosis since 
Robert Koch discovered tuberculosis in 1882. He said, “Before Koch, the 
bacillus had no real existence. To say that Ramses II died of tuberculosis 
is as absurd as saying that he died of machine- gun ire.” However, what 
did not exist before 1882 was not the tuberculosis bacillus, but rather the 
human concept of that bacillus. Many people died of tuberculosis before 
any humans had the concept of what killed them.

I mentioned one diference between percepts and concepts: format. 
Percepts are iconic; concepts are parts of thoughts or judgments that 
are “propositional”— they have a structure analogous to that of a sen-
tence. Another diference is computational role: percepts are, to a irst 
approximation, elements in a modular system, whereas concepts have a 
much wider role in thinking, inferring, deciding, and the like. But what 
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Figure 3. Burge’s model of perception. © Ned Block 2013. Feed- backward inluences 
have been omitted from this diagram. here are no top- down efects on the retina, but 
there are top- down inluences at every other level.
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is important here is not what the exact distinction is between percepts 
and concepts but rather that there is a joint in nature whose exact char-
acterization is still an object of study.

In Burge’s model of perception, there are two diferent items that 
could be thought of as aspects of conscious perception: the nonconcep-
tualized percept itself and the basic perceptual judgment. A conscious 
percept may require little or no cognition. Perhaps a mouse could con-
sciously perceive circularity even with no ability to think or reason 
about circularity. A conscious basic perceptual judgment by contrast 
is something that exists only in concept- using creatures, creatures that 
can think and reason. Although percepts can be unconscious as well 
as conscious, the distinction between a nonconceptual percept and a 
basic perceptual judgment can help in thinking about the measurement 
problem. One of the big advances in consciousness research in the 1990s 
was the realization by Francis Crick and Christof Koch that because the 
visual apparatus of many mammals is similar to our own, we can study 
perceptual consciousness in these animals even though they lack the 
linguistic capacities required for much of thought and reasoning. I now 
turn to a discussion of how the distinction may be relevant to actual 
experiments.

Simple Methodological Advance: Don’t Ask for a Report

he familiar brain imaging pictures one sees in newspapers typically 
represent active brain areas. he imaging technology that produces 
these images— fMRI, PET, CAT— all localize spatially without much ca-
pacity to localize temporally. But in the study of conscious perception, 
time has proven to be as important if not more important than space. 
One useful technology is that of “event related potentials,” or ERPs, in 
which electrodes placed on the scalp measure the temporally varying 
reaction to an event, say a visual stimulus. he brain reaction to a vi-
sual stimulus has a number of identiiable components, and researchers 
can and do ask which of these components correlate best with visibil-
ity of the stimulus. Stanislas Dehaene and other advocates of the global 
broadcasting approach have used ERP technology to ind the neural 
basis of consciousness. And their eforts have provided evidence that the 
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ERP component that relects visibility happens late in the process, when 
frontal concept representations have been brought into play— which is 
what the global broadcasting theory predicts. However, the methods 
Dehaene and his colleagues have used involve conceptualization of the 
stimulus. One study presented a target digit that was on the threshold of 
visibility, and the objective index of whether subjects saw it was whether 
the subjects could say whether the digit was larger or smaller than 5, a 
task that required the subject to conceptualize the seen shape in arith-
metical terms and to perform an arithmetic operation, a conceptually 
loaded task. In another experiment, subjects had to report whether they 
saw the name of a number, again a task that required conceptualization 
of the stimulus. It is reasonable to object that what the ERP methods 
were revealing was not the pure percept but instead a perceptual judg-
ment in which a concept was applied to the percept.

How can we avoid such a trap? Michael Pitts (2011) presented a se-
ries of 240 trials in which subjects saw a red ring with small discs on 
it. he subjects’ task was to focus on the ring, looking for one of the 
discs to dim. Meanwhile, in the background of the ring, there were a 
myriad of small line segments that could be oriented randomly or, al-
ternatively, some of the segments could be oriented so as to form one or 
another geometrical igure. About half the time, there was a rectangular 
background igure. Ater 240 trials of stimuli and responses about the 
discs were over, Pitts asked subjects to answer a series of questions that 
probed whether they had seen any igures in the background in the 240 
trials, how conident they were about having seen these igures and what 
igures they saw. hose who were at least moderately conident of hav-
ing seen a rectangle showed a diferent ERP proile from the others, and 
that proile difered markedly from what Dehaene and his colleagues 
had reported: the ERP components that correlated best with judged 
visibility of the rectangle came before global broadcasting, suggesting 
that subjects consciously experienced the rectangles prior to making the 
perceptual judgment that there was a rectangle. he activations were in 
perceptual areas and not in frontal areas responsible for conceptualiza-
tion. he key innovation in this experiment was simple and low tech: the 
relevant conscious experience was not related to any task until ater the 
perception was long gone, so the usual conlation of consciousness and 
cognition may not have occurred.
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he idea of not asking the subject to do anything was used with an 
entirely diferent paradigm, binocular rivalry, by Wolfgang Einhäuser’s 
lab (Frässle et al. 2014). Binocular rivalry is a phenomenon that was 
discovered in the sixteenth century in which two diferent images are 
presented to the two eyes. he subject’s whole visual ield is illed by one, 
then the other; the two interpretations of the world alternate with only 
momentary mixtures of the two images. For example, one eye may be 
fed a grid moving to the let and the other eye fed a grid moving to the 
right. he subject is aware of let motion, then right motion, then let 
motion, and so on. Many studies have shown that as the rivalrous per-
cepts alternate, activations change both in the visual areas in the back of 
the head and in the global broadcasting areas in the front of the head, 
and many have taken this to support the global broadcasting theory of 
conscious perception. Plate 9 illustrates one of the irst of these studies 
in which one eye is fed an image of a face and the other eye an image 
of a house. he percept alternates between face and house and allowed 
researchers to pinpoint a circuit in the brain that specializes in faces and 
another that specializes in houses (see color plate 9).

In the original binocular rivalry experiments, subjects reported what 
they were seeing by pressing a button. he Einhäuser experiment used a 
new method of telling when the percept shited that did not require the 
subject to respond. he new method involved small eye movements that 
tip the experimenter of as to whether the subject is perceiving letward 
or rightward motion and, in another version, changes in pupil size. he 
subjects’ button presses validate the eye movement method, but once 
the method is validated the subjects do not have to do any task. he 
interesting result was that when there was no task there was no difer-
ential frontal brain activity. All the diferences in conscious perception 
were in the visual and spatial areas in the back and middle of the head. 
he authors conclude that previous results that showed frontal global 
workspace changes relected the self- monitoring required to make a 
response, but that when no response was required, there was little or 
no monitoring. Stanislas Dehaene says in his 2014 book that when 
“the prefrontal cortex does not gain access to  .  .  . [a] message, it can-
not be broadly shared and therefore remains unconscious” (2014, 155). 
But what these experiments suggest is that perceptual representations 
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can be consciously experienced even when not actually accessed— not 
broadcast in the global workspace— so long as they are accessible.

his study did use new technology, but it was behavioral technology— 
the use of eye movements and changes in pupil size to diferentiate one 
percept from another. hese results were combined with ordinary reso-
lution brain imaging, but ordinary resolution can be good enough when 
you know what you are looking for.

So we have made enormous progress in solving the measurement 
problem, but that progress depended on conceptual clarity, behavioral 
technology, and low- tech brain imaging, not expensive high- resolution 
brain imaging. he lesson to be drawn is that isolating consciousness 
in the brain may depend more on being clear about what we are look-
ing for than on massive investments in new technology. More broadly, 
high- resolution data are of no use without a theory of what brain ac-
tivations mean at the psychological level. When we have substantive 
cognitive neuroscience theories— together with the sophisticated con-
cepts embedded in such theories— testing these theories may require 
Big Science. But we cannot expect the theories and concepts to some-
how emerge from Big Science. To paraphrase Immanuel Kant, concepts 
without data are empty; data without concepts are blind; “only through 
their unison can knowledge arise” (Kant 1787, 75).
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F R O M  C I R C U I T S  T O  B E H AV I O R :  
A  B R I D G E  T O O  FA R ?

Matteo Carandini

A fundamental mandate of neuroscience is to reveal how neural circuits 
lead to perception, thought, and ultimately behavior. he general public 
might think this goal is already achieved: when a news report says that 
a behavior is associated with some part of the brain, people tend to take 
that statement as an explanation. But neuroscientists know that most 
aspects of behavior result from neural circuits that are yet to established.

Clearly we need to do more work, and funders and institutions are 
aware of this. For instance, the University of California– San Diego has 
the Center for Neural Circuits and Behavior, and University College 
London has the Centre for Neural Circuits and Behaviour. Moreover, 
funding eforts such as the BRAIN initiative aim to provide critical data 
to achieve this result. It is right to invest in this efort, as it aims at an 
exciting and not unreasonable goal. But how shall we proceed? Can we 
indeed go directly from circuits to behavior, or might that be a bridge 
too far?

Imagine that instead of the brain we were trying to understand a lap-
top computer (igure 1a), but with the knowledge and tools available a 
hundred years ago. Physiologists might discover and characterize tran-
sistors, chips, buses, clocks, and hard drives. Anatomists might strive 
for a “connectome” of the wires across and within the chips. A furious 
debate, however, might divide them, as the details of wiring would dif-
fer across models (older versus newer) and across brands (AMD versus 
Intel). Psychologists might concentrate on general input- output proper-
ties of sotware applications, but those who study a business applica-
tion would disagree with those studying video games. No theories, at 
this stage, would likely connect the hardware to the operation of the 
computer.
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What discovery would bridge this gap between circuits and behavior? 
It would be the realization that there is an intermediate level: the level of 
computer languages and operating systems. his level neatly decouples 
the hardware from the sotware. Diferent models and brands have dif-
ferent circuits but perform exactly the same computations. Diferent 
sotware applications are based on diferent combinations of instruc-
tions, but they ultimately rely on the same, inite set of computations.

Understanding these computations would allow the researchers to 
ask the right questions about the circuits and understand how they work. 
heories about sotware applications, in turn, would lie on a foundation 
of computer algorithms without needing to speak of wires and electrical 
charge. In essence, grasping this intermediate level of description would 
explain how computers work.

Circuits Computations Behavior 

algorithms,

languages,

operating

systems

computations,

neural code,

populations,

systems

How is it

computed?

What is

computed?

Why is it

computed?

a

b

Figure 1. Between circuits and behavior: David Marr’s approach applied to computers 
and brains. a. he wiring of a fraction of an Intel microprocessor, and a laptop playing 
a popular videogame (FIFA 12). b. Pyramidal neurons in cortex (detail of a drawing by 
Ramón y Cajal), and a mouse engaged in a pleasant behavior.
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In some ways, this is a tired analogy. Each generation tends to com-
pare the brain to a complex technology of their time: a loom, a tele-
phone exchange, a chemical plant, or a hologram. hese comparisons 
appear comically quaint a few years later. Moreover, the brain may be 
more akin to a collection of special- purpose machines: the circuits for 
vision, olfaction, or body movement might be more tightly linked to 
the resulting function than in a general- purpose computer. Even so, the 
brain is undeniably an information- processing organ, so it may pay to 
compare it to our best information- processing devices.

More importantly, the computer analogy illustrates a general rule in 
science, which is to seek an appropriate level of description. his level 
is intermediate between detailed mechanism (too much reductionism) 
and overall function (too much holism). In physics, for instance, the 
equations for particle interactions become impossible to solve or even 
simulate once a system exceeds ten particles. So, to describe what a 
decent- sized piece of matter does, solid- state physicists developed re-
markably successful theories operating at mesoscopic levels.

Similar examples abound in biology. For instance, we prefer to de-
scribe proteins in terms of a handful of domains rather than of thou-
sands of amino acids. Protein domains can be identiied and understood 
without having to refer to the precise amino acid sequence. hey consti-
tute an intermediate level that decouples the level of structure from that 
of overall function.

A similar approach is likely to succeed in our eforts to understand 
the brain: we might be able to identify an intermediate stage between 
circuits and behavior, a stage of computations (igure 1b). hese com-
putations are the equivalent of computer languages for brain operation 
and take place in the activity of individual neurons and especially of 
populations of neurons.

Research in recent decades, in fact, has started to reveal some of these 
computations. here is increasing evidence that the brain relies on a 
core set of standard (or “canonical”) neural computations: combined 
and repeated across brain regions and modalities to apply similar op-
erations to diferent problems.

An example of a plausible canonical neural computation in sensory 
systems is iltering, where neurons operate on sensory inputs by per-
forming a weighted sum. he weights applied in this sum are called 
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“receptive ields.” his operation of iltering is performed, at least ap-
proximately, at various stages in the visual system, in the auditory sys-
tem, and in the somatosensory system. It may also be at play in motor 
systems, where neurons can specify “force ields,” assigning a weight to 
each body position to deine a force toward a inal position.

Another possible example of canonical neural computation is divi-
sive normalization, an operation whereby neuronal responses are di-
vided by a common factor, the summed activity of a pool of neurons. 
Normalization was developed to explain responses in primary visual 
cortex and is now thought to operate throughout the visual system and 
in multiple other sensory modalities and brain regions. It is thought to 
underlie operations as diverse as the representation of odors, the de-
ployment of visual attention, the encoding of value, and the integration 
of multisensory information.

hese computations are examples of bridges between circuits and be-
havior and of how diferent computations are typically considered to 
work in combination. For instance, a standard model of human visual 
detection starts with a front end made of ilters, followed by a stage of 
divisive normalization. Filtering and divisive normalization, moreover, 
summarize the activity of large populations of neurons in the early 
visual system. As such, they have guided a multitude of experiments 
aimed at the underlying circuits.

Filtering and divisive normalization, however, are just two instances 
of plausible candidates for canonical neural computations. hey are 
examples chosen from the author’s ield of expertise. Other examples, 
which would require other chapters and better authors to describe, 
include exponentiation, recurrent ampliication, associative learning 
rules, cognitive maps, coincidence detection, top- down gain changes, 
population vectors, and constrained trajectories in dynamical systems. 
And of course one hopes that further research will identify new com-
putations and tell us about the various ways the computations are com-
bined in diferent brain regions and modalities.

Crucially, research in neural computation needs not rest on an un-
derstanding of the underlying biophysics. Some computations, such as 
exponentiation, are closely related to underlying biophysical mecha-
nisms (a neuron’s threshold for producing spikes). Others, however, 
such as divisive normalization, are less likely to map one-to-one onto a 
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biophysical circuit. hese computations depend on multiple circuits and 
mechanisms acting in combination, which may be diferent from region 
to region and from species to species. In this respect, they resemble a set 
of instructions in a computer language, which does not map uniquely 
onto a speciic set of transistors or serve solely the needs of a speciic 
sotware application.

Nonetheless, once they are discovered, neural computations can 
serve as a powerful guide to research in the underlying circuits and 
mechanisms. It is hard to understand a circuit without knowing what it 
is computing, be it iltering with exponentiation and divisive normaliza-
tion or the detection of time diferences between two sets of inputs.

Occasionally, however, it pays to proceed in the opposite direction, by 
starting from a circuit or biophysical mechanism and studying its com-
putational role. his is the approach developed for instance in Christof 
Koch’s book Biophysics of Computation (see also chapter by Koch, this 
volume). For example, studying recurrent excitation in a vertical col-
umn of cortex led to the suggestion that it may act as an ampliier and 
to proposals as to why ampliication may be a useful computation. Simi-
larly, discovering some sensory preferences of an inhibitory interneuron 
led to the suggestion that it sculpts the activity of other cells by suppress-
ing their responses to speciic stimuli.

he basic idea that one should concentrate on computation was laid 
out in the 1980s by David Marr in his inluential book Vision. Marr 
argued that “any particular biological neuron or network should be 
thought of as just one implementation of a more general computational 
algorithm.” He suggested that “the speciic details of the nervous system 
might not matter.” his might seem extreme, but it is useful as it distin-
guishes irmly the question of what is computed from the questions of 
how and why it is computed (igure 1).

How shall we proceed to discover and characterize more canoni-
cal neural computations, and to ind out how these work in concert to 
produce behavior? he known neural computations were discovered by 
measuring the responses of single neurons and neuronal populations 
and relating these responses quantitatively to known factors (for exam-
ple, sensory inputs, perceptual responses, cognitive states, or motor out-
puts). his approach clearly indicates a way forward, which is to record 
the spikes of many neurons concurrently in multiple brain regions, in 
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the context of a well- deined behavior. How many neurons? Currently 
we record from hundreds, and new technologies will soon grow this 
to thousands, and perhaps soon enough, millions. Developing such 
technologies is precisely the goal of the BRAIN initiative, and there are 
already multiple hints on exciting developments on this front (see chap-
ters by Ahrens, Koch, and Shenoy).

To guide these experiments and to interpret the resulting lood of 
data we will need novel theories. Ideally, these theories will establish 
new metaphors for the concerted activity of large neuronal populations. 
Great models can do that. Consider, for example, the highest success 
of computational neuroscience: Alan Hodgkin and Andrew Huxley’s 
model of the action potential. his model bridged structure and func-
tion by relying not on a chemical description but on a metaphor: the 
equivalent electrical circuit. By extending this metaphor beyond pas-
sive membranes, it captured vast amounts of data and guided decades 
of research in the underlying biological hardware, i.e., voltage-sensitive 
ion channels (see also chapters by Freeman and Shenoy on the role of 
computation).

here are of course alternatives to Marr’s way, and a notable one is the 
quest for the full diagram of the circuits of the brain, the “connectome.” 
his diagram will undoubtedly prove useful to understand how circuits 
give rise to computations (the let portion of igure 1). For instance, a 
tiny piece of connectome was recently obtained for a piece of retina (a 
circuit), and it answered a long- standing question about direction selec-
tivity (a computation). However, this approach will do little to explain 
how various computations are used together to produce behavior (the 
right portion of igure 1).

More generally, knowing a map of connections may not be as use-
ful as one expects, especially if this map comes with no information 
about connection strength. For instance, we have long known the full 
connectome for the worm C. elegans, detailing the more than 7,000 con-
nections between its 302 neurons, and yet we are hardly in the position 
to predict its behavior, let alone the way that this behavior is modiied 
by learning. One of the key diiculties, highlighted by Cori Bargmann, 
is that a connectivity map needs to be supplemented by a moment- by- 
moment account of concentrations of neuromodulators, which can very 
quickly and radically change the function of the network. Going back 



F rom C i r c u i t s  t o  Behav i o r  •  183

to our initial analogy, those scientists who studied the laptop computer 
would beneit more from a manual of a programming language than 
from a diagram of connections between transistors in a Pentium chip 
(igure 1a).

Another alternative to Marr’s approach is the efort to simulate brain 
circuits in all their glorious complexity, to obtain a “simulome” (apol-
ogies for the neologism). his approach was championed in the early 
1990s with the neural simulator GENESIS and had a revival in the Blue 
Brain Project and most recently in the Human Brain Project (see chap-
ter by Hill). Quoting from he Book of GENESIS, the key underlying 
hypothesis is that an “understanding of the way nervous systems com-
pute will be very closely dependent on understanding the full details 
of their structure.” Accordingly, one should seek “computer simulations 
that are very closely linked to the detailed anatomical and physiological 
structure” of the brain, in hopes of “generating unanticipated functional 
insights based on emergent properties of neuronal structure.”

he problem with the simulome is that these “unanticipated insights” 
have not materialized. Decades since the idea was put forward, we have 
not discovered much by putting together highly detailed simulations of 
vast neural systems. Where GENESIS and other detailed neural simula-
tors succeeded is when they concentrated on a more microscopic scale: 
detailed simulations of myriad items as tiny as ion channels can be nec-
essary for understanding computation in single neurons or dendrites. 
However, putting all the subcellular details (most of which we don’t 
even know) in a simulation of a vast circuit is not likely to shed light on 
the underlying computations. Indeed, the Blue Brain Project has hardly 
delivered on its initial promises, and the Human Brain Project is not 
poised to do any better.

In essence, while we have clear examples of success for the reduc-
tionist approach (from behavior to computations to circuits), the case 
still needs to be made for the constructivists’ one (from circuits to com-
putations to behavior). A similar situation is seen in other sciences: as 
P. W. Anderson put it, “he ability to reduce everything to simple fun-
damental laws does not imply the ability to start from these laws and 
reconstruct the universe.”

Luckily, there is a strong sense that the levels of the subcellular and 
of the network are neatly decoupled. For instance, work by Eve Marder 
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and others has shown that very similar patterns of cellular and network 
responses (and therefore very similar computations) can be obtained 
with wide diferences in biophysical details. Conversely, work by Zach-
ary Mainen and Terrence Sejnowski has shown that small changes in 
biophysical details can lead to wide diferences in cellular properties 
(and therefore in computations). his decoupling of levels gives us hope 
that we will indeed understand the relationships between circuits and 
behavior. If, instead, understanding behavior requires understanding 
a myriad of relationships between molecules, channels, receptors, syn-
apses, dendrites, neurons, and so forth, we have little hope of success.

To conclude, the gap between circuits and behavior is too wide to 
be bridged without an intermediate stage. Following on the basis laid 
by Marr, it seems evident that this stage is one of computation. Neuro-
scientists have already identiied some computations that appear to be 
canonical: repeated and combined in diferent ways across the brain. 
Hopefully new experiments, new technologies, and new theories will 
soon identify an even wider array of computations and give us more 
concrete examples of how these are combined to determine behavior. Of 
course, this view does not advocate separating those who study circuits 
from those who study behavior. Rather, it argues that researchers of cir-
cuits and of behavior go furthest when they speak a common language 
of neural computation, a language that we are only beginning to learn.

Note

An earlier version of this chapter was published in March 2012 in Na-
ture Neuroscience 15 (4): doi: 10.1038/nn.3043, by Nature Publishing 
Group, a division of Macmillan Publishers Limited.
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L E S S O N S  F R O M  E V O L U T I O N

Leah Krubitzer

When invited to contribute to this book, he Future of the Brain: Essays 
by the World’s Leading Neuroscientists, I agreed for two reasons. he irst 
and most obvious is that I study the brain. However, as an evolution-
ary neurobiologist I am more interested in its past than in its future. 
he second reason is based on pure vanity; who could resist agreeing to 
be included among the “world’s leading neuroscientists”? In this essay 
I relect on a few important things I’ve come to appreciate about brain 
function and evolution, where I think we should direct our future ener-
gies in trying to understand the brain, and end with a brief assessment 
of our current ability to predict future brain evolution.

One of the irst and most important lessons I have learned as a neu-
roscientist is that in order to understand how complex brains evolve and 
work, it is not enough to study only complexly organized brains. As a 
young graduate student, I was interested in why humans behave the way 
that they do, how the brain generates this behavior, and how both the 
brain and behavior evolve. Although much of my graduate work was on 
the brains of nonhuman primates, I ultimately concluded that to truly 
understand how complex brains evolved, looking at our close relatives 
like monkeys would never be enough. Although monkey brains are ex-
tremely complex, there are important insights to be gleaned from a wide 
variety of species. For example, we know from comparative studies in 
mammals that the neocortex, the part of the brain involved in percep-
tion, cognition, and volitional motor control, varies dramatically in size 
and the number of interconnected cortical ields (functional subdivi-
sions of the neocortex) in diferent species. Comparative studies indi-
cate that a large neocortex with multiple parts evolved in primates, in-
cluding humans, but also evolved independently in other lineages such 
as cetaceans (whales and dolphin). In order to appreciate how these 
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types of complex brains evolved, I felt it was critical to appreciate how 
the neocortex of early mammals was organized and then determine the 
types of alterations that were made to the brains of their descendants. 
hus I ventured to Australia where I could study mammals whose an-
cestors branched of early in evolution (monotremes and marsupials) in 
the hope that they would have retained some primitive features of neo-
cortical organization inherited from our early ancestors over two hun-
dred million years ago. While in Australia I found that monotremes and 
marsupials have the same basic plan of neocortical organization that 
all species possess, and that this plan has been elaborated in diferent 
lineages. hus every living mammal, including humans, has aspects of 
neocortical organization and connectivity that were inherited over two 
hundred million years ago from the common ancestor of all mammals.

he second important lesson I learned is that unusual mammals can 
tell us a lot about the rules of brain construction and brain/body rela-
tionships. Comparative studies on animals that possess extreme special-
izations like the duck- billed platypus, star- nosed mole, or echolocating 
bat provide important insights about the human brain. For example, the 
duck- billed platypus has a highly specialized bill with electrosensory re-
ceptors and uses this specialized body part for navigating, mating, and 
prey capture in the water. his specialized body part is associated with a 
number of brain features, such as cortical magniication or the amount 
of cortex devoted to processing inputs from a speciic body part. he 
platypus is unique in the extraordinary magniication of its bill; about 
90 percent of its somatosensory cortex is devoted to the bill representa-
tion. hese body specializations in mammals are also associated with 
the types of stimuli that neurons respond to and alterations in the con-
nections of the brain. Studies on animals that are highly specialized also 
inform us about the importance of use of this specialized body mor-
phology in constructing the brain during development and the dynam-
ics in shaping the neocortex as an organism matures to adulthood. If we 
consider human specializations in this same light, we would conclude 
that specializations of the vocal tract and oral structures associated 
with speech production have a large portion of the neocortex devoted 
to processing these inputs, and these areas have altered connections 
associated with these specializations— and, they do. As Ted Bullock 
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elegantly articulated in his Science essay, “Comparative Neuroscience 
Holds Promise for Quiet Revolutions,” comparative studies are impor-
tant in revealing the roots or evolutionary history of brain organization, 
the rules of construction of brains and the constraints under which the 
nervous system develops and evolves, and the relevance or general prin-
ciples of brain organization. hus while we may be interested in how 
complex brains like those of humans arose, we must admit that most 
insights about general rules of construction and general principles of 
neocortical function come from the brains of other mammals.

he third important lesson is that the brain does not develop or func-
tion in a vacuum. For years I used comparative analysis in a variety 
of mammals to determine how the brain, particularly the neocortex, 
was modiied throughout the course of evolution, and the factors that 
contribute to aspects of the cortical phenotype such as organization 
and connectivity. I was extremely “braincentric” when considering 
these issues, and this was due, in part, to my early training. Although 
I worked on multiple species as a graduate student, my experiments 
were restricted to listening to and looking at the brain using electro-
physiological recording techniques and neuroanatomical techniques, 
respectively. My point is that I never seriously considered other parts of 
an animal except its brain. Perhaps one of the biggest revelations in my 
career came when I began a postdoc in Australia and had to catch the 
animals I worked on— a moment I still remember with clarity: late at 
night rowing a boat in murky waters, hoisting gill nets and hoping like 
hell there would be a platypus caught in the net. I vividly recall marvel-
ing over the texture and composition of its bill, its tiny eyes, its webbed 
paws and unbelievably thick, water- resistant fur, and wondering what 
it would be like to be a platypus. When I discovered the extraordinary 
amount the neocortex devoted to processing inputs from the bill, I i-
nally realized my curiosity never could be satisied. Although my brain 
shares a number of features of organization with the platypus, I don’t 
have a hydrodynamically constructed body like a platypus, nor mas-
sive inputs from mechanosensory and electrosensory receptors on a bill 
pouring into my brain. Brains do not operate in isolation but are em-
bedded in a body, oten containing specialized sensory receptor arrays, 
and the whole animal develops and evolves in a context of both animate 
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and inanimate objects, conspeciics (same species), and heterospecif-
ics (other species), all of which are constrained by the laws that govern 
matter and energy on our planet.

he fourth important lesson learned was that genes are not everything. 
It is becoming more and more apparent that epigenetic mechanisms— 
which alter transcription or expression of genes— are critical for con-
structing a brain that is highly adapted to the context in which it devel-
ops and in which the animal will ultimately live.

Conrad Waddington irst used the term epigenetics in the middle of 
the last century in an efort to explain cellular diferentiation during de-
velopment. If there is a one- to- one correspondence between DNA and 
the phenotype, then every somatic cell in the body (which contains ex-
actly the same genotype) would be identical. Instead, the phenotypes 
of cells vary from brain cells (neurons) to liver cells. Because of this, 
Waddington proposed that the mechanisms through which a genotype 
produces a phenotype should be termed epigenetics.

Considering that cellular phenotypes undergo dramatic plasticity 
during development while the genotype of these cells remains stable 
implicit in Waddington’s deinition is the notion that a phenotype can 
be altered without changes to the genotype. hus during the course of 
development, epigenetic mechanisms (such as DNA methylation, a bio-
chemical process that reduces gene expression in speciic portions of the 
brain and body) allow cells with the same DNA to diferentiate and di-
vide, passing on those alterations in gene function, not explained by al-
terations in DNA sequence, to daughter cells. If we expand this concept 
to take into account the fact that an organism does not remain static 
throughout the lifespan, but rather it dynamically responds to social and 
environmental contexts, then epigenetic mechanisms might also medi-
ate the adaptability of brain and behavior to the environment. Recent 
work from the laboratories of Michael Meaney and Frances Champagne 
indicates that variation in early development induces epigenetic varia-
tion (in DNA methylation for example) and may serve as a mechanism 
for developmental plasticity. For example, alterations in nutrition, stress, 
and maternal care early in life can trigger these epigenetic mechanisms 
and generate anatomical and functional changes to the brain and body, 
which alters behavior of the ofspring. hese alterations in behavior can 
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be sustained across generations via epigenetic efects on portions of the 
neuroendocrine system, or in some instances persist through epigenetic 
efects on the germ line.

he dramatic role that epigenetic mechanisms play in shaping brain 
and behavior is well exempliied in humans. Anatomical alterations to 
the hand necessary for complex bimanual dexterity; to the supralaryn-
geal tract necessary for speech production; and to the inner ear, which 
ampliies frequencies associated with human speech, were present well 
before these behaviors that we attribute to modern humans were ex-
pressed within the population. hus the anatomical underpinnings for 
complex human behaviors were present in our very early ancestors and 
those of our Neanderthal cousins, but complex behaviors like language 
and sophisticated and precise tool use (generated by the neocortex) 
were shaped by the social and cultural context in which individuals de-
veloped, rather than traditional evolutionary mechanisms. We know 
from our own work and from that in other laboratories that context, 
which can be considered as complex and dynamic patterns of incoming 
sensory information available to developing brains, can alter neocorti-
cal connectivity, functional organization, and the resultant behavior of 
an individual. Remarkably, it is possible to dramatically alter “normal” 
brain connectivity and function by altering the patterns of stimuli expe-
rienced during development and over a lifetime.

his leads to my ith revelation: there is no single or optimal way 
to build some feature of brain organization. For years I searched for 
“the way” in which some aspect of the cortical phenotype could be al-
tered during the course of evolution. For example, what is the way in 
which the size of cortical ields is altered? What is the way in which 
cortical connections change? What is the way in which cortical ields 
are added? Studies of molecular development that examine genes in-
trinsic to the developing neocortex have demonstrated how these genes 
(and genetic cascades) can alter cortical ield size, location, and connec-
tivity. Interestingly, these same features of organization can be altered 
by the sensory driven activity that the developing organism is exposed 
to. Because cortical ield size and connectivity can be changed through 
diferent mechanisms, this implies that in a given lineage, some aspect 
of brain organization owes its particular phenotype to genes, activity- 
dependent mechanisms, or some combination of both. However, a 
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similar phenotype in a diferent mammal may have arisen by a very dif-
ferent combination of these factors.

From a personal rather than scientiic standpoint, the inal impor-
tant thing I’ve learned is don’t be taken in by the boondoggle, don’t get 
caught up in technology, and be very suspicious of “initiatives.” Sci-
ence should be driven by questions that are generated by inquiry and 
in- depth analysis rather than top- down initiatives that dictate scientiic 
directions. I have also learned to be suspicious of labels declaring this 
the “decade of ” anything: he brain, he mind, Consciousness. here 
should be no time limit on discovery. Does anyone really believe we 
will solve these complex, nonlinear phenomena in ten years or even one 
hundred? Tightly bound temporal mandates can undermine the impor-
tant, incremental, and seemingly small discoveries scientists make every 
day doing critical, basic, nonmandated research. hese basic scientiic 
discoveries have always been the foundation for clinical translation. By 
all means funding big questions and developing innovative techniques 
is worthwhile, but scientists and the science should dictate the process. 
here are numerous examples where individuals, rather than top- down 
initiatives, worked to progressively cure or prevent diseases or uncover 
important and fundamental principles of biology. Some of these include 
Jonas Salk’s vaccine for poliomyelitis; Santiago Ramón y Cajal’s discov-
eries on the anatomical structures of neurons and his articulation of the 
neuron doctrine; and of course Charles Darwin’s detailed observations 
that led to the theory of evolution through natural selection, which is 
now the cornerstone of all of biology.

Of course most of these lessons learned during my career have been 
well documented by erudite neuroscientists well before me. However, 
this personal synthesis has shaped my own science and the evolution 
of my thoughts, and it certainly plays a heavy hand in where I believe 
we should direct our future energies as neuroscientists. First, I think 
that revealing the relationships between multiple levels of organiza-
tion, from genes to neurons to cortical maps to behavior, is critical. his 
will require those of us working in science to step out of our individual 
scientiic comfort zones and to consider levels of organization larger 
and smaller than the one at which we personally work. Our quest for 
understanding species diferences must move well beyond compara-
tive genomics and approaches that seek simple genetic explanations 
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for complex phenomena such as language, autism, or schizophrenia. In 
our enthusiasm for genetics, we oten seem to have sidestepped systems 
neuroscience, cognitive neuroscience, social science, and whole animal 
physiology, prematurely narrowing our search to uncover unrealistically 
direct gene- to- complex- behavior relationships. As noted above, context 
is extremely important, and in terms of human brain organization and 
function, culture appears to have played a pivotal role in shaping the 
human brain and modern human behavior.

Given the enormous role of social and cultural context in human 
brain organization and function, to predict the future evolution of the 
brain— where our own brains might be a hundred or thousand or a mil-
lion years from now— would require us to predict the direction of social, 
economic, and technological changes to our current culture. We also 
need to consider the physical changes in the environment like global 
temperature, the types of food we eat, the chemical treatment of our 
water, alterations in our form of locomotion, and our movement away 
from traditional tool use to automation and skills that require more 
unique movements of our digits, all of which may shape our future body 
morphology, physiology and metabolism. In short, you can’t predict fu-
ture brain organization in isolation, but must consider the multilayered 
context in which the brain develops.

Having said this, I contend that understanding the history of brain 
evolution does provide powerful insight into understanding the types 
of alterations that can be made to brains in the future. Evolution of the 
neocortex can be considered, to some extent, as an ever- diminishing 
set of options. Genetic contingencies and pleiotropy (a single gene has 
multiple, seemingly unrelated efects) place formidable constraints on 
brain development as do the laws of physics, and comparative stud-
ies demonstrate that the types of changes that have been made to the 
neocortex through the course of evolution are limited. While no one 
can predict the exact phenotype that the next million years of human 
evolution will produce, one can infer the types of alterations that can 
be made to the human brain, as well as alterations that are improbable. 
One can also predict with a high degree of conidence that concrete an-
atomical and physiological alterations that generate complex behavior 
will be due to alterations in genes that covary with some aspects of the 
body, brain, and behavior, but these features will always be couched with 
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cultural evolution and will emerge and oten persist through epigenetic 
mechanisms.

Finally, for all I have learned, probably the most important revelation 
in my own journey has been the continuing and exhilarating process of 
realizing how little I really know, and how much there is still to explore.
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Mapping the Brain

Inspired by the success in mapping the human genome, two signiicant 
projects are now underway to map and improve our understanding of 
the human brain. President Barack Obama’s BRAIN initiative (Brain Re-
search through Advancing Innovative Neurotechnologies) and the Eu-
ropean Commission’s Human Brain Project. Each project is expected to 
cost about a billion dollars. Both are to be carried out over ten- year spans.

he BRAIN project was, at the time of its initial announcement, explic-
itly compared to the Human Genome Project. he hope, says the White 
House, is that the project will lead to a long list of practical applications, 
including new ways “to treat, prevent, and cure brain disorders like Alz-
heimer’s, schizophrenia, autism, epilepsy, and traumatic brain injury.”

Two decades ago similar promises— many not yet delivered— swirled 
around government- funded eforts to map the human genome. What 
can our experiences with the genome project tell us, practically— and 
ethically— about projects to map the brain?

The Nature of the Two Projects

he BRAIN project states that it provides funding to investigators to de-
velop next- generation technologies with the aim of mapping the activity 
of each of the neurons in the brain. he goal is to develop technologies 
for monitoring the responses of large populations of neurons with high 
spatial and temporal resolution. Initially these will primarily be developed 
in animal models, like lies, ish, and mice, but with an eventual goal of 
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applications in humans, enabling the study of brain processes, thereby al-
lowing a more accurate study of brain processes from thought and mem-
ory to pathologies such as Alzheimer’s and PTSD. he list of collaborators 
includes leaders in neuroscience from all over the United States. Close to 
half of the initial funding for the initiative is to go to DARPA— the Defense 
Advanced Research Projects Agency. DARPA’s current interest appears to 
be direct brain stimulation technologies (DBS). his means that a lot of 
money is being spent on the initiative with an eye toward military use, in-
cluding DBS for various forms of brain trauma, enhancing or recovering 
mental functioning, memory modiication, brain interfaced prosthetics, 
and accelerating recovery from brain injuries associated with combat.

he European Commission’s Human Brain Project (HBP) seeks to 
gain insight into the function of the human brain and thereby advance 
research in neuroscience. It is, however, distinct in the approach being 
taken. he goal of the HBP is to integrate disparate areas of neurosci-
ence research through innovative informatics and other modalities to 
create a functional brain simulation. he hope is that functional simula-
tion theories about brain health and pathology can be formulated and 
tested. he HBP carries less explicit rhetoric about treatments and cures 
associated with its promotion than does the BRAIN Initiative.

he projects, despite their diferences, could prove complementary. 
Certainly having a neuron- by- neuron map of the brain temporally and 
spatially would greatly contribute to the ability to create a functional 
simulation of the human brain. Similarly, information gleaned from sim-
ulation using a dynamic model may be key to creating a unifying neuro-
scientiic foundation to guide future research. But there are challenges 
too, especially when considering the use of new technologies to study 
the human brain, as opposed to model systems, and it is instructive to 
consider the history of the genome project to better understand them.

Challenges in Mapping the Human Genome

he irst oicial funding for the Human Genome Project originated 
with a proposal from then- President Ronald Reagan in his 1987 budget 
submission to the Congress. It subsequently passed both houses. he 
project was planned for iteen years.
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In 1990 the two major funding agencies, the Department of Energy 
and the National Institutes of Health, developed a memorandum of un-
derstanding in order to coordinate their mapping eforts. hey reset the 
clock for the initiation of the project to 1990.

Due in part to the prevailing political climate of the United States, 
which favored private solutions to large- scale projects, there was interest 
in privately funded alternatives to the HGP. Many felt that private com-
panies dedicated to mapping would ind ways to more eiciently and af-
fordably sequence the human genome. Some felt that a project to simply 
map the human genome was better suited for private enterprise, leaving 
government funds available for more basic research purposes. Celera 
Genomics, among other companies, was created in 1998 in partnership 
with PerkinElmer to perform the mapping work and to proit commer-
cially from the result. Celera quickly became the major competitor to 
the publicly funded project. he company claimed to be able to achieve 
the same goals of the project on a faster timetable with a much smaller 
total budget.

Investors believed they would succeed. Celera Genomics Group stock 
rocketed ater the company, based in Rockville, Maryland, announced 
in 2000 that it had mapped 90 percent of the human genome. Celera, 
which began trading at $25 a share, saw its stock price rise to over $200 
a share, giving the company at one point a market value of $5.5 billion. 
Celera’s revenue from the sale of genomic sequence information peaked 
at $121 million in June of 2002.

An issue that came up right away was: who owns the information 
contained in the genome. Many argued that all genomic information 
should be publicly available. here was an initial agreement between 
the public and private groups to share data. his fell apart when Celera 
refused to deposit their data into a public database— Genbank. his led 
to a situation where the private project was able to use the data from the 
public HGP, but the same was not true for the public project in seek-
ing to access the data assembled by Celera, a private, commercial entity. 
here were no legal grounds for insisting on symmetry.

Meanwhile, the public and private eforts had distinct and diferent 
goals. he publicly funded group sought to make human genome infor-
mation freely available to all scientists across the world in the hope that 
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they would use the information to further the research they were doing 
in diverse areas of science and medicine. hose in the privately funded 
group may have had some desire to share information, but (as shown by 
the hundreds of patents they iled), Celera initially had a strong desire to 
retain a good deal of the information it discovered as proprietary. Celera 
was a commercial entity supported by private investors eager for a re-
turn on their money. he notion of sharing data was not one that found 
any support in the company’s early days. Only when it became clear that 
a vague, low- resolution general map of the human genome had no real 
commercial value did the company move toward a position of freely 
releasing that map for public use.

Lessons for Brain Mapping

here is enormous value in biological information, whether composing 
rough low- resoluition brain maps or subsequently ine- tuning them as 
more precise information is learned about small individual brain varia-
tions. High resolution maps of human genomes will have the greatest 
value in personalized diagnosis or therapies, including creating drug 
targets. One key lesson learned from mapping the genome is that access 
to a rough initial map proved crucial to developing more detailed maps 
of small individual human diferences. Unless ALL data, not just crude 
initial brain mapping data, is guaranteed to be open and freely available, 
commercial interests and motivations will, as they have in genomics, 
drive the evolution of knowledge about the brain. While eforts to map 
the brain have begun as public, government- funded projects, this does 
not mean that private entities will not enter the arena and seek to com-
pete with those projects.

Although initial eforts to map the brain may be fueled by public 
funds, the issue of how “ine- tuned” information that can be used to 
determine risk factors or emerging disease states in individual’s brains, 
which will require linking data to genetic databases, health records, and 
health databases, will be handled merits discussion now. What rules will 
govern the sharing of detailed scans or maps about each individual’s 
brain? Can data be linked from a brain scan to a genome to a database 
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without an individual’s express consent if that person’s identity is not 
100 percent secure?

What information about the brain can be patented? Recent battles 
over the patenting of BRCA genomic information by private irms show 
what can happen if these issues are not acknowledged and resolved early 
on. It is important to keep new advances in neuroscience from bogging 
down in ights over commercialization and ownership. Such issues need 
to be resolved sooner rather than later.

Consider a company formed with the promise of ofering customers 
interesting information about their thoughts and/or predictive infor-
mation about brain diseases they might be at risk of acquiring. Many 
such companies, some more legitimate than others, are operating now 
in the sphere of genomics. Some are huge and have proven proitable, 
like deCODE and 23andMe. Others are small and oten make claims 
that are on the fringes of genomic science. Building on preliminary and 
incomplete information coming out of the brain mapping projects and 
related research, we can predict with certainty that new “brain diagnos-
tic,” “truth assessment,” and “brain detective companies” will begin to 
proliferate on the web and elsewhere. he emergence of companies that 
purport to be able to conduct neuromarketing without much in the way 
of evidence to ground their claims shows what is likely to be in store in 
short order regarding “truth” analyses.

All these soon- to- come companies need is some form of a scanner, a 
suspicious spouse or wary potential employer, and a lot of hocus- pocus 
to say that new knowledge of the brain will permit the detection of adul-
tery, unfaithfulness, unhappiness, or a disposition to thet. Without any 
control over the use of new information about the brain or advertising 
claims allegedly based upon knowledge derived from the new projects 
to map the brain, the projects will create many spin- ofs. Not only will 
there be spin- of information about how to diagnose disease and treat 
it and what price ought be charged for such beneits of government re-
search, but there will also spin of a host of quacks, charlatans, entre-
preneurs, quick- buck artists, and shysters eager to parlay incomplete or 
rough data about the brain for sale to a public eager to believe in truth 
machines, windows into one’s deepest hidden thoughts and fears, and 
screens that can weed out the diferent, the potentially derelict, and the 
defective in the home, workplace, or jail.
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Calls to map the human genome anticipated none of the aggressive 
commercial exploitation that followed in its wake. here is no reason 
not to better prepare for the fallout that will surely occur as knowledge 
of the brain advances.

What Is the Best Source of Funding a Brain Map?

As was seen in the HGP there are distinct advantages to various types 
of funding. By allowing public or governmental funding many argue 
that scientists are allowed academic freedom, an ability to proceed in 
the direction they feel is most promising. But that belief may be naive. 
he heavy presence of DARPA, the Defense Advanced Research Proj-
ects Agency of the US Department of Defense, in the American project 
all but guarantees that that project will be under pressure to show ben-
eits useful for national security, military application, and the diagnosis 
and treatment of combat-  and military- service- related disabilities and 
injuries. here appears to be no guarantee that all data collected under 
DARPA’s auspices will be publicly available. DARPA sponsorship may 
entice brain scientists eager for grant money in a time of tight budgets, 
but it is important to realize the goals of DARPA may not always overlap 
the values of scientists used to relying on NIH or NSF support.

When an endeavor like mapping the brain is funded by private in-
dustry funds, or even foundation grants, there is a pressure to move in 
the direction those funders want. A grant from the Alzheimer’s foun-
dation is likely to come with strings attached about mapping with an 
eye toward better understanding Alzheimer’s. he same can be said of 
industry funds. While they can be a valuable source of money for inves-
tigators, they also come with a pressure to ind commercializable op-
portunities in the research.

Foundation and industry grants are not without their merits. he 
idea that they could lead to more eicient and afordable technologies 
was used to justify the competition between public and private groups 
that occurred during the HGP project. he fact is that the competi-
tion between public and private eforts to map the genome did in fact 
lead to more afordable and eicient technologies is now very much 
appreciated by many in the scientiic community. However, if brain 
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projects are fully or partially funded through collaboration with in-
dustry to reap the beneits of increased eiciency and translation to 
application, then it must also be understood that the community of 
scientists might not be used to working with large corporations, such 
as GE, Medtronic, Siemens, Johnson and Johnson, Google, and others, 
and will surely be averse to the demands made on them in terms of 
proprietary rights as a price for their funding. Large foundations can 
also make demands that readily create conlicts of interest for those 
seeking rapid publication and the release of all crude data into public 
data banks.

Are We There Yet? What Counts as Progress?

Other lessons from the initiative to map the human genome deserve at-
tention as well. he competing projects engaged in mapping the genome 
did not agree on what would constitute the inish line in terms of an-
nouncing success regarding achieving a map of the human genome. Nor 
did they agree on whose genome or genomes would serve as the tem-
plate for mapping activities. Oten what counted as progress was iercely 
debated in public with an eye toward gaining a PR advantage for one 
side or the other albeit at a serious cost for the public’s understanding of 
what was taking place.

Nor was there agreement on what to map. For example, at the time 
the HGP was irst launched, it was widely assumed that noncoding 
DNA was “junk” and need not to be taken into account as part of a claim 
to have “mapped” the human genome. And initially many involved in 
mapping said that noncoding DNA need not be mapped. But years later, 
researchers began to realize noncoding DNA played a key regulatory 
role governing much of the process of epigenesis

When it comes to the human brain, what should we map? Is it a map 
of the neural connections of the brain, a so- called human connectome? 
Should the glial matter that makes up as much as 90 percent of the cells 
in the human brain be included in any map before success is declared? 
his is an especially important question, looking back on the decision 
to not include “junk” DNA as part of the human genome. More and 
more evidence mounts that glial cells are not simply “supporters” of the 
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neurons, as neurological dogma has held for many years, but are pos-
sibly involved in brain processes.

As some have argued, building a connectome is not enough to say the 
brain has been mapped. We also need to develop technologies that can 
image the brain dynamically and see what cells and groups of cells are 
iring with high spatial and temporal resolutions to say anything like a 
brain map has been achieved.

But what resolution will be suicient? Spatially, should scientists seek 
to see individual neurons, groups of 5, areas of 1 mm? What about tem-
porally, do we need to see every second, millisecond, or every evoked 
action potential?

hese questions will undoubtedly be the source of much debate 
among scientists, but they should begin to be addressed now. Without a 
consensus on what mapping the brain means, at what resolution it will, 
and ultimately ought to, be done will not be evident, as it was not when 
seeking to map the human genome. Battles over credit, ownership, error, 
and the fulillment of promises of applicability hinge on reaching an 
agreement about what the endpoints are. Just as importantly, public sup-
port and funding for mapping will pivot on clarity about what endpoints 
are important and what landmarks along the way have real signiicance.

The Practical Value of a Map

hose seeking to fund the project two decades ago heralded sequenc-
ing and mapping the genome as the way to a very rosy future in which 
we would secure freedom from all our genetic ailments, the key to a 
longer, healthier, happier life. Indeed, at the oicial announcement of its 
completion, then- President Bill Clinton said it would “revolutionize the 
diagnosis, prevention and treatment of most, if not all, human diseases.”

But while genomic technology may well accomplish these things, it is 
important to recognize that the true advances regarding the “prevention 
and treatment” of most human diseases are still decades away. Even now, 
almost iteen years ater the initial announcement of the completion of 
the project in 2000, medicine is only just beginning to see technologies 
that may meaningfully change the way human diseases are diagnosed 
and treated. he public or Congress or other funders might well feel that 
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science did not deliver on the big promises made in the name of map-
ping or that the time frame that was sold was far too optimistic.

Any large- scale project seeking signiicant public funds risks facing 
the same problem as, say, building a location for the Olympics such as 
Sochi, Russia, or constructing a tokamak for nuclear fusion. Mustering 
public support for any science project that requires billions of dollars, 
and, at least in the US context, requires persuading a wary Congress, 
public, and media that wondrous advances in the human condition lie 
just around the corner if science can only get enough money, requires 
reasonable achievable goals, not science- iction- inspired promises. In 
order not to disappoint the taxpaying public it is important to be wary 
of the tendency to overpromise in the name of securing funding. Being 
able to map the brain of a mouse is no more a promise of cures around 
the corner than is the capacity to map the genome of a mouse.

Whose Brain or Genome Shall We Map?

At the time the HGP was announced there was a great amount of time 
spent discussing whose genome would be mapped and what the conse-
quences of that decision would be. Because the project would be made 
available freely to the public anyone who allowed their genome to be 
sequenced would have to understand and accept the idea that their ge-
netic information would be available for all to see. Any genetic privacy 
they had would be erased.

In the end a decision was made to sequence the genomes of sev-
eral volunteers but only ater a rigorous informed consent process. he 
Human Genome Project used protocols to ensure that the DNA from 
several diferent volunteers was used and that the blood samples from 
which the DNA would be extracted were de- identiied to the researchers 
using them. Additionally, many more volunteers were recruited than were 
needed to sequence the human genome, and as such, no single volunteer 
is actually certain if their DNA is a part of the project or not. While this 
approach may have worked well to avoid some of the ethical conundrums 
of genomic sequencing, it may not be as simple as we map the brain.

he question of whose brain to map is centrally important in the 
current project for reasons both symbolic and scientiic. While many 
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millions of persons have “maps” done of their brains every year for di-
agnosis or research, at some point a decision must be made about which 
brain or brains to use as the foundation for a standard brain map. Will 
we include data from the mentally ill? Will the developmentally disabled 
be a part of the data pool? Will those who have speciic brain diseases 
be a part of what is brought forward as a “normal” or “typical” human 
brain, and if not, why not? It seems best to use a group of people that 
represents a broad section of humanity. his seems to give the best sci-
entiic chance of capturing all the important information being sought. 
It is also, as the HGP found, ethically less cumbersome that choosing the 
brain of a single, identiiable individual.

his approach, however, may not work. We don’t know how diferent 
the connectome of each human brain is, and we do not know what sort 
of variability to expect in a dynamic brain image. It may well be that this 
variability makes the collected data impossible to pool and de- identify. 
If brain variability may create issues of brain selection in studying the 
brain then these issues, which are hugely controversial if they do exist, 
require public discussion and debate.

Translating New Knowledge of the Brain Will Not Be Easy

No shortage of enthusiasm greeted the irst indings to emerge from the 
crude map of the human genome. Media stories erupted with the prom-
ise that “genealyzers” would soon be present in every doctor’s oice. he 
Internet also erupted with a parade of scams and nonsensical oferings: 
genetic testing for predicting athletic performance in children, the best 
diet suited to a person’s genome, ancestry testing, and even the identii-
cation of a person’s best romantic partner through DNA analysis. So far, 
little of this has yet emerged from eforts to map the brain. How can we 
keep brain knowledge from spawning the same sort of hype, confusion, 
exploitation, and misunderstanding?

Even on some basic concepts, there is already considerable confusion 
in the general public. Consider the basic concept of brain death— the 
total and irreversible loss of all brain function— and the recent case of 
a thirteen- year- old girl, Jahi McMath, who died on December 12, 2013. 
Her parents had taken her to Oakland Children’s Hospital for surgery to 
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remove her tonsils to help her sleep apnea. hings went tragically wrong 
(although exactly why is not known). She sufered severe bleeding, a 
heart attack, and massive hemorrhaging in her brain. Unfortunately, ex-
perts in neurology could not ind any sign of brain activity ater these 
events. Independent experts who were not treating Jahi did the standard 
accepted scans and tests to assess brain activity and concluded with cer-
tainty that she was brain dead.

Yet months later, the girl remained on a ventilator receiving food 
through a tube in an unidentiied facility— because her parents refused 
to accept her death because they did not accept “brain death.” Unlike 
those in a coma or in a permanent vegetative state like Terri Schiavo, a 
Florida woman whose parents fought unsuccessfully with her husband 
to keep her alive, or Ariel Sharon, the former Israeli prime minister 
whose family kept him in a coma for eight years, no one recovers from 
brain death. Brain death is death because the brain can no longer sup-
port any key vital functions. Of course no parent would want to accept 
their daughter’s death, but because the public continues to confuse brain 
death with coma or vegetative state, the McMath family received great 
support from other families and in the media. Indeed, intensive care 
units in the United States and other nations sometimes contain bodies 
that have been pronounced brain dead on machines providing artiicial 
life support at the direction of families who cannot or will not under-
stand brain death.

Brain death is widely misunderstood around the world. A brain map 
is likely to be misunderstood as well unless great care is always used in 
explaining the concept.

More broadly, if the genome has taught us anything, it’s those work-
ing to map out biology, be it genome or brain, have a huge social respon-
sibility. he push to map the brain can’t just be about gathering informa-
tion and discussing ways that information might be applied. Scientists 
must also debunk hype, allay groundless fears, and anticipate likely ways 
in which eforts may be made to exploit or dupe the public in the name 
of knowledge derived from brain maps, studies, and scans.



T H E  C O M P U TAT I O N A L  B R A I N

Gary Marcus

Neuroscience today is collection of facts, rather than ideas; what is miss-
ing is connective tissue. We know (or think we know) roughly what neu-
rons do, and that they communicate with one another, but not what they 
are communicating. We know the identities of many of the molecules 
inside individual neurons and what they do. We know from neuroanat-
omy that there are many repeated structures (motifs) throughout the 
neocortex. Yet we know almost nothing about what those motifs are for, 
or how they work together to support complex real- world behavior. he 
truth is that we are still at a loss to explain how the brain does all but the 
most elementary things. We simply do not understand how the pieces 
it together.

In my view progress has been stymied in part by an ot- repeated 
canard— that the brain is not “a computer”— and in part by too slav-
ish a devotion to the one really good idea that neuroscience has had 
thus far, which is the idea that cascades of simple low level “feature de-
tectors” tuned to perceptual properties, like diferences in luminance 
and orientation, percolate upward in a hierarchy, toward progressively 
more abstract elements such as lines, letters, and faces. In this chapter, 
I argue that it is important for neuroscience to break free from both of 
these ideas.

• • • • • • 

he biggest direct challenge to the notion that the brain is a computer 
has probably come from Parallel Distributed Processing (PDP) or “neu-
ral networks,” an approach that dominated the cognitive sciences for 
almost twenty years, starting in the mid- 1980s. In part PDP dominated 
because it was the irst serious alternative to the then- dominant para-
digm of understanding intelligence in terms of stored computerlike 
programs; even then, in the mid- 1980s, the mind- as- computer meta-
phors seemed dated. “Good old- fashioned artiicial intelligence,” itself 
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modeled on computer programs, seemed to be on its way out; when 
neural networks ascended in the mid- 1980s, a great many people spoke 
of “paradigm shits.” For the next two decades, there was a palpable 
sense that a revolution had come.

hen, like so many fads in psychology (Freud’s psychodynamic the-
ory and Skinner’s behaviorism), neural networks begin to fade away, 
never quite making the transition from proofs of concept on toy prob-
lems (which were abundant) to realistic models of mind or brain. In the 
1990s, journals and conferences were illed with demonstrations that 
showed how it was supposedly possible to capture simple cognitive and 
linguistic phenomena in any number of ields (such as models of how 
children acquired English past- tense verbs). But as Steven Pinker and I 
showed, the details were rarely correct empirically; more than that, no-
body was ever able to turn a neural network into a functioning system 
for understanding language. Today neural networks have inally found 
a valuable home— in machine learning, especially in speech recognition 
and image classiication, due in part to innovative work by researchers 
such as Geof Hinton and Yann LeCun. But the utility of neural net-
works as models of mind and brain remains marginal, useful, perhaps, 
in aspects of low- level perception but of limited utility in explaining 
more complex, higher- level cognition.

Why is the scope of neural networks so limited if the brain itself is so 
obviously a neural network? Much rests in what is meant by a “neural 
network.” Although the brain is clearly some kind of a neural network, 
the brain is vastly more complex than the particular kinds of neural net-
work that people were so excited about in the 1990s. Such networks con-
sisted of simple arrays of input units, output units, and “hidden units.” 
he name of the game was “supervised learning”: training a network on 
some set of known patterns through gradual adjustment of weights so 
that over time the error decreases; any inite set of examples can eventu-
ally be memorized.

Such networks were, as intended, a long way from anything recog-
nizable as computer. hey had no recognizable analog to the kind of 
instructions computer programs are made of (repeat . . . until, if . . . 
then  .  .  .) or to the variables (x’s and y’s) that litter virtually any line 
of computer code. But in retrospect, PDP networks were too far away 
from such things; they were right to emphasize the brain’s parallelism 
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but wrong to throw away the computational baby along with the serial 
bathwater.

Today, “neural network” models have become more sophisticated, 
but only in narrow ways; they have more layers and better learning algo-
rithms, but they still remain too unstructured. he technique known as 
deep learning ofers innovative ideas about how unsupervised systems 
can form categories for themselves, but it still yields little insight into 
higher level cognition, like language, planning, and abstract reasoning. 
If there is no reason to believe that the essence of human cognition is 
step- by- step sequential computation in a serial computer with a stored 
program (à la von Neumann’s ubiquitous computer architecture), there 
is also no reason to dismiss computation itself. In fact, if I can make a 
bold claim, I don’t think we will ever understand the brain until we un-
derstand what kind of computer it is.

• • • • • • 

One of the biggest mistakes of the neural network movement was in as-
suming that the brain was initially organized randomly, tuned entirely 
by experience, with no initial systematicity. In reality, there is every rea-
son to believe the biological process of embryological development is 
capable of building complex, intricate rough drats of the brain even 
in the absence of experience, and every reason to believe that detailed 
circuit structure is critical to nervous system development. To take one 
powerful example, consider a study performed by the Nobel laureate 
homas Südhof, best known for studying the molecular basis of syn-
aptic transmission. As part of that work, Südhof developed a knockout 
mouse in which trans- synaptic neurotransmitter secretion was geneti-
cally silenced, thereby shutting down most of the brain’s internal com-
munication, hence, much of the ability of those mice to learn. If the 
initial drats of the brain were organized primarily by experience, you 
might expect the knockout mice to have essentially random brains at 
birth. Instead, to a irst approximation, by birth the synaptically silent 
mouse embryos had developed brains that appeared to be more or less 
normal, with the folds, the gyri, the diferent cell types, the regularly 
organized structures, and so forth that one would expect. Subsequent 
work by Zoltan Molnár (in physiology) and Giorgio Vallortigara and 
Lucia Regolin (in behavior) pointed in the same direction: much of the 
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brain’s basic organization can be structured even in advance of experi-
ence. Experience tunes, calibrates, reshapes, and rewires, but it is only 
half the equation.

Going hand in hand with the neural network community’s odd pre-
sumption of initial randomness was a needless commitment to extreme 
simplicity, exempliied by models that almost invariably included only 
a single neuronal type, abstracted from the details of biology. We now 
know that there are hundreds of diferent kinds of neurons, and the exact 
details— of where synapses are placed, of what kinds of neurons are inter-
connected where— make an enormous diference. Just in the retina (itself 
a part of the brain), there are roughly twenty diferent types of ganglion 
cells; there, the idea that you could adequately capture what’s going on 
with a single kind of neuron is absurd. Across the brain as a whole, there 
are hundreds of diferent types of neurons, perhaps more than a thou-
sand, and it is doubtful that evolution would sustain such diversity if each 
type of neuron were essentially doing the same type of thing.

• • • • • • 

here are, of course, many reasons to think that brains operate mostly 
in parallel. Individual neurons are too slow to allow brains to operate in 
strict serial von Neumann fashion, and ample data suggest that in any 
given laboratory task (and by extension, any real- world situation) many 
diferent parts of the brain are engaged simultaneously. Even when we 
are not involved in any speciic task, a so- called default or resting state 
network ires away, with many diferent neural circuits operating in par-
allel. But that in itself doesn’t militate against the idea that the brain 
might be some kind of computer; computers are oten portrayed as if 
they were invariable serial sequential devices, but the reality is that for 
the last twenty- ive years, since personal computers became popular, 
there has always been some degree of parallelism: an input- output con-
troller working alongside the central processing unit, for instance. By 
the 1990s Graphics Processing Units (GPUs) started to become popular, 
acting as coprocessors with a central processor, taking up most of the 
work of displaying images so that the CPU would be free for a program’s 
main logic. And importantly, GPUs were themselves computers, but 
ones with a dedicated job— essentially matrix arithmetic— and one that 
they did almost entirely in parallel. Later, “multicore” processors came 
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to be popular. Modern computers (and for that matter smart phones) 
are by any reasonable measure computers— systems that manipulate in-
formation systematically— but not at all strict von Neumann machines 
with a single stored program executed in purely sequential fashion. he 
idea that brains can’t be computers because computers aren’t parallel is 
mired in a vision of computers that is thirty years out of date.

What GPUs and CPUs have in common is that each revolves around 
a basic set of instructions, such as addition, subtraction, and multiplica-
tion, that work in “algebraic” fashion, such that those operations can 
work over arbitrary values that are stored in a set of registers. A kind of 
stereotypical process in a GPU, for instance, is to darken every pixel (a 
form of subtraction) in an image by a ixed amount simultaneously. A 
classical serial computer may accomplish the same thing pixel by pixel 
or byte by byte, but the results would be the same. Once one realizes 
what a GPU can do, and realizes that a GPU is just a diferent kind of 
computer, the notion that the brain might somehow not be a computer 
loses all its force. Many pathways in the visual cortex, for instance, seem 
to perform transformations on representations of visual scenes, for ex-
ample, extracting, in parallel edges across a scene. Digital designs like 
ASICs that are dedicated to speciic tasks (like BitCoin mining) show 
that programs are optional, too; up to certain limits, many programs 
that might be loaded into memory and executed sequentially can be 
translated into parallel circuitry that is hardwired and run without a 
stored program.

In my own view, it is obvious that brains (especially those of verte-
brates) are computers, in the sense of being systems that operate over 
inputs and manipulate information systematically. Brains might not be 
(purely) digital computers, their memories may operate under diferent 
principles, and they may perform diferent sorts of operations on the 
information they encode, but they surely encode information. For ex-
ample, by transducing inputs into patterns of chemical and electrical in-
formation, they manifestly operate over that encoded information, and 
they use the resulting outputs to do things like guiding motor action and 
updating internal representations. Computers are, in a nutshell, system-
atic architectures that take inputs, encode and manipulate information, 
and transform their inputs into outputs. Brains are, so far as we can tell, 
exactly that.
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he real question isn’t whether the brain is an information processor, 
per se, but rather how do brains store and encode information, and what 
operations do they perform over that information, once it is encoded. 
he mission of neuroscience, in my view, thus ought to be to reverse en-
gineer the brain in much the way that one that might try to reverse en-
gineer a GPU. An investigation of a GPU would initially reveal that the 
basic elements are transistors, and eventually it would become clear that 
those transistors were organized to execute a relatively small number 
of “instructions,” such as lightening an image or rendering a polygon. 
More complex processes would be amalgamations of those instructions. 
In our understanding of the brain, we recognize that neurons are the 
analogues of transistors, but we know too little about the operations of 
those individual neurons, how they encode information, and especially 
how they manipulate that information. In computers, our understand-
ing of how information is manipulated begins at the circuit level, at 
which transistors are assembled into circuit motifs, to create basic logi-
cal operations (or “primitives”) like AND, OR, and NOT. A circuit- level 
understanding of neurocomputational primitives is likely to be funda-
mental for decoding the brain as well.

Technologies for measuring activity and connectivity across ensem-
bles of neurons, many described in this book, clearly give us some of 
the tools we need to begin to develop that understanding. Even so, what 
I still believe to be lacking is a theory about how sets of neurons might 
come together to support something as complex as human cognition. 
Neuroscientists oten encourage each other to work in a strictly bottom-
 up fashion, reviewing known facts from physiology while scarcely pay-
ing attention to more abstract hints from behavior and from computa-
tion. Epitomizing this view, some less enlightened neuroscientists have 
been known to say, “data talks, and theory walks”— a perspective that, 
at least in my view, has impeded neuroscience’s progress; theory, which 
should be indispensable, has become marginalized at best. (heorists 
don’t always help matters, since many theorists seem to seek conirma-
tion that their own particular account is correct; too few seek to com-
pare plausible alternatives.)

Will more data alone be enough to solve the problem of understand-
ing the brain? I doubt it, not in itself; what will really solve the problem 
is a framework for understanding how the brain might even in principle 
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do what it does. And that means, irst and foremost, iguring out what 
kind of a computer the brain might be, formulating competing hypothe-
ses, and testing them, not collecting data irst and asking questions later.

• • • • • • 

he best hypothesis of how the part of the brain that is unique to 
mammals— the neocortex— works is that it is a hierarchical array of 
feature detectors, proceeding from bottom- up sensory information to 
higher- level more abstract concepts; low- level detectors perceive ele-
ments such as edges and curvature, which in turn are fed into nodes 
that detect complex stimuli such as letters or faces. his idea goes back 
to Hubel and Wiesel’s work, and— to a certain extent— it’s almost cer-
tainly true. Many neurons specialize in detecting low- level properties 
of images, and some neurons that are further up the chain of command 
represent more abstract entities, like faces versus houses, and in some 
instances, even particular individuals (most notoriously, Jennifer An-
iston, in work by Itzhak Fried, Christof Koch, and their collaborators). 
he “Aniston” cells even seem to respond cross- modally, responding 
to written words as well as to photographs. Hierarchies of feature de-
tectors have now also found practical application, in the modern- day 
neural networks that I mentioned earlier, in speech recognition and 
image class iic ation. So- called deep learning, for example, is a successful 
machine- learning variation on the theme of hierarchical feature detec-
tion, using many layers of feature detectors.

But just because some of the brain is composed of feature detectors 
doesn’t mean that all of it is. Some of what the brain does can’t be cap-
tured well by feature detection; for example, human beings are glorious 
generalizers. In my own lab, for example, we found that seven- month- 
old infants could pick up on the regularities in strings of sentences made 
up according to an abstract grammar. In just two minutes’ exposure to 
a set of sentences following an ABB grammar like ga na na; la di di, ba-
bies learned a rule that they could generalize to new words, distinguish-
ing between synthetic “sentences” like wo fe fe (that followed the same 
grammar that they had been exposed to) and wo wo fe (that followed 
a diferent grammar, in this case of the structure AAB). A more recent 
study using brain imaging replicated this result, but in newborns— 
suggesting that the capacity to detect such abstractions may well be 
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innate. Hierarchies of feature detectors can learn well to classify any-
thing that you’ve seen before repeatedly, the more oten the better, but 
they still lag behind babies in extending abstract inferences to new cases.

Hierarchies of features are less suited to challenges such as language, 
inference, and high- level planning. For example, as Noam Chomsky fa-
mously pointed out, language is illed with sentences you haven’t seen be-
fore. Pure classiier systems don’t know what to do with such sentences. 
he talent of feature detectors— in identifying which member of some 
category something belongs to— doesn’t translate into understanding 
novel sentences, in which each sentence has its own unique meaning.

At its core, language revolves around a process known as variable 
binding. For instance, simplifying a bit, you might say that English has a 
rule that says that a Sentence can be composed of a Noun Phrase and 
Verb Phrase, where the variables are in Small Caps, and can be illed 
in a potentially ininite number of ways, yielding a potentially ininite 
range of meanings. he beauty of a rule like that is that it is potentially 
ininite, encompassing everything from the sailor (noun phrase) loved 
the girl (verb phrase) to the beauty of a rule like that (noun phrase) is 
that it can encompass virtually everything one might wish to say, even if 
it has never been said before (verb phrase). To explain what Chomsky 
has called discrete ininity, we will need something beyond hierarchies 
of feature detectors, which specialize in classifying what we have seen 
before but lag in allowing us to interpret things that are new. To under-
stand the neural basis of human cognition, we will need to understand, 
in particular, what linguists call compositionality: the way in which our 
brain allows us to put together smaller elements (like words) into larger, 
straightforwardly interpretable complexes (like sentences), even when 
those larger complexes are novel.

• • • • • • 

To close this deliberately provocative and opinionated piece, I would like 
to pose six speciic challenges, or questions, diicult but not insuperable, 
in hopes that progress in any one might move the ield ahead signiicantly.

 1. If the brain is not a von Neumann stored program machine in 
which sotware is loaded into memory and followed in step- by- step 
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fashion (as von Neumann himself recognized), what kind of an 
information processor is it? How does the brain manage to be so 
coordinated in the absence of a central clock? Is there a kind of 
neuronal algebra, a set of operations that work on arbitrary values 
stored in synapses? (Or, for those who would doubt that brains are 
computers, is there any serious alternative?) To the extent that the 
human brain is capable of algebraic computation, as I have argued, 
are we alone? Can other mammals or other vertebrates perform 
similar operation?

 2. Although the human brain may occasionally approach von 
Neumann– style computing— as in conscious, deliberate rule ap-
plication (for example, what a beginning trigonometry student 
does, based on verbal instruction), most of what it does prob-
ably shouldn’t be characterized in that way. What computations 
do we use in other domains, where knowledge and instruction 
are both less explicit? What kinds of neural systems could con-
ceivably support the versatility of our cognition? Remarkably, we 
still haven’t even resolved the basic question of whether brains are 
analog, digital, or (as I suspect but certainly can’t prove) a hybrid 
of the two. (Brains might, for instance, use digital computation 
for grammar and analog computation for some aspects of image 
processing.)

 3. How does the brain implement variable binding, and what sorts 
of operations can a brain perform with variables once they are 
bound? Variable binding, akin to setting x to equal the value of 5 
in order to calculate an algebraic equation such as y = x + 2 is a 
central process, possibly with multiple realizations, that arises at 
many levels. Variable binding is central whether we are tracking 
moving objects (this animal I am chasing, as opposed to that one, 
even though they look identical) or putting together the elements 
of a sentence. In a sentence, for example, the variable noun phrase 
must be temporarily associated— bound— with a particular string 
of words (for example, “the man who went up a hill but came 
down a mountain”). How do such temporary relationships get 
established? he standard accounts of memory depend on hun-
dreds of conditioning trials, yet we establish dozens of short- term 
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bindings every time we comprehend a single sentence. Nobody 
knows how the brain does this.

 4. Is there a single canonical form of computation (like hierarchi-
cal feature detection), as is oten assumed, or a wide range of 
basic operations, recruited over and over again, much like the in-
structions in a microprocessor, as I am arguing? If it is the latter, 
what is the range of basic operations, and how are they realized, 
neurally?

 5. What format(s) does the brain use to encode information? Com-
puters use encoding schemes like the ASCII code for letters, JPEG 
and GIF for images, and so forth. How does the brain encode a 
sentence? A word? A mental image? A melody? We have some 
hints as to how the brain encodes targets in motor space (see chap-
ter by Shenoy), and how it represents Euclidean space (see chap-
ter by Moser and Moser) but we know desperately little about the 
brain’s other formats for representation.

 6. Why does the brain contain so much diversity, at every level of 
analysis? From the 100+ cortical areas in the human brain, with 
vast numbers of apparently orderly connections between them, to 
the hundreds of neuronal types, to the enormous amount of mo-
lecular complexity within individual cells and synapses, the dom-
inant theme of the brain is not simplicity (as so many compu-
tational neuroscientists seem to hope) but complexity; crucially, 
too, the brain is a delicate system. Although an ordinary brain 
can develop in a wide range of environments, neural disorder 
consistently tends to be associated with mental disorder. If the 
right cell types aren’t connected in the right way, mental illness 
or mental retardation is oten the result. here is an enormous 
amount of detail in the brain, and the details seem to matter, a 
lot. What is all the detail for? What do you get from a complex 
and diverse brain that would not emerge from a large but simple 
neural network?
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I M P L I C A T I O N S

As the most complex system in the known universe, the human brain 
would merit study even if there were no immediate practical signii-
cance; the fact that a three- pound piece of meat can perform many in-
tellectual feats that still surpass our greatest computers naturally makes 
the brain an object of wonder. But the brain is also the last great target 
in medicine; the more we can understand it, the more we will be able to 
shape our destinies. What happens when we do understand the brain?

John Donoghue describes what might be accomplished— medically— 
once we have a better understanding of the brain, and how the line be-
tween man and machine might start to blur. Kevin Mitchell describes 
the challenges in treating psychiatric disorders, and how a better un-
derstanding of the genetic contributions to the brain might break the 
logjam and lead to much more efective treatment than is currently pos-
sible. Michel Maharbiz describes future technologies that might even-
tually allow us to obtain, in humans, the same kind of detailed neural 
recordings that are currently only available in nonhuman animals.





N E U R O T E C H N O L O G Y

John Donoghue

We currently lack a deep understanding of how brains operate and how 
a brain’s obscure operations produce behavior, especially those behav-
iors that are highly specialized in humans. Supericially, brains repre-
sent and store activity patterns, and then, sometimes, transform them 
by “neural computations” to generate an overt behavior. How the collec-
tive actions of neurons embedded in immensely complex circuits “rep-
resent” and “compute” has been elusive. his ignorance also profoundly 
limits our ability to treat many of the most debilitating brain disorders, 
like depression, autism, epilepsy, schizophrenia, or paralysis, which 
emerge from impaired circuit function. But some of those deiciencies 
may soon be overcome because of the ongoing neurotechnology revolu-
tion, which will be disruptive in three spheres. First, new tools will pro-
vide a means to comprehend the basic principles that link brain activity 
to core mental functions of humans— perception, cognition, emotion, 
and action— and, for the irst time, explain mechanistically unique fea-
tures of human brains. Second, this technology will yield a new class of 
“brain interfaces,” which are likely to transform the way clinicians inter-
pret and treat brain disorders and especially provide a physical way to 
restore lost functions. Lastly, neurotechnology advances may ultimately 
challenge our views of what it means to be human. Below, I consider the 
impact of neurotechnology in each of these three spheres.

Finding the Middle Ground: New Tools, New Rules

Networks of neurons, working together in intricate circuits, can produce 
complex functions like emotion, cognition, or planned behavior. In the 
quest to understand how these properties can emerge from the collective 
action of large numbers of neurons, perhaps the biggest knowedge gap 
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is to link function across scales. At the lowest level of function, the neu-
ron, we have a reasonable, although certainly incomplete, understand-
ing of how individual neurons transform input to output. We have con-
nectional wiring maps at varying degrees of resolution in many species, 
even man. And at the highest levels, thanks to tools like MRI machines, 
we can indirectly infer how global brain activity patterns of millions of 
neurons collectively engage during thought, emotion, or overt behavior. 
Neither the single cell nor whole brain level can explain mechanisms 
that operate at the middle, or mesoscale, where behavior emerges from 
rich cellular interactions.

Brain operations include the collective dynamics of large numbers of 
spatially distributed neurons working in highly interconnected networks 
of ever- changing conigurations. Mesoscale operations employ circuits 
that combine memory and percepts to generate plans, which may then 
be executed as actions— from typing a sentence to performing elegant 
dances or to speaking profound prose. Alternatively, plans and ideas can 
be held in memory as long as a lifetime. To provide a functional map 
that explains how action, cognition, or emotion emerges from collective 
network dynamics, we will need new tools that combine a dense sam-
pling of spatially distributed neurons with high temporal resolution in a 
behaving brain. Exactly how large a network or how many cells must be 
sampled is a big, open question.

Extant tools like the microelectrode, circuit tracers, and molecular 
labels have provided a massive base of fundamental knowledge. We can 
chart neural routes from perception to action, especially for visually 
guided behavior. For example, we have a very precise map of the path 
from the eye, to the thalamus, to the primary visual cortex in mammals. 
We know that this circuit then spreads through two cerebral pathways 
that process what an object is, and where it is. hrough connections 
with the frontal lobe, a vast network can formulate and carry out a plan 
to reach, grasp, and manipulate almost any object you perceive, or even 
one you remember but can’t see. Single neuron studies have cataloged 
feature selectivity (parts of the object) at each step, and fMRI has re-
vealed the peaks of activity as each zone engages. But in reality, current 
tools are not yet adequate to analyze the mesoscale operations entire 
networks perform. Perceiving and acting lead to concurrent activation 
of areas working together in broad networks— not individually. hese 
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networks connect nearly every neuron to almost every other neuron in 
just a few links. Some networks have more connections, perhaps form-
ing central hubs, while others have few. How the impact of sparse and 
dense connections afects global function is one of the great questions 
at the mesoscale. Adding just a few functionally relevant connections 
here or there can profoundly change the properties of interconnected 
groups, as studies of small- world networks revealed— the kind of net-
works that explain the well- known six degrees of separation/Kevin 
Bacon phenomenon.

Neurons are unique processors. Unlike all- or- none transistors in 
digital circuits, most neurons in the brain combine individually weak 
signals from thousands of other neurons. hey collect this information 
through synapses: the junctions where neurons contact each other. Syn-
aptic inluences from large numbers of cells combine on a target neu-
ron to produce an electrical output. his output consists of a signaling 
train of brief pulses, known as action potentials, or more colloquially 
as “spikes.” Information is conveyed by changes in the rate of spiking. 
To add to the complexity of circuits, connections between neurons can 
be shaped by experience to change their strength on short notice, using 
a feature known as synaptic plasticity. Synaptic inluences can further 
restructure circuit actions as neurons are bathed in combinations of 
chemicals called neuromodulators. Information being processed in the 
brain thus appears, at the middle scale, as changing patterns of spiking 
in neuron networks, networks comprised both of local circuits and ex-
pansive ones.

At this level, a mesoscale neural computation can be considered as 
the transformation of patterns of spiking activity across these “networks 
of networks” (igure 1). Tools to map collective dynamics at single neu-
ron resolution, over really large numbers of neurons, are inadequate 
or lacking altogether, but they are coming. Once network function can 
be mapped, the ability to selectively manipulate circuits is a second es-
sential tool required to test the role of particular network processes in 
behavior.

First steps to validate the usefulness of middle scale recordings have 
been achieved. Important operating principles of small neural circuits 
have been revealed in detailed studies of isolated clusters of neurons 
of simpler creatures like worms and lobsters, where every part of a 
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well- deined circuit can be studied. Scaling up the many orders of mag-
nitude needed to adequately map the collective dynamics of highly spe-
cialized brain functions of mammals is not yet possible, but more lim-
ited sampling of networks provides clues that this is a fruitful path. he 
activity pattern of a few dozen cells, which can be now recorded all at 
once in a local cortical network in rodents, monkeys, and even humans, 
have revealed mesoscale operations that code the path of spatial naviga-
tion in a maze and hand direction when reaching for a goal.

To gain an intuition of how collective neural activity patterns can 
code behavior, imagine a simple scenario in which we record spiking 

INPUT

OUTPUT

Figure 1. Illustration of a network of networks, to provide a sense of the complexity 
of understanding brain circuits. Each shaded circle encloses a locally interconnected 
network of neurons. Some local networks are connected with others, with connec-
tional details not shown. he complete assembly forms a global network that could be 
thought of as containing a mental state. he input, shaped by the current state dynam-
ics of the whole assembly, “computes” an output pattern (behavior). Note that the 
efect is shaped by the moment- to- moment inluences across the network, but would 
also be afected by plasticity that shapes the impact of each connection and the precise 
biophysical properties of each cell. How this is accomplished could be investigated by 
recording all or a sample of all the elements. his diagram fails to relect the identify of 
the cell types, details of local and global connectivity, the time evolving nature of the 
interactions, the plasticity of the network with experience, and the inluence of global 
neuromodulatory transmitters, among other shortcomings that are important to fully 
characterize the system. Emerging tools suitable to measure and manipulate activity 
of sets of neurons will allow hypotheses testing of the nature of representation and 
computing across the entire circuit.
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from two neurons in the motor cortex of an animal as it reaches from 
one point to another. In the motor cortex, commands to move are as-
sembled through interactions with many other brain structures (that is, 
a network embedded in a network). Suppose we observe one neuron 
that spikes signiicantly more when an animal reaches to the let than 
to the right. he other neuron spikes maximally when reaching up and 
very little when reaching down. We now have a coding scheme: neuron 
one is “tuned” to let– right movement and neuron two is tuned to up– 
down movement. If we later observe both neurons and ind that both 
are spiking at high rates, we can assume that a reach upward and to 
the let is being made. hus this little ensemble of two neurons can be 
decoded to predict behavior. Reaching direction emerges from the col-
lective behavior of this (minimal) network. While the actual activity of 
larger assemblies is considerably more complex, the basic idea holds at 
higher scales. Understanding that neural populations encode this emer-
gent feature of reaching direction in two dimensions gives new insight 
into how the motor cortex creates movement commands. his knowl-
edge has been exploited to create a brain- computer interface (BCI), 
where decoded activity patterns from neural ensembles can be read out 
from the brain of a paralyzed human, allowing them to control comput-
ers and robots “at will.”

Current reconstructions of behavior from neural activity patterns are 
not remotely complete because only small samples of massive circuits 
have been viewed in action. Current multielectrode arrays, with about 
one hundred sensors, can only measure a very tiny fraction of any mean-
ingful network in a mammalian brain. Ensembles hide many levels of in-
formation as they scale up, including features that can combine percep-
tion, cognition, motivation, or emotion in their more complex spatial or 
temporal activity patterns. hese features might only emerge when very 
large numbers of neurons are recorded for long periods of time. Imagine 
trying to understand a car chase scene if you just saw a random 1 percent 
of your TV’s pixels for a second or two. Technical barriers have limited 
the ability to (1) fabricate neuron- resolution sensors capable of stably 
recording large assemblies of cells over long times, (2) build processors 
capable of processing staggeringly large amounts of information, and 
(3) use or create the right analytical tools able to extract meaning and 
mechanism from the activity of very large collections of neurons.
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However, advances in neurotechnology, stemming from progress in 
the physical sciences, engineering, and synthetic biology as well as ad-
vances in statistics, mathematics, and computer science, should inally 
enable an all- out attack on these problems. Capitalizing on nano-  and 
microfabrication techniques, cheaper, smaller, and faster electronics, 
and huge increases in computing processor and data storage combined 
with analytical tools to model and simulate patterns from immense 
numbers of neurons, could inally create the toolbox necessary to un-
derstand the mesoscale dynamics in networks of networks in order to 
link cells, circuits, and behavior.

Neurotechnology for Sensing and Stimulating Circuits

Two avenues for sensing, or reading out, collective activity already show 
great promise as mesoscale tools: electrical and optical. Direct sensing of 
a spike’s brief, very weak electrical impulse requires nuzzling a hair- thin, 
ine- tipped microelectrode close to a neuron. Recording many neurons 
requires many electrodes. It is already possible to insert arrays of up to 
one hundred microelectrodes into the cortex to study local assemblies 
of about ity to one hundred neurons. But scaling up to more neurons 
is challenging because large numbers of probes could produce unac-
ceptable tissue damage. In addition, obtaining reliable, stable, and long- 
lasting recordings is diicult because materials degrade and rigid sen-
sors wiggle. Reading signals from hundreds of electrodes has required 
electronics that are big and bulky with complex plugs and many wires 
that are prone to failure. his is where engineering can now come to the 
rescue. hanks to nano-  and microscale fabrication techniques it is now 
possible to crat electrodes so that they record not just at their tip but at 
hundreds of recording sites along the electrode’s shat; they can be much 
smaller and more lexible. And electronics with vast processing power 
can be reduced to the size of a small matchbox that can be implanted 
under the skin. hanks to advances in wireless transmission, impres-
sively large amounts of data can be broadcast out of the body from these 
implanted devices using radio or light. None of these recent techno-
logical advances have succeeded yet in producing dependable electrical 
recordings for thousands of neurons, but this work is underway and 
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feasible to achieve. Advances in synthetic biology, electronics, and nano-
fabrication are sparking all types of creative solutions. One far- reaching 
concept for even broader— and perhaps less intrusive— recording is to 
make complete packages of electrodes— with integrated electronics and 
transmission— as small as large specks of dust, so that even thousands 
might be placed in the brain (see also chapters by Maharbiz and Church 
for other approaches). Of course, even if fabrication of such technology 
is possible, it is not yet clear how the brain would react to these aliens, 
nor is it clear that we can protect or power them.

Light is an alternative to directly recording electrical activity. Geneti-
cally encoded indicators can make large numbers of neurons individually 
report their electrical activity indirectly by emitting light (see chapter by 
Ahrens). hese optical signals (using calcium or voltage indicators) can 
be detected from surface- mounted and nonpenetrating sensors in freely 
behaving animals. Optical recordings of up to tens of thousands of neu-
rons have been obtained in a larval zebra ish, and this technique is work-
ing in a limited way in small mammals. However, current methods again 
have spatial and temporal limitations. he ield of view from the brain’s 
surface is limited to a few mm square patch and is less than the full depth 
of the 2 mm thick cortex; even this restricted view requires a hole through 
the skull. Access to deeper structures requires probes that penetrate the 
brain. At present light emitting labels are not able to keep up with the 
speed of spiking, or they can interfere with cell function. Optical reporter 
delivery systems such as viruses are impressively selective but can be un-
reliable. Fortunately, there are vigorously active and highly promising ini-
tiatives attempting to overcome all of these pitfalls, including the creation 
of new microscopes small enough to be worn on a mouse’s head and new 
optics that can peer deeper into the brain and read out more quickly.

At the same time, these two approaches— electrical and optical— are 
being exploited as ways to manipulate circuits. Establishing the causal link 
between circuit function and behavior requires the ability to intervene at 
speciic points in a functioning circuit, not just to observe. Electrical stim-
ulation is actually a very old way to probe neural circuit function. More 
than 150 years ago the connection of cortical motor areas to movement 
was tested by evoking a muscle jerk when the brain’s surface was electri-
cally shocked with a large electrode. Now, microelectrodes inserted into 
circuits allow much more precise electrical stimulation to add a signal or 
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disable a signal at critical points. However, even focal electrical stimula-
tion still lacks precision because neural processes the electrical impulse 
afects are locally entangled nearly everywhere in the brain. By contrast, 
optogenetic methods provide unprecedented selectivity to turn cells on or 
of so that the role of selected networks in behavior can be directly tested. 
Optogenetics promises greater selectivity for manipulating each element 
of a circuit, but will surely have its own pitfalls. hus, electrical and opti-
cally based neurotechnology are poised to provide the missing middle 
level of data and key information that links neurons to behavior.

Neurotechnology as a Clinical Tool

Advances in neurotechnology sparked by basic research will also gener-
ate an entirely new set of diagnostic, therapeutic, and restorative devices 
for human clinical applications. Importantly, the knowledge gained 
from using these same tools for basic inquiry will further enhance clini-
cal use. Understanding principles of circuit function will improve the 
ability write in missing spatial and temporal activity patterns that can 
be used in devices to replace lost senses or to modulate diseased brain 
circuits. Better tools to read out information hidden in neural activity 
patterns could reveal the nature of disordered circuit function produc-
ing psychiatric disease or restore motor commands from the brain to 
the body ater they were cut of by stroke. Some examples of these ap-
plications follow.

Writing In

Cochlear implants— the irst wearable clinical neural interfaces— 
convert sound into electrical impulses and deliver them to auditory 
nerves in the ear when hair cells— receptors that transduce sound waves 
into patterns of electrical impulses— are destroyed. his now decades- 
old FDA- approved technology has provided a profoundly enabling res-
toration for more than 200,000 people with hearing loss. Cochlear im-
plants demonstrate the power of even rudimentary technology, when 
coupled to an adaptable brain, to better the human condition. Surpris-
ingly, sound comprehension can be accomplished using fewer than two 
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dozen stimulating sites from a thread- thin probe inserted near neurons 
in the inner ear, approximating the job ordinarily done by thousands 
of hair cells. A similar approach is underway to restore vision for those 
who have lost their photoreceptors from diseases like macular degen-
eration or retinitis pigmentosa. A video camera can already deliver 
simple patterned stimulation on a sixty- four- point grid placed against 
the human retina to engage neurons carrying information to the brain. 
Crude vision is thus possible. More ine- grained patterned stimulation, 
guided by better understanding of natural activity patterns and deliv-
ered through more sophisticated electronics, could lead to something 
approaching what we take for granted as normal vision or hearing. A 
more far- reaching but potential application of optogenetics is to recre-
ate light sensitivity in remaining retinal cells in order to replace missing 
photoreceptors altogether. Improvements in the spatial and temporal 
stimulation patterns informed by the mesoscale operations of the ret-
ina or cochlea, or their pathways in the brain, will further push per-
formance toward fuller neurorestoration with physical devices that can 
replace damaged or missing networks.

Rebalancing Circuits for Movement, Mood, and Memory

Neuromodulation is the use of targeted stimulation to adjust circuit 
activity in brain disorders. Deep brain stimulation (DBS) employs 
millimeter- scale electrodes to electrically alter neural circuits. DBS sys-
tems, already implanted in the brains of more than 100,000 people, re-
duces the rigidity and tremor of Parkinson’s disease (PD). DBS is also 
being evaluated in clinical trials for depression, cognitive decline, and 
a wide range of other disorders where circuits somehow malfunction. 
While DBS can have a life- transforming impact, vague understanding 
of the network underpinnings of DBS efects, as wells as the disorder 
itself, is evident in the variability of clinical outcomes, oten requiring 
ongoing adjustment of stimulation patterns and ongoing medication. 
DBS for Parkinson’s intervenes in a network of interconnected cortical 
and deep structures that have an ongoing loss of the neuromodulatory 
inluence of dopamine. hus basic research on operations of normal 
and abnormal function of this circuit should lead to more principled 
approaches to neuromodulation therapy. In addition, the imprecision 
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of today’s relatively large electrodes will beneit from advances in neu-
rotechnology that allow precise, targeted spatial and temporal stimu-
lation. Optical approaches seem to promise even greater potential, if 
humans can have their neurons rendered light sensitive, because this 
approach would provide cell- speciic selectivity not possible with direct 
electrical stimulation. Over the longer term, one might envision ways 
to deliver energy with the appropriate selectivity from outside the head, 
eliminating the need for surgical placement of electrodes. Magnetic 
coils, ultrasound, and light have the potential to go through the scalp 
and skull but are currently too coarse to target speciic circuits. Notably, 
however, noninvasive transcranial magnetic stimulation (TMS) tran-
siently relieves symptoms of depression in some patients despite its in-
ability to be very precise. he poorly understood mechanisms by which 
TMS afects neural networks should be revealed as the normal opera-
tions of these circuits and the efect of disease and stimulation are better 
understood by the coming wave of new tools. Neuromodulation illus-
trates how neurotechnology bridges basic research and clinical appli-
cation. Stimulation in the research setting can inform clinical therapy, 
and the outcome of clinical use of stimulation can prompt new research 
questions. Importantly, people who are receiving stimulation as therapy 
or are participating in clinical trials are providing scientists with a new 
window into the human brain in health and disease. Human research 
participants are partners with scientists and clinicians in this new era 
of research. However, this participation requires careful oversight when 
cognition or emotion are being manipulated. While consent may be 
straightforward in diseases such as Parkinson’s, where the impact of the 
disease is predominantly physical, the situation becomes more murky 
when patients with psychiatric disorders or memory loss are involved.

Reading Out: Turning Thought into Action

Sensing technologies will have a growing clinical impact in the fu-
ture, especially as innovations in network recording improve. Brain- 
computer interfaces (BCIs) have attracted particular attention as a sens-
ing neurotechnology with large clinical impact. BCIs attempt to restore 
lost independence and control for people who are paralyzed. It is a phys-
ical nervous system that is a new communication channel to reconnect 
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the brain to the outside world. hrough a sensor, signal processors, and 
computers, the technology detects and decodes neural ensemble activ-
ity patterns in order to create replacement commands for actions that 
cannot be performed. Strokes, spinal cord injury, degenerative diseases 
like ALS, multiple sclerosis, or limb loss can disconnect the brain from 
the body (by destroying communication paths) while leaving the brain 
intact. Each condition prevents intention, formulated in the motor areas 
of the brain, from becoming a movement. BCIs with even with minimal 
capability, say to click a switch for yes and no, have great potential value 
to people so severely paralyzed that they cannot move or communicate 
in any reliable way. In its most ambitious form, movement commands 
from the brain could be used to operate machines like computers, pros-
thetic limbs, or robotic devices, or in its lotiest form, to activate para-
lyzed muscles to create a physical replacement of missing neural cir-
cuits. hese ideas, seemingly fanciful, are already in human testing.

BrainGate, a BCI system being developed by our collaborative team, 
directly connects a part of the cortical arm movement network to assis-
tive technology. In a small group of humans with severe paralysis who 
are part of early stage clinical trials (currently FDA- limited to investiga-
tional use), a baby- aspirin- sized platform with one hundred protruding 
microelectrodes has been implanted in the arm region of their motor 
cortex. his multielectrode sensor detects the spiking pattern of a few 
dozen neurons and passes these signals to external electronics, where 
a computer algorithm decodes the pattern into useful movement com-
mands. Decoding of this very limited sample of a large network of neu-
rons is surprisingly accurate enough for participants to operate a com-
puter or feed themselves or drink using a robotic arm.

To understand how this apparent magic is possible, recall the earlier 
discussion of reach coding by two spiking neurons. Spiking patterns, 
even when imagining arm movement, carry enough direction informa-
tion to allow pointing a cursor at letters on a screen to type, or moving 
a robotic arm to reach and grasp. Notably, however, these movements 
are not as fast, accurate, or dexterous as those a natural human arm 
performs. Why not? Knowledge of how movement intentions are coded 
in brain networks is not yet suicient to map activity onto every desired 
action. For example, we don’t know the scale (that is, the size, distribu-
tion, and dynamics of the population) required to achieve the lexibility, 
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speed, or dexterity easily accomplished when you use a fork to eat, using 
an intact nervous system.

BCIs illustrate a path by which a basic research tool to study coding 
in neural circuits, the multielectrode array, has been co- opted as part 
of a new human clinical device. he tools and rules coming from me-
soscale basic research will lead to better and faster BCI control. Wire-
less transmission of multichannel neural signal patterns, highly valuable 
in research to study brain activity during natural behavior, will provide 
untethered, full- time BCI use for people. A better understanding of 
sensory coding in cortical circuits could allow a recreation of sensory 
percepts using patterned stimulation, closing the sensorimotor loop so 
that touch could guide action. Mesoscale neural decoding has consid-
erable potential for other clinical applications, such as epilepsy. Here, 
very sensitive measurements of network dynamics could be used to spot 
aberrant collective activity. In a clinical device, it might be possible to 
predict seizures well before they have clinical manifestations, and pre-
cise, targeted stimulation might be used to abort them.

Next- generation tools promise to expose large- scale network func-
tion with high temporal precision across large areas of brain. As we bet-
ter understand the collective dynamics of neurons in behavior, thought, 
and disease, new brain interfaces should enhance the ability to restore 
complex vision, more naturalistic hearing, and dexterous movement; 
neuromodulatory devices may eventually reduce or even eliminate the 
manifestations of circuit disorders that produce movement, mood, or 
cognitive disorders. Not only do these applications have the potential to 
restore life quality, they also will ultimately reduce the enormous costs 
of treating and managing people whose independence and quality of life 
is diminished by these disorders.

No one would reasonably expect complete or immediate success in 
all of these ambitious clinical applications, nor is it possible to proj-
ect when they will be fully realized. Advances that reveal the nature 
of neural collective dynamics will assuredly generate many new ques-
tions. Clinical trials may face side efects or device failures that slow 
progress. Nevertheless, continual gains in understanding network func-
tion in humans and animals, and in the tools required for that process, 
will have a transformative impact on the treatment of neurological and 
psychiatric disorders.
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Limits of Being Human

he most speculative piece of the emerging neurotechnology revolution 
is its efect on what it means to be a member of our species. If we could 
replicate the most cherished and specialized human brain functions, we 
could be able to augment our abilities. Imagine having four arms, six in-
frared detecting eyes, unlimited recall, or ultrasound perception. What 
if we embody all of our brain’s abilities to perceive, reason, emote, or 
create into a desktop machine? he advanced technology needed to rep-
licate the full abilities of a human brain in a box still seems very far of. 

Encoding Model spike
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Figure 2. Neural decoding. his simple example explains how commands can be 
decoded from the pattern of action potentials (“spikes”). In this case, just one neuron 
in the motor cortex is illustrated. We record this neuron’s activity (spiking) while a 
person imagines moving their hand to the let as they watch a cursor move let on a 
screen as if they were using a mouse to make that cursor movement. In reality they 
are not moving the cursor, our computer is moving it to the let automatically. his 
animated action guides the speed and direction the participant is supposed to imag-
ine. During that time we count the number of spikes that occurs in some deined 
time window (in blue), which is “1” in this case. Now this same “user imagine and 
computer count” process is repeated for imagining a rightward cursor motion, which 
results in “5” spikes in our example. hese data allow us to build a model in which 
1 means let and 5 means right. In the future, we can DECODE neuron activity and 
use the observed spike count to drive cursor motion. When we observe 1 spike in our 
window, the cursor will be moved incrementally to the let, or to the right if 5 spikes 
are observed. Of course, neurons in the motor cortex don’t ire this reliably. Averag-
ing across many neurons allows a better estimate of the intended action, i.e., a better 
model of what is being intended. More sophisticated mathematical methods can help 
to improve both the quality of the model and the decoded output, for example, what 
to do when 3 spikes are detected. A deeper understanding of the processes that inlu-
ence and generate spiking lead to better models, and hence more reliable interfaces.
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Such a “brain machine” would require explanations of the mechanisms 
through which the collective dynamics of networks link neurons to all 
behavior and technology to implement these mechanisms. Yet it is not 
unthinkably far. As more technology to replicate and extend emerges, 
and deeper understanding of the human brain emerges, closer approxi-
mations of machines to our own brain’s most impressive capabilities will 
likely evolve, as they already have with smartphone applications that 
guide us to unfamiliar destinations, translate text from foreign tongues, 
or park our cars. hese advances will precipitate a broad range of ethical 
challenges that require thoughtful debate and careful oversight to equal-
ize opportunity and prevent abuse. Already there are present- day chal-
lenges as we navigate the use of pharmacological agents to augment our 
attention or change our mood, and ponder the use of limb prosthetics 
to enhance, for example, providing the ability to run faster or climb bet-
ter than able- bodied people. As neurotechnology redeines what is pos-
sible, it will fundamentally reinvent the already profound debate about 
the boundary between man and machine.
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Kevin J. Mitchell

If you go to the doctor with chronic abdominal distress, the physician 
and other technicians will perform a series of tests to try and igure out 
the cause. hey may check inlammatory markers in your blood, test 
for allergies, perform a colonoscopy, take biopsies, test various enzyme 
levels, and so on. Ultimately, they may return a diagnosis of Crohn’s 
disease or colon cancer or ulcerative colitis or any of a long list of dis-
crete conditions that can manifest with similar symptoms. Knowing the 
cause will directly inform the treatment. In the event that a cause cannot 
be found, your illness will likely be labeled irritable bowel syndrome, 
which is simply a diagnosis of exclusion. It puts a name to your sufer-
ing, but ofers no insight as to its cause.

In psychiatry, virtually all diagnoses are like that. Labels like major 
depressive disorder or schizophrenia or autistic spectrum disorder are 
deined by patterns of symptoms that oten occur together, with a more 
or less typical course of illness. hese are open constructs— deined not 
by a strict set of parameters, or the results of a particular test, but by 
reference to an exemplar. hey give a name to the sufering of patients 
whose illness looks supericially similar based on the only data to which 
psychiatrists have access: patterns of behavior and patient reports of 
subjective states. hey say nothing about causes because the ield has 
known almost nothing about causes.

his is the main reason why almost no new drugs, with new mecha-
nisms of action, have been developed for psychiatric conditions in over 
sixty years. his stands in stark contrast to the progress made in devel-
oping new drugs for heart disease, cancer, and other disorders. Such 
advances were made possible by increased knowledge of the underlying 
biology of these conditions, down to the molecular level. In psychiatry, 
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eforts to elucidate the biological causes of various conditions have been 
frustrated not just by our lack of access to the afected tissue, but more 
fundamentally by the way in which such conditions are deined.

Psychiatrists recognize that the categories they have deined (and 
frequently redeine) do not represent “natural kinds”— groupings that 
really exist in nature as opposed to arbitrary human classiications. At 
best, they are useful terms to enable extrapolation of clinical experience 
between patients with similar symptoms. At worst, such similarities 
may be actively misleading, obscuring a diversity of underlying causes.

It has been hoped, particularly in the lead- up to the latest revisions 
of the international manuals of psychiatric diagnosis, that neuroscience 
could provide the insights required to recognize discrete diseases and 
to distinguish them by biological cause. hese might include things like 
“excess serotonin in the nucleus accumbens” or “increased dopamine 
release in striatum” or “decreased functional connectivity between hip-
pocampus and prefrontal cortex.” So far, this approach has not been suc-
cessful. here are no brain scan indings or biomarkers of any kind that 
can be used to assign a diagnosis of schizophrenia or bipolar disorder 
or autism.

A major reason for this failure is that the experiments designed to 
look for such distinguishing diferences in brain properties rely on the 
diagnostic categories they hope to validate, or, indeed, replace. he best 
that neuroscientists can do is to compare the brains of groups of patients 
with “schizophrenia” or “autism” or other existing categorical labels to the 
brains of groups of controls. If these categories do not represent natural 
kinds, then lumping many cases together and looking for group difer-
ences that inform on primary causes is ultimately futile. Real diferences 
underlying illness in particular subsets of patients will be swamped out 
if the causes of these conditions are actually heterogeneous.

Genetics

Where neuroscience has so far failed to distinguish psychiatric patients 
by cause, genetics is proving more incisive. From the time that condi-
tions like schizophrenia and autism were irst described it has been clear 
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that they “run in families.” Twin studies clearly show that this efect is 
largely due to shared genes, not shared environment. In neurodevelop-
mental disorders like autism and schizophrenia, genetic diferences ac-
count for the vast majority of variance across the population in who 
develops these conditions.

he big news is that it is now inally possible to ind those genes. 
Where previously we knew of rare mutations in a couple of genes that 
could lead to psychiatric disease, we now know of well over a hundred. 
Some of these mutations afect single genes, while others involve dele-
tion or duplication of a section of a chromosome. he latter are known 
as copy number variants, or CNVs, because they change the number of 
copies of genes contained with the deleted or duplicated segment. Some 
such CNVs are associated with particular, rare conditions such as An-
gelman syndrome or Williams syndrome. But others can manifest with 
the symptoms associated with more “common” conditions like autism, 
schizophrenia, and epilepsy. While individually rare, this class of muta-
tions may collectively account for 10 to 15 percent of cases of such dis-
orders. hanks to the development of new whole- genome sequencing 
technologies, it is now also much easier to detect a more subtle kind of 
mutation that only changes a single DNA nucleotide, afecting a single 
gene, to change the production or function of the encoded protein. Both 
CNVs and single- gene mutations can dramatically increase the risk of 
psychiatric disease, with anywhere from 10 percent to 100 percent of 
carriers afected by some psychiatric manifestation.

Several important and general insights have emerged from these 
studies, which are forcing a reconceptualization of psychiatric disorders. 
First, the mutations do not respect the arbitrary boundaries between 
current diagnostic categories. Particular mutations (as in the genes 
CNTNAP2, PCDH19, or SHANK3, for example) may manifest as schizo-
phrenia in one person, as autism in another, and as intellectual disability 
or epilepsy in a third. his is not exceptional, this is the rule— there are 
no known mutations that manifest solely as a single psychiatric diag-
nostic category. his its with recent epidemiological observations from 
very large- scale studies, which have shown a broad overlap in familial 
risk across psychiatric and neurological categories. he etiology of these 
supposedly distinct disorders is thus actually largely overlapping.
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he second important point is that psychiatric conditions can arise 
due to a mutation in any one of a very large number of genes. Not ten or 
twenty, but likely on the order of at least a thousand. From an etiological 
perspective, psychiatric diagnostic categories are therefore not unitary 
conditions but umbrella terms describing possible outcomes of a very 
large number of distinct genetic syndromes. While these are individu-
ally rare, they are collectively numerous— common enough to account 
for the prevalence of conditions like schizophrenia and autism (each 
around 1 percent of the population, depending on deinition).

Not all such mutations are inherited— at least not in the colloquial 
sense. Many arise de novo during the generation of egg or, more com-
monly, sperm cells. hus even sporadic cases of disease, with no family 
history, can still have a genetic cause. High rates of de novo mutations 
and the large number of genes involved in these conditions explain why 
these disorders persist in the population, even though they increase 
mortality and reduce numbers of ofspring, on average. Although many 
causal mutations are therefore not passed on to further generations, new 
ones emerge all the time to take their place.

It is important to emphasize the complex relationship between geno-
type and phenotype for most of these mutations. While many muta-
tions dramatically increase risk of psychiatric disease, their efects can 
be quite variable, and most of them are also found, at lower frequency, 
in people who have never had occasion to seek any kind of psychiatric 
treatment. In many cases, genetic background will play an important 
part in determining the efects of a “primary” mutation. In others, mul-
tiple mutations may contribute to the emergence of disease. Neverthe-
less, for the growing subset of patients who carry a known pathogenic 
mutation, it is possible at least to assign it a major contributing role in 
their illness.

Genetic diagnoses of the cause of illness in any individual patient can 
have immediate and important psychological and social implications 
for the individual and his or her family. he diagnosis can also afect 
insurance coverage and can inform future reproductive decisions. In 
the longer term, the identiication of pathogenic genetic mutations also 
opens a proven discovery route to elucidate the underlying biological 
mechanisms of disease and to distinguish patients on that basis.
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From Genes to Biology

In the irst instance, grouping patients by genetic lesion may reveal com-
monalities in symptom proiles or course of illness within small groups 
that were not apparent when such groups were hidden among the mass 
of patients. Deining the clinical sequelae of various genetic syndromes 
may thus help resolve some of the clinical heterogeneity associated with 
broad diagnostic categories and directly inform clinical management 
(igure 1).

he ability to segregate patients based on the biological cause of their 
illness also circumvents the previously intractable problem of heteroge-
neity for neuroscience research into psychiatric disease. his may allow 
researchers to deine speciic neurobiological defects associated with 
particular syndromes, where they have failed to do so for broad diag-
nostic categories. Neuroimaging of forty patients with 22q11 or 3q29 or 
16p11.2 deletion syndromes may be far more informative than imag-
ing four hundred patients with “schizophrenia.” Highlighting particular 
neurochemical pathways or neural circuits afected in subgroups of pa-
tients may suggest avenues for treatment speciic to those groups. hese 
could involve the use of speciic drugs, or, increasingly perhaps, direct 
intervention on the activity of neural circuits, as with deep brain stimu-
lation for depression or obsessive- compulsive disorder, for example.

Ultimately, however, a full understanding of how a mutation results 
in psychiatric disease will require a far more detailed investigation, link-
ing the levels of molecules, cells, circuits, networks, and brain systems. 
Ater all, how can changing one letter of the DNA code make someone 
paranoid, or manic, or suicidal? How can we bridge the gap between 
molecules and mind? Genetics provides a thread that can be followed 
across those levels, from cellular to animal models to humans.

One of the main indings from recent genetic discoveries is that many 
of the genes implicated in psychiatric illness normally function in pro-
cesses of early brain development. Contrary to many artists’ renditions, 
the cellular architecture of the brain is both incredibly complicated 
and exquisitely organized. here are many hundreds of distinct types 
of nerve cells, in thousands of diferent areas, all of which have to be 
distributed and connected to each other in highly speciic ways. he fact 



The  M i sw i r ed  B ra i n  •  239

CH3

CI

N

N

N

N
H

C

A
T C

T

G
T

T

C
G

A

G
A

A

C
G

Subgroup patients by

genetic diagnosis

Patient cohort

Identify disease-

causing mutations

Patient-derived neurons

Mice modeling

human mutations

De�nition of

cellular defects

Neuroimaging of

patient subgroups

Ongoing

clinical

relationship

informed by

genetic

diagnosis

Eventual

clinical

trials
De�nition of a�ected systems

Design new therapeutic strategies

Test in

animal

models

circuits

cell types
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tion of speciic mutations allows the generation of cellular and animal models of 
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panel courtesy of Jamie Simon and Fred H. Gage, Ph.D., Salk Institute for Biological 
Studies. Human brain network panel courtesy of NITRC; BrainNet Viewer. Cell types 
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that this circuitry self- assembles, based on a developmental program 
encoded in the genome, is one of the most remarkable feats of evolution.

But that program is vulnerable. It involves the products of many thou-
sands of genes— proteins that specify where cells will migrate, where 
their nerve ibers project, which cells they will connect with, and how 
those connections will change with use. It is mutations in those kinds of 
genes that are turning up in many patients with psychiatric illness.

Animal models are proving invaluable in working out how mutations 
afecting neural development or brain plasticity can ultimately result in 
the emergence of pathological brain states. A recurring theme is the im-
plication of an imbalance in the functions of two main classes of neu-
rons: those whose signals excite other neurons, encouraging them to ire 
an electrical signal of their own, and those that inhibit other neurons, 
dampening down their electrical activity. his imbalance manifests 
most obviously as epilepsy— the uncontrolled iring of large popula-
tions of neurons. But inhibitory neurons do far more than simply pre-
vent runaway excitation. hey also, crucially, control many aspects of 
information processing in neural circuits, such as iltering, gain control, 
and temporal and spatial integration. In addition, they orchestrate the 
synchronous and oscillatory iring of ensembles of excitatory neurons, 
which in turn is a central mechanism mediating communication be-
tween brain areas. he activity of entire brain systems thus derives from 
the emergent properties of synapses, cells, and microcircuits.

Studies in mice carrying mutations associated with psychiatric illness 
are now shedding light on the diverse primary defects that arise due to 
mutations in various genes and also highlighting the cascading efects 
that emerge over subsequent neural development, ultimately pushing 
the brain into a pathological state.

Consider Fragile X syndrome, which is caused by mutation in a sin-
gle gene, on the X chromosome, and is one of the most common causes 
of intellectual disability. Many Fragile X patients also present with the 
symptoms of autism, and Fragile X mutations account for 3 to 4 percent 
of autism cases. his syndrome was described in 1943, but the mutated 
gene was not molecularly identiied until 1991. Based on indings in cel-
lular and animal models, interpreted in the context of a vast literature 
from basic neuroscience studies, the function of the mutated protein 
(called FMRP) was elucidated. It works at neuronal synapses to put the 
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brakes on a biochemical process that generates new proteins and medi-
ates synaptic plasticity— changing the strengths of connections between 
neurons.

When the gene encoding FMRP is mutated in mice, the process of 
synaptic plasticity is misregulated, excitatory neurons become hyper-
connected, at the cellular level, and the cortex becomes hyperexcitable, 
with altered patterns of rhythmic activity. hese changes are associated 
with cognitive defects, impaired social interaction, hyperactivity, audi-
tory hypersensitivity, and audiogenic seizures, mimicking many aspects 
of Fragile X syndrome in humans.

he detailed knowledge of how FMRP functions suggested a thera-
peutic approach: if the brakes on the process of synaptic plasticity were 
not working so well, then perhaps this pathway could be rebalanced by 
taking our foot of the gas. FMRP normally antagonizes a pathway that 
is activated by a protein that senses the level of activity between neu-
rons— a metabotropic glutamate receptor. In the absence of FMRP, that 
pathway is overactive. Lowering the amount of the metabotropic gluta-
mate receptor, or blocking its function with drugs, proved remarkably 
successful in reversing many of the efects of mutation of the Fragile X 
gene in mice, from the cellular level to the physiological and behavioral 
levels. Drugs that block this metabotropic glutamate receptor are now in 
clinical trials for Fragile X syndrome.

Although still at an early stage, these eforts illustrate the core con-
cept in medicine of developing therapeutics based on detailed biological 
knowledge, as opposed to serendipity or random screening of chemical 
compounds. For a ield where no drugs with new mechanisms of action 
have been developed for over sixty years, the seismic nature of this para-
digm shit cannot be overstated.

his example also highlights the importance of individual genetic di-
agnoses and personalized treatment. Even if such drugs can prevent or 
reverse some of the symptoms in Fragile X patients, they may not be 
efective in other cases of intellectual disability or autism. hey may, in 
fact, be contraindicated for some patients. Tuberous sclerosis is another 
genetic syndrome oten characterized by symptoms of autism. Mutation 
of the responsible gene also afects the molecular pathways of synaptic 
plasticity, but in this case the biochemical efects are directly opposite 
to those observed in Fragile X syndrome. Although dysfunction of the 
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biochemical pathway in either direction can result in autism, it is clearly 
important to know which is involved in any given patient, as drugs that 
ameliorate Fragile X syndrome may exacerbate symptoms in a patient 
with a tuberous sclerosis mutation. A similar situation holds for some 
speciic genetic causes of epilepsy, such as Dravet syndrome, where cer-
tain anticonvulsants are contraindicated due to interactions with the 
sodium channel, which is mutated in ~80 percent of patients with this 
condition. Knowing the cause informs the treatment.

We are on the cusp of a real revolution in the treatment of mental 
illness. Genetics will transform psychiatry from a discipline based on 
arbitrary diagnostic constructs capturing only similarities in supericial 
symptoms to one that distinguishes many patients based on the root 
causes of their illness. It also afords a proven route to discover the un-
derlying biology of brain- based disorders and ultimately to provide a 
genuinely personalized approach to treatment for psychiatric patients.
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Brain- machine interface (BMI) technology (see chapter by Donoghue) 
aims to improve the quality of life for those sufering from paralysis 
and neurological conditions such as amyotrophic lateral sclerosis and 
stroke. Half a century of scientiic and engineering efort has yielded a 
vast body of knowledge and a closely related set of tools for interfacing 
the mammalian brain that should lead to clinically viable applications. 
Yet two main challenges remain: (1) engineering fully implantable, un-
tethered, clinically viable neural interfaces that last a lifetime, and (2) 
boosting performance to achieve skillful control and dexterity of the 
prosthetic device to a level that will justify the risk:beneit ratio of hav-
ing such a device implanted.

Creating lasting, durable, untethered interfaces raises a variety of is-
sues, ranging from the nature of the physical substrate (avoiding the 
biotic and abiotic efects that presumably lead to performance degrada-
tion at the electrode- tissue interface, the density and spatial coverage 
of the sensing sites), the type of signals measured, and the computation 
and communication capabilities (how much signal processing on- chip 
data to transmit wirelessly) under the power budget of the whole system.

he second challenge gravitates toward the question of what level of 
control and dexterity of the prosthetic device can be achieved with the 
signals provided by the neural interface that will justify implanting this 
device in the brain? One important part that has not received much 
attention until recently is the encoding of sensory feedback from the 
prosthetic device by directly stimulating sensory areas in the brain. he 
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idea is to complement visual feedback so that the user can also feel the 
environment. his has been supported by recent examples using elec-
trical microstimulation during active sensing tasks. Another part that 
is going to play a pivotal role in future BMI developments is the view 
of the BMI as a system in which both the neurons and the algorithms 
decoding neural signals adapt together toward accelerating learning, 
improving system performance, and providing the BMI with natu-
ral motor memory- like properties. Ultimately, the goal is to achieve a 
quantum- leap increase in the controllability of neuroprosthetic devices 
that should allow a patient to perform tasks of daily living in a natural 
and efortless way.

Addressing these important challenges is critical for BMIs to have 
a broad and important clinical impact. In this chapter we focus on the 
irst challenge, speciically on introducing a new technology that will 
radically increase the number of recording sites from the brain while 
eliminating transcranial wires and enabling lifetime- scale operation.

A typical intracortical BMI system is comprised of four diferent 
subsystems acting together— namely, the neural interface that measures 
the extracellular activity from populations of neurons (action potentials 
and local ield potentials [LFP]) in cortical areas of the brain, the decod-
ing algorithm that translates these signals into motor commands, the 
prosthetic device that executes these motor signals, and the feedback 
about the state of the prosthetic device.

Currently, the majority of neural recording is done through the di-
rect measurement of electrical potential changes near neurons during 
depolarization events called action potentials. Few other approaches 
are suiciently localized (high spatial resolution) and fast enough (high 
temporal resolution) to be able to capture action potentials single neu-
rons produce. Optogenetic methods are an exciting alternative, but they 
have not yet been modiied successfully for widespread clinical use as 
they nominally involve genetic manipulation of the host cells. here are 
also numerous clinically useful modalities with which one can extract 
information from the brain. Advances in imaging technologies such as 
functional magnetic resonance imaging (fMRI), electroencephalograph 
(EEG), positron emission tomography (PET), and magnetoencepha-
lograph (MEG), have provided a wealth of information about collec-
tive behaviors of groups of neurons. Numerous eforts are focusing on 
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intra-  and extracellular electrophysiological recording stimulation, opti-
cal recording, optogenetic stimulation, optoelectrical, and electroacous-
tic methods to perturb and record the individual activity of neurons 
in large (and, hopefully scalable) ensembles. All recording technologies 
embody some fundamental trade- of between temporal or spatial reso-
lution, portability, power requirements, invasiveness, and so on.

While the speciics vary across several prominent technologies, all 
extracellular electrical recording interfaces share several characteristics:

• a physical, electrical connection between the active area inside the 
brain and electronic circuits outside the skull

• a practical upper bound of several hundred implantable recording 
sites

• the development of a biological response around the implanted 
electrodes that degrades recording performance over time. To date, 
chronic clinical neural implants have proved to be successful in the 
short range (months to a few years, but not longer) and only for a 
small number (~10s) of channels.

Is there a way to embed very tiny recording devices in the brain such 
that we could radically increase the number of recording sites while 
eliminating transcranial wires and enabling lifetime- scale operation? 
We believe the answer is yes. In what follows, we sketch out the techni-
cal rationale for why this may be possible, with the caveat that this work 
is in its infancy.

Introductory Concepts

he technology we propose leverages the amazing advances in silicon 
electronics made possible by the information revolution, and the set of 
related manufacturing processes for building silicon chips that contain 
hundreds of millions to billions of nanoscale switches known as tran-
sistors. Such transistors, operating in concert as circuits, allow chips to 
measure the world around them (e.g., how fast you shake your phone), 
communicate wirelessly (wii networks and mobile phone calls), pro-
duce video, and uncounted other communication, computation, and 
sensing functions. he technical name oten used for this technology 
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is Complementary Metal Oxide Semiconductor technology, or CMOS 
for short.

A second technology leveraged below is that of piezoelectricity. Pi-
ezoelectricity has a long and distinguished history and technical litera-
ture. In short, certain crystals, when stretched, will produce an electri-
cal voltage. hese same crystals will also compress when a voltage is 
applied to the material. he same materials are also mechanically very 
low loss; that is, if given a mechanical compression or stretched and 
released, they will vibrate (just like a tuning fork once struck) for quite 
a while at ultrasonic frequencies before the energy is lost as heat (and 
the vibration stops). As a comparison, humans can hear mechanical 
vibrations with frequencies up to about 15 kHz (the vibration wiggles 
15,000 times per second); piezo crystals can vibrate well into the MHz 
range (millions of times per second). hese observations led to the 
use of tiny piezoelectric crystals as high- frequency timers, ultrasound 
microphones (for medical imaging), ultrasonic “speakers,” and many 
other applications.

The Neural Dust Paradigm

In its simplest form, neural dust consists of a piezoelectric crystal cou-
pled with a very small CMOS recording chip (igure 1). he crystal, 
or transducer, is used as an energy harvesting unit; ultrasonic energy 
impinging on the crystal causes it to vibrate, producing a voltage that 
can supply electrical power to the CMOS chip. Such crystals, at larger 
sizes, are a mainstay of modern electronics. Mounted on the crystal 
is an ininitesimally small CMOS chip with surface electrodes for 
neural signal acquisition. he chip uses the crystal to report recorded 
information back to a distant interrogator by relecting and modu-
lating either amplitude, frequency, or phase of the impinging ultra-
sound wave. We will oten refer to single neural dust systems as nodes. 
he modulation mechanism of each node is detailed in the later sec-
tions. here exist fundamental system design trade- ofs and ultimate 
size, power, and bandwidth scaling limits of systems built from low- 
power CMOS coupled with ultrasonic power delivery and backscatter 
communication.
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Mechanisms for Powering and Communicating with Implants

he requirements for any computational platform interfacing with mi-
croelectrodes in order to acquire neural signals of use in high- quality 
motor control are fairly stringent. he two primary constraints on the 
implanted device are device size and power. hese are discussed in 
greater detail below, but briely:

• implants placed into cortical tissue with scales larger than one or 
two cell diameters have well- documented tissue responses that are 
ultimately detrimental to performance and occur on the timescale 
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Figure 1. Neural dust system diagram showing the placement of ultrasonic interrogator 
under the skull and the independent neural dust- sensing node dispersed throughout 
the brain.
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of months; some debate exists as to what role mechanical anchor-
ing outside the cortex plays in performance degradation

• potentials (extracellular or otherwise) are diferential measure-
ments, so as devices scale down and the distance between record-
ing points decreases, the absolute magnitude of the measured po-
tential increases, which requires scaling down front- end noise; this 
requires power (that is, increasing power lowers the noise loor for 
a ixed bandwidth). Additionally, to eliminate the risk of infection 
associated with the transcutaneous/transcranial wires for broad-
casting information from and powering the device, such tethers 
should be avoided as much as possible; a global wireless hub is 
therefore essential to relay the information recorded by the device 
through the skull.

For Very Small Implants, Electromagnetic Waves Are Not a Good Choice to Couple 
Signals in to and out of the Brain

he most popular existing wireless transcutaneous energy transfer tech-
nique relies on electromagnetic (EM) ields or waves transferring infor-
mation and power. Energy coupling via magnetic ields, for example, 
has been used in a wide variety of medical applications and is the prin-
cipal source of power for cochlear implants. As EM requires no moving 
parts or the need for chemical processing or temperature gradients, it 
is considered more robust and stable than other forms energy scaveng-
ing. When used in- body, however, the total power that can be “beamed 
in” is restricted by the potential adverse health efects associated with 
heating of tissue (as EM ields cross tissue, some heating occurs). his 
is regulated by the FCC, and IEEE- recommended levels are well known 
(roughly, you must send in less power than that required to heat tissue 
by 1° C.)

Consider, in this context, the problem of transmitting EM power to 
(and information from) very small circuits embedded in tissue. here 
are two problems. he irst arises from the speed of light itself. Because 
EM waves are so fast (~300,000,000 m/s), any structures in the 1 µm to 
1 mm size range would be resonant only at very high frequencies (> 10 
GHz). At these frequencies, the loss of the EM signal is very high. In 
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addition, the EM ields lose quite a bit of power when traveling through 
tissue (this, in fact, is what leads to the heating of the tissue).

EM waves are not the only way to transfer energy, however. Among 
other ways are ultrasonic waves: sound (pressure) waves that oscillate 
at frequencies above human hearing. he speed of ultrasound (~1,500 
m/s) in the brain is much, much lower than that of EM waves (speed 
of light given earlier). Moreover, the ultrasound loss in the tissue is 
also signiicantly reduced compared to EM. hus, lowered tissue loss 
coupled with the slower speed of sound means that a piezocrystal of a 
given size will “couple in” more power from ultrasonic waves imping-
ing on it than an EM coil or antenna of a similar size (at these small 
scales). In short, our calculations show that similarly sized devices 
would “capture” ~10 million times more energy using ultrasonic waves 
instead of EM!

Coupling power in is not the only problem. Can we build tiny electri-
cal recorders of neural signals at this scale? A typical extracellular elec-
trophysiological recording of neural activity in tissue records electrical 
potential diferences between one electrode placed in- tissue near the 
neural activity and a second electrode “far away.” his is not the case for 
our motes: both electrodes are on board the tiny device and are placed 
very close together. his makes it very hard to measure the tiny electri-
cal changes that arise across these electrodes. To some extent, the tiny 
electronics can be made more sensitive by pumping in more power. 
his creates a race to the bottom: smaller motes capture less power but 
need more power to record the tiny signals. Somewhere around a 50 µm 
diameter, our calculations show you cannot deliver enough power to 
power the sensor electronics.

he second challenge involves simultaneous gathering and distin-
guishing information from multiple sensing sites. For functional neural 
mapping applications, which will likely require the full, digitized neu-
ral signal, each node will generate > 1 kbps of neural data that needs 
to be continuously streamed to the interrogator. his will likely mean 
using multiple interrogators and possibly operating diferent dust nodes 
at diferent transmit frequencies. In contrast, for BMI applications, we 
only need to be able to resolve the occurrence of a neural spike, which 
signiicantly reduces the burden on data postprocessing.
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What Would the Recording Electronics on the Node Look Like?

In addition to the challenge of delivering power, managing noise limits, 
and communicating back information, there is the challenge of design-
ing the “optimum” circuit within the dust mote that performs the elec-
trical recording. A quick glance at the problem highlights the challenge. 
First, there isn’t a lot of room on each node to design a “complete” am-
pliication and digitization front end with today’s (or near future) cir-
cuit technology; such a circuit would involve hundreds to thousands of 
transistors and would simply not it. Second, there is likely not enough 
power to drive a complex circuit of this type. Our solution to this is to 
build an incredibly simple circuit: one transistor! Unlike existing sys-
tems that attempt to amplify, digitize, and communicate the informa-
tion in a sophisticated way, our approach relies on extracellular poten-
tial diferences arising across two electrodes (which are connected to the 
transistor’s terminals) being used to “gate” the current lowing across 
the single transistor. Changes in this current, in turn, afect how the 
piezocrystal “rings” (in a very small way); these changes then afect the 
signal that bounces back from the piezocrystal to the transmitter. As an 
imperfect analogy, picture a ringing tuning fork (and a friend hearing 
the sound); in response to signals only you can hear, your hand lightly 
touches the tines, changing what your friend hears; in this example, you 
are the transistor, the tines the piezocrystal, and your friend the distant 
receiver.

Conclusions

In short, it appears feasible to build ultrasmall (~50 µm), untethered, 
neural recording devices powered by ultrasound. hree challenges 
must be overcome. he irst is the design and demonstration of CMOS 
circuitry suitable for operating within the extreme constraints of de-
creasing available power and decreasing signals with scale. he second 
challenge is the integration of extremely small piezoelectric transducers 
and CMOS electronics in a properly encapsulated package. he above 
discussion assumed the entire neural dust implant was encapsulated in 
an inert polymer or insulator ilm (a variety of such coatings are used 
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routinely in neural recording devices; these include parylene, poly-
imide, silicon nitride, and silicon dioxide, among others) while expos-
ing two recording electrodes to the brain. he third challenge arises in 
the design and implementation of suitably sensitive subcranial trans-
ceivers that can operate at low power (to avoid heating between skull 
and brain).

In addition to these three challenges, there is the additional problem 
of how to deliver neural dust nodes into the cortex. he most direct ap-
proach would be to implant them at the tips of ine- wire arrays similar 
to those already used for neural recording. Neural dust nodes would be 
fabricated or postfab assembled on the tips of array shanks, held there 
by surface tension or resorbable layers. Once inserted and free, the array 
shanks would be withdrawn, allowing the tissue to heal. Kinetic delivery 
might also be an option, but there is no existing data to evaluate what ef-
fect such a method would have on brain tissue or the devices themselves. 
All of these remain open challenges. If they can be met, as we suggest, 
these devices would present a completely new route to stable, long- term 
brain recording, something of immense importance to both neurosci-
ence and the development of clinically relevant neuroprosthetics.
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A LOOK AT THE LAST CENTURY

As told to

Christof Koch and Gary Marcus

On a warm summer evening, not long ago, while we, the authors, were 
engaged in a spirited debate about the nature of consciousness, a trav-
eler, going by the name of Lem, appeared, claiming to be from the fu-
ture; at irst, we were skeptical. But his recollections were vivid, and de-
tailed, and more than that, internally consistent. Try as we could, we 
couldn’t break his story; he claimed to be from the year 2064, and his 
knowledge of neuroscience seemed to be exceptional. Over time, we 
began to believe that his reports were authentic; in what is below, we 
have transcribed his story as near as we can recall it.

One hundred years ago, in 1964, the United States and the Soviet 
Union were jockeying for world supremacy, “computers” still meant 
human beings, trained to carry out long chains of calculations, and gas 
guzzlers dominated the highways. Global warming and nanotechnol-
ogy were not even in the vocabulary, and a British band known as he 
Beatles had just arrived in America.

What diference one hundred years make! Extreme weather and 
greatly diminished fossil fuels, the decline of the American and Russian 
empires, the rise of the Chinese Dragon, and the widespread intrusion 
of artiicial intelligence agents into daily life has transformed the stable, 
dichotomous Cold War world of 1964 into a more splintered world, vi-
brant yet at the edge of chaos in its own way.  Some of us live longer and 
more healthfully than our ancestors, as dozens of once- deadly diseases 
have been cured. Yet the bulk of mankind still lives less than four score 
and ten years; and the promises of trans- humanists to extend the maxi-
mal life span past 120 years have thus far proved illusory.
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Molecular biology has inally delivered on the early promises of the 
Human Genome Project, albeit decades later than forecast. Previous 
monolithic diseases, such as breast cancer, brain cancer, depression, de-
mentia and autism, have splintered of into a myriad of more speciic 
pathologies, deined not so much by common behavioral phenotypes 
but by shared mutations, molecular pathways and biochemical mecha-
nisms. In combination with cheap, reliable, and fast genetic tests, the age 
of personalized medicine, long trumpeted by Leroy Hood, Craig Venter, 
and other pioneers, arrived in which familial predispositions to behav-
ioral traits, pharmacological interventions, and diseases, permit much 
more targeted interventions.

Bioterrorism has occasionally struck, but the combination of per-
sonal genomics, personal immunizers, and a ubiquitous surveillance 
state has largely kept the population safe.

Advances in the brain sciences have been in many ways even more 
impressive; a hundred years ago, humanity knew that the brain— and 
not the heart or liver— was the seat of the mind, but little about how 
neural tissue governed perception, comprehension, or consciousness; 
brain- machine interfaces, now common, did not even igure in the most 
popular science iction television program of the day (Star Trek). If our 
understanding of neuroscience is still incomplete, it is shocking how 
much progress there has been. Yet one also forgets that the seeds for our 
modern understanding were already in place.

The Romantic Era of Neuroscience: 1964

he irst blossoming of the romantic era in neuroscience started almost 
two centuries ago. It was powered by two technologies, the optical mi-
croscope and the reinement of chemical dyes, in particular Golgi’s stain-
ing method of using silver chromate salt. Together, these allowed San-
tiago Ramón y Cajal to visualize in stunning detail the circuitry of the 
nervous systems in animals and people, demonstrating in aesthetically 
pleasing images that brains, like kidneys, hearts and all other biological 
organs, are composed of a myriad of discrete, cellular units, neurons, 
and their supporting actors, glial and astrocytes. Neurons, he discov-
ered, came in a dizzying variety of shapes, sizes and geometries.
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Later, the electron microscope established beyond doubt that nerve 
cells were linked at discrete specialized junctions, chemical and electri-
cal synapses, and the microelectrode recorded the electrical activity of 
individual nerve cells. In 1963, the Nobel Prize was awarded to John 
Eccles for discovering the discrete (quantal) nature of synaptic trans-
mission, and to Alan Hodgkin and Andrew Huxley for describing the 
sodium and potassium membrane currents that power the electrical im-
pulse, the famed action potential or spike, as it travels along the axon. 
he mathematical formalism they pioneered has proved enduring; the 
reign of the Hodgkin- Huxley equations describing the biophysics of in-
dividual nerve cells would last until they were replaced by molecular 
dynamics model in the 2020s.

he next major advance came from electrical recordings from anes-
thetized and, subsequently, from awake and behaving animals with 
microelectrodes coupled to miniaturized diferential ampliiers (and 
loudspeakers), which made the hitherto silent brain come alive with the 
staccato sounds of spiking nerve cells. In their classical 1959 and 1962 
studies, David Hubel and Torsten Wiesel discovered the selectivity of 
visual cortical cells to the orientation of lines that the animal looked 
at. his work in turn launched the bold exploration of the higher order 
visual cortex that culminated in the late 1960s with the discovery of in-
dividual neurons that responded preferentially to faces.

Clinical studies, always a fecund source of knowledge about human 
nature, had given birth to neurology and to neurosurgery, both of which 
contributed to neuroscience. he neurologist Paul Broca had irst in-
ferred in 1861 from a singular patient that a speciic region of the let 
inferior frontal gyrus is critical to speech. By the 1930s and 1940s, the 
neurosurgeon Wilder Penield had stimulated the exposed cortex of epi-
leptic patients with electrodes, thereby triggering simple visual percepts, 
movements, or vividly recalled memories, again and again. his was a 
compelling demonstration of the intimate link between the physical 
brain and the subjective mind.

In mathematical logic, Warren McCulloch and Walter Pitts dem-
onstrated back in 1943 that interconnected networks of very simple 
neuron- like units could compute any logical expression. In conjunc-
tion with the Church- Turing thesis formalizing what is algorithmically 
computable, theoreticians and engineers established a foothold into the 
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all- important challenge of conceptualizing how the brain could think, 
reason, and remember. Whereas René Descartes, three hundred years 
earlier, needed to postulate a vague cognitive substance (res cogitans) 
that did the thinking for people (famously, not for animals), computer 
scientists such as Frank Rosenblatt, inspired by McCulloch and Pitts, 
began taking the irst tentative steps toward building computer simula-
tions of brain- like circuits. If “Perceptrons,” the single- layered neural 
networks of the 1960s, seem comically simplistic in hindsight, it must be 
remembered that such simple networks ultimately inspired a revolution. 
his period of boundless optimism and excitement was cross- fertilized 
by the launch of Artiicial Intelligence in 1955 at Dartmouth College.

Neurophysiologists, computer scientists, and psychologists alike na-
ively imagined that an understanding of the brain was near to hand. 
Of course, we now know that robust artiicial intelligence took a cen-
tury, not a few decades, to come about, and that neither psychology 
nor neuroscience was close to having reached the maturity that physics 
has. But the roots were all there. Nobody really knew remotely how the 
human brain worked, or how to emulate it, yet the revolution was well 
underway.

Neuroscience Becomes Big Science: 2014

Fity years on, studying the brain was no longer a niche ield but a full-
 on movement. he US- based Society for Neuroscience alone had more 
than forty thousand members, annual funding was well in excess of 
several billion dollars, and writers, journalists, and an inchoate neuro- 
industry all thrived on the public interest in the brain.

One major advance was molecular. Scientists had discerned the 
structure and function of ionic channels and receptors, the miniaturized 
stochastic switches and modulators embedded in the bilipid membrane 
that endows neurons with their ability to process information, to shape 
and guide action potentials along axons, and to release neurotrans-
mitters. Also well understood was the action of sensory receptors that 
transduce the signals impinging onto the body— photons of light, sound 
perturbations in the air, or molecules of some odorant— into electrical 
activity. Indeed, neuroscientists had tracked down how single nucleotide 
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changes in the DNA that encodes one or another photo- pigment pro-
tein in the retina impacted the way a subject perceives color.

he molecular revolutions of the day are perhaps best exempliied by 
the Nobel Prize– winning work of Eric Kandel, which elucidated how the 
sea slug Aplysia learns the gill- withdrawal relex, the irst form of long- 
term memory to be well understood. It demonstrated the importance 
of protein synthesis and changes in synaptic connectivity in long- term 
memory. Kandel’s work furthered the growing realization that much of 
memory is encoded in the speciic pattern and strength of connectiv-
ity among large ensembles of active neurons (as hypothesized already 
in 1895 by none other than Sigmund Freud), though the many ways in 
which memories could be stored within an individual neuron were not 
yet recognized. As Kandel and his contemporaries began to realize, the 
rules that determine how the inluence that one synapse brings to bear 
on the neuron it is connected to, its weight, is up-  or downward adjusted 
depends on the relative timing of the arrival of the pre-  and postsynaptic 
electrical activity. (Cleverly, this gives individual synapses a rudimen-
tary capacity for learning causal relationships, in which event A is fol-
lowed by event B but never the other way around.) In 2013, the group of 
another Nobel laureate, Susumu Tonegawa, became the irst to induce a 
false memory into mice by directly manipulating the underlying neural 
engram in their hippocampus. A great many molecular details— of the 
underlying neurotransmitters, second messenger systems, protein ki-
nases, ionic channels, and transcription factors— were all steadily being 
illed in, even though the overall logic of the brain remained a mystery.

Two techniques proved transformative. First, in the 1980s, the phys-
ics of nuclear magnetic resonance was exploited to routinely, reliably, 
and safely image the static, anatomical structure of the human body 
by bombarding subjects with radio waves while they were lying inside 
powerful magnets. Applied to the brain, magnetic resonance imag-
ing (MRI) revolutionized neurology. In the 1990s, MRI was reined to 
image the functional architecture of the active brain with spatiotemporal 
resolution at the scale of millimeters and seconds. Although the popular 
images of that time seem laughably crude by contemporary standards, 
they gave birth to the ield of cognitive neuroscience as scientists began 
to investigate the neural basis of seeing, hearing, feeling, thinking, and 
remembering. Wars broke out about the “localization” hypothesis when 
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many neuroscientists rejuvenated the old phrenologist program of link-
ing speciic mental faculties to speciic parts of the brain, identifying 
more than one hundred brain regions on the basis of functional spe-
cializations. By 2014, theories of cognitive neuroscience began to grow 
in sophistication, as investigators realized that these speciic regions 
formed parts of larger, more complex networks, which at that time 
eluded understanding. Only a few brain scientists were concerned with 
the coupling between fMRI signals, relecting the power consumption 
of the brain at a sedate pace of seconds, and the switching in the un-
derlying neural lattice at the millisecond scale. Indeed, the elementary 
spatial unit of brain imaging, voxels, at that time about 2 x 2 x 2 mm3, 
encompasses about one million highly diverse neurons, glial cells, and 
astrocytes and ten billion synapses, iring two to twenty times within 
one MRI scan cycle, way too coarse to infer neuronal mechanism, akin 
to trying understanding language by listening to a smeared- out record-
ing of the chattering among all the spectators at a sports arena. And 
few people had any conception of how important glial cells would turn 
out to be. Techniques like EEG and MEG were better temporally; they 
recorded electrical and magnetic ields with millisecond precision, but 
with even less spatial precision. he blurriness of these instruments was 
mirrored by the primitive and edentate tools used to safely perturb the 
human brain— electrical stimulation in patients, and extracranial elec-
tromagnetic ields and drugs in volunteers.

he other major advance ity years ago was the birth of opto-  and 
pharmaco- genetics, methods that delicately, transiently, reversibly, and 
invasively control deined events in deined cell types at deined times, 
initially in a few model organisms— the worm, the ly, and the mouse. 
Equipped with these tools for perturbing the brain, scientists system-
atically moved from correlation to causation, from observing that this 
circuit is activated whenever the subject is contemplating a decision to 
inferring that this circuit is necessary for decision making or that those 
neurons mark a particular memory. By the early 2020s, the complete 
logic of thalamo- cortical circuits could be manipulated, in hindsight a 
tipping point in our ability to bridge the gap between cortex and theo-
ries of its universal and particular functions.

An enormous amount of work characterized how sensory systems 
process their information and represent it in the cortical tissue. Silicon 
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microelectrodes and live brain imaging using luorescent dyes and ge-
netically encoded proxy markers of electrical activity allowed intrepid 
neuroscientists to track the electrical activity of hundreds of neurons 
in the behaving animal simultaneously, a signiicant increase over the 
previous decades in which the brain was sampled by a single wire. heo-
reticians could thereby infer from the iring of neurons the probabilistic 
manner in which the nervous system represents the visual, auditory, and 
olfactory environment, as well the animal’s physical location, the ani-
mal’s uncertainty in the face of a perceptual or a subjective decision, and 
even the presence of familiar individuals such as celebrities.

Yet despite these advances combined with the exponential increase 
in relevant data and the eforts of the brightest minds on the planet, 
comprehension of the brain’s circuits in health and disease increased 
sublinearly. Even the smallest of all multicellular “model organisms,” the 
roundworm C. elegans, whose nervous system contains a mere 302 neu-
rons, was scarcely understood as a whole. Hundreds of worm specialists 
focused on isolated reductionist accounts of one function or another. 
Yet no one attempted to integrate all this knowledge into a single, co-
herent, comprehensive, holistic, and explanatory framework. Nor had 
any brain disease yet been cured. Many in the rapidly growing elderly 
population faced symptoms of dementia, yet little could be done to 
slow down the ravages of the disease; it must have been heartbreaking 
to witness. When the once dominant Diagnostic and Statistical Manual 
of Mental Disorders— at the time the psychiatrist’s bible for treating pa-
tients with mental alictions— appeared in its ith edition in 2013, it did 
not list a single biomarker nor a single fMRI diagnostic criterion. If you 
were depressed, heard voices, or felt persecuted in the early twenty- irst 
century, your only options were to talk to a therapist, ill out question-
naires, and take little- understood drugs that swamped your brain and 
had untold side efects.

In fairness, such slow progress was inevitable. Historically, science 
had been most successful when studying isolated systems with reduced 
degrees of freedom that tamed their complexity: a marble rolling down 
an inclined plane, a planet that plows its orbit around its center star, a 
lone electron in a magnetic ield, a double strand of DNA. Even though 
it was obvious that living systems were characterized by large numbers 
of highly heterogeneous components, be they proteins, genes, or nerve 
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cells, it was far from obvious how to deal with that complexity. A fun-
damental problem in the brain sciences has always been the numerous 
ways in which components interact causally across a large spectrum 
of space- time, from nanometers to meters and from microseconds to 
years. A complete understanding demands that a large fraction of these 
interactions be experimentally or computationally probed. his is iend-
ishly diicult. Bioinformaticians had few clues about how to integrate 
computations that spanned so many scales of time and space, and they 
lacked the relevant hardware, as cloud computers were primitive.

It was already becoming clear just how hard the problem was; even 
today no single human understands how the brain works at anything 
but an abstract and highly simpliied level. Nature provides few short-
cuts; a complete understanding of the brain comes not from any one 
experiment but from the integration of thousands of experiments that 
bridge many levels. Engineered systems such as spacecrat or computers 
that contain billions (then) or trillions (now) of discrete components 
are quite diferent. hey are purposefully built to limit the interactions 
among the parts to a small number. hus design rules for the layout 
of integrated electronic circuits impose a minimum distance between 
wires and other components to eliminate coupling, and the power sup-
ply is kept separate from computing, with computing separate from 
memory. Yet nervous systems interdigitate practically everything, from 
power supply to computation to memory. Nature couldn’t have made 
herself more diicult to understand if she had tried. Early twenty- irst- 
century scientists had begun to recognize this complexity but were un-
prepared and unable to deal with its consequences.

he next major revolution was not technological, but organizational. 
A private American initiative, the Allen Institute for Brain Science, tak-
ing cues from the biotechnology industry, was the irst to approach neu-
roscience as “Big Science,” moving from a model oriented around au-
tonomous “star” investigators toward a team- based approach in which 
several hundred scientists from molecular biology, anatomy, physiol-
ogy, genomics, optics, physics, and informatics worked together on 
industrial- scale projects, the irst several of which had been launched by 
2014 (see the chapter by Koch and colleagues, this volume). One gener-
ated the complete ontology of cortical cell types— the shape of their den-
dritic tree, the near-  and far- lung target zones of their axons, the genes 
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they express, their electrical behavior, and the rules governing their 
connectivities in the mouse and the human brain. he other was the 
construction of brain observatories— cerebroscopes— to record, make 
publicly accessible, analyze, and model the cellular events in the cortico- 
thalamic system underlying visual information processing in behaving 
mice. Other, even larger enterprises were spawned in the 2020s, as China 
and India became scientiic world powers.

Also notable from that time was the publicly funded European 
Human Brain Project, which built a series of ever- larger supercomputer 
facilities to simulate, at the cellular, and, ultimately, at the subcellular 
level, the biophysics of neurons and their supporting cellular actors, 
in brains of increasing size, from the mouse to the human brain. Early 
on, their combination of morphological, anatomical, and physiological 
knowledge yielded an electrical model of a cortical column in rodents, 
a proof- of- principle that the electrodynamics of a chunk of brain mat-
ter could be understood by combing detailed biological knowledge with 
suicient computational resources. he vision of a gigantic computer 
model of the human brain with the promise to comprehend its func-
tioning, eliminate brain diseases, and ultimately upload ourselves, ex-
cited the public imagination with its near- religious imagery. As those 
initial simulations proved to be computationally underpowered and 
inaccurate, this promise backired, leading to the withdrawal of public 
support for some time in the 2020s. Much was learned, but the public 
was disappointed.

Paraphrasing the twentieth- century British war leader Winston 
Churchill, neuroscience was at the end of the beginning of the quest to 
understand the brain and the mind. Neuroscientists had not yet igured 
out how to bridge the many levels of neurophysiology, from molecules 
to cells to circuits to behavior, but they had discerned enough to make 
the mission clear, and many critical tools were in place.

The Modern Era: 2064

Today, by identifying hierarchies of modules and submodules in the 
cortical sheet, we’ve largely tamed the sheer diversity and the vast extent 
of the neocortex. he basic organization of the cortical six- layered sheet 
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is now known to schoolchildren, and if the overall interconnectivity is 
far too hard for any individual to understand, the nervous system of lab-
oratory organisms like lies can now be emulated— successfully— with 
computers; human brains, too, have been simulated with some idel-
ity, although in time frames— about one- hundredth of real time— that 
make them less useful than was originally anticipated.

he retina was the irst piece of neural tissue to be understood, in the 
sense that its output— action potentials along the optic nerve— can be 
quite accurately predicted from its input— patterns of light. One reason 
the retina led the way is its (relative) simplicity; unlike other nervous 
matter, the retina has primarily feed- forward connections— without any 
signiicant connections from the brain proper back to the retina. Most 
of its cellular elements had been recognized in the late twentieth cen-
tury. By 2020, a Big- Science consortium of anatomists, physiologists, 
biophysics modelers, and machine learning specialists had arrived at 
a nearly complete description of retinal input- output, and the iring 
rates of the two dozen ganglion cell types, whose axons make up the 
optic nerve, could be reliably predicted, in response to arbitrary visual 
stimuli. hat understanding (in combination with advanced optogenet-
ics and implantable ocular electronics) led to efective treatments for 
macular degeneration, diabetic retinopathy, and retinitis pigmentosa.

Similar techniques helped crack the codes used in the visual thala-
mus and early visual cortical areas, as the onion layers of the brain began 
to be peeled back, one by one. A complete cellular- based working model 
of how the mouse moves through a maze in response to what it sees, 
together with the ontology of the approximately one thousand diferent 
cell types that make up the brain, was achieved in the mid 2020s. he 
senses of touch, hearing, and smell were decrypted a few years later.

his success fed the hope that understanding the entire mouse brain 
could not be far behind. Mechanistic explanations for what happens 
when the brain goes to sleep, dreams, wakes up, decides to run, remem-
bers a location for another day, and develops across its lifespan, from 
birth to senescence, seemed close at hand. But these hopes were dashed. 
Yes, plenty of individual stories were told, but they could not be assem-
bled into a coherent whole.

Funding for brain research slowed down because of the inability to 
translate these insights to people and their pathologies. Not that anybody 
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seriously argued that the human brain was fundamentally diferent from 
that of the mouse. Of course, the two difer dramatically in size and ac-
cessibility. he human brain is more than a thousand times bigger than 
the mouse brain— 1.4 kg versus 0.4 g in mass; a papaya versus a sugar 
cube in volume; eighty- six billion nerve cells versus seventy- one million 
for the entire brain and sixteen billion versus fourteen million nerve 
cells for the neocortex. Even more importantly was the ethical con-
straint: the living human brain could only be probed at the required cel-
lular level under rare conditions, primarily during neurosurgery. fMRI, 
EEG, MEG, and other noninvasive techniques that peered at the brain 
from the outside were blind to genes, proteins, and cell types. While a 
rice-  or corn- sized chunk of human gray matter is by and large similar 
to that of the mouse, there are many, many minute diferences. Given 
the divergent ways in which Mus musculus and Homo sapiens evolved 
over the last seventy- ive million years since their last common ancestor, 
their genes and gene regulatory mechanisms, proteins, synapses, neu-
rons, and circuits difer in a multitude of small ways. Yet these trivial 
but elusive diferences made generalizations from the mouse to humans 
diicult. Indeed, pharmaceutical companies had realized this earlier 
on and had discontinued much of their mouse research already in the 
early 2010s. Ater the animal rights movement managed to shut down 
almost all invasive research on nonhuman primates worldwide by the 
end of the 2020s, neuroscience entered what is now known as the lost 
decade. his was marked by low funding and pessimism that neurosci-
ence could ever truly ameliorate the staggering toll that brain diseases 
took on the aging population, estimated to be 10 percent of world GDP.

he darkest hour is oten just before the dawn. Help came from a very 
distant relative of humans, C. elegans, and from the triumphant mar-
riage of artiicial and biological molecular machines.

To be sure, it took over thirty- ive years from when the connectome 
of two worms were mapped (in 1986) for an accurate, predictive, com-
prehensive, and fully testable model of its nervous system to be for-
mulated. he key insight— the role of neuromodulators in switching 
pathways and circuits dynamically— was already faintly recognized ity 
years ago by such pioneers as Cornelia Bargmann and Eve Marder, in 
the worm and other non-vertebrate species, but because worms lack 
action potentials, the importance of Bargmann and Marder’s work for 
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vertebrate creatures was initially overlooked. We now know that prin-
ciples of dynamic routing are critical in all creatures.

he conquest of the living human brain was inally achieved with 
nanobotic neural implants, colloquially known as brainbots. hese are 
molecular machines for imaging and manipulating the brain that can 
be safely injected by the millions into the bloodstream. he irst gen-
eration of brainbots were designed to sample and measure their local 
environment, such as the electrical potential, or the concentration of 
a particular neurotransmitter or small molecule, and could be queried 
from the outside. More advanced probes read the transcriptional sig-
nature of individual neurons, monitor their electrical activity, arrest or 
trigger spikes, and, most recently, control synaptic release at individual 
synapses. hey intervene at any point in the body by delivering missing 
or eliminating miss- formed neurotransmitters or proteins, or trigger 
electrical activity. Some operate transiently while others act as modi-
ied viruses that ind a permanent home inside nerve and glial cells to 
arrest and ultimately repair the damages degenerative diseases such as 
Alzheimer’s or Parkinson’s cause; by the mid 2050s, almost all medicine, 
and all neuroscience, had moved to nanobotic platforms; even optoge-
netics, the workhorse of the early twenty- irst century, eventually was 
displaced. Because of their high spatial speciicity— guided by an exter-
nally imposed 3- D radio ield— properly designed nanobots can target 
individual cells anywhere in the brain with enormous precision.

Many once- common mental diseases can now be delayed or, in a few 
cases, cured. To be sure, progress in reducing morbidity and mortality 
of brain- based pathologies— tumors, traumatic- brain injury, epilepsy, 
schizophrenia, Parkinson’s, Alzheimer’s and other forms of dementia— 
took much longer to realize than anyone conceived of in the early years 
of the new millennium. (An instructive parallel is the War on Cancer, 
announced by President Nixon in 1971, when America was lush with 
the success of the lunar landing; it was nearly ive decades before there 
was a signiicant decline in the actual death rates for cancer, while death 
rates for respiratory, infectious, and cardiovascular diseases had plum-
meted much earlier.) Reducing the collective impact of brain- based pa-
thologies turned out to be more diicult than curing the diverse set of 
pathologies known as cancer; both are highly heterogeneous diseases 
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with an inexhaustible multiplicity of genetic, epigenetic, and environ-
mental causes, but because of mosaicity, the complexity was even greater 
for the brain.

Brainbot treatment is expensive. And like most medical procedures, 
it has side efects, restricting it to appropriate patient populations. Yet 
although traditionalists and religious people object, nanobotic enhance-
ment in healthy subjects is immensely attractive to those who believe 
in the ininite betterment of the human condition. Its proven ability to 
boost athletic agility and speed, learning and recall, has given rise to an 
underground market in brain enhancements. hose able to pay and will-
ing to live with the short-  and long- term morbidity and mortality risks 
are threatening to turn into trans- humans, a cognitive elite that easily 
outcompetes nonenhanced normals in the marketplace and in warfare.

In academic circles, the ongoing debate is about the growing rat of 
whole- brain simulations and what they mean both ethically and scien-
tiically. For one thing, the question— irst raised over ity years ago— 
about the relevant level for brain simulation lingers. he intellectual ten-
sion arises between bottom- up simulators, who hold a form of extreme 
biological chauvinism— the need to consider every ionic channel, syn-
apse, and action potential to fully do justice to the baroque complexity 
of the brain’s circuits— and top- down simulators, who are motivated by 
the austerity of a purely algorithmic approach of replicating the mind in 
sotware (the mind is not wet, ater all) and start with behavior or with 
computation.

Both sides have made major advances, but neither has been fully suc-
cessful. Biophysicists accurately simulate the biochemical and neural 
activities of worms and lies with near full verisimilitude. Yet for mam-
mals, deviations appear. And these diferences between actual and sim-
ulated behaviors become more pronounced when moving from rodent 
brains, via those of monkeys and apes, to the human brain. hus the 
spoken language such simulations produce is garbled, and most simu-
lations remain at the kindergarten level on many tasks. What are we 
missing today? Do we have to simulate every ionic channel and every 
neurotransmitter molecule? Must we treat the brain as a quantum me-
chanical system? he brain is, ater all, a physical object like any other 
one, subject to the iron law of quantum mechanics. Yet the vast majority 
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of brain scientists assume that the nervous system, a hot (by QM stan-
dards) and wet organ closely coupled to its environment, can be ap-
proximated very well as a classical system.

Even considered as a classical system, biophysical brain simulations 
are dreadfully slow, working at one- hundredth the speed of real human 
brains; now that Moore’s law has run out, and quantum computation 
proved to be of limited real- world use, it’s not clear where the next ad-
vance will come from. Top- down modelers, meanwhile, capture some of 
the essence of human cognition, but with comparatively little idelity to 
biological reality. Until the two approaches can be bridged, the thought- 
reading prosthetics that seemed so near a decade ago will continue to 
remain elusive. (In part, once again, the problem stems from complex-
ity. Mathematicians and engineers imagined that there would be one 
true brain algorithm to rule them all, but because of the arbitrary ac-
cidents of nature’s evolutionary opportunism, that simply hasn’t proven 
to be the case; indeed, there seem to be almost as many algorithms as 
there are brain circuits, which has let little opportunity for shortcuts 
along the way.)

Meanwhile, on the cognitive side, processes such as language, plan-
ning, social cognition, and higher- level reasoning still resist explana-
tion, especially in the intricate forms they take in people. Nanobotics 
may bridge this gap in our knowledge eventually, but for now, knowl-
edge of uniquely human faculties still lags. We still don’t know how 
the brain encodes sentences, and only a tiny bit is known about word 
meanings; complex concepts, like “the sort of person who reads icti-
tious narratives,” remain entirely out of our grasp. If the neural basis of 
association has been entirely unraveled, the neural basis of higher- level 
cognition has not.

Ethically, as full- scale human brain emulations have neared, the po-
litical battles have been heated. Some see modeled rodents as ethically 
equal to real rodents and argue that complete human- brain emulations 
merit rights equal to human beings. Some scholars see emotional dis-
tress in the rudimentary human brain simulants. Yet most (chose to) 
believe that a simulation is an imitation rather than the real thing, just 
like a computer simulating the aerodynamics of light will never actually 
lit of. Politicians avoid the issue, but time is clearly running out. Will it 
be legal to employ a whole- brain emulation for intellectual work, much 
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as one might employ a human? Would it be ethical? Does all income 
accrue to the owner of the simulation, or might those whose brains con-
tributed to the simulation also deserve royalty fees, in addition to the 
hourly fees they were paid for their original participation in extended 
brain scans?

he inal challenge, indubitably, will be how subjective feelings, how 
consciousness itself, emerges from the physical brain. Even today, there 
remains an explanatory gap between neural activity and subjective feel-
ings, between the brain and the conscious mind. One belongs to the 
realm of physics, to space and time, energy and mass. he other one 
belongs to a still poorly understood magisterium of experience. Spear-
headed by the molecular biologist turned neuroscientist Francis Crick, 
cognitive neuroscientists have been tracking down the neuronal cor-
relates of consciousness, but the vast complexity involved has kept us 
from a full solution. If we by now have a clear understanding of the dy-
namics by which information passes into awareness, we still don’t fully 
know why experiences feel the way they do. he expectation is that the 
“hard problem” of consciousness will eventually be dissolved, and even 
disappear, much in the same way that the problem of “what is life” has 
disappeared from view, replaced by a host of more tractable problems 
about the details of reproduction and metabolism. As the behavior of 
computer artifacts begins to approach, and oten to exceed, human ca-
pability, more and more people believe that consciousness arises from a 
privileged form of information associated with highly organized matter, 
such as brains or artiicial intelligence agents, as argued already half a 
century earlier by Giulio Tononi. But if Descartes’s famous conclusions 
four centuries ago might be paraphrased “I am conscious, therefore I 
am,” the issues of consciousness still haven’t been fully resolved. It is to 
be hoped that the next hundred years will inally bring resolution to the 
ancient mind- body riddle.

Acknowledgment: We wish to thank Ramez Naam, author of Nexus, for 
very thoughtful comments.





G L O S S A R Y

Action potentials. A rapid event in which the electrical membrane potential 

of a cell rises (or depolarizes) and then falls (hyperpolarizes), due to the 

opening and closing of ion channels. An action potential typically occurs 

due to suicient neurotransmitter release from presynaptic neurons, and 

itself elicits neurotransmitter release at the axon terminal, which elicits 

depolarizations in postsynaptic targets. In this way, action potentials are 

the primary means by which neurons communicate with one another.

Channelrhodopsins. A special family of proteins that act as light- gated ion 

channels; they open when exposed to light. Naturally occurring in uni-

cellular green algae, these proteins can be expressed in neurons through 

genetic transfection. Because ion channel opening triggers depolariza-

tion, channelrhodopsins can be used to artiicially stimulate neurons 

with light.

Cre driver line. A genetically engineered breed of laboratory mice that allows 

scientists to regulate genes in very speciic subpopulations of cells at a 

particular developmental time point. he most popular technique uses 

the Cre- loxP system to target cells at a variety of spatiotemporal scales, 

from ubiquitous expression throughout the adult mouse to only express-

ing in a molecularly characterized subset of excitatory or inhibitory cor-

tical cells. In combination with Cre reporters, these molecularly charac-

terized cells in these Cre line animals can be made to be luorescent or 

can be turned on or of with diferent colored beams of lights or drugs 

(opto-  or pharmacogenetics).

Cytoarchitecture. he study of the cellular composition and structure of the 

brain’s tissues using the microscope.

Diἀusion MRI. An MRI- based technique that measures difusion of water 

molecules in biological tissues, with primary application in studying i-

ber structure and connectivity in the brain.

Diἀusion tractography. A 3D modeling technique used to visually represent 

neural connections determined by difusion of water motion along axon 

tracts in the brain.

DNA bar code. An arbitrary string of DNA letters, used to identify a molecule, 

cell, or other entity.
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Electroencephalography (EEG). A technique of recording electrical activity 

along the scalp of the head by the placement of many electrodes that are 

cross- calibrated. In addition to its use in basic science, the technique has 

been applied in diagnosis of epilepsy and other brain disorders.

Electrophoresis. he motion of dispersed particles in a luid by applying a 

uniform electric ield. Oten applied to identify or quantify segments of 

RNA, DNA, or proteins.

Exome. he part of the DNA that is actually transcribed into RNA, about 1% 

of the human genome.

Fluorescent In Situ Sequencing (FISSEQ). the process of reading the sequence 

of letters along a DNA strand in the context of an intact slice of tissue, by 

using an automated microscope.

Functional mag netic resonance imaging (fMRI). An application of MRI 

technology that measures brain activity by detecting associated changes 

in blood low to measure neuron activation.

Gene e xpression. he process by which information in DNA is synthesized 

through RNA into proteins. All known life forms use it.

Halorhodopsins. Like channelrhodopsins, these proteins are light- gated ion 

channels that can be made to express in the membranes of neurons, but 

these channels speciically transmit chloride. When stimulated with 

light, the opening of these channels causes hyper polarization, which 

suppresses neuronal responses. Combined with channelrhodopsins, 

these channels provide a means to both turn of and on neural activity 

with light.

Histology. he study of microscopic anatomy of cells and tissues, using various 

stains for cells and tissues as well as expert diagnostics.

Immune microscopy. Using special forms of molecular recognition called an-

tibodies (derived from the immune system) to tag particular proteins or 

other molecules with colored dyes or with DNA barcodes for visualiza-

tion by in situ sequencing or in situ microscopy.

In situ hybridization. A gene expression detection technique in which a single 

probe for each gene is designed and hybridized to RNA in intact tissue 

retaining the spatial context.

Light- sheet microscopy. A technique for microscopy, typically in living or-

ganisms, in which a sheet of laser light illuminates a thin section of tis-

sue, produce sharp high- contrast images with relatively little interference 

from the non- illuminated tissue.
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Magnetoencephalography (MEG). A functional neuroimaging technique that 

measures changes in magnetic ields in the brain to study cognitive pro-

cesses and clinical changes.

Magnetic r esonance imaging (MRI). A medical imaging technique using 

powerful magnets that applies the nuclear resonance properties of atoms 

to create detailed images of the body.

Microarray. An array containing thousands of small DNA or RNA sequence 

probes that can perform genetic tests by applying an independent tissue 

using imaging.

Optogenetics. A technique for using light to control neurons. See channel-

rhodopsins and halorhodopsins.

Positron e mission t omography (P ET). A medical imaging technique that 

detects gamma rays emitted from an injected radioactive tracer in the 

body. PET produces a three- dimensional image of functional activity in 

the brain.

Sequence s pace. he enormously large abstract set of all possible DNA bar 

codes.

Single gene disorder. A disorder caused by a mutation in a single gene.
Two- photon microscopy. A luorescent imaging technique that allows high- 

resolution imaging of living tissue to a depth of about 1 mm.
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